P-1820

PROSHESS | HANGH SROWEDSE

VIDEO STEGANOGRAPHY - HIDING A TEXT
FILE IN A VIDEO FILE

A PROJECT REPORT

Submitted by

ARUNSHANKARAN.K 71203104004
B.MOHANRAJ 71203104020
RAJESH KUMAR.S.R 71203104028

in partial fulfillment for the award of the degree e

of S ‘&‘\;_.

e o0

BACHELOR OF ENGINEERING - : }
e . ,?/,f

in IR
COMPUTER SCIENCE AND ENGINEERING P-1820
KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE

ANNA UNIVERSITY: CHENNATI 600 025

APRIL 2007

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “VIDEO STEGANOGRAPHY -
HIDING A TEXT FILE IN A VIDEO FILE” is the bona fide work of
“ARUNSHANKARAN.K, MOHANRAJ.B, RAJESH KUMAR.S.R who

carried out the project under my supervision.

/gf O‘vv\o’\) /ﬁ"t N
33 o 2007
SIGNATU S [GNATURE

Prof. S. Thangasamy, Ph.D, Mr.K.Sivan Arul Selvan, M.E,
HEAD OF THE DEPARTMENT, SUPERVISOR,
Senior Lecturer,
Department of Computer Science and Department of Computer Science and
. Engineering, Engineering,
Kumaraguru College of Technology, Kumaraguru College of Technology,
Coimbatore — 641 006. Coimbatore — 641 006.

The candidates with University Register Nos.: 71203104004,71203104020,71203104028

were examined by us in the project viva-voce examination held on 25/04/2007

’J;ﬁ’)ﬁ?;’ " %\W -
INTERNAL E

MINER EXTERNAL EXAMINER

i

ACKNOWLEDGEMENT

We express our sincere thanks to our chairman Arutselvar
Dr. N. Mahalingam, B.Sc, F.L.LE. and correspondent Prof. K. Arumugam,
B.E., M.S., MLLE., for all their support and ray of strengthening hope

extended.

We are immensely grateful to our principal Dr. Joseph V.
Thanikal, M.E., Ph.D., PDF., CEPIT., for his invaluable support to the

come outs of this project.

We are extremely thankful to Dr. S. Thangasamy,Ph.D.,
Head of the Department, Department of Computer Science and Engineering

for his valuable advice and suggestions throughout this project.

We are indent to express our heartiest thanks to Ms. S. Rajini,
B.E., project coordinators who have helped us to perform the project work

extremely well.

We are indent to express our heartiest thanks to Mr. K.Sivan
Arul Selvan, MLE., project guide who rendered his valuable guidance and

support to perform our project work extremely well.

We are also thankful to all the faculty members of the
department of Computer Science and Engineering, Kumaraguru College of
Technology, Coimbatore for their valuable guidance, support and

encouragement during the course of our project work.

i

We express our humble gratitude and thanks to our parents
and family members who have supported and helped us to complete the
project and our friends, for lending us valuable tips, support and co-

operation throughout our project work.

Above all we would like to thank God, The Almighty for

showering his blessings on us to successfully implement the project.

ABSTRACT

Steganography is the art of hiding data. It is a fast emerging field and 1s
being used nowadays in large context. Recent technique involves hiding a
text data, audio file, picture file in a picture file (usually JPEG). JPEG
operates in transform space unlike GIF or BMP which operates in structural
space. So visually no changes can be seen in JPEG but it can be seen in GIF.
In JPEG technique the redundant bits are found and they are replaced by the
message bits. This is encoded with a secret key so that no one else can see it.
But what usually happens is that the file size changes sometimes so that
existence of hidden data is found out. It can also be found out if any
suspicious images are sent.

In our project we are implementing the idea of hiding text file in a
video file using Least Significant Bit (LSB) Technique. First the Video file
in which the text has to be hidden is taken (Overt File). Next the text file
which is to be hidden is taken. The text file is encrypted using Vignere’s
algorithm and embedded in the overt file. The sender and the receiver have
an application that is used to cover and uncover the text file. The sender
enters the password in fhe interface and the overt file is sent. To remove the

Covert file the password is given in the interface and the text file is obtained.

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.
ABSTRACT v
LIST OF FIGURES viii
1. INTRODUCTION

1.1 EXISTING SYSTEM
[.1.1 Image as cover medium
1.1.2 Audio file as cover medium

1.2 PROPOSED SYSTEM AND ITS ADVANTAGES

2. PROPOSED DEVELOPMENT METHODOLOGY
3. PROPOSED APPROACH
4. PROGRAMMING ENVIRONMENT

4.1 HARDWARE REQUIREMENTS
4.2 SOFTWARE REQUIREMENTS
5. SYSTEM REQUIREMENTS
5.1 PURPOSE
5.2 PROBLEM STATEMENT
5.3 SCOPE
5.4 SPECIFIC REQUIREMENTS
5.4.1 Functional Requirements
5.4.1.1 Embedding
54. 17.2 Retrieving
5.4.2 Performance Requirements
5.4.2.1 Invisibility
5.4.2.2 Security
5.4.2.3 Robustness
5.4.2.4 Invertibility

CO Q0 GO 00 G0 =1 =~ =] =1 =l s~ N Oy N R W N R e

vi

SYSTEM DESIGN
6.1 READING
6.2 HIDING
6.3 WRITING
6.4 EXTRACTING
DETAILED DESIGN
7.1 READING AND SPLITTING
7.2 ENCRYPTION
7.3 HIDING
7.4 WRITING
7.5 EXTRACTING
FUTURE ENHANCEMENT
CONCLUSION
APPENDICES
SAMPLE CODE
SAMPLE OUTPUT
REFERENCES

vii

LIST OF FIGURES

CHAPTER NO. TITLE PAGE NO.
6.1 Flowchart for Reading 9
6.2 Flowchart for Hiding 10
6.3 Flowchart for Writing 1t

6.4 Flowchart for Extracting 11

viii

1. INTRODUCTION

Steganography is the art of hidden or covered writing. This is in
practice since ancient times, for secret communication between the allies
during war times. Since the enemies should be kept unaware of such
communications, the message is passed by some hidden means ensuring no
suspicion.

Steganography and encryption are both used to ensure data
confidentiality. However the main difference between them is that with
encryption anybody can see that both parties are communicating in secret.
Steganography hides the existence of a secret message and in the best case
nobody can see that both parties are communicating in secret. This makes
steganography suitable for some tasks in which encryption aren’t, such as
copyright marking. Adding encrypted copyright information to a file could
be easy to remove but embedding it within the contents of the file itself can
prevent it being easily identified and removed.

