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Induction motors play a very important part in the safe and efficient running of
any industrial plant. Early detection of abnormalities in the motor would help to avoid
costly breakdowns. Hence. it is essential to check motor condition from time to time.
This can be done by various conventional methods but these methods require down
time of motors. Among the methods that can be employed for on-line fault detection,
neural and fuzzy techniques offer the best solution due to their capacity of handling

numerical and heuristic information.

This project aims at the implementation of fuzzy and neural technique for
detecting broken rotor bars and broken end-rings in a squirrel cage induction motor.
The existence of broken rotor bars and broken end-rings in induction motors can be
detected by monitoring any abnormality of the spectrum amplitudes at certain
frequencies in the motor current spectrum. These broken rotor bars specific
frequencies are settled around the fundamental stator current frequency and are

termed lower and upper sideband components.

Hence, this technique uses stator current pattern as inputs. The system will
have a single output corresponding to one of the following conditions: no broken bars
(healthy condition), number of broken bars, no end ring fault (healthy condition), and
number of end-ring sections broken. This approach is validated in a 1HP 415V 50HZ
960-rpm two-pole three-phase induction machine, showing the sensitive frequency
components to rotor fault condition. Thus on-line fault detection scheme is done by

fuzzy logic approach.
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Induction motors are the workhorses of many different industrial applications
due to their ruggedness and versatility. The monitoring, diagnosis and incipient fault
detection of motors are important and difficult topics in the engineering field. With
proper machine monitoring and incipient fault detection schemes, early warning can
be achieved for preventive maintenance, improved safety and reliability of different
engineering system operations. The importance of incipient fault detection is found in

the cost savings realized by detecting potential machine failures before they occur.
1.1 INDUCTION MOTOR FAULT STATISTICS

Although rotating machines are usually well constructed and robust, the
possibility of incipient faults are inherent due to the stresses involved in the
conversion of electrical energy to mechanical energy and vice versa. Incipient faults
within a machine generally affect the performance of the machine before major
failures occur. The use of Induction motors in today’s industry is extensive, and the
motors can be ecxposed to different hostile environments. misoperations, and
manufacturing defects. Internal motor faults (e.g. Short circuits, ground faults, worn
out / broken bearings, broken rotor bars and broken end-rings), as well as external
motor faults {¢.g. Phase failure. asymmetry of main supply. mechanical overload, and
blocked rotors). are inevitable. Furthermore, operation within hostile environments
can accelerate aging of the motor and make it more susceptible to incipient faults.

Figure 1.1 shows the fault statistics of induction motor given by Ming XU
(1998). The statistical data of failures among utility size motors indicated that 10% of
the induction motor failures were rotor related. Rotor related faults in three phase
induction motors arc due to broken bars and end-rings. The root of the failure is the
crack that develops in the rotor bars. The crack may increase its size if left undetected.

Broken bars and end-rings can be a serious problem when Induction motors
have to perform hard duty cycles. Broken rotors and end-rings do not initially cause
an Induction motor to fail, but they can impair motor performance, lead to motor
malfunction. and cause severe mechanical damage to the stator winding if left

undetected.
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Figure 1.1 Induction Motor fault statistics

1.2 OBJECTIVE

»
"

+
"

To detect broken rotor bars and end-rings fault in three phase squirrel cage

induction motor using neural network and fuzzy logic approach.

Optimization of membership functions in Fuzzy Systems using genetic
algorithm.

Using a new membership function of Semi-Circular membership function in
Fuzzy system.

On-Line implementation of the fuzzy logic based fault detection scheme.

1.3 LITERATURE SURVEY

Many engineers and researchers have focused their attention on incipient fault

detection and preventive maintenance, which aims at preventing major motor faults

from occurring.

As pointed out by Peter Vas (1993), the major faults of electrical machines can

broadly be classified as the following:

¢ Stator faults resulting in the operating or shorting of one or more of a
stator phase winding.

¢ Abnormal connection of the stator windings,

» Broken rotor bar or cracked rotor end-rings,

e Static and/or dynamic air gap irregularities,

e Bent shaft can result in a rub between the rotor and stator, causing
serious damage to stator core and windings,

e Shorted rotor field winding. and

¢ Bearing and gearbox failures.



