P- 1319

SECURE GROUP COMMUNICATION
WITH KERBEROS

A PROJECT REPORT
Submitted by
M.HARI VIGNESH 71203104010
V.SATHISH KUMAR 71203104040
R.R.NARAIN 71203104302

in partial fulfillment for the award of the degree

of
; __//’_:'.*.“\;\
BACHELOR OF ENGINEERING e « S
</

p-1514

in

COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE-641 006

ANNA UNIVERSITY: CHENNALI 600 025

ACKNOWLEDGEMENT

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “SECURE GROUP COMMUNICATION
WITH KERBEROS" is the bonafide work of

M.HARI VIGNESH 71203104010
V.SATHISH KUMAR 71203104040
R.R.NARAIN 71203104302

who carried out the project work under my supervision.

b A
ooy i

Dr.S.Thangasamy Ms.R Kalaiselvi
HEAD OF THE DEPARTMENT SUPERVISOR

Senior Lecturer
Dept. of Computer Science & Engineeri Dept. of Computer Sci Engineering
Kumaraguru College of Technology, K guru College of Technology,
Coimbatore-641006. Coimbatore-641006.

The candidates with University Register Nos. 71203104010, 712031 04040,
71203104302 were examined by us in the project viva-voice examination held

INTERNAL EXAMINER

EXTERNAL ExAMINElh L

ACKNOWLEDGEMENT

We express our sincere thanks to Dr.K.Arumugam, Correspondent,
Kumaraguru College of Technology and the management, for providing us this
opportunity to undertake this project work.

We express our profound gratitude to Dr.Joseph .V. Thanikal Principal,
Kumaraguru College of Technology, Coimbatore, for permitting us to undergo
a project work.

We are greatly indebted to Dr.S.Thangasamy, Professor and Head of
the Department of Computer Science and Engineering, for the immense support
he has provided us throughout our project.

We extend our sincere thanks to our project coordinator Ms.S.Rajini,
Senior Lecturer, Department of Computer Science and Engineering, for her
constant support and encouragement.

We would like to express our heartfelt thanks o our guide,
Ms.R.Kalaiselvi, Senior Lecturer, Department of Computer Science and
Engineering, who gave the initial idea and guidance to carry out every further
step and for her everlasting counseling and untiring help throughout our project.

We sincerely thank our class advisor, Mr.S.Mohanavel, Senior
Lecturer, Department of Computer Science and Engineering, for his
unconditional support and motivation in helping us in completing the project.

We would also like to thank all the faculty members and lab technicians
of Department of Computer Science and Engineering for their valuable

guidance, support and encouragement during the course of project work.

DECLARATION

We,
ML.HARI VIGNESH 71203104010
V.SATHISH KUMAR 71203104040
R.R.NARAIN 71203104302

Declare that the project entitted “SECURE GROUP
COMMUNICATION WITH KERBEROS”, submitted in partial fulfillment
to Anna University as the project work of Bachelor of Engineering (Computer
Science) degree, is a record of original work done by us under the supervision
and guidance of MsR.Kalaiselvi B.E., Senior Lecturer, Department of
Computer Science and Engineering, Kumaraguru College of Technology,
Coimbatore.

Place: Coimbatore

Date: 23-4-07

[M.HARI VIGNESH]

[V.SATHISH KUMAR]
DECLARATION

R Neen?

[R.R.NARAIN]|

ABSTRACT

Group communication applications are growing rapidly in today’s
internet world. At the same time security becomes the major concern for group
communication application. In this project the authentication is enhanced using
‘Kerberos™ protocol and the Group key Communication is framed based upon
the ‘Diffie Hellman® Algorithm.

Kerberos thrives to provide the following security features - It makes
sure that a server must be well assured of whom a client trying to connect to it.
It also assures that a clients request is sent to the stipulated server and no one
else on the network. It secures that the password should not be sent across the
network since eaves dropper could capture it and play foul with it.

This project presents a new secure authenticated group key exchange
algorithm for large groups. The protocol scales efficiently and performs well for
dynamic group operations such as join, leave, merge and sub-grouping. The
algorithm converts any underlying two-party key exchange algorithm into an
efficient group key exchange algorithm.

Users form a tree structure in order to achieve desirable scalability in
communication and avoid computational overhead. The tree structure is formed
based upon the number of users authenticated into a particular service, and by
the use of Diffie Hellman algorithm the parent key is computed. Likewise the
intermediate nodes join together in computing the key of the root node (Group

key). The computation of group key is done by all the users in the group
ABSTRACT individually.

Thus by Incorporating Kerberos protocol into this key management

algorithm a better security for today’s group communication applications is

ensured.

TABLE OF CONTENTS

CHAPTER TITLE PAGE NO.
NO.
ABSTRACT v
1. INTRODUCTION 1
2. BASICS OF *‘GROUP KEY 3

COMMUNICATION WITH KERBEROS®

2.1. Kerberos — Authentication 3
2.1.1 The Authentication Service Exchange 3

2.1.2 The Ticket Granting Service Exchange 5

2.1.3 The Client/Server Exchange 6

2.2, Group Key Communication 7

2.2.1. Tree-Based Group Diffie-Hellman Protocol 8

3 ANALYSIS OF PROBLEM 10

3.1. Problem definition 10

3.2. System Analysis 11

3.2.1. Existing system 12

3.2.2. Drawbacks of existing system 12

3.2.3. Proposed system 13

4. DESIGN AND IMPLEMENTATION 14

4.1. Data Flow Diagram 14

4.2. Detailed Design 15

4.3, Structural Design 16

TABLE OF CONTENTS 4.3.1 Class Diagrams 16

TABLE OF CONTENTS

CHAPTER TITLE PAGE NO.
NO.
4.4. Requirement Specification 20
4.4.1. Hardware Requirement 20
4,42, Software Requirement 20
4.4.3 Features of the Software Used 20
4.5, Implementation 21
5 TESTING 24
5.1. Unit Testing 25
5.2. Integration Testing 27
5.3. User Testing 28
5.4. Reliability Testing 28
6. CONCLUTION AND FURTHER SCOPE 29
APPENDIX 1 30
APPENDIX 2 71
REFERENCES 79

INTRODUCTION

CHAPTER -1
INTRODUCTION

Modemn computer systems provide service to multiple users and
require the ability to accurately identify the user making a request. In
traditional systems, the user's identity is verified by checking a password
typed during login; the system records the identity and uses it to determine
what operations may be performed. The process of verifying the user's
identity is called authentication. Password based authentication is not
suitable for use on computer networks. Passwords sent across the network
can be intercepted and subsequently used by eavesdroppers to impersonate
the user. While this vulnerability has been long known, it was recently
demonstrated on a major scale with the discovery of planted password
collecting programs at critical points on the Internet. Stronger authentication
methods base on cryptography are required. When using authentication
based on cryptography, an attacker listening to the network gains no
information that would enable it to falsely claim another’s identity. Kerberos
is the most commonly used example of this type of authentication
technology. Unfortunately, strong authentication technologies are not used
as often as they should be, although the situation is gradually improving.

With the emergence of many group-oriented distributed applications
such as tele-conferencing, video-conferencing and multiplayer games, there
is a need for security services to provide group-oriented communication
privacy and data integrity. To provide this form of group communication
privacy, it is important that members of the group can establish a common
secret key for encrypting group communication data. To illustrate the utility

of this type of applications, consider a group of people in a peer-to-peer or

. " e P N il e D il

BASICS OF ‘GROUP KEY COMMUNICATION
WITH KERBEROS’

have a previously agreed upon common secret key, communication between
group members is susceptible to eavesdropping.

The undertaken project provides a means to communicate secure data
among the members of a dynamic peer group using Tree-based Diffie-
Hellman approach. Also, it provides a means to effectively manage the
group key, using interval-based rekeying algorithms. The interval-based
algorithms recompute the group key in specific rekeying intervals and

thereby reducing the communication overhead and the computation costs,

CHAPTER -2

BASICS OF ‘GROUP KEY COMMUNICATION WITH
KERBEROS’

2.1. Kerberos — Authentication

In the Kerberos System, a series of messages is exchanged between
principals and the authentication server, as well as between the principals
themselves (the client and server). Tickets must be obtained from the
authentication server and then exchanged between the client and server to
perform authentication.

Kerberos Authentication System has various stages of communication
as follows:

< Communication between the Client and the Authentication
Server (AS), also know as the Key Distribution Center (KDC).

+ Communication between the Client and the Ticket Granting
Server (TGS)

Communication procedures between the Client and the

Application Server.