Steganography provides a means of secret communication which
cannot be removed without significantly altering the data in which it is
embedded. The embedded data will be confidential unless an attacker can
find a way to detect it. Due to availability of the images in internet and many
digital media, there is a serious threat to the images from the digital thieves,
etc. As a consequence, the ownership of the image might be misinterpreted.
In this context, research work is needed to resolve rightful ownership. The
owner should be able to hide some information in the image and when
needed he/she should be able to extract that information to prove his

ownership.

1.1 EXISTING SYSTEM

Steganography has been implemented in two different ways, based on
the cover medium used for hiding.
1.1.1 Images as cover medium:

The secret message, either as text or image, is hidden behind an image
file. The image file used as cover may be BMP, GIF, or JPEG file. In case of
hiding an image under another image, the size should be proportionate. i.e.,
the carrier file should be eight times the size of the file to be hidden. The
principle used for hiding is “LSB Insertion Technique”. Here, the Least
Significant bit of the cover medium is altered to contain the secret message
bit. Altering any other bit to contain the message would affect the quality of

the cover image.

1.1.2. Audio file as cover medium:

The existing software can be used to hide the text messages or images
(.gif, .bmp, .jpeg, etc.) in audio stream. As human ear is not very sensitive to
detect small changes in the audio, the noise of the audio stream is used to

hide the secret message bits.

[\]

1.2 PROPOSED SYSTEM AND ITS ADVANTAGES:

The proposed software hides a text file (TXT) in a video file (Audio
Video Interleaved). The message is hidden such that it is not visible to the
human eye. Only the authenticated person can extract the hidden

information.

The following are the advantages of the proposed system.

¢ Secret Communication — The message in the form of text file can be
communicated secretly to the receiver without the knowledge of the third
person.

¢ Enhanced Security — The text file which is being hidden in the video file is
encrypted using Vignere’s Algorithm. This gives added security apart from
hiding in the video file.

¢ Untraceable video file — The source video file is shot personally to make
steganalysis difficult and eliminates comparisons on size and quality which

1s possible in the case of popular videos available on the web.

2. PROPOSED DEVELOPMENT METHODOLOGY

The proposed system can hide secret text messages in video
files (AVI). The bitmap files are then embedded with the text file bits using
Least Significant Bit (LSB) technique and converted into AVI frames. Even
if the video is intercepted and again split into frames by a third person, the
secret text message cannot be retrieved as it is encrypted using secret key
and password. Hence additional security is provided. The password and the
key file are provided for extraction, and then decryption is done and the

secret message is retrieved.

3. PROPOSED APPROACH

The software is used to hide the text file in the video file. AVI files
can contain one or more streams of four different types (Video, Audio, Midi
and Text). The implementation involves two main processes — Hiding and
Extracting the secret text from the carrier file (the video file in which the

secret text has been embedded).

During Hiding, the video stream of the AVI file is obtained and
frames are decompressed using AVI library functions. The AVI frames are
converted into BMP files. The application can use the extracted bitmaps just
like any other image file. It extracts the first non-header frame to a
temporary file, opens it and hides a part of the message. Then it writes the
resulting bitmap to a new video stream, and continues with the next frame.
After the last frame the application closes both video files and deletes the

temporary bitmap files.

During Extraction, the application opens the AVI carrier file, the
individual frames are obtained and the hidden secret message is extracted.
Since compression destroys the hidden message by changing colors and
sound and would make the files even larger, uncompressed AVI files are

used.

4. PROGRAMMING ENVIRONMENT

4.1 HARDWARE REQUIREMENTS:
Processor: Intel Pentium 4
Hard disk: 80 GB
System RAM: 256 MB
Processor Speed: 3.02 GHz

4.2 SOFTWARE REQUIREMENTS:

Operating System: Windows XP
Language: C#, NET Framework

6

5. SYSTEM REQUIREMENTS
5.1 PURPOSE:
The software is used for the communication of secret text without the

knowledge of the interceptor.

5.2 PROBLEM STATEMENT:

Hiding and extraction of a text file in a video file.

5.3 SCOPE:

This software embeds the text file (TXT) in a video file (A V).
The text is hidden in such a way that it will not be visible to the normal users
and leaves not even intimation to the hackers and get transmitted in a normal

way. The authorized person can decode the file and extract the text.

5.4 SPECIFIC REQUIREMENTS:
5.4.1 Functional Requirements:
5.4.1.1 Embedding:
To hide the text file contents into a video file to provide secret
communication.
Input: Text file, original video file.
Output: Covert video file.
5.4.1.2 Retrieving:
To extract the text file contents from the covert video file.
Input: Covert video file.

Output: Text file contents, original video file.

5.4.2 Performance Requirements:
5.4.2.1 Invisibility:

The text file contents are hidden in such a way that data quality is not
degraded and attackers are prevented from finding and deleting it.
5.4.2.2 Security:

The text file contents which is being hidden in the video is previously
encrypted using Vignere’s algorithm which provides an added security.
5.4.2.3 Robustness:

The use of sounds, images and video signals in digital form
commonly involves many types of distortions, such as lossy compression, or
in this case, changes in the contents of the hidden text. Steganography tools
must grant that the embedded information is not removed by interception or
any other attack.
5.4.2.4 Invertibility:

It is said to be invertible if authorized users can extract the contents of

the text file from the Covert video file.

6. SYSTEM DESIGN

6.1 READING

Open an AVI file and
get the video stream

y

Identify the first non-
header frame

h 4

Decompress the
frame

A 4

Repeat until the last
frame

h, 4

Convert AVI Frames
into BMP files

Fig. 6.1 Flowchart for Reading

6.2 HIDING

Open a bitmap file

!

¥

Enter the total number of message
bytes in the first pixel of the first
bitmap file

h 4

Replace the least significant bit of
the pixel with the message byte

h

Save the embedded BMP file into
the AVI video stream

No

Fig. 6.2 Flowchart for Hiding

10

6.3 WRITING

6.4 EXTRACTING

Create a new AV video stream
with the same format as the
original video file

A

Hiding / Extracting

+

Write the embedded frames to
the AVI video stream created

Fig. 6.3 Flowchart for Writing

Open the embedded AVI file and
get the first non-header frame

h 4

Get the count of the hidden
message bytes from the first pixel
of the first frame

h 4

Extract the niessage byte from the
LSB of each pixel

h 4

Save the extracted message in a file

Fig. 6.2 Flowchart for Extracting

I

7. DETAILED DESIGN

Modules:
1. Reading and Splitting
2. Encryption
3. Hiding
4. Writing
5. Extracting

7.1 READING AND SPLITTING:

In this module, the carrier AVI file specified by the user is opened and
the video stream is extracted. Then, the video file is split into frames and
converted into BMP files. The steps involved are:

e Initialize the AVI library

¢ Openan AVI file

¢ (et a stream from an open AVI file

* Identify the beginning of the first non-header frame

* Decompress the frames

e (Construct a BMP file header for AVI —BMP conversion

¢ Copy the image data of the frame into the temporary BMP file.