Increased torque pulsations,
Decreased average torque,
Increased losses and reduction in efficiency, and

Excessive heating

Fabricated type rotors have more incidents of rotor bar and end-ring breakage

than cast rotors. On the other hand, cast rotors are more difficult to repair once they

fail. The reasons for rotor bar and end-ring breakage are several as pointed out by

Filippetti et al., 1996. They can be caused by

Thermal stresses due to thermal overload and unbalance, hot spots or
cxcessive losses, sparking (mainly fabricated rotors),

Magnetic stresses caused by electromagnetic forces, unbalanced
magnetic pull, electromagnetic noise and vibration.

Residual stresses due to manufacturing problems.

Dynamic stresses arising from shaft torques, centrifugal forces and
cyclic stresses.

Environmental stresses caused by for example contamination and
abrasion of rotor material due to chemicals or motsture,

Mechanical stresses due to loose laminations, fatigued parts, bearing

failure etc.

Different invasive and non-invasive methods for motor incipient fault

detection have been reported in (Keyhani et al., 1986).

Invasive techniques require expensive diagnostic equipment and / or off-line

fault analysis to determine the motor condition. Many of the invasive techniques

available for fault detection and diagnosis in motors, such as radio frequency scheme,

particle analysis. vibration analysis and thermal signature (Lyles et al., 1991).

Non-invasive schemes are those, which are based on easily accessible and

inexpensible measurements to predict the motor condition without disintegrating the

motor structure. These schemes are most suitable for on-line monitoring and fault

detection purposes. Many of the inexpensive and non-invasive techniques available

for fault detection and diagnosis in motors, such as parameter estimation (Keyhani et

al.. 1986). Stator current spectrum analysis (Benbouzid 1998).

Lad
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high resolution spectrum analysis to detect the * 2sf; sidebands, Monitor the stator
core vibralion via an accelerometer and perform high resolution spectrum analysis
around the rotor slot passing frequencies to detect the £ 2sf| sidebands, Monitor the
axial flux signal via a search coil around the rotating shaft and perform high
resolution spectrum analysis to detect the £ 2sf] sidebands, Monitor speed oscillation
via a once-per revolution transducer and perform additional processing to display the
predicted number of broken rotor bars. (Thomson 1994).

FEven though many motor fault detection schemes have been developed and
are being extensively used in the industry, they have achieved a certain degree of
success, but are either cost inefficient, unreliable or too difficult to use. With the
advancement in technologies and multi-disciplinary collaboration, new opportunities
have emerged to improve existing fault detection techniques and to drive the fault
detection technology forward. One such key advancement in technology ts in the area
of artificial neural networks (ANN), which has been applied successfully in fields
such as fault detcction (Chow et al., 1994).

Although the ANN can provide the correct input-output fault detection
relation, 1t is essentially a “black box* device; i.e.. it does not provide heuristic
reasoning about the fault detection process. Fuzzy logic could be a solution to this
problem. Fuzzy logic can easily and systematically transfer heuristic, linguistic, and
qualitative knowledge, (preferred by humans) to numbers and quantitative knowledge,
{preferred by computers). and vice-versa. This provides a simple method to
heuristically implement fault detection principles and to heuristically interpret and

analyze their results. (Chow et al., 1994)
1.4 INTRODUCTION TO NEURAL NETWORK

Artificial neural network is motivated by biological nervous system. An ANN
15 a network of many neurons richly connected and arranged in more layers. There are
interconnections only between units of different layers. Laurence Fausett (2004)
explains that the artificial neural networks have been developed as generalization of
mathematical models of human cognition or neural biology, based on assumptions

that;

¢ Information processing occurs at many simple elements called neurons.



multiplies the signal transmitted.
¢ Each neuron applies an activation function (usually nonlinear) to its net input
(sum of weighted input signals) to determine it output signal.
An Artificial Neural Network is characterized by,
e lts pattern of connections between the neurons (called its architecture)
e [ts method of determining the weights on the connections (called its training or
learning, algorithm), and
e Its activation function
Artificial neural networks consist of many nodes, i.e. processing units
analogous to neurons in the brain. Each node has a node function, associated with it,
which along with a set of local parameters determines the output of the node, given an
input. Modifying the local parameters may alter the node function. Artificial neural
networks thus are an information processing system. In this information processing
system. the clements called neuron, process the information. The signals are
transmitted by means of connection links. The links possess an associated weight,
which is multiplied along with the incoming signal (net input) for any typical neural
net. The output signal is obtained by applying activations to the net input.
The neural net can generally be a single layer or a multi-layer net. The
structure of the simple artificial neural net is shown in figure 1.2.
Figure 1.2 shows a simple artificial neural net with two input neurons (x1, x2)
and one output neuron (y). The interconnected weights are given by wi and wy. In a

single layer net there is a single layer of weighted interconnections.