2.1.1 The Authentication Service (AS) Exchange

The first exchange of messages takes place between a client and the
Authentication Service (KDC). The exchange is used to obtain a ticket and
session key for use with a server when no credentials were previously
obtained. This exchange is typically initiated by a client, usually at the start
of a login session, to obtain credentials for the Ticket Granting Service,

which can then be used to obtain tickets for other servers. In the case of a

this exchange is also used to obtain a ticket for such a server. This exchange
consists of two messages, the first being a request from the client to the
KDC in which it specifies the credentials it wants and also certain options.
The second is the reply from the KDC containing the ticket and the session
key to use. The clients secret key (usually derived from a password) issued
for encryption.

The first message, sent from the client to the KDC, is the
KRB_AS_REQ message. It consists of the following components

KRB AS REQ ={pvno, msgtype, [padata}, reqbody}

regbody =
{kdcoptions, [cname], realm, [sname], [from], till,
[rtime], nonce, [etype], [addresses . ..]}

The client presents this message to the server in unencrypted form
identifying itself, and providing the server for which the ticket is meant
(typically the Ticket-Granting Server) as well as the nonce that prevents
replay.

The authentication server, upon receiving this message, will look up
the client and server in its database, and get the secret key for both of them.
It will also generate the random session key. It prepares the ticket using the
options specified in the KRB_AS_REQ message and encrypts them using

the client’s key (Password).
Tt will then send a message to the client, the KRB_AS_REP message.
KRB AS REP =
{pvno, msgtype, [padata}, crealm, cname, {ticket}Ks, {encpart}Ke}
encpart =

fkev. lastreq. nonce, keyexpiration, flags, authtime, [starttime],

protocol, both these messages are described to be instances of the
KRB_KDC_REQ and KRB_KDC_REP messages respectively.

The first, and perhaps most important, difference is that in the TGS
Exchange the encryption is not done using the client’s secret key, as was
mentioned before. Instead, the encpart section of the response is encrypted
using the session key that is a part of the the ticket-granting ticket, which
was previously distributed in the AS Exchange. Alternatively, a sub session
key can be used that is specified in the authenticator for the message.

Onee the TGS has received the message, it will verify that it is valid
and that the TGT held within is valid and has not expired. 1f all checks out,
the reply is sent; once again much like was done in the AS Exchange.
Several pieces of data, such as the client’s name and addresses are by default
copied from the TGT, although these can be different for forwarded or proxy
tickets. Once the client has received the reply, it can once more check if the

ticket is usable, and then use it to contact the destination server.

2.1.3 The Client/Server (CS) Exchange

The client, through all these previous exchanges, had really only one
goal in mind. It wanted to contact a server. Unfortunately, this server had
decided it needed authentication, causing the client to first go through the
first two exchanges at least once. Of course, once a ticket has been obtained
for a server, and it has not expired yet, the AS and TGS Exchange can be
skipped and the client can immediately move forward to the last exchange,
the Client/Server Exchange.

In this exchange, only a single message is required, that is from the

client to the server. Optionally, the server can also send a reply message

endtime, [renewtill], srealm, sname, [caddr]}
After client receives the response, it will try to decrypt the message.
Upon successful decryption, it can now use the ticket to contact the Ticket

Granting Server, as described in the following section.

2.1.2 The Ticket Granting Service (TGS) Exchange

As mentioned previously, the AS Exchange is used primarily to get a
ticket for a special server, the Ticket Granting Server (TGS), which can be
used to obtain additional tickets without having to use the client’s secret key
anywhere in the process. This protects the secrecy of the client’s secret, and
makes Kerberos more transparent to the user. If this had not been done, then
any time a ticket needs to be requested the client’s secret key would be
needed. This would mean that either the user has to enter their password
every time (which is a nuisance), or the client’s workstation needs to cache
the secret key. Since Kerberos does not assume that the workstations are
secure, this compromises the security of the secret key. Therefore, this
additional ticket exchange is used.

The TGS itself needs to have the access to all the secret keys.
Although it does not encrypt the reply using the client’s secret key, it still
needs to encrypt the ticket using the server’s secret key. Therefore, the TGS
is often the same physical system as the KDC.

The TGS Exchange is much like the AS Exchange. Here too, two
messages are sent, one from the client to the TGS that requests a ticket, and
one from the TGS.

These two messages as KRB_TGS_REQ and KRB_TGS_REP. These

two messages are in structure very similar to the KRB_AS REQ and

the client as well. The client generates the KRB_AP_REQ message 10 the
server, sometimes also called the authentication header after having acquired

a ticket for use with the server.

This message has the following format:
KRB AP REQ =
{pvno, msgtype, apoptions, ticket, authenticator}
Once the KRB_AP_REQ message is received by the server, it is

checked for validity. The message is valid if the ticket contained in it can be

decrypted using the server’s secret key, and if the authenticator can be
decrypted using the session key contained in the ticket. The name and realm
of the client specified in the ticket are validated against the ones specified in
the authenticator. Of course, the ticket may not be expired, and the
authenticator’s time may not vary too much from the server’s local time.
Within the allowed time skew, a server must remember all the authenticators
it received to prevent replay attacks. If the message checks out, the server is
ensured of the client’s identity. Usually, the client will send its initial request
(the st it needed to authenticate for) together with the KRB_AP_REQ

q

message.

2.2. Group Key Communication

This Project uses the TGDH (Tree-Based Group Diffie-Hellman)
protocol to effectively maintain the group key in a dynamic peer group.
Also, the proposed approach uses interval-based rekeying techniques for
recomputing the group keys on various membership events. The interval-
based techniques reduce the communication overhead and the computation

costs in the recomputation of the group key.

2.2.1. Tree-Based Group Diffie-Hellman Protocol)
Diffie-Hellman
The proposed approach uses the TGDH (Tree-Based Group Diffie-

Hellman) protocol to effectively maintain the group key in a dynamic peer
group. Each member maintains a set of keys and is arranged in a hierarchical
binary tree. Every tree node is assigned a node ID (v). Each node is
associated with a secret key (K,) and a public key (BK.). The public key is Agree on p andq

generated by
BK,=a"" mod p generate random generate random
Each leaf node corresponds to the individual secret and public keys of
the member Mi. Each member holds all the secret keys along its key-path. M M

Each non-leaf node has two children whose ID’s are given by 2v+1 and

2v+2. The secret key of a non-leaf node is computed using the secret key of

one child and the public key of the other child. Compute K = M, mod q Compute K = M,® mod q
K =akirixav2 = pBA mod q _ I:'a\a mod q

Fig 2.2.1 Basic of Diffie Hellman Algorithm

The secret key of a non-leaf node v can be generated by :
K. = (BKz) Kzeamod p= (a™"*") Kowez mod p.
Fig 4.1 Secret key of a non-leaf node K, = (BKaw2) Koy mod p= {aKZW:) Kayv mod p.

CHAPTER -3
ANALYSIS OF THE PROBLEM

The proposed system has to be analysed well for its merits and
demerits. Our main aim is to make use of all its merits in a particular
problem and to remove the demerits of it. First the proposed system is
analyzed then the merits of the system are discussed.

The requirement specification of the proposed system should also be
analysed so that the hardware and software requirement of the proposed
system is known in order to execute our application. This helps the user in
developing his application.

The survey of the proposed system should be made in order to find
whether any software is needed to develop our application, also it has been
found whether there is any benefit to the system when using that particular
software. And also it is analysed whether this software will be useful to user.

The documentation of the proposed system is made which helps us to
collect the details that are describing the system. And the graphical
representation of the system and its activities are presented in order to make
the user understand the system. Then the records and description of the

system elements are analyzed and maintained.

ANALYSIS OF THE PROBLEM 3.1 Problem Definition

The purpose of this project is to provide an efficient key management
technique and the secure authentication technique which can be used for
securely sharing the keys and which is efficient and scalable after

anthanticating the nse in a Secure wav.

The popularity of communication within the Local Area Network
(LAN) has recently accelerated along with the risks associated with its use.
One of the most obvious risks is the situation where a client tries to gain
access to resources that do not belong to him from the server. Then another
main trouble is that main server is having burden of keeping all user’s login
name and password. Because when each time user try’s to connect to server
login name and password will translate each time in network. So illegal user
will have enough time to decrypt user login and password, and gain access
to main server.

In Group Key Management, the problem is to first study the various
key management techniques currently available in wired networks. The
emphasis is on security and efficiency of the key management technique.
The goal is to improve the features provided by previous key management
techniques, in particular, Basic key management techniques. This
dissertation addresses the key distribution problems associated with
maintaining communication integrity in the presence of membership
changes. We consider the single sender - multiple receiver models of the

multicast communications.
3.2. System Analysis

The existing system has to be analyzed well for its merits and
demerits. Our main aim is to make use of all its merits and to remove the
demerits of it. First we must analyze the existing system and we have to find
the drawbacks and difficulties we face by using this system. And proposed
the new system then analyze the system and find out whether it satisfies the
requirements. And see the advantages of the proposed system and the ficlds

where this particular system can be used, then discuss about the merits of

3.2.3 Proposed System

One of the main problems of existing system is authentication
part. This authentication part is done by third party server called ‘Kerberos
Authentication Protocol’.