¢ Release an open AVI stream |

¢ Release an open AVIfile

¢ Close the AVI library

12

7.2 ENCRYPTION:
VIGNERE’S ENCRYPTION ALGORITHM:
¢ The encipherer chooses a piece of plaintext:
e.g.: VIGENERE
e The encipherer chooses a keyword
e.g.: CIPHCIPH
o To encipher letter .1 of the plaintext, the encipherer creates a new
alphabet wherein A is shifted to letter L1 of the ciphertext, B is shifted
to the next letter, etc.:
ABCDEFGHIJKEMNOPQRSTUVWXYZ -->
CDEFGHIJKLMNOPQRSTUVWXYZAB
¢ The encipherer finds the letter that corresponds to L1 in the new
alphabet.
This is now L1 of the plaintext:
V->X
o This is repeated for each letter in the plaintext and its corresponding
letter in the key:
VIGENERE + CIPHCIPH --> XQVLPMFL

7.3 HIDING:

The hiding involves opening the BMP files and embedding the secret

text in them. The steps involved are:

e Open the BMP file
e Calculate the position of the pixel to hide the message byte.

» Replace the least significant bit of the pixel with the message byte.

o After all the frames have been processed, write the embedded

BMPs to the newly created AVI file (Carrier Video).

Least Significant Bit (LSB) Insertion Method:
Pixels of the Cover medium:
00010010 10001000 00101100
01011100 01010101 11001100
00001111 10101010 00101111
Let character to be hidden be ‘A’
ASCII of A: 0160 0001
Result:
Hiding is done in the last bit. For hiding 1 byte, 8 bytes are required.
00010010 10001001 00101100
(01011100 01010100 11001100
00001110 10101011 00101111

i4

7.4 WRITING:

When the application opens an AVT carrier file, it creates another AVI
file for the resulting bitmaps. The new video stream must have the same size
and frame rate as the original stream. And, the BMPs with embedded text

are written to the newly created video stream.

Steps involved:

¢ (reate a new AVI file
e (reate a new stream in the new AVI file

e Write the BMPs with embedded text, one by one as is processed,

into the stream.

¢ Delete the temporary BMP.

7.5 EXTRACTING:

The extracting process involves opening the carrier AVI file and

retrieving the secret text hidden. The steps involved are:

o Get the frames with embedded text, one by one, using the reading

module.
* Decrypt using the same key file.
¢ C(Calculate the position of the pixel to extract the next message byte.

e (et the message byte from the calculated position and store it in a

separate file.

15

8. FUTURE ENHANCEMENTS

The video steganography software is used for secret communication
in the form of text which is embedded in the video file. The software works
on LLSB technique for hiding the text file in the video file which replaces the
least significant bit of each pixel. In the future, it can be extended to hide
secret messages in other formats such as images, audio and video files in a
video file. Currently the software application works on AVI files alone as
the overt file. It can be extended to other video formats such as MPEG and
DAT as the video file.

16

9. CONCLUSION

Video Steganography has enabled embedding of secret text in video
files. This enables the communication of secret text without the knowledge
of someone intercepting it. Even if the interceptor detects the embedding of
the text, the text cannot be comprehended because it has been encrypted with
a key and password. So it provides a higher degree of secrecy and integrity.

Only the authorized users can decrypt it using the key and the password,

which is unique.

17

APPENDICES

APPENDIX 1
SAMPLE CODE:

Forml.cs
using System,;

using System.Drawing;

using System.Collections;

using System.ComponentModel;
using System. Windows.Forms;
using System.Data;

using System.lO,

using System.Text;

namespace PictureKey

{

public class frmMain : System. Windows.Forms.Form

{

private System.Windows.Forms.GroupBox grpPicture;

private System. Windows.Forms.GroupBox grpKey;

private System. Windows.Forms.Button binHide;

private System. Windows.Forms.Button btnExtract;

private System. Windows. Forms.TabPage tabPagel;

private System. Windows.Forms.TabPage tabPage2;

private System. Windows.Forms.GroupBox grpMessage;
private System. Windows.Forms.RadioButton rdoMessageText;
private System. Windows .Forms. TextBox txtMessageFile;
private System. Windows.Forms. TextBox txtMessageText;
private System. Windows.Forms.Button btnMessage;

private System. Windows.Forms.RadioButton rdoMessageFile;
private System. Windows.Forms.GroupBox groupBox3;
private System. Windows.Forms.Label labell;

private System. Windows.Forms.Label label3;

private System. Windows.Forms.Button binKeyFile;

private System. Windows.Forms.TextBox txtExtractedMsgFile;
private System. Windows.Forms.Button btnExtractedMsgFile;
private System. Windows.Forms.TextBox txtExtractedMsgText;
private System. Windows.Forms.Label 1biKeyFiles;

private System.ComponentModel. Container components = null;
private System. Windows.Forms. Button binimageFile;

private System. Windows.Forms.Label 1bllmageFiles;

private System. Windows.Forms.GroupBox grpPictureExtract;
private System. Windows.Forms.Button btntlmageFileExtract;
private System. Windows.Forms.TabControl tabAction;

18

private System. Windows.Forms.l.abel IblTextFilesExtract;
private System. Windows.Forms.GroupBox grpSplitBytes;
private System. Windows.Forms.CheckBox chkSplitBytes;

private FilePasswordPair[] keys = new FilePasswordPair[0];

private Carrierlmage[] textHide = new Carrierlmage[0];
private CarrierImage[] textExtract = new Carrierlmage[0];
public frmMain(){

i

InitializeComponent();

protected override void Dispose(bool disposing)

{
if(disposing)
{
if (components != null)
{
components.Dispose();
}
}
base.Dispose(disposing);
}

private void InitializeComponent()

{

this.grpPicture = new System. Windows.Forms.GroupBox();
this.lblimageFiles = new System. Windows.Forms.Label();
this.btnlmageFile = new System. Windows.Forms.Button();
this.grpKey = new System. Windows.Forms.GroupBox();
this.1blKeyFiles = new System. Windows.Forms.Label();
this.btnKeyFile = new System. Windows.Forms.Button();
this.btnHide = new System. Windows.Forms.Button();
this.btnExtract = new System. Windows.Forms.Button();
this.tabAction = new System.Windows.Forms.TabControl();
this.tabPagel = new System. Windows.Forms.TabPage();
this.grpMessage = new System. Windows.Forms.GroupBox();
this.rdoMessageText=new System.Windows.Forms.RadioButton();
this.txtMessageFile = new System. Windows.Forms. TextBox();
this.txtMessageText = new System. Windows.Forms. TextBox();
this.btnMessage = new System. Windows.Forms.Button(),
this.rdoMessageFile =new System. Windows.Forms.RadioButton();
this.tabPage2 = new System. Windows.Forms.TabPage();
this.grpPictureExtract = new System. Windows.Forms. GroupBox();
this.IbltextFilesExtract = new System. Windows.Forms.Label();