Figure 1.2 A Simple Artificial Neural net
There, the network weight is adjusted based on a comparison of the output and

the target. until the network output matches the target.

A



particular activation function is chosen to satisfy some specification of a problem that
the neuron is attempting to solve. There arc three most commonly used activation

function. They are,

(a) Identity activation function
(b) Binary step activation function
{(c) Sigmoid activation function

(a) Identity Function

-
™

X
Figure 1.3 Identity Activation Function
Figure 1.3 shows the graphical representation of the Identity activation
function. The function is given by.
fx)=x; for all x. (1.1)
(b) Binary Step Activation Function:
Figure 1.4 shows the graphical representation of the Binary step function. The

function is given by.

fixy= 1. if fix}z0 (1.2)
0: if  fix)<0
f(of
1 + *
5 S

Figure 1.4 Binary Step Activation Function
(¢) Sigmoid Activation Function
Figure 1.5 shows the binary sigmoid activation function. This activation function

takes the input and squashes the output into the range 0 to 1, according to expression



tf(x) = logsig (x)
Figare 1.5 Binary Sigmoid Activation Function
If f(x) is differentiated
£(x) = o fx)[1-f(x)] (1.4)

fx) = tansigl ¥

Figure 1.6 Bipolar Sigmoid Activation Function
TFigure 1.6 shows the bipolar sigmoid activation function. The desired range
here is between +1 and -1. This function is related to the hyperbolic tangent function.

The bipolar sigmoidal function is given as,

b{x) = 2(x) -1 (1.5)
b(x) = (1-exp(-ox) / (1+exp(-ox) (1.6)
b (x) = o /2 [ { 1+ b(x))(1-b(x))] (L.7)

1.4.2 LEARNING RULES

The weights and biases of the network ¢an be modified by means of ‘learning
rule’. This procedurc may also be referred to as a training algorithm. The purpose of
the learning rule is to train the network to perform some task. Neural networks can be
trained to solve problem that are difficult for conventional computers or human
beings. There arc many types of neural network learning rules. They fall into three
broad categories: supervised learning, unsupervised learning and reinforcement (or

oraded) learning.



network, the network outputs are compared to the targets. The learning rule is

then used to adjust the weights and biases of the network in order to move the

network outputs closer o the targets. An example for the supervised learning
is the perceptron-learning rule.

b} Reinforcement learning: This is similar to supervised learning, except that,
instead of being provided with the correct output for each network input, the
algorithm is only given a grade. The grade is a measure of the network
performance over some sequence of inputs. This type of learning is currently
much less common than supervised learning.

¢) Unsupervised learning: In unsupervised learning, the weights and biases are
modified in response to network inputs only. There are no target outputs
available. The network learns to categorize the input patterns into a finite
number of classes. An example for unsupervised learning algorithm is
Adaptive Resonance Theory.

1.4.3 BACK-PROPAGATION NEURAL NETWORK

Back propagation is a systematic method for training multi-layer artificial
neural networks. It has a mathematical foundation that is strong if not highly practical.
It is a muiti layer forward network using extend gradient descent based delta learning
rule, commonly known as back-propagation (of errors) rule. Back-propagation
provides a computationally efficient method for changing the weights in a feed-
forward network. with differentiable activation function units, to learn a training set of
input output examples. G.E. Hinton, Rumelhart and R.O.Williams first introduced
BPN in 1986. Being a gradient descend method it minimizes the total squared error of
the output computed by the net. The network is trained by supervised learning
method.