Features of Kerberos:

< That a server must be well assured of whom a client trying to
connect to it says it is.

% A client must be rest assured that his’her request is sent to the
stipulated server and no one else on the network.

% That password should not be sent across the network since eaves

dropper could capture it and play foul with it.

Another main advantage of proposal system in Group Communication
is that dynamic nature of the group is solved on the basis of ‘Interval’
Algorithm.

The system proposed a real time solution application for group
communication over internet. Proposed system will reduce main server
complexity. In group communication part two main algorithms are
implemented they are Diffie Hellman and Interval Based Algorithm both
collectively known as ‘Queue Batch Algorithm .

The main advantage of Interval Based Approach is

< Every time a new user joins a group or leaves a group, rekeying is

done.

++ This contributes for authentication.

% To solve the Dynamic Nature of the group key, we go for interval

based algorithm.

proposed system over the existing system. The process of analyzing a
software item to detect the differences between existing and required

conditions, and to evaluate the features of the software item.

3.2.1 Existing System

In existing system, for the authentication of the users the main server
takes care of the entire job like retrieving user names, passwords across the
network securely free from the hackers, and informing the users whether
they are authenticated or not by comparing the login details given by the
user with the database presented in the system.

In existing system, server keeps a database for storing all the
information about the users. So authentication part is carried by main server
itself. And group communication is also done by main server itself. In
existing system group communication is done by DIFFIE HELLMAN

algorithm.

3.2.2 Drawbacks of the Existing System

Since authentication part is done by main server, complexity of server
increases if there is more number of users linked into the system. The
encrypting and decrypting part will be take care by the server along with
providing the services which also creates overhead to the main server.

In existing system, server keeps a database for storing all the
information about the users which leads to storage complexity and
computational complexity for the group communication. Storage
Complexity results in abundant storage of user names, passwords and
computational complexity arises when a new key should be derived and

distributed across the network for every new user joining, user leaving.

DESIGN AND IMPLEMENTATION

CHAPTER -4
DESIGN AND IMPLEMENTATION

4.1. Data Flow diagram

Verifies

AUTHENTICATION USER
SERVER INFORMATION
Session Key Requests Time

TIME SERVER

Authentication

Requests Time

Ticket per Service

| TICKET GRANTING SERVER

Tickets for a particular service

Fig 4.1 Data Flow Diagram

synchronization in time for various transactions. This will ensure the
security of the session tickets and the service tickets such that no

intruders come and re modify the expired ticket and use it.

4.3, Structural Design
4.3.1. Class Diagrams:

Encription
ST SN SRS
MessageDigest md;
String hash;

PasswordService getlnstance();
Enerypt{String plaintest);
Encription(},

2 -

Clientservercomu

PrintWriter pw;
BufferedReader br;
Socket connectionSocket;
String msg:

String userMame, pass;
Connection con;
Statement stal;
ResultSet rs;

String timel time2;
Encription instance;
Vector tickettgs:
Vector auth:

ClientServerComu(Socket es.Server sl)
m-sssmmo ¥ 4 ddressValidation(String ad1 Siring ad2);
lifeTimeValidation(String lifeTimel);

ValidateKey():
ticketForm(),

4.3.1.1. TGS Server Class Diagram

ServerSocket serverSocket;
Socket connectionSocket;
ClientServerComu ¢2;

int clientNo;

4.2. Detailed Design
1. Authentication Server:
This module concentrates on validating the authentication of
user. The following services will be taken cared by this server.
& Maintains the database of username and passwords.
& Validates the authentication of the user.
& If the user is valid, then the session ticket is generated to
client.
& Contacts with the Time server to synchronize the timings
from the client.

2. Ticket Generating Server:
This Server does the following activities:
% Generates ticket to client such that the client contacts
with the server.
Contacts with the Time server to synchronize the timings

from the client which is presented in the ticket.

3. Moderator:

This server provides the service which the client requests. In
this Project this moderator provides the chat application for the various
chat rooms to provide secure group communication between clients.
This implements the rekeying process for every group after a specified

amount of time for security purpose.

4. Time Server:

This Time server responses the current time to Ticket

Server

J¥rame jf:
JScrollPane jsp;
JTextArea jia;
JMenuBar jmb;
IMenu jm;
IMenultem jmil;
Start s1;

Socket tepSocket;
Statement stmt;
Connection con;

ServerStart

Statemnent stmt;
ResultSet rs;
Connection con;
BufferedReader br; Start(};
PrintWriter pw;

Server 1s;
Siring msg:
Random r;

ServerStart(Server ts1);
regClient()
display()
regClient();

userValidation{):

4.3.1.2. Third Party Server Class Diagram

Toolkit kit: |
Image im;

—

— Server

Btabais —_l 1 Statement stmi;
statement stmt; Moderator ResultSet rs;
TesultSet rs; Connection con;
Connection eon; ” _ BufferedReader brbrl;
nti. totalRecord; Wrameif, PrintWriter pw, pwl;
String url; ﬁcmﬂ?anc_tjs.p. Modulater fp;
String gs; “[A:’ ! l;n_ Siring msg:
boolean more; IMenu _zr.;m L int qesNo;
int num; IMenu jm; ol iz 77777 Database db
insertQestion{String ges1.int n) Start 81,58; ftand;;nc ;
retriveDataBase() ModeratorServer fps; S‘:;_‘f:g o]

= e boolean more
I. String msg;
: : ‘ModeratorServer (Moderator fpl)
R userVatidation ()

Label 1412: | display O

FTextField jtftfl;

JButton jb;
int m;

MaoderatorserverListen

String qes, num;

Socket ModeratorServerListenSocket

Form(}.

Ser k ServerListenServerSoc

actionPerformed(ActionEvent ag);

ModeratorServerListen();
call(y

ﬂ

|

¥

ModeratorServerListenAction

Statement stmt=null;
ResultSet rs=null;
Connection con=null;
ModeratorServerListen msL;
String username,password;
ObjectnputStream objln;
ObjectOutputStream objOut;
String token;

Mnd I istenActiontMi

Listen msllk

4.3.1.3. Moderator Server Class Diagram

4.4, Requirement Specification

4.4.1, Hardware Requirement

% Processor Intel Pentium 111

<+ CPU 1.7 GHz.

+ RAM 64 MB

% Monitor 15" Samsung color monitor
Keyboard Standard Keyboard with 104 Keys

% Mouse Serial Mouse

4.4.2 Software Requirement

% JDK 1.4 or more
% Operating Systems: Microsoft Windows 98, NT4 SP3,

2000, Me or XP.

4.4.3 Features of the Software Used

The key that allows Java to solve both the security and
portability problems is that the output of a Java complier is not executable
code. Rather it is Bytecode. Bytecode is a highly optimized set of
instructions designed to be executed by the Java runtime system, called the

Java Virtual Machine(JVM).
Translating a java program into bytecode helps make it much
easier to run a program in a variety of environments. The fundamental forces
that necessitated the invention of Java were security and portability. The key

considerations were summed up by the java team in the following

Encryption

MessageDigest md;

Encrypt (string plaintext).
A

v
Thread

Server Socket Server Socket;
Socket ek

Server()

ClientServercomunication

boolean flag=true;
PrintWriter pw.
BufferedReader br:
Socket connectionSocket;
string msg;

Connection con;

Date date; Statement stal;
ServerSocket ResultSet rs.)
timeServerSocker; Encryption instance:

Vector ticket;
Seck eSocket; iran <
ot int lifetime_int;

TimeServer(), | swingip ts

ClientServerComu(Socket cs)

4.3.1.4. Authentication Server Class Diagram

< Simple

<+ Secure

% Portable

< Object-oriented

< Robust

< Multithreaded

% Architecture-neural
< High performance

4.5, Implementation

In the same way as the communication between the Client and the AS,
in this exchange, both the Client and the Ticket Granting Sever must get the
time from the Server, thereby making it impossible for users to alter the time
during the exchange. Except for the time, the other procedures are same as
that of the Client/TGS communication of the Kerberos.

The interval-based rekeying algorithms performs recomputation of
group key over a batch of join or leave events at specific intervals. The
rebuild and batch algorithm perform all the updates at the beginning of the
rekeying interval. This necessitates the queue-batch algorithm, which works
in two phases. 1. Queue-sub tree phase: The queue-batch algorithm
outperforms these algorithms by utilizing the elapsed interval in constructing
the temporary tree with the new members joined during the idle interval and
renewin; the nodes along the temporary key path.