19

this.btntimtextFileExtract = new

System. Windows.Forms.Button();
this.groupBox3 = new System. Windows.Forms.GroupBox();
this.labell = new System.Windows.Forms.Label();
this.txtExtractedMsgFile=new System.Windows.Forms.TextBox();
this.txtExtractedmsgText=new System. Windows.Forms TextBox();
this.btnExtractedMsgFile = new System. Windows.Forms.Button();
this.Jabel3 = new System. Windows.Forms.Label();
this.grpSplitBytes = new System. Windows.Forms.GroupBox();
this.chkSplitBytes = new System. Windows.Forms.CheckBox();
this.grpPicture. SuspendLayout();
this.grpKey. SuspendLayout();
this.tabAction.SuspendLayout();
this.tabPage.SuspendLayout(};
this. grpMessage.SuspendLayout();
this.tabPage2.SuspendLayout();
this.grpPictureExtract.SuspendLayout();
this.groupBox3.SuspendLayout();
this.grpSplitBytes.SuspendLayout():
this.SuspendLayout();

/I grpPicture

this.grpPicture.Controls. AddRange(new
System. Windows.Forms.Control[]
{
this.IbltextFiles,
this.btnltextFile});
this.grpPicture.Location = new System.Drawing.Point(456, 16);
this.grpPicture.Name = "grpPicture”;
this.grpPicture.Size = new System.Drawing.Size(312, 184);
this.grpPicture. TabIndex = 0;
this.grpPicture. TabStop = false;
this.grpPicture. Text = "Carrier Bitmaps";

this.lblTextFiles.Location = new System.Drawing.Poini(16, 32);
this.IblTextFiles.Name = "IblTextFiles";

this.IblTextFiles.Size = new System.Drawing. Size(168, 23);
this.Ibl TextFiles. TabIndex = 3;

this.lbl TextFiles. Text = "No text files specified”;

i

// btnTextFile

i

this.btnTextFile Location = new System.Drawing.Point(184, 32);
this.btnTextFile.Name = "btnTextFile";

this.btnTextFile.Size = new System.Drawing.Size(112, 23);

20

this.btntextFile. Tablndex = 2;

this.btntextFile, Text = "Add/Remove...";

this. bintextFile.Click += new
System.EventHandler(this. btntextFile Click);

this.grpKey.Controls. AddRange(new
System. Windows.Forms.Control[] {

this.IbiKeyFiles,

this.btnKeyFile});

this.grpKey.Location = new System.Drawing.Point(8, 16);

this.grpKey. Name = "grpKey";

this.grpKey.Size = new System.Drawing. Size(792, 72);

this.grpKey. TabIndex = I;

this.grpKey. TabStop = false;

this.grpKey. Text = "Keys";

this.lblKeyFiles.Location = new System.Drawing Point(16, 32);

this.lblKeyFiles.Name = "IblIKeyFiles";

this.lblKeyFiles.Size = new System.Drawing.Size(152. 23};

this.1blKeyFiles. TabIndex = 3;

this.IblKeyFiles. Text = "No key files specified";

this.btnKeyFile. Location = new System.Drawing.Point(168, 32};

this.btnKeyFile. Name = "btnKeyFile";

this.btnKeyFile.Size = new System.Drawing.Size(112, 23);

this.btnKeyFile. Tablndex = 2;

this.btnKeyFile. Text = "Add/Remove...";

this.btnKeyFile.Click += new
System.EventHandler(this.btnKeyFile Click);

this.btnHide.Enabled = false;

this.btnHide.Location = new System.Drawing.Point(608, 216);

this.btnHide Name = "btnHide";

this.btnHide.Size = new System.Drawing.Size(160, 23);

this.btnHide. Tablndex = 2;

this.btnHide. Text = "Hide Message";

this.btnHide.Click += new
System.EventHandler(this.btnHide Click);

this.btnExtract.Enabled = false;

this.btnExtract. Location = new System.Drawing. Point(608, 216);
this.btnExtract. Name = "btnExtract"”;

this.btnExtract.Size = new System.Drawing.Size(160, 23);
this.btnExtract. Tablndex = 2;

this.btnExtract. Text = "Extract Hidden Text";

21

this.btnExtract.Click += new
System.EventHandler(this.btnExtract Click);

this.tabAction.Controls. AddRange(new

System. Windows.Forms.Control[] {
this.tabPagel,
this.tabPage2});
this.tabAction.Location = new System.Drawing.Point(8, [84);
this.tabAction. Name = "tabAction™;
this.tabAction.SelectedIndex = O;
this.tabAction.Size = new System.Drawing.Size(792, 280);
this.tabAction. Tabindex = 2;

this.tabPagel.Controls. AddRange(new
System. Windows.Forms.Control[] {

this.grpMessage,
this.btnHide,
this.grpPicture});
this.tabPagel.Location = new System.Drawing.Point(4, 25);
this.tabPagel. Name = "tabPagel";
this.tabPagel.Size = new System.Drawing.Size(784, 251);
this.tabPage1.Tabindex = 0,
this.tabPage!.Text = "Hide";
this.grpMessage.Controls. AddRange(new
System. Windows.Forms.Control[] {

this.rdoMessageText,

this.txtMessageFile,

this.txtMessageText,

this.btnMessage,

this.rdoMessageFile});

this.grpMessage.Location = new System.Drawing.Point(16, 16);
this.grpMessage.Name = "grpMessage”;
this.grpMessage.Size = new System.Drawing.Size(424, 184);
this.grpMessage.Tablndex = 0;

this.grpMessage.TabStop = false;

this.grpMessage. Text = "Message";

/f rdoMessageText

this.rdoMessageText.Checked = true;

this.rdoMessageText. Location = new
System.Drawing.Point(16,48);

this.rdoMessageText.Name = "rdoMessageText";

this.rdoMessageText.Size = new System.Drawing.Size(72, 24);