The single-layer perceptron like networks are only able to solve linearly
separable classification problems. Multilayer perceptron, trained by BP algorithm
were developed to overcome these limitations and is currently the most widely used
neural network. In addition, multi-layer networks can be used as universal function
approximators. A two-layer network, with sigmoid-type activation functions in the
hidden layer, can approximate any practical function, with enough neurons in the

hidden layer. The Figure 1.7 shows the Architecture of BP Neural Network.



Figure 1.7 Architecture of BP Neural Network

The BP algorithm uses the chain rule in order to compute the
derivatives of the squared error with respect to the weights and biases in the hidden
layers. [t is called BP because the derivatives are computed first at the last layer of
the network, and then propagated backward through the network, using the chain rule,
to compute the derivatives in the hidden layers.

The BP training algorithm is an interactive gradient algorithm designed
to minimize the mean square error between the actual output of a feed-forward net
and the desired output. Let x;, z;, oy be the input, hidden and output layer neuron, vo;
and wyy are the bias of input and hidden layer, vjj and wji are the weights of the input

to hidden and hidden to output layer.

The BP training algorithm

Step O: Initialize weights.
Step 1: While stopping condition is false, do steps 2-9,
Step 2: For each training pair, do steps 3-8,

Feed forward:
Step 3: Each input unit (X;, i=1...n) receives input signal x; and broadcasts
this signal to all units in the layer above (the hidden units).
Step 4: Each hidden unit (Z;. j =1...p) sums it weighted input signals.
7, i = v+ Z:x,v‘I )
=1
applies it activation function to compute its output signals,

Zj=f{z_in;),and sends this signal to all units in the layer above .



g = WOK—AL;'W_;;Q
i--1

And applies its activation function to compute its signals,
Y, = f(y_ink).
Back propagation of error:
Step 6: Each output unit (yx,k=1...m) receives a target pattern corresponding
to input training pattern, computes its error  information term ,
S w=(l-yi)t _(y_ink)

Calculates its weight correction term (used to update wj later),

Awjk = adkzj |
Calculates 1ts bias correction term (used to update Wok later)
Awok = adk
Step7: Each hidden unit (Z;, j =1...p) sums its delta inputs

HE

o _inj = z Sy
=1

multiplies by the derivative of its activation function to calculate its

error information term
F=0_inf'(z_inf)
Calculates its weight correction term (used to update V) later),
Avij = aidjxi,
And calculates its bias correction term (used to update V, later),
Avoj = adj.
Update weights and biases:
Step8: Each output unit (Yy, k=1...m) updates its bias and weights (j=0...p):
Wik(new)=wj(old)= Awjk.
Each hidden unit (Z;, j...p) updates its bias and weights (i=0...n);
Vij(new)=vij(old) + Avij
Step &: Test stopping condition.
1.4.4 CHOICE OF PARAMETERS FOR NETWORK TRAINING
When the basic BP algorithm 1s applied to a practical problem the training
may take days or weeks of computer time. This has encouraged considerable research

on methods to accelerate the convergence of the algorithm. The research on faster
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performance of the standard BP algorithm. These heuristic techniques include such
ideas varying the learning rate, using momentum and rescaling variables. Another
category of research has focused on standard numerical optimization techniques.
1.4.4.1 Learning Rate

The speed of training the BP network is improved by changing the learning
rate during training. Increasing the learning rate on flat surfaces and then decreasing
the learning rate when slope increases can increase the process of convergence. If the
learning rate is too large, it leads to unstable learning. And if it is too small, it leads to
incredibly long training times. Hence care has to taken while deciding learning rate.
There are many different approaches for varying the learning rate. The learning rate is
varied according to the performance of the algorithm. The rules of the variable

learning rate BP algorithm are:

i. If the squared error increases by more than some set percentage &
(tvpically one to five percent) after weight update, then the weight update
is discarded, the learning rate is multiplied by some factor o < p <1, and

the momentum coefficient vy (if it is used) 1s set to zero.

k-2

If the squared error decreases after a weight update, then the weight update
is accepted and the learning rate is multiplied by some factor n > 1. Ify

has been previously set to zero, it is reset to its original value.