® Ticket for Requested
__ Application
—— « Eprsuen
* Time Stamp
T
— |
Executed
ient Requesting

me from Time

rver

APS Requesting
Time from Time
Server

:l |

—

Time Server

Fig.4.5.1 Architecture Diagram of Kerberos

TESTING

Initial key tree

Mg, Mg, Mg joins
Mz, My leaves

Temporary Tree T"

O,
) @

M; M,

Fig.4.5.2. Tree structure of users in a particular group

The sub-tree is merged with the original tree and the group key is
recomputed by renewing the nodes along the key path. In this case, we
append this new member in a temporary key tree T'. The second phase
occurs at the beginning of every rekeying interval and we merge the
temporary tree T* (which contains all newly joining members) to the existing
key tree T.

The Queue-batch algorithm is illustrated in Fig. 11, where members
Ms, Mg and M,, wish to join the communication group, while M; and M,
wish to leave. Then the rekeying process is as follows: (i) In the Quene-sub
tree phase, the three new members Mg, M, and M, first form a tree T, In
this case, Mg is elected to be the sponsor. (ii) In the Queue-merge phase, the
tree is added at the highest departed position, which is at node 6. Also, the
blinded key of the root node of T°, which is BKg, is broadcast by M. (iii)
The sponsors M;, Mg and M, are elected. M, renews the secret key K,and
broadcasts the blinded key BK,. M, renews the secret key K; and broadcasts
the blinded key BK. (iv} All members can compute the group key.

CHAPTER -5
TESTING

The testing process focuses on the logical internals of the software,
ensuring that all statements have been tested, and on the functional
externals; Implementation or System Testing is the stage where the
theoretical Design is converted into a Working System. This stage consists
of the following steps.

+ Making necessary changes to the system as desired by the user.

% Training the user personal. Prior to the Implementation of two stages
shown below has been carried out

% Testing the developed programs with the sample data.

% Detecting and correcting the errors.

Testing is a set of activities that can be planned in advance and
conducted systematically. For this reason a template for software testing
which is a set of steps into which we can place specific test case design
techniques and testing methods-should be defined for the software process.

A number of software testing strategies have been proposed in the
literature. All provide the software developer with the template for testing
and all have the following generic characteristics:

++ Testing begins at the component level and works outward toward the
integration of the entire computer-based system.

%+ Different testing technigues are appropriate at different points in time.

#+ The developer of the software and an independent test group conducts
testing.

+» Testing and debugging are different activities, but debugging must be

accommodated in any testing strategy.

A strategy for software testing must accommodate low-level tests that
are necessary to verify that a small source code segment has been correctly
implemented as well as high-level tests that validate major system functions
against customer requirements. Some of the testing which is applicable for

this project are tested and presented below.

5.1. Unit testing

Unit testing concentrates on each unit of the software as implemented
in the source code. It focuses verification effort on the smallest unit of
software design-the component or module. Using the component-level
design description as a guide, important control paths are tested to uncover
errors within the boundary of module.

In this testing the developed modules are tested when they are created
and errors are rectified in each module. Sample data are used for testing case
is taken in providing the sample data.

The module interface is tested to ensure if the information properly
flows into and out of the program unit under test. The local data structure is
examined to ensure that data stored temporarily maintains its integrity
during all steps in an algorithm’s execution. Boundary conditions are tested
to ensure that the module operates properly at boundaries established to limit
or restrict processing.

Unit testing can help during the initial development of the class or
module's public interface. Unit tests force to think about how another
developer will want to use the code while writing that code. This shift in
focus can help to present a smaller, cleaner interface to the classes and
modules. This benefit is most often associated with test-driven development.

For that in the application that is developed many modules have been used,

A o o a . . »

5.2. Integration testing:

Integration testing is a systematic technique for constructing the

program structure while at the same time conducting tests L0 UNCoOVer errors
associated with interfacing. The objective is to take unit tested components

and build a program structure that has been dictated by design.

The program is constructed and tested in small increments, where

errors are easier to isolate and correct; interfaces are more likely to be tested
completely; and a systematic test approach may be applied. Incremental
integration tests like top down integration and bottom up integration test is
tested and the errors are rectified. Integration test document contains the test
plan that describes the overall strategy for integration.

And here testing is divided into phases and builds that address specific
functional and behavioral characteristics of the software. As module is
successfully unit tested an integrated test is done to incorporate each module
into overall software structure.

The Integration testing done when the following modules are
integrated:

<+ Authentication Server
% Ticket Granting Server
<+ Time Server

«» Third Party Server

<+ Moderator

The two test sets for GUI based tests are:
Test Set 1: For Windows

1. Are all functions that relate to the window operational?
2. Are all relevant, controls, dialog boxes, and buttons available and

properly displayed for the window?
Test Set 1(results):

1. Yes, all functions relate to that window.

2. Yes, all controls & objects are displayed at their appropriate places.
Test Set 2: Mouse Operations

1. Are all functions properly addressable by the mouse?
2. Does each function perform as advertised?
3. Do multiple or incorrect mouse picks within the window caused

unexpected side effects?
Test Set 2(results):

1. Yes. all are addressable by the mouse.
2. Yes, function perform as advertised.
3. No, incorrect mouse picks within the window do not generate

unexpected side effects.

5.3. User testing

In user testing the user himself will test the software with some
sample data’s and check whether any errors occur and if so he will try to
rectify it, and give us error free software. So the software that is developed
will work efficiently in all circumstances. The system group whose
suggestions are incorporated to form the overall system tests the developed

prototype of the project.
5.4. Reliability Testing

This is to check that the server is rugged and reliable and can handle
the failure of any of the components involved in providing the application.
In case of failure of the server, the intimation is done to the client that the

server is currently unavailable for service.

CONCLUSION AND FUTURE SCOPE

APPENDIX

CHAPTER -6
CONCLUSION AND FURTHER SCOPE

In conclusion, this project is not touching on all the features of the

Kerberos Protocol, but rather it satisfies one of the limitations associated
with this Protocol and tried to seek a more refined way of going around the

limitation.

In the future scope of this project we seek to bring it to a higher level.

We seek to enhance the Kerberos Protocol in the following ways:

& To have more than one Authentication Server and Ticket Granting
Server. This will reduce the burden on these servers, You can imagine
about 20 clients in an organization trying to connect to a server all at
the same time. This may slow down the response time of the server no
matter the configuration of the computer. But if there is more than one
server doing the same job then at any point in time, the client model
will look out for the one that has few or no tasks to communicate to.
This will increase the response speed.

& That all servers must authenticate themselves to the timeserver too. If
this is done, there can be a log which will keep track of all computers
requesting time from this server at time. This can be used for future
record or something of that sort.

% The system that was developed provides a good means for
communicating the information among the group members in a secure
manner. The threshold-based rekeying technique, when integrated
with the interval-based rekeying algorithm-Queue-Batch reduces the

computation overhead and the communication costs in recomputing

APPENDIX

—

1. Sample code:

Module 1: Authentication server

1.1. ClientServerComu:

import java.net.*;

import java.io.*;

import java.sql.*;

import java.util.Date;

import java.util.StringTokenizer;
import java.util.Vector;

import java.text.*;

class ClientServerComu extends Thread

{

boolean flag=true;

PrintWriter pw;

BufferedReader br;

Socket connectionSocket;

String msg;

String userName,pass,timestamp,ec_key,etgs_key,tgsname,
clientAddress;

Connection con;

Statement stat;

ResultSet rs;

String time1,time2 lifeTime="3";

Encription instance;

Vector ticket=new Vector();

int lifetime_int=5;// lifetime to login into Ticket Granting Server

String ip_ts="90.0.0.44";

ClientServerComu(Socket cs)throws Exception

super("ClientServerComu"});
this.connectionSocket=cs;

inctanca = new Fnerintiond 1

pw=new
PrintWriter{connectionSocket.getOutputStream(), true);
br=new BufferedReader(new
InputStreamReader(connectionSocket.getinputStream()));
start();
|

public void run()

|
try
{

{

while(flag)

msg=br.readLine();
if{msg.equals("AES"))
{
String detail=br.readLine();
H System.out.println{"hi"});
System.out.printIn("detail = "+detail);// detail =
test/TGS1/TGS1/Sun Apr 15
StringTokenizer st=new StringTokenizer(detail,"/");
userName=st.nextToken();
pass=st.nextToken();
tgsname=st.nextToken();
timel=st.nextToken();
ec_key=instance.encrypt(pass);// Encryption for p

password
etgs_key=instance.encrypt(userName-+tgsname);
System.out.println("\nin'n---seeeeeseemmme Authentication
Server Exchange --———- ---in\n");

System.out.printin{"\n'n (2) AS > C:
E_K_c|[K_c,tgs|lID_tgs|TS_2|[Lifetime_2|Ticket_tgs\nin");
System.out.println(" E_K_c: "+ec_key+"n");
System.out.println(" K_c,tgs : "+etgs_key+"n");
System.out.println(" 1D _tgs : "+tgsname+"n");
try
{
Socket s=new Socket(ip_ts,2500);
BufferedReader br=new
BufferedReader(new InputStreamReader(s.getInputStream()));