22

this.rdoMessageText. TabIndex = 3;
this.rdoMessageText. TabStop = true;
this.rdoMessageText. Text = "Text";
this.rdoMessageText.Click += new
System.EventHandler(this.rdoMessage Click);

this.txtMessageFile. Location = new
System.Drawing.Point(104,24);

this.txtMessageFile Name = "txtMessageFile";

this.txtMessageFile.Size = new System.Drawing.Size(232, 22);

this.txtMessageFile.TabIndex = I;

this.txtMessageFile. Text = "";

this.txtMessageFile. Enter += new
System.EventHandler(this.txtMessageFile Enter);

this.txtMessageText.Location = new
System.Drawing.Point(16,72);

this.txtMessageText.Multiline = true;

this.txtMessageText. Name = "txtMessageText";

this.txtMessageText.Size = new System.Drawing. Size(400, 96);

this.txtMessageText. TabIndex = 4;

this.txtMessageText. Text = "";

this.txtMessageText.Enter += new
System.EventHandler(this.txtMessageText Enter);

this.btnMessage.Location = new System.Drawing.Point(336, 24);

this.btnMessage. Name = "btnMessage"; '

this.btnMessage.Size = new System.Drawing.Size(80, 23);

this.btnMessage. TabIndex = 2;

this.btnMessage. Text = "Browse...";

this.btnMessage.Click += new
System.EventHandler(this.btnMessage Click);

// rdoMessageFile

this.rdoMessageFile.Location = new
Systern.Drawing. Point(16,24);
this.rdoMessageFile.Name = "rdoMessageFile";
this.rdoMessageFile.Size = new System.Drawing.Size(88, 24);
this.rdoMessageFile. TabIndex = 0;
this.rdoMessageFile. Text = "Filename";
this.rdoMessageFile.Click += new
System.EventHandler(this.rdoMessage Click);

this.tabPage2.Controls. AddRange(new
System. Windows. Forms.Control[] {

23

this.grpPictureExtract,

this.groupBox3,

this.btnExtract});

this.tabPage2.Location = new System.Drawing.Point{4, 25);
this.tabPage2 . Name = "tabPage2";

this.tabPage2.Size = new System.Drawing.Size(784, 251);
this.tabPage2.TabIndex = [;

this.tabPage2.Text = "Extract”;

this.grpPictureExtract.Controls. AddR ange(new
System. Windows.Forms.Control[] {

this.IblTextFilesExtract,

this.btntTextFileExtract});

this.grpPictureExtract. Location = new
System.Drawing. Point(456,16);

this.grpPictureExtract. Name = "grpPictureExtract";

this.grpPictureExtract.Size = new System.Drawing.Size(312, 184).

this.grpPictureExtract. Tablndex = 3;

this. grpPictureExtract. TabStop = false;

this.grpPictureExtract. Text = "Carrier Bitmaps";

this.lbITextFilesExtract. Location = new
System.Drawing.Point(16,32),

this.lblTextFilesExtract. Name = "lbiTextFilesExtract";

this.]bITextFilesExtract.Size = new System.Drawing.Size(168,);

this.iblTextFilesExtract. TabIndex = 3;

this.IblTextFilesExtract. Text = "No text files specified";

this.bintTextFileExtract. Location = new

- System.Drawing.Point(184, 32); ‘
this.btntTextFileExtract Name = "btntTextFileExtract";
this.btntTextFileExtract.Size = new System.Drawing.Size(112,23);
this.btntTextFileExtract. TabIndex = 2;
this bintTextFileExtract. Text = "Add/Remove...";
this.btntTextFileExtract.Click += new

System.EventHandler(this.btnTextFile_Click);

this.groupBox3.Controls. AddRange(new
System. Windows.Forms.Control[}{this.label 1 this.txtExtractedMsgFile,this.txtExtracted
MsgText, this.btnExtractedMsgFile this.label3});

this.groupBox3.Location = new System.Drawing. Point(16, 16);

this.groupBox3.Name = "groupBox3";
this.groupBox3.5ize = new System.Drawing. Size(424, 184);

24

this.groupBox3.TabIndex = 0;
this.groupBox3.TabStop = false;
this.groupBox3.Text = "Message™;

this.labell.Location = new System.Drawing.Point(16, 32);
this.labell Name = "label 1";

this.labell.Size = new System.Drawing.Size(376, 16);
this.labell . TabIndex = 10;

this.labell. Text = "Save Extracted Message to File";

/I txtExtractedMsgFile

this. txtExtractedMsgFile. Location = new
System.Drawing.Point(16, 48);

this.txtExtractedMsgFile.Name = "txtExtractedMsgFile";

this.txtExtractedMsgFile.Size = new
System.Drawing.Size(312,22);

this.txtExtractedMsgFile. TabIlndex = 0;

this.txtExtractedMsgFile. Text = "";

// txtExtractedMsgText

this.txtExtractedMsgText.Location = new
System.Drawing.Point(16, 96),

this.txtExtractedMsgText.Multiline = true;

this.txtExtractedMsgText.Name = "txtExtractedMsgText";

this.txtExtractedMsgText. ReadOnly = true;
this.txtExtractedMsgText.Size = new

System.Drawing.Size(392,72);
this.txtExtractedMsgText. TabIndex = 5;
this. txtExtractedMsgText. Text = "";

{// btnExtractedMsgFile

this.btnExtractedMsgFile.Location = new
System.Drawing.Point(328, 48);

this.btnExtractedMsgFile.Name = "btnExtractedMsgFile";

this.btnExtractedMsgFile.Size = new System.Drawing.Size(80,23);

this.btnExtractedMsgFile. TabIndex = 1;

this.btnExtractedMsgFile. Text = "Browse...";

this.btnExtractedMsgFile.Click += new
System.EventHandler(this.btnExtractedMsgFile Click);

25

this.label3.Location = new System.Drawing.Point(16, 80};
this.label3 Name = "label3";

this.label3.Size = new System.Drawing.Size(376, 16);
this.label3 . TabIndex = 10;

this.label3.Text = "Extracted UnicodeText";

this.grpSplitBytes.Controls. AddRange(new

System. Windows.Forms.Control[] {this.chkSplitBytes});
this.grpSplitBytes.Location = new System.Drawing.Point(8, 96);
this.grpSplitBytes.Name = "grpSplitBytes";
this.grpSplitBytes.Size = new System.Drawing.Size(792, 72);
this.grpSplitBytes. Tablndex = 1;
this.grpSplitBytes. TabStop = false;
this.grpSplitBytes. Text = "Split Bytes",

this.chkSplitBytes.Location = new System.Drawing.Point(16, 32);
this.chkSplitBytes. Name = "chkSplitBytes";
this.chkSplitBytes.Size = new System.Drawing.Size(736, 24);
this.chkSplitBytes. Tablndex = 4;

this. AutoScaleBaseSize = new System.Drawing.Size(6, 15);
this.ClientSize = new System.Drawing.Size(810, 473);
this.Controls. AddRange(new System. Windows.Forms.Control[]
{this.tabAction, this.grpKey, this.grpSplitBytes});
this.FormBorderStyle =
System. Windows.Forms.FormBorderStyle.FixedSingle;
this. Name = "frmMain";

this.grpPicture.ResumeLayout(false);

this.grpKey ResumeLayout(false);
this.tabAction.ResumeLayout(false);
this.tabPagel.ResumeLayout(false); -
this.grpMessage. ResumeLayout(false);
this.tabPage2 ResumeLayout(false);
this.grpPictureExtract. ResumeLayout(false);
this.groupBox3.ResumeLayout(false);
this.grpSplitBytes.ResumeLayout(false);
this.ResumeLayout(false);

static void Main()