(8]

If the squared error increases by less than £ then the weight update is
accepted but the learning rate is unchanged. If y has been previously set to
zero, it is reset to its original value.
1.4.4.2 Momentum Factor

In BP with momentum, the weight change is in a direction that is a
combination of the current gradient and the previous gradient. This is a modification
of gradient descent whose advantage arises chiefly when some training data are very
different from the majority of the data. By the use of momentum larger training rate

can be used, while maintaining the stability of the algorithm. Another feature of
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trajectory has. The momentum coefficient is maintained with the range [0, 1].
1.5 INTRODUCTION TO FUZZY LOGIC

Fuzzy Logic is particularly good at handling uncertainty, vagueness and
imprecision. This is especially useful where a problem can be described linguistically
(using words) or, as with neural networks, where there is data and you are looking for
relationships or patterns within that data. i.e. It is an approach to uncertainty that
combines real values [0...1] and logic operations. Fuzzy logic is based on the ideas of
fuzzy set theory and fuzzy set membership often found in natural (e.g., spoken)
language. Fuzzy Logic uses imprecision to provide robust, tractable solutions to
problems. Fuzzy logic relies on the concept of a fuzzy set. The notation for fuzzy sets:
for the member x. of a discrete set with membership #, we use the notation w/x. In
other words, x is a member of the set to degree u.

Discrete sets are defined as:
A= p Ix1tuht. Fp/xn

Fuzzy logic systems are universal function approximators. In general, the goal of

the fuzzy logic system is to yield a set of outputs for given inputs in a non-linear
system, without using any mathematical model, but by using linguistic rules. It has
many advantages. They are

o Tuzzy logic is conceptually easy to understand. The mathematical concepts
behind fuzzy reasoning are very simple. What makes fuzzy better is the
"Naturalness” of its approach and not its far-reaching complexity.

e Fuzzy logic is flexible. With any given system, it's easy to massage it or layer
more functionality on top of it without starting again from scratch.

o Fuzzy logic is tolerant of imprecise data. Everything is imprecise if you look
closely enough, but more than that, most things are imprecise even on careful
inspection. Fuzzy reasoning builds this understanding into the process rather
than tacking it onto the end.

e Fuzzy logic can model nonlinear functions of arbitrary complexity. You can
create a fuzzy system to match any set of input-output data. This process i3
made particularly easy by adaptive techniques like Adaptive Neuro-Fuzzy

inference Systemns (ANFIS). which are available in the Fuzzy Logic Toolbox.



impenetrable models, fuzzy logic lets you rely on the experience of people
who already understand your system.

e Fuzzy logic can be blended with conventional control techniques. Fuzzy
systems don't necessarily replace conventional control methods. In many cases
fuzzy systems augment them and simplify their implementation.

¢ Fuzzy logic is based on natural language. The basis for fuzzy logic is the basis
for human communication. This observation underpins many of the other
statements about fuzzy logic.

1.5.1 MAMDANI FUZZY LOGIC INFERENCE SYSTEM
Mamdani-type of fuzzy logic controller contains four main parts, two of
which perform transtormations. The four parts are

e Fuzzifier (transformation 1)

» Knowledge base

¢ Inference engine (fuzzy reasoning, decision-making logic)

» Dcfuzzificr (transformation 2)

Knowledge base
(Rule base and
Data bage}

| Fuezifier Defuzzifiey
Tt {transformation 1) (transformatiom 23

Y

b J
| Inference

(Fuzzy) | engine (Fuzzy)

Controlled plant

Figure 1.8 Mamdani Fuzzy Logic Inference Systems
1.5.1.1 Fuzzifier
The tuzzifier performs measurement of the input variables (input signals, real
variables), scale mapping and fuzzification (transformation 1). Thus all the
monitoring input signals are scaled and fuzzification means that the measured signals

(crisp input quantitics which have numerical values) arc transformed into fuzzy



belongingness of a quantity to a fuzzy set. If it 1s absolutely certain that the quantity
belongs to the fuzzy set. then its value is 1.

There are many types of different membership functions, piecewise linear or
continuous. Some of these are smooth membership functions, c.g. bell-shaped,
semicircular. Gaussian etc. and others are non-smooth, e.g. triangular, trapezoidal etc.
the choice of the type of membership function used in a specific probiem is not
unique. Thus it is reasonable to specify parameterized membership functions. which
can be fitted to a practical problem.