//ObjectOutputStream oos=new
ObjectOutputStrea.m[connectionSockel.gelOutputSlream(]}:
loos. writeObject(ticket);
foos.flush();
System.out.printin(" Elements at Ticket_tgs : ")
System.out.printin{"
"+ticket.elementAt(0));
System.out.printin("

"+ricket.elementAt(1));
System.out.printin(" "+icket.elementAt(2));
System.out.println(" "+ticket.elementAt(3));
System.out.printin(" "+ticket.elementAt(4));

System.out.printin(" "+ticket.elementAt(5));
pw.println("GETIT");
flag=false;
connectionSocket.close();
}
|

catch(Exception €)
{
System.out.printin("Error: ClientServerComu Classs Method
run "+e);
)
}

i
1.2. Encryption:

import java.security. MessageDigest;
import java.security.NuSuchAlgoﬁﬂ!mExcep!ion;

import sun.misc. BASE64Encoder;
import sun.misc.CharacterEncoder;

public final class Encription
{

private static Encription instance;

public Encription()

i
catch{Exception €)

{

connecting Time Server : "+e);

System.out.println("Error while

}

System.out.println(" TS_2 : "+time2+"\n");
System.out.printin(" Lifetime_2 : "+lifetime_int+"

minutes ‘\n");

pw.printin(ec_key),

pw.printin(etgs_key),

pw.println(tgsname);

pw.println(time2);

SimpleDateFormat sdf=new SimpleDateFormat("EEE MMM d
h:m:s a yyyy ");

Date d1=(Date)sdf.parseObject(time2);

dl.setMinutes(d1.getMinutes(}+lifetime_int); // Deadline time
for the ticket to be sent in the ticket

lifeTime=sdf format(d1);

pw.printin(lifeTime);

ticket.addElement(etgs_key);

ticket.addElement(ec_key);

ticket.addElement{userMName);

clientAddress=connectionSocket.getRemoteSocketAddress().toString(

/I System.out.println("Client Address = "+clientAddress);
String[] temp=clientAddress.split(":"); //result is
/127.0.0.1:1032
temp=temp[0].split("/");
ticket.addElement(temp[1]);
ticket.addElement(tgsname);
ticket.addElement(lifeTime);

pw.printin(ticket.elementAt(0));
pw.println(ticket.elementAt(1));
pw.printin(ticket.elementAt(2));
pw.println(ticket.elementAt(3));
pw.printin(ticket.elementAt(4));

s aaren

}
public synchronized String encrypt(String plaintext) throws Exception

MessageDigest md = null;
try
{
md = MessageDigest.getInstance("SHA"); //step 2

}
catch(Exception &)

{

throw new Exception(e.getMessage()):
}
try

{
md.update(plaintext.getBytes("UTF-8")); //step 3

¥
catch{Exception ¢)
{
throw new Exception(e.getMessage());

}

byte raw[] = md.digest(); //step 4
String hash = (new BASE64Encoder()).encode(raw); //step 5
return hash; //step 6

}

/* public static synchronized PasswordService getlnstance() throws
Exception//step 1
{
if{instance == null)
{
} .
retumn instance;

}
*/

public static void main(String[] a)throws Exception

{

public static void main(String [] a) throws Exception
{
} } new Server();

)

1.3. Server:
import java.net.*; e
import java.io.*; dule L
import java.util.*; i

ports 2.1. ClientServerComu:
public class Server extends Thread

{ import j_ava.{;let,';
ServerSocket serverSocket; import J_ava.m."i ‘
Socket connectionSocket; import J'ava.sq_l‘ 3
import java.util. Date;
Server()throws Exception :zlsg: jz::z::i%::;s;rokemaer
{ 1 javauul. ;
super("Server"); import java.text.*;
FHEHAIPN SERERHELIN class ClientServerComu extends Thread
start(); 5
[Ramslatinly { PrintWriter pw;
} BufferedReader br;
public void run() g?n"::: :l:nnecnonSocket;
25
t{ry String
userName,pamtimestamp,ec_key,elgs_key,tgsname,clientAddress,ev_kcy,e
while(true) cv_key,serverName timed, lifeTime4;
{ Connection con;
connectionSocket=serverSocket.accept(); // Accepts public ObJ_CCI}DP“lSWﬂm 00s;
any ServerSocket type from client and converts into local socket SR“"(BI“S‘?N stat;
new ClientServerComu(connectionSocket); Ste::un,gt lfr:'zx T —
} g Encription instance;
catch(Exception e) 3::2: :Etlie.ttgs;
{ st ;
System.out.println("Error: ServerClasss Method :run "+e); ::r‘i}ﬁf ;'Ckﬁw:ﬂw Vector();
er s,
; int ¢l_no=0;
Date d2;

public static String ip_ts="90.0.0.44"; catch(Exception ¢)

{
throw new Exception(e.getMessage());

}
try

public ClientServerComu(Socket cs,Server sl)throws Exception

{
super("ClientServerComu");
5=sl;
instance = new Encription();
this.connectionSocket=cs;
instance = new Encription();
pw=new PrintWriter(connectionSocket.getOutputStream(),true);
br=new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));)
start();

i byte raw[] = md.digest(); //step 4
String hash = (new BASE64Encoder()).encode(raw); //step 5
return hash; //step 6
H

{

md.update(plaintext.getBytes("UTF8")); //step 3
}
catch(Exception g)

throw new Exception(e.getMessage());

2.2 Encryption: /* public static synchronized PasswordService getlnstance() throws

Exception//step 1
{
iffinstance == null)
{
} .
return instance,

}
*

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

import sun.misc. BASE64Encoder;
import sun.misc.CharacterEncoder;

public final class Encription

{

private static Encription instance; public static void main(String(] a)throws Exception

public Encription() {
{ instance = new Encription();
J)
public synchronized String encrypt(String plaintext) throws Exception }
{ 2.3. Server
MessageDigest md = null; eprsd
try

import java.net.*;
import java.io.*;
import java.util.*;

i
md = MessageDigest.getInstance("SHA"); //step 2

public class Server extends Thread
{
ServerSocket serverSocket;
Socket connectionSocket;
ClientServerComu cc;
int clientMNo=0;

Server()throws Exception

super("T G Server"),

serverSocket=new ServerSocket(3500);

start();
}

public void run()

{
try

while(true)
{

connectionSocket=serverSocket.accept();

clientMot++;

ce=new ClientServerComu(connectionSocket,this);

}

i
catch(Exception e)

System.out.println("Error: ServerClasss Method :run "+e);

H
}
public static void main(String [] a) throws Exception
{
new Server();
i

i
2.4, TgsSerialized

import iava.io.*;

class Server extends Thread

{

JFrame jf;

JScrollPane jsp;

JTextArea jta;

IMenuBar jmb;

IMenu jm;

IMenultem jmil;

Start s1;

ServerSocket tepServerSocket=null;

Socket tcpSocket=null;

ServerStart tss;

Statement stmt=null;
ResultSet rs=null;

Connection con=null;

public Server()throws Exception
{

super("Third party Server”);
i System.out.printin("test");

i new SendFile();

jf=new JFrame("Server");
sl=new Start();
jf.getContentPane().setLayout(null);
jf.setBounds(50,50,600,400);
jta=new JTextArea();
jta.setText(" SERVER
jta.setEditable(false);
jsp=new JScrollPane{jta);
jsp.setBounds(10,10,570,320);
jf.getContentPane().add(jsp);
jmb=new JMenuBar();
jf.set’MenuBar(jmb);
jm=new JMenu("Help");
jmil=new JMenultem(" About");
jm.add(jmil);

jmil.addActionListener(new ActionListener()

class TgsSerialized implements Serializable
i

Vector tgsTicket;

Vector auth;

TgsSerialized()
{

H
public void setTgsTicket(Vector v)

tgsTicket=v;

;ublic Vector getTgsTicket()

return tgsTicket;

E:ublic void setAuthTicket(Vector v)
{aulh=\';

¥

public Vector getauthTicket()

return auth;

i
H

Module 3: Third P: EIvVer
3.1. Server

import java.net.*;
import java.io.*;

import javax.swing.*;
import java.awt.event.*;

public void actionPerformed(ActionEvent ae)