{
1

}

Application. Run{new frmMain());

26

private void btnHide Click(object sender, System.EventArgs e}
{
//get a stream for the message to hide
Stream messageStream = GetMessageStream();
if(messageStream.Length = 0)
{
MessageBox.Show("Please select a file.");
txtMessageText.Focus();

else

this.Cursor = Cursors. WaitCursor;

/hry{
//hide the message

CryptUtility. HideMessageInBitmap(messageStream,
imagesHide, keys, chkSplitBytes.Checked);
//}catch(Exception ex)

{

this.Cursor = Cursors.Default;

}

messageStream.Close();

}

private void btnExtract Click(object sender, System EventArgs ¢) {
/fempty stream for the extracted message
Stream messageStream = new MemoryStream();

this.Cursor = Cursors. WaitCursor;

try{
//extract the hidden message from the bitmap

CryptUtility. ExtractMessageFromBitmap(imagesExtract,
keys, ref messageStream, chkSplitBytes.Checked);

//save the message, if a filename is available
if(txtExtractedMsgFile. Text.Length > 0}{
messageStream. Seek(0, SeekOrigin.Begin),
FileStream fs = new
FileStream(txtExtractedMsgFile. Text, FileMode.Create});
byte[] streamContent = new
Byte[messageStream.Length];

messageStream.Read(streamContent, 0,
streamContent.Length);

27

fs. Write(streamContent, 0, streamContent.Length);

messageStream.Seek(0,

SeekOrigin. Begin);

StreamReader reader = new StreamReader(messageStream,
UnicodeEncoding.Unicode);

String readerContent = reader.ReadToEnd();

if(readerContent.Length >
ixtExtractedMsgText.MaxLength){

readerContent = readerContent.Substring(0,

txtExtractedMsgText.MaxLength);

}

txtExtractedMsgText. Text = readerContent;
i
this.Cursor = Cursors.Default;

/fclose the stream
messageStream.Close();

private Stream GetMessageStream(){
Stream messageStream;
if(rdoMessageText.Checked){
byte{] messageBytes =
UnicodeEncoding. Unicode.GetBytes(txtMessage Text. Text),
messageStream = new MemoryStream{messageBytes);
telse{
: messageStream = new FileStream(txtMessageFile Text,
FileMode.Open, FileAccess.Read);
}

return messageStream,;

private String GetFileName(String filter) {
OpenFileDialog dlg = new OpenFileDialog();
dlg.Multiselect = false;
if(filter.Length > 0){ dig.Filter = filter; }

if(dlg.ShowDialog(this) != DialogResult.Cancel}{

return dlg.FileName;
telsef

28

return null;

}

private void rdoMessage_Click(object sender, System.EventArgs e) {
txtMessageFile.Enabled = rdoMessageFile.Checked;
txtMessageText.Enabled = rdoMessageText.Checked;

;

private void txtMessageFile Enter(object sender, System.EventArgs €) {
rdoMessageFile.Checked = true;

}

private void txtMessageText_Enter(object sender, System EventArgs e) {
rdoMessageText.Checked = true;

}

private void btnMessage_Click(object sender, System.EventArgs e) {
String fileName = GetFileName(String. Empty);
if{fileName != null){
txtMessageFile. Text = fileName;
rdoMessageFile.Checked = true;

!

private void binExtractedMsgFile Click(object sender,
System.EventArgs) {

SaveFileDialog dlg = new SaveFileDialog();
if(dlg.ShowDialog() == DialogResult.OK){
txtExtractedMsgFile. Text = dlg.FileName;

o}
}
iblKeyFiles.Text = keys.Length. ToString()
+ " key file specified";
btnHide.Enabled = (textHide.Length >0);
btnExtract.Enabled = (textExtract.Length
> 0);
break; }
H
}

1
1

private void btntexteFile Click(object sender, System.EventArgs e) {

29

Label IblFeedback;
Button binAction;
Carrierlmage[] images;
ImageFilesDialog dlg;
if(sender == bintextFile){

}

switch(i.Length){

case 0:{

IblFeedback. Text = "No carrier files
specified"”;

btnAction.Enabled = false;
break; }

case 1:{
IbiFeedback.Text = "1 carrier file specified";
btnAction.Enabled = (keys.Length > 0);
break; }

default: {
IblFeedback. Text =
images.Length. ToString() + " carrier file specified";
btnAction.Enabled = (keys.Length > 0);
break; }

11.1.4. TypeDefs.cs:

using System;
using System.Drawing;
namespace PictureKey
{
public struct FilePasswordPair{
public String fileName;
public String password;
public FilePasswordPair(String fileName, String password){
this.fileName = fileName;
this.password = password;

30

t

public struct Carrierlmage{
/file name of the clean text
public String sourceFileName;

/file name to save the new text

public String resultFileName;

Mwidth * height

public {ong countPixels;

/eount of frames in the video stream, or 0

public int aviCountFrames;

public bool useGrayscale;

/thow many bytes will be hidden in this text - this field is set by
CryptUtility. HideOrExtract()

public long messageBytesToHide;

public long[] aviMessageBytesToHide;

public void SetCountBytesToHide(long messageBytesToHide)}{
this.messageBytesToHide = messageBytesToHide;
aviMessageBytesToHide = new long[aviCountFrames];
Healculate count of message-bytes to hide in (or extract from) each
frame
long sumBytes = 0;
for(int n=0; n<aviCountFrames; n++){
aviMessageBytesToHide[n] = (long)Math.Ceiling(
(float)messageBytesToHide / (float)aviCountFrames);
sumBytes += aviMessageBytesToHide[n];
}
if(sumBytes > messageBytesToHide){
{//correct Math.Ceiling effects
aviMessageBytesToHide[aviCountFrames-1] -= (sumBytes -
messageBytesToHide);
)