Semicircular membership function depends on two parameters t, ¢ and can be
described as follows by

| e

if —r<x<r

(1.8)

0 otherwise

c x
Figure 1.9 Semicircular membership functions

A semicircular membership function is shown in Figure 1.9 is used. The
detection of broken rotor bars fault severity is considered by utilizing Mamdani-style
fuzzy inference and using as input variables the fault compopents Ay and Aj at
{requencies (1= 2s)f. Very Small, Small, Medium, Large, Very Large are the five
membership functions used for the input variable Ay and Ay. Zero, Incipient fault,
One. Two. Three. Four, Five, Six, Seven broken bars are the nine membership

functions used for the output variable number of broken bar.



base. The database provides the information that is used to define the linguistic
control rules and the fuzzy data manipulation in the fuzzy logic controller. The rule
basc specifies the control goal actions by means of a set of linguistic control rules. In
other words. the rule base contains rules such as would be provided by an expert. The
fuzzy logic controller Jooks at the input signals and by using the expert rules
determines the appropriate output signals (control actions). The rule base contains a
set of if-then rules. The main methods of developing a rule base are:

e Using the experience and knowledge of an expert for the application and

the control goals;

e Modeling the control action of the operator;

* Modeling the process;

e Using a self-organized fuzzy controller;

s Using artificial neural networks;

By considering the two dimensional matrix of the input vartables. each
subspace is associated with a fuzzy output situation.
1.5.1.3 Inference Engine

It is the kernel of a fuzzy logic controller and has the capability both of
simulating human decision-making based on fuzzy concepts and of inferring fuzzy
control actions by using fuzzy implication and fuzzy logic rules of inference as shown
in Figure 1.10. In other words, once all the monitored input variables are transformed
into their respective linguistic variables, the inference engine evaluates the set of if-
then rules and thus result is obtained which is again a linguistic value for the linguistic
variable. This linguistic result has to be then transformed into a crisp output value of

the fuzzy logic control.
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Fig. 1.10 Graphical interpretation of fuzzification, inference

1.5.1.4 Defuzzifier

The second transformation is performed by the defuzzifier, which performs
scale mapping as well as defuzzification. The defuzzifier yields a non-fuzzy, crisp
control action from the inferred fuzzy control action by using the consequent
membership functions of the rules. There are many defuzzification techniques. They
arc centre of gravity method, height method, mean of maxima method, first of
maxima method, sum of maxima.

In this project centroid method defuzzification technique is used as shown in

Figure 1.11. Mathematically this center of gravity is expressed as

i3
Jor () x
COG = < (1.9)

#

‘[#,1 (x) dx

0 10 20 30 45 50 60 70 80 50 10O

Figure 1.11 Centroid Defuzzification Method
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Chapter 1, Introduction

Deals with the problems that occur in the induction machines, mainly rotor bar
and end-ring failures, the effects produced by them, and techniques used for finding
them are discussed. Also provides an overview of the introduction of Neural network
and Fuzzy logic.
Chapter 2, Broken Bar/End —Ring Detection In Cage Type Induction Motor

Deals with the various causes of the rotor bar and end-ring failure are
discussed. The effects of the broken rotor bar and end-ring are discussed in a single
line representation. Detection technique and methodology for finding fault are
discussed.
Chapter 3, Experimental Setup for On-line Monitoring

Deals with the sequence of process that is to be carried out to produce the
results. The hardware setup for online monitoring for the detection of broken rotor bar
and end-ring are discussed. The various components used in the hardware set up are
described with their specification and also deals with the software “Real Time
Analyzer” used for our project to record the stator current waveforms. The waveforms
are analyzed and the harmonic amplitudes under various conditions are tabulated.
Chapter 4, Fault Diagnosis

Fxplains the simulated result and calculates the percentage of error using both
neural network and fuzzy logic approach for rotor fault diagnosis in induction
machine. Then compare fuzzy semi-circular membership function with conventional
fuzzy membership function. And also compare fuzzy result with neural result.
Chapter 3, Fuzzy Optimization Using Genetic Algorithm

The tuning of membership function in fuzzy logic using genetic algorithm for
fault detection is discussed.
Chapter 6, On-line implementation for fault detection

Explains the software used for an On-Line broken rotor bar and end-ring fault
detection scheme to three phase squirrel cage induction motor.
Chapter 7, Conclusion