{
sl.setVisible(true);
i
1

jmb.add(jm);
jfsetVisible(true);
jf.setDefaultCloseOperation(3);

tepServerSocket=new ServerSocket(1500);

start();
H
public void run()
while(true)
{
try
{
tepSocket=tcpServerSocket.accept();
tss=new ServerStart(this);
H
catch{Exception e)
¥
t
1
}
}

public static void main(String[] s)throws Exception

{
new Server();
1

H

3.2. ServerStart:

import java.net.*;
import java.io.*;

import java.sql.*;
import java.util.*;

mport java.text.*;

slass ServerStart extends Thread
{
Statement stmt=null;
ResultSet rs=null;
Connection con=null;
BufferedReader br=null;
PrintWriter pw:
Server ts;
String msg;
String

userna.me="",passwcrd="",scx="".age="".ansl =" ans2="" ans3="",ans4="",

ans5="",usernamet="";
String[] qestion=new String[100];
int gesNo=0;
Random r;
SimpleDateFormat sdf=new SimpleDateFormat("hh:mm:ss a");
String fileName="";

public ServerStart(Server ts])throws Exception

super("Third party Server");
ts=tsl;
pw=new Pr]ntWﬁter(ts,icpSockel.getOulputStream(),Lrue);
br=new BufferedReader(new
hputSueamReader(ts.mpSocket.getlnpulStream())):
r=new Random(};

start();
H
public void run()
{
String msg;
try
{
while(true)
{

msg=br.readLine();
System.out.println(msg);

i

public void regClient()
{
try
i
Class.forName ("sun.jdbc.odbe.JdbeOdbeDriver");
String url="jdbe:odbe:Driver={MicroSoft Access Driver
(*.mdb)}; DBQ=regclient. mdb";
con = DriverManager.getConnection (url, "","");
stmt=con.createStatement();
stmt.execute("insert into reg
values(""+username+"","+password+"")");
stmt.close();
con.close();
System.out.printin("Client reg to server");
1
catch(Exception &)

t
i

System.out.printin{e);

finally
{
H
H
public String userValidation()throws Exception
{
try

{
Class.forName ("sun.jdbe.odbe.JdbeOdbeDriver™),
String url="jdbc:odbe:Driver={MicroSoft Access Driver
(*.mdb)};DBQ=regclient.mdb";
con = DriverManager.getConnection (url, "™."");
String gs = "select password from reg where
username=""+username-+"";
stmt = con.createStatement();
rs=stmt.executeQuery(qs);
boolean more = rs.next();
String pass=rs.getString(1);

{

System.out.printin("System send info to client”);
FileReader fw=new FileReader("group.ini");
BufferedReader brl=new BufferedReader(fw);
String temp=br].readLine();

while(temp!=null)

{
System.out.printin(temp);
pw.printin(temp.split(":")[0]);
temp=br| readLine();
H
pw.printin("END");

fw.close();

}
else if{msg.equals("GDE"))
{
String groupName=br.readLine();
FileReader fw=new FileReader("group.ini"};
BufferedReader brl=new BufferedReader(fw);
String temp=brl.readLine();
while(temp!=null)

1
System.out.printin(temp);
if{temp.split(":")[0].equals(groupName})
{
pw.printin(temp.split(":")[1]):
pw.printIn(temp.split(":")[2]);
i
temp=br1.readLine();
H
H
}
¥
catch(Exception e)
{
System.out.printn(e);
!

}

public void display()

if{password.equals(pass))
{

stmt.execute(qs);
return "AUTH";

i

i
catch(Exception €)

i

System.out.println("control comes in"+e);

}
finally

stmt.close();
con.close();

'
return "NOTAUTH";

3.3. Start

import javax.swing.*;
import java.awt.*;

class Start extends JFrame

Toolkit kit;
Image im;

Start()throws Exception

super("Third party Server");
kit=Toolkit.getDefaultToolkit();
im=kit.getlmage("image/net.jpg");
setlconlmage(im);
setResizable(false);

JLabel jl=new JLabel(new Imagelcon("image/start.jpg"));
jI.setBounds(0,0,3l]0,300};
geiContentPane(),add(ji);
}

public static void main(String(] a) throws Exception

new Start();

Module 4: Timeserver
1. Timeserver

import java.util.*;
import java.net.*;
import java.ic.*;

import java.text.®;

class TimeServer extends Thread
{
Date date;
ServerSocket timeServerSocket;
Socket timeSocket;
PrintWriter pw;
SimpleDateFormat sdf=new SimpleDateFormat("EEE MMM d him:s a
yyyy ")

TimeServer()throws Exception

i
super("timeServer");
timeServerSocket=new ServerSocket(2500);
start();

H

public void run()
{

public void insertQestion(String ges,int n)throws Exception
i
try
{
Class.forName ("sun.jdbc.odbe.JdbecOdbeDriver");
String url="jdbc:odbe: Driver={MicroSoft Access Driver
(*.mdb) };DBQ=fingerprint.mdb";
con = DriverManager.getConnection (url, "."");
String gs = "select count(*) from userges"”;
stmt = con.createStatement();
s = stmt.executeQuery(gs);
boolean more = rs.next();
int num=rs.getInt(1);
qs="update userqes set qes=""+qesl+" where num="+n;
stmt.execute(qs);
H

catch(Exception e)

System.out.printin{e);
}
finally

stmt.close();
con.close();
1
1

public String insertDetail(String username,String password,String
sex,String age, String qes1,String qes2,String qes3,String qes4,String
qes5,String ansl,String ans2,String ans3,String ans4,String ans3)throws
Exception
{
try
i
Class.forName ("sun_jdbc.odbe.JdbeOdbeDriver");
String url="jdbc:odbc: Driver={MicroSoft Access Driver
(*.mdb)};DBQ=fingerprint. mdb";
con = DriverManager.getConnection (url, "","");

while(true)

timeSocket=timeServerSocket.accept();
pw=new
PrintWriter(timeSocket.getOutputStrea m(}),true);
Date d2=new Date();
System.out.prinlln(sdf.format{dZ));
pw.println(sdf-format(d2));
H

catch(Exception €)

System.out.println("Error
!"+c.getCIass()+"\n"+c.getMﬁsage()};
}
!

public static void main(String[] ajthrows Exception

new TimeServer();

M e 5: erator
5.1. Database

import java.io.*;
import java.sql.*;

public class DataBase

{ Statement stmt=null;
ResultSet rs=null;
Connection con=null;
int i=0,totalRecord;

public DataBase()
{

stmt = con.createStatement(),
rs = stmt.executeQuery(qgs);
boolean more = rs.next();
S}rslem.out,prmtln(rs.getString(1)
return "NOTREG";
}
catch({Exception)

System.out.printin(e);
stmt.execute("insert into user
vaIues("'+usemame+'",’"+password+'",'”+sex+"',“'+age'|-"',”'+qesl +" "4+ges2
1 4 Ges 3+ b qesd " " qesS+™, " Hans] 4 angd+" +ans3+", " +ansd
+7 4 ansS)"
1
finally

stmt.close();
con.close();

i
i

return "REG";

public String updateDetail(String firstusername, String username, String
password,String sex,String age,String ans1,String ans2,String ans3,String
ans4,String ans5)throws Exception
i
try

Class.forName ("sun.jdbe.odbe.JdbeOdbeDriver");

String url="jdbc:odbc: Driver={MicroSoft Access Driver
(*.mdb)}; DBQ=fingerprint.mdb";

con = DriverManager.getConnection {(url, "","");

String qs = "update user set
usemamc-—‘"+usemame+"',password="'+password+"'.sex=‘"+sex+"'.age="'+a
ge+'”,ansl=‘"+a.nsl+"‘,an52='"+an52+"',ans3='"+ans3+"',a.ns4="'+ans4 " ans
5=""+ans5+" where username=""+firstusername+"";

stmt = con.createStatement();
stmt.execute(gs);
return "UPDATE";

i

i
finally

System.out.printin(e);

stmt.close():
con.close();

return "NOTUPDATE";
i

public void retriveDataBase()throws Exception
{
try
{
System.out.println("control comes in method");
Class.forName {"sun.jdbc.odbe.JdbeOdbeDriver");

String url="jdbc:odbe:Driver={MicroSoft Access Driver

(*.mdb)}; DBQ=fingerprint.mdb";
con = DriverManager.getConnection (url, "","");
String qs = "select * from user where username="saro"";
stmt = con.createStatemnent();
rs = stmt.executeQuery(gs);
boolean more = rs.next();
for(int i=1;i<=14;i++)
i

§
System.out.printin(rs.getString(i));

stmt.close();
con.close();

catch (java.lang.Exception €)

System.out.printin("Error Inside DataBase class :\nError in
retriveDataBase\n"+e);
}
}

public void deleteRecord(String username)throws Exception

{

class Form extends JDialog
{
JLabel jljl2;
JTextField jif jtfl:
JButton jb;
int n;
String ges="",num="";

public Form()

{
super(new JFrame(),"Question");
getContentPane().setLayout(null);
sztBounds(100,100,400,150);
jl=new JLabel("Qestion -l
jl.setBounds(10,40,150,30);
getContentPane().add(jl);

jl=new JLabel("Qestion No :");
jl.setBounds(10,10,100,30);
getContentPane().add(jl);

jtf=new JTextField();
jtf.setBounds(90,10,250,23);
getContentPane().add(jtf);

jtfl=new JTextField();
jtfl.setBounds(90,40,250,23),
getContentPane().add(jtf1);

jb=new JButton("Ok");
jb.setBounds(120,80,80,30);
getContentPane().add(jb);

jb.addActionListener(new ActionListener()
i
public void actionPerformed(ActionEvent ae)
{
try
{
num=jtfl.getText();