3
b1

public CarrierImage(String sourceFileName, String resultFileName, long
countPixels, int aviCountFrames, bool useGrayscale){
this.sourceFileName = sourceFileName;
this.resultFileName = resultFileName;
this.countPixels = countPixels;
this.aviCountFrames = aviCountFrames;
this.useGrayscale = useGrayscale;
this.messageBytesToHide = 0;
this.aviMessageBytesToHide = null;

——

31

public struct BitmapInfo {

)

using System;

using System.Drawing;

using System.Drawing. Imaging;

using System.Runtime.InteropServices;
using System.IO;

using System. Windows.Forms;

Huncompressed image

public Bitmap bitmap;

Hposition of the frame in the AVI stream

public int aviPosition;

/fcount of frames in the AVI stream

public int aviCountFrames;

//path and name of the bitmap file

public String sourceFileName;

/thow many bytes will be hidden in this text

public long messageBytesToHide;

public void LoadBitmap(String fileName){
bitmap = new Bitmap(fileName);
sourceFileName = fileName;

AviReader.cs:

namespace PictureKey {

// Extract bitmaps from AVI files
public class AviReader{

private int firstFrame = 0, countFrames = 0;
private int aviFile = 0;

private int getFrameObject;

private IntPtr aviStream;

private Avi. AVISTREAMINFO streamInfo;

public int CountFrames{
get{ return countFrames; }

}

public UInt32 FrameRate {
get{ return streamInfo.dwRate / streamInfo.dwScale; }

H

public Size BitmapSize{
get{ return new Size((int)streamInfo.rcFrame.right,
(int)streamInfo.rcFrame.bottom); }

3

/// Opens an AVI file and creates a GetFrame object
public void Open(string fileName) {
Hintitialize AVI library
Avi.AVIFilelnit();

//Open the file
int result = Avi. AVIFileOpen(
ref aviFile, fileName,
Avi.OF SHARE DENY_WRITE, 0);

if(result != 0){ throw new Exception("Exception in AVIFileOpen:
"+result. ToString()); }

//Get the video stream

result = Avi. AVIFileGetStream(
aviFile,
out aviSiream,
Avi.StreamtypeVIDEQ, 0);

if(result != 0){ throw new Exception("Exception in
AVIFileGetStream: "+result. ToString()); }

/get start position-and count of frames
firstFrame = Avi.AVIStreamStart(aviStream.TolInt32());
countFrames = Avi.AVIStreamLength(aviStream. ToInt32());

//eet header information

streamInfo = new Avi.AVISTREAMINFO();

result = Avi.AVIStreamInfo(aviStream.ToInt32(), ref streamlInfo,
Marshal.SizeOf(streamInfo));

if(result != 0){ throw new Exception("Exception in
AVIStreamInfo: "+result. ToString(}); }

33

//Open frames

Avi.BITMAPINFOHEADER bih = new
Avi.BITMAPINFOHEADER();

/fconstruct the expected bitmap header
bih.biBitCount = 24;

bih.biClrImportant = 0;

bih.biClrlUsed = 0;

bih.biCompression = 0; //BI_RGB;
bih.biHeight = (Int32)streamInfo.rcFrame.bottom;
bih.biWidth = (Int32)streamInfo.rcFrame.right;
bih.biPlanes = 1;

bibh.biSize =(UInt32)Marshal.SizeOf(bih);
bih.biXPelsPerMeter = 0;

bih.biY PelsPerMeter = O;

//prepare to decompress DIBs (device independent bitmaps)

getFrameObject = Avi.AVIStreamGetFrameOpen(aviStream, ref
bih);

if{getFrameObject == 0){ throw new Exception("Exception in
AVIStreamGetFrameOpen!"); }

1
!

// Closes all streams, files and libraries
public void Close(} {
if{getFrameObject 1= 0){
Avi.AVIStreamGetFrameClose(getFrameObject);
getFrameObject = 0;
}
if(aviStream != IntPtr.Zero){
Avi.AVIStreamRelease(aviStream);
aviStream = IntPtr.Zero;
}
if(aviFile 1= 0){
Avi.AVIFileRelease(aviFile);
aviFile = 0;
i
Avi.AVIFileExit();

/// Exports a frame into a bitmap file bitmap
public void ExportBitmap(int position, String dstFileName){
if(position > countFrames){
throw new Exception("Invalid frame position");

34

}

//Decompress the frame and return a pointer to the DIB
int pDib = Avi.AVIStreamGetFrame(getFrameObject, firstFrame +
position);

//Copy the bitmap header into a managed struct

Avi.BITMAPINFOHEADER bih = new
AVi.BITMAPINFOHEADER();

bih = (Avi. BITMAPINFOHEADER }Marshal PtrToStructure(new
IntPtr(pDib), bih.GetType());

if(bih.biSizelmage < 1}{
throw new Exception("Exception in AVIStreamGetFrame:Bitmap

not decompressed.");
1
J

//Copy the image
byte[] bitmapData = new byte[bih.biSizeImage];
int address = pDib + Marshal.SizeOf(bih);
for(int offset=0; offset<bitmapData.Length; offset++)/
bitmapData[offset] = Marshal.ReadByte(new
IntPtr(address));
address++;

}

//Copy bitmap info
byte[] bitmapInfo = new byte[Marshal.SizeOf{bih}];
IntPir ptr;
ptr = Marshal. AllocHGlobal(bitmaplInfo.Length);
Marshal.StructureToPtr(bih, ptr, false);
address = ptr.ToInt32(); '
for(int offset=0; offset<bitmapInfo.Length; offset++){
bitmaplnfo[offset] = Marshal ReadByte(new
IntPtr(address));
address++;

}

/Create file header
Avi. BITMAPFILEHEADER bth = new
Avi.BITMAPFILEHEADER();

bth.bfType = Avi.BMP;

bfh.bfSize = (Int32)(55 + bih.biSizelmage); //size of file as written
to disk

bfh.bfReservedl = 0;

bfh.bfReserved2 = 0;

35

;
}

bfh.bfOffBits = Marshal.SizeOf(bih) + Marshal.SizeOf(bth);

FileStream fs = new FileStream(dstFileName,
System.lO.FileMode.Create),
BinaryWriter bw = new BinaryWriter(fs);

HWrite header

bw. Write(bth.bfType);

bw. Write(bfh.bfSize);
bw.Write(bfth.bfReservedl);
bw.Write(bfh.bfReserved?2);
bw. Write(bth.bfO1fBits);
//Write bitmap info

bw. Write(bitmapInfo);
//Write bitmap data
bw.Write(bitmapData),
bw.Close();

fs.Close();