Deals with conclusion and future scope of this project.
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Three-phase induction machines are asynchronous speed machines, operating
below synchronous speed when motoring and above synchronous speed when
generating. [t 1s a well-known fact that induction motors dominate the field of
electromechanical energy conversion. The induction machine can operate under
asymmetrical stator and/or rotor winding connections during such conditions as:
interturn faull resulting in the opening or shorting of one or more circuits of a stator
phase winding. abnormal connection of the stator windings, broken rotor bar or end-
ring. Asymmetrical operation of induction machines result in unbalanced air gap
voltages, consequently unbalanced line currents, increased torque pulsations, and
decreased average torque. Consequentty, asymmetrical operation of induction
machine results in poor cfficiency and excessive heating, which eventually leads to

the failure of the machine.

2.1 BROKEN ROTOR BAR AND END-RING FAULT MECHANISM

During the start-up period the current in the rotor is at its highest level and this
occurs when cooling is minimal and the thermal and mechanical stresses are at a
maximum due to the starting currents. Direct on line starting which often occurs on
oil production platforms subjects the rotor to a highly stressful condition. The
incidence of cracking in the region of the bar to end —ring joint is greater when the
start-up time 1s relatively long and when the start-up time is relatively long and when
frequent starts are required as part of a heavy duty cycle. The development of damage
to the rotor after cracking of the rotor bar has started can be as follows: the cracked
bar overheats around the crack, the bar breaks and arcing occurs; localized heating of
the laminations and interbar currents, the adjacent bars carry more current and are
subjected to cven greater thermal and mechanical stresses during start-up, the rotor
laminations can be damaged due to the high thermal stresses, the broken bar can lift
out of the slot due to centrifugal forces and can physically damage the stator core and

windings.
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Figure 2.1 Rotor construction of an Induction motor

Almost 90 percent of induction motors are squirrel-cage type, because this
type of rotor has the simplest and most rugged construction and is almost
indestructible. The rotor as in Figure 2.1, consist of a cylindrical laminated core with
parallel slots for carrying the rotor conductors, which are not wire but consists of
heavy bars of copper, aluminum or afloys. One bar is placed in each slot rather the
bars arc inserted from the end when semi-closed slots are used. The rotor bars are
brazed or electrically welded or bolted to two heavy and stout short-circuiting end-
rings.

The rotor bars are permanently short-circuited on themselves; hence it is not
possible to add any external resistance in series with the rotor circuit for starting

purposes.
2.3 EFFECT OF ROTOR ASYMMETRY

Under normal operating conditions. an ABC positive sequence of 3-phase
balanced terminal (input) voltages impressed upon the three phases, A. B, and C, of
the stator armature produces a non-zero forward-rotating field in the airgap of the
induction motor. This forward-rotating field in the airgap of the motor consequently
induces slip-frequency currents in the rotor bars and connectors. respectively. These
induced rotor currents then produce forward-and backward rotating fields in the
airgap of the motor. For a symmetrical rotor, the resultant of the backward-rotating
fields is zcro. while the resultant of the forward-rotating field is non-zero. However,
under any abnormal condition that destroys the symmetry of the rotor, a different
scenario with regard to the backward-rotating fields arises. In this case. the resultant
of the backward-rotating fields is no longer zero. It is the ultimate identification of the

effects of this non-zero backward-rotating field that forms the basis for most on-line
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flows in that bar. The resulting asymmetry in the rotor results in a non-zero backward-
rotating field that rotates at slip-frequency speed with respect to the rotor. This non-
zero backward-rotating field induces harmonic currents in the stator winding which
are superimposed on the stator winding currents at a frequency of (1-2s)f| . where, s is
the operating slip and, f}, is the fundamental stator frequency. These induced currents
in the stator windings manifest themselves as a sideband, (-2sf|), near the fundamental
frequency of the power supply.

The flow of current in the rotor circuit can be represented by a single line
diagram. This representation is used to describe the modeling of condition Broken
Rotor bar and End-ring. The current flow affected by these conditions can be easier to
understand with the help of these diagrams.