S ST, Y L

Class.forName {"sun.jdbe.odbe.JdbeOdbeDriver”);

String url="jdbe:odbe:Driver={MicroSoft Access Driver
(*.mdb)};DBQ=fingerprint.mdb";

con = DriverManager.getConnection (url, "","");
String qs = "delete from user where

username=""+username+"";

stmt = con.createStatement();
stmt.execute(qgs);

}
catch (java.lang.Exception e)
{

System.out.printin("Error Inside DataBase class :\nError in

retriveDataBase\n"+¢);

finally

i
stmt.close();

con.close();
1
}

db.insertDetail("saro","saro”,"male","21 " "ds" "ds","ds","ds","sa","ds","ds

public static void main(String argv[])throws Exception
{

DataBase db=new DataBase();

String s=

dS","dS"," “n);

[/System.out.printin(s);
db.insertQestion("sasas",1);

5.2. Form

import javax.swing.*;
import java.awt.*;
import java.awt.event.®;
import java.util.*;

")

System.out.print{gest" "+num);
n=Integer. parselnt(num);
ifln=>5]ln==0)

{

JOptionPane.showMessageDiaiog(nul‘l."Emer The Number b/w 1-5

jtfl.setText("");

call();
setVisible(false);

}

catch(Exception €)

{

]Optionl-‘ane.showMessageDiaiug{null,"Entcr The Number ");
jifl.setText("");

}
i
s
setVisible(true);
!
public void call()
{
try
{
DataBase db=new DataBase();
db.insertQestion(ges,n);
t
catch(Exception €)
{
}
t

public static void main(String[] s)
i

H
5.3. Moderator

import java.net.*;
import java.io.*;

import javax.swing.*;
import java.awt.event.®;

class Modurator extends Thread
{
JFrame jf;
JScrollPane jsp;
JTextArea jta;
IMenuBar jmb;
JMenu jm;
JMenultem jmil jmi2;
Start sl;
ServerSocket fingerprintserverSocket=null;
Socket fingerprintSocket=null;
ModuratorServer fps;
Start st;
public static int totalUser=0;

public Modurator()throws Exception
{
super("Modurator");
new ModuratorServerListen();
st=new Start();
jf=new JFrame("Modurator");
s1=new Start();
if.getContentPane().setLayout(null);
jf.setBounds(50,50,600,400);
jta=new JTextArea();
jta.append(" MODURATOR SERVER
")
jta.setEditable(false);
jsp=new JScrollPane(jta);
jsp.setBounds(10,1 0,570,320);

catch(Exception ¢)
{
i

H

i

public static void main(String[] s)throws Exception
1

try

{

System.out.println([nemddms.getmcalﬂost(),getHostAddress());

}
catch(Exception €)

}
new Modurator();
H

5.4 ModeratorService

import java.net.®;

import java.io.™;

import java.sql.*;

import java.util. Date;

import java.util.*;

import java.text.*;

class ModuratorServer extends Thread

{

Statement stmt=null;
ResultSet rs=null;

Connection con=null;
BufferedReader br=null bri=null;;

PrintWriter pw,pwl;

Modurator fp;

String msg;

jmb=new JMenuBar();
jf.setJMcnuBar(jmb)‘,

jm=new IMenu("Help"); .
jmil=new JMenultem(" Add Qestion 4y
jm.add(mil);

jmil _addActionListener(new ActionListener()

public void aclionPerformed(ActionEvcnt ac)

{

}
s

jmi2=new JMenultem(" About");
jm.add(jmi2);

new Form();

jmi2.addAc’.ionListcner[ncw ActionListener()
public void actionPerformcd(ActianEvent ae)

st.setVisible(true);
i
3

jmb.add(jm);

jf.sewisible(true);
jf.setDefauhCloseOperation(J];
ﬁngerprimserverSockanew ServerSocket(1501);

start();
}
public void run()
while(true)
{
try
{ ﬁngerprintSockeFﬁngeq:irintserverSockeLaccepi{};
fne= new ModuratorServer(this);
String

username="" password="",sex="",age="",ans1 =" ans2="" ans3="",ans4="",
ans5="" fileName="";

String[] qestion=new String[100];

int gesNo=0;

DataBase db=new DataBase();

Random r=new Random();

Socket tempSock=null;

SimpleDateFormat sdf=new SimpleDateFormat("hh:mm:ss a");

public ModuratorServer(Modurator fpl)throws Exception

{

super("Third Party Server");
fp=fpl;

try

Class.forName ("sun.jdbc.odbe.JdbcOdbeDriver");
String url="jdbe:odbe: Driver={MicroSoft Access Driver
(*.mdb)};DBQ=fingerprint.mdb";
con = DriverManager.getConnection (url, e
String gs = "select * from userqes";
stmt = con.createStatement();
rs = stmt.executeQuery(qs);
boolean more = rs.next();
while(more)
{
qcstion[qeanH]=rs.getString(2);
more = rs.next();

}

catch(Exception)
{ System.out.printin{e);
;'mally

sinit.close(};

con.close();

}

PR L R T e R TP T

br=new BufferedReader(new
InputStrcamReader(fp.ﬁngerpdnlSockct.gellnpulStream(}]];

start();
t
public void run()
i
String msg;
while(true)
{
try
{
msg=br.readLine();
System.out.printin("Message "+msg);
if(msg.equals("NEWUSER"))
{
for(int i=1;i<=5;i++)
pw.println(qestion[il);
b
pw.printin("END");
H
1* else ifimsg.equals("spons"))
i
try
{
String ip=br.readLine();
String port=br.readLine();
fp.sinfo.setSponserlp(ip);
fp.sinfo.selSponserPon{porl);
}
catch(Exception e2)

|
!

System.out.println(e2);

System.out.printin("New Sponser has been Selected ");

System.out.printin("New Sponser Ip
"+fp.sinfo.getSponserlp());

System.out.println("New Sponser port
:"+fp.sinfo.getSponserPort());

String temp=userValidation(};
if(temp.equals("AUTH"))
i
fp.jta.append("nUser "+username*"
Login to Server"}),
pw.printin(temp);
System.out.println("Total
Member"+Modurator.totalUser);
if{ Modurator.total User==0)

{

Modurator totalUser++;
pw.printIn(Sponserinfo. SPONSER);
!
else

{

Modurator.totalUser++;
pw.println(SponserInfo_NOTSPONSER]',
pw.printin(fp.sinfo.getSponserlp());
pw.primln(fp,sinfo.getSponserP(;n{));

H
else
{
fp.jta.append("\nUser "+username+"
Mot Login to Server");
pw.println(temp);

pwl.close();
tempSock.close(),
System.out.printin("Register to Server");
}
*
else if(msg.equals("QES"))
{
Random r=new Random();

int n=r.nextlnt(4);
System.out.printin(n);

]

else if{msg.equals("NEWUSERDE"))

username=br.readLine();

password=br.readLine();

sex=br.readLine();

age=br.readLine();

ansl=br.readLine();

ans2=br.readLine();

ans3=br.readLine();

ansd=br.readLine();

ans5= br.readLine();

msg=br.readLine();

System.out.println("Message End for NEWUSERDE
"+msg);

String
token=db.insertDetail(username,password,sex,age,qestion[|],qestion[2],qest
ion[3],gestion[4],qestion[5],ans1,ans2,ans3,ans4,ans5);

pw.printin(token);

System.out.printin("user "+token);

[*if{token.equals("REG"))

{
tempSock=new Socket("localhost",1502);
pwl=new
PrintWriter(tempSock.getOutputStream(),true);
pw Lprintin("NEWUSERDE");
pw 1.println(username);
pw L.println(password),
pwl.close();
tempSock.close();
‘.'r "

H
*else if{msg.equals("LOGIN"))
{
username=br.readLine();
password=br.readLine();
fp.jta.append("nUser Name
“+usernamet+"\n");
fp.jta.append("Try to login in to Server

if(n==0)
i

]

System.out.println("control comes in

n=1;

method");
Class.forName
("sun.jdbe.odbe. JdbeOdbeDriver");
String
url="jdbc:odbc: Driver={MicroSoft Access Driver
(*.mdb) }; DBQ=fingerprint.mdb";
con = DriverManager.getConnection
{url, "","");
String qs = "select * from user where
username=""+username+"";
stmt = con.createStatement();
rs = stmt.executeQuery(qs);
boolean more=rs.nexi();
String ges=rs.getString("ges"+n);
String ans=rs.getString("ans"+n);
pw.println{ges});
pw.printin(ans);
stmt.close():
con.close();
i

catch (java.lang.Exception e)