AviWriter.cs:

using System;

using System.Drawing;
using System.Drawing.Imaging;
using System.Runtime.InteropServices;

namespace PictureKey {

/1 Create AVI files from bitmaps
public class AviWriter {

private int aviFile = 0;

private IntPtr aviStream = IntPtr.Zero;

private Ulnt32 frameRate = 0;

private int countFrames = 0;

private int width = 0,

private int height = 0;

private Ulnt32 stride = 0;

private Ulnt32 fccType = Avi.StreamtypeVIDEQO; // vids
private Ulnt32 fccHandler = 1668707181,

/ Creates a new AVI file

public void Open(string fileName, Ulnt32 frameRate) {
this.frameRate = frameRate;

36

Avi.AVTIFilelnit();

int hr = Avi.AVIFileOpen(
ref aviFile, fileName,
4097 /* OF_WRITE | OF_CREATE */, 0);
if (hr 1=10) {
throw new Exception("Error in AVIFileOpen:
"+hr. ToString());

}

// Adds a new frame to the AVI stream
public void AddFrame(Bitmap bmp) {

bmp.RotateFlip(RotateFlipType.RotateNoneFlipY);

BitmapData bmpDat = bmp.LockBits(
new Rectangle(0, 0, bmp. Width, bmp.Height),
ImageLockMode.ReadOnly,PixelFormat. Format24bppRgb);

if (countFrames == 0) {
//this is the first frame - get size and create a new stream
this.stride = (UInt32)bmpDat.Stride;
this.width = bmp. Width;
this.height = bmp.Height;
CreateStream();
)

int result = Avi. AVIStream Write(aviStream,
countFrames, 1, bmpDat.Scan0, (Int32) (stride * height), 0, 0, 0);
if (result 1= 0) { : :
throw new Exception("Error in AVIStreamWrite:
"+result. ToString(}));

;

bmp.UnlockBits(bmpDat);
countFrames ++;

}

/ Closes stream, file and AVI library

public void Close() {

if(aviStream != IntPtr.Zero){
Avi.AVIStreamRelease(aviStream);
aviStream = IntPtr.Zero;

[

if{aviFile 1= 0){
Avi.AVIFileRelease(aviFile);

aviFile = 0;
}
Avi. AVIFileExit();
}

/// Creates a new video stream in the AVI file

private void CreateStream() {

Avi.AVISTREAMINFO strhdr = new Avi.AVISTREAMINFO();
strhdr.fecType = fecType;

strhdr.fccHandler = fecHandler;

strhdr.dwScale = 1;

strhdr.dwRate = frameRate;
strhdr.dwSuggestedBufferSize = (UInt32)(height * stride);
strhdr.dwQuality= 10000;

strhdr.rcFrame.bottom = (UInt32)height;
strhdr.rcFrame.right = (UInt32)width;

strhdr.szZName = new Ulnt16[64];

int result = Avi.AVIFileCreateStream(aviFile, out aviStream, ref strhdr);
if(result != 0){ throw new Exception("Error in AVIFileCreateStream:
"+result. ToString()); }

//define the image format

Avi.BITMAPINFOHEADER bi = new Avi. BITMAPINFOHEADER();

bibiSize = (Unt32)Marshal. SizeOf{bi);

bi.biWidth = (Int32) width;

bibiHeight = (Int32) height;

bi.biPlanes = 1;

bi.biBitCount = 24;

bi.biSizeImage = (Ulnt32)(stride*height);

result = Avi. AVIStreamSetFormat(aviStream, 0, ref bi,
Marshal.SizeOf{bi));

if(result != 0){ throw new Exception("Error in AVIStreamSetFormat:
"+result. ToString()); }

38

APPENDIX 2

SAMPLE OUTPUT:

USER INTERFACE FORM

* B ¥IDEQ STEGANOGRAPHY HIDING & TEXT FILE IN A VIDEC FILE

| Nokey fles specified

Hide |ewtact|

! € Filename . | . T _ Browse.. i

HigrMesssbe |

39

COVERT AND OVERT FILE SELECTION

Hanage Carrier Images

Smﬂ’ . [F:\MyVldeos\mindscape\Trans—Allaﬁic-Twreiaﬁ

Sm H‘&S ' |F:\My Videos\mindscape\T rans Allarkic-Turnell. avi Browée;

i

0K Cancet i

40

HIDING INTERFACE

SR IDEO STEGANOGRAPHY -HIDING & TEXT FILE IN A ¥iDEO FILE

;""Key_s

1key fie specified Add/Remave...i

o ol

=" Fiename . {C:\Documents and Settings\ARUNSH ~ Bioyy

Hide Message |

41

EXTRACTION INTERFACE

8 VIDEO STEGANOGRAPHY -HIDING A TEXT FILE IN A VIDEO FILE

| They e specifed Add/Remove... | |

e Emse]

| SaeEuiaciedMessage toFis | ,
*) "|C:\Documents and Settings\My Documentsitexttst _ Browse: | 1" |

Estract Hidden Tedd |

VIDEO FILE BEFORE EMBEDDING TEXT CONTENTS

43

VIDEO FILE AFTER EXTRACTION OF THE HIDDEN TEXT

44

TEXT FILE CONTENTS BEFORE HIDING

 steg.txt - Motapad
Fie Edt Format ~View Help

Steganography 18 the art of h1d1ng data. It is a fast
emerging field and is being used nowadays in large
context. Recent technique involves hiding a text [data,
-audio file; picture file in a picture file (usually JPEG).
JPEG operates in transform space unlike GIF or BMP
which operates in structural space. So wsua]ly no changes
can be seen in JPEG but it can be seen in GIF .In JPEG
techmque the redundant bits are found and they are
replaced by the message bits. This is encoded with a
secret key so that no one else can see it. But what usually
happens 1s that the file size changes sometimes so that
existence of hidden data is found out .It can also be found
out if any suspicious images are sent.

45

TEXT FILE CONTENTS AFTER EXTRACTION

I text.txt - Notepad
File - Edit Formt View Heélp

Steganography 18 the art of hldlllg data. Itis a fast emergmg field and
1s being used nowadays in large context. Recent technique involves
hiding a text data, audio file; picture file in a picture file (usually
JPEG). JPEG operates in transform space unlike GIF or BMP which
operates in structural space. So visually no changes can be seen in
JPEG but it can be seen in GIF .In JPEG technique the redundant bits
are found and they are replaced by the message bits. This is encoded
with a secret key so that no one else can see it. But what usuaily
happens 1s that the file size changes sometimes so that existence of
hidden data 1s found out .It can also be found out if any suspiciouns
images are sent

46

REFERENCES

1. Simon Robinson, Christian Nagel, Karli Watson, Jay Glynn, Morgan Skinner, Bilil
Evjen, “Professional C#”, 3™ edition, Wiley Publishing, Inc.

Web sites:
1.www.steganography.com

2. www.computerworld.com
3.www jjtc.com/Steganography.html

47