System.out.printin("Error Inside DataBase class
“nError in retriveDataBase\n"+e);
i
i

}

catch(Exception e)

{

H
i
1

public void display()

'
public String userValidation()throws Exception
{
try
{
Class.forMame ("sun.jdbc.odbe.JdbcOdbeDriver");
String url="jdbc:odbc: Driver={MicroSoft Access Driver
(*.mdb)}; DBQ=fingerprint. mdb";
con = DriverManager.getConnection (url, "","");
String qs = "select password from user where
username=""+username+"";
stmt = con.createStatement();
rs=stmt.executeQuery(qs);
boolean more = rs.next();
String pass=rs.getString(1);
iflmore)
{
if{password.equals(pass))
i
stmt.execute(gs);
return "AUTH";
H
H
i
catch(Exception &)

System.out.println("control comes in"+e);

H

finally
{
stmt.close();
con.close();

H
return "NOTAUTH";

new ModuratorServerlListenAction(this);
}
catch(Exception ¢)
{
System.out.printin(e.getClass());
System.out.printin(e.getMessage());

}
t

5.6. ModuratoeServerListenAction:

import java.net.*;
import java.io.*;
import java.sql.*;
import java.util. Date;
import java.util.*;
import java.lext.*;

public class ModuratorServerListenAction extends Thread
{
Statement stmt=null;
ResultSet rs=null;
Connection con=null;
ModuratorServerListen msL;
String username,password;
ObjectInputStream objln;
ObjectOutputStream objOut;
String token;

public ModuratorServerListenAction{ModuratorServerListen msl1)

{
try
{
System.out.println("Inside Modurator Listen");
msL=msll;
objOut=new

ObjectOutputSLream(msL,moduratorScrverListenSocket.geiOutputStream())

5.5. ModeratorServerListen:

import java.net.*;
import java.io.*;
import java.sql.*;
import java.util. Date;
import java.util.*;
import java.text.*;

class ModuratorServerListen extends Thread

{
ServerSocket moduratorServerListenServerSocket=null;
Socket moduratorServerListenSocket=null;
Sponserinfo sinfo=new Sponserinfo();

public ModuratorServerListen()

{
try
{
moduratorServerListenServerSocket=new ServerSocket(1502);
t
catch(Exception €)
{
System.out.printin(e);
H
start();

}

public void run()

{
{

while(true)

try
{

moduratorServerListenSocket=moduratorServerListenServerSocket.a
ccept();

~ LT, N

objln=new

ObjectinputStream(msL..moduratorServerListenSocket.getlnputStream());

catch(Exception €)

i

System.out.printin(e.getClass());

System.out.printin(e.getMessage());
H

}

start();

public void run()
{
String msg;
try

while(true)

i
'

msg=objIn.readObject().toString();
System.out.println("Message "+msg);
if{msg.equats("spons"))

try

{
String ip=objln.readObject().toString();
String port=objIn.readObject().toString();
msL.sinfo.setSponserlp(ip);
msL.sinfo.setSponserPort(port);

catch(Exception e2)

{
System.out.printin{e2.getClass());
System.out.printin(e2.getMessage());

}

System.out.println("New Sponser has been Selected ");
System.out.printin("New Sponser Ip

"+msL.sinfo.getSponserlp());

System.out.printIn("New Sponser port

:"+msL.sinfo.getSponserPort());

}.

try

{
String ip=0bjIn.readObject().toString();
String port=objIn.readObject().toString(};
System.out.println("Sponser Token Send to
Member");
System.out.println("lp Address "+ip);
System.out.println("Port Number "+port);
Socket sl=new
Socket(ip,Integer.parselnt(port));
ObjectOutputStream objOutl=new
ObjectOutputStream(s].getOutputStream());
ObjectInputStream objInl=new
ObjectInputStream(s1.getInputStream());

objOutl.writeObject{Sponserinfo. SPONSER);
objOut].flush();
System.out.println("Sponser Token has
been Sent");

catch(Exception e)

i
H

H
else ifimsg.equals("LOGIN"))
{

System.out.println({e};

username=objIn.readObject().toString(};
password=objln.readObject().toString();
/I msL.jta.append("nUser Name
"+username+"n");
) // msL.jta.append("Try to login in to Server
Time\n"+new Date());
String temp=userValidation();
if{temp.equals{"AUTH"))
{
. //fp.jta.append("nUser "+username+"
Login to Server");
ffo_bjOut.printIn(T.emp);

.

catch{Exception e}

i
Sysr.cm.out,prini!n("Member Has been Closed");
Syslem.oul,println(e,getCause(});
System.out.pﬁntln(e,getMeﬁage());

H

public String userValidation()throws Exception

{
try
{
Class.forName ("sun.jdbc,odbC.JdchdbcDrivcr"};
String nri="jdbc:adbc:Driver={MicmSoR Access Driver
(".mdb)};DBQ=fmgerprint.mdb";
con = DriverManager.getConnection (url, "","");
String qs = "select password from user where
username=""+username+"";
stmt = con.createStatement();
rs=stmt.executeQuery(qs);
if(more)
{
if{password.equals(pass))
{
stmt.execute(gs);
return "AUTH";

catch(Exception €)

{

Systern.out.printin("control comes in"+e);

H
finally

{

stmt.close();
con.close();

i
return "NOTAUTH";

objOut. flush();

System.out.printin(" Total
Member"+Modurator.totalUser);

iflModurator.totalUser==0)

{
Modurator.totalUser++,

obj()ut.wrile(}bjcct(Sponserlnfo.SPONSER);
objOut.flush();
i

else
Modurator.totalUser++;
objOut.writeObject(Sponserinfo. NOTSPONSER),
objOut.writeObject(msL.sinfo.getSponserlp());

objOut,wri1e0bject(msL,sinfo.gctSpon serPort());
objOut.flush();
H
}

else

// fp.jta.append("nUser
"4+ysername+" Not Login to Server");
System.out.printin("\nUser
"+username+" Not Login to Server");
objOut.writeObject(temp);
objOut.flush();
H
1
else if{msg.equals("LOGOUT"))
{
username=objIn.readObject().toString();
Modurator.totalUser--;
System.out.printin("Total Member Of Group
-"+Muodurator.totalUser);
}
}

5.7. Start:

import javax.swing.*;
import java.awt.*;

class Start extends JFrame

Toolkit kit;
Image im;

Start()throws Exception

super("Modurator");
kit=Toolkit.getDefaultToolkit();
im=kit.getImage("image/net.jpg");
setlconlmage(im);
setResizable(false);
setBounds(100,150,550,450);
JLabel jl=new JLabel(new Imagelcon("image/start.jpg"));
jlsetBounds(0,0,300,300);
getContentPane().add(jl);
}

public static void main(String[] a) throws Exception

new Start();

APPE‘D IX 2 \.I d|;|_rlnr

2. Screen shots:

MODURATOR SERVER

T SERVER

Fig A2.2 Moderator Interface

Fig A2.1 Main Server Interface

= Modurator

= User Login

'S
UserName © [S - |
PassWord: | - |

Ip addiess :

Login

FigA 2.3 Service Details of Moderator ;
| froupt

| ‘group?

i group3d

Cancel

Fig A2.5 Client’s Choice Window for a particular Service

- i Famain
o [
P e — Fig A2.7 Client Behavior Window

Client

Fig A2.6 New User Registration Window

Fig A2.8 Client Behavior Window after Rekeying

Jpaddress ; ocaihost

tes!! =hai

Login New User Cancel
- - - lest »hal

Send

adin Loghn Thwe. Sl beat 00 1

Exit

Fig A2.11 Client]’s chat window

kestt =hai

Fig A2.10 Client’s Interface Window and the background service
details by server

REFERENCES

[1] ANiemi, J.Arkko, V.Torvinen (2002), ‘Digest Authentication Using
Authentication and Key Agreement’. Internet Engineering Task Force

[2] B.Tung, C.Neuman, J.Wray, A.Medvinsky, M.Hur, and J. Trostle(May
2005), ‘Public Key Cryptography for Initial Authentication in
Kerberos', Internet Engineering Task Force .

[3] Herbert Schildt (2002), ‘The Complete Reference Java 2’ (4th Ed).
Tata McGraw-Hill.

[4] William H.Stallings(2000), ‘Cryptography and Network Security’,
Pearson Education , Asia.

[5]1 Jonathan B.Knudsen, ‘Java Network Programming’ (Second Edition),
(O’Reilly & Associates, Inc.,

WEBSITE:

(1 www.hack. grfusers.l’dije‘cryptofovervicwfdifﬁe.html

[2] hnp:h’apocalypes.orgfpuh«’u.fsevcnfdifﬁe.html

3]

WWW.Semper.org/sier foutsideworld/security.html