2.3.1 Modeling of Healthy Induction Motor
The Figure 2.2 shows the current flow representation of a healthy induction

motor. In this single line representation there is no broken rotor bars or broken end-

rings.
Rt
k-2 k.1 % i 2 J’ K+3
: g i) I i)
Hoar :',
LA . i .
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__.._"’ !
i
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Figure 2.2 Modeling of Healthy Induction motor
The horizontal lines represent the end-rings and the vertical lines represent the
rotor bars. Two rotor bars and its connector are represented as a single circuit. And
separate currents flow in each circuit and all are equal loops. The rotor current loop is
represented as i and the representation changes at different bars. The ir 18 the Rotor

circuit current.
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and a healthy End-ring (connector). As a result there will be uneven current flow in
the rotor-connector circuit where the Broken Rotor Bar is present with respect to other
circuits. There are ditferent approaches to the modeling of Broken Rotor Bar.

One approach is to represent the broken bar with a very high resistance
lcaving the circuit topology unchanged.

And the sccond approach is to modify the circuit topology by removing the
broken bar {rom the circuit KVL formation. The second approach is better because,
(1) the implementation of a broken bar by a very high resistance could introduce
numerical ill conditioning and instability, and (2) each time a broken bar is removed,

it reduces the simulation time.

Braken Koo
k-2 k-1 % Kl E+? Nel
- . l — “
- o
b8z | rkd W imd 7

Figure 2.3 Modeling of Broken rotor bar

In the diagram vertical line shows the Rotor bar, where the (k+/)th Bar is
broken. The figure shows the five adjacent rotor circuits with current labeled, i,4-2, ips-
[ i iV 1. iy # 2. respectively in which (k—7)th bar 1s broken. Due to the (A+/)th
broken bar. the rotor circuit currents, /4 and i+, , are required to be equal and this
current is now forced to flow in the double-width rotor circuit comprising the Ath and
(k+ I')th rotor loops as shown in the figure. Broken rotor at different places may lead
to more double width rotor current which affects the stator current in turn. So if the
number of broken bars 1s getting increased, these leads to more harmonics in the
stator current.

So. proper monitoring must be done to identify the presence of these
harmoenics. By close examination of the flux plot in an asymmetrical (with broken

bars). it can be noticed that the region around the broken bar of the rotor has a high
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there is no localized rotor conductor demagnetization effect since these bars carry no
slip-frequency currents. This heavy localized magnetic saturation has an irregularity
effect on the motor’s winding inductance profiles, and an in evitable effect on the
stator and rotor core loss distributions. That is, such an event can create a non-uniform
distribution of core loss. particularly in the rotor and can result in localized hot spots
in the rotor. Such hot spots can lead to excessive heating in the adjacent bars, and thus
with time and depending on the duty cycle of the motor, these adjacent bars can
become more susceptible to wear, thermal stress and eventual breaking.
2.3.3 Modeling of Broken End-Rings

The modeling approach adopted here is similar to that adopted in the broken
bar case. That is. broken rotor end-ring connector segments are not modeled by
representing the broken segments by very high resistance. A broken end-ring
connector segment is modeled by a non-zero circulating current, /.., in the connector
as shown 1n the figure.

E -1 b
i'".1 |r|‘b- =

W2 -1 ™ K+1 k-3 W+l

LN bay i s Ly Loy

T Rzt
Figure 2.4 Modeling of Broken end -ring

The Figure 2.4 shows the representation of current flow in broken end-ring.
The horizontal line shows the two end-rings with a broken section between the rotor
bar & and (k+1). It should be noted that no matter where the broken end-ring
connector segments are located along the circumference of the rotor, the fault
condition 13 still represented by a single non-zero circulating current, 7,., which flows
in all the bars separated by their respective breken connector segments.

These broken connector segments can be got due to high thermal stress or

mechanical stress, etc. So broken sections at various connector segments may lead to
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connectors.

By observing the magnetic field pattern as in the case of broken bars, it is not
symmetrical. The region in the vicinity of the broken connectors has a high degree of
magnetic saturation that has distortive effect on winding inductance profiles as like in
the broken bar sepment.

2.4 FAULT DETECTION SCHEMES

The existence of broken rotor bars and end-rings in induction motors can be
detected by monitoring any abnormality of the spectrum amplitudes at certain
frequencies in the motor current spectrum. This analysis is called as Motor Current
Signature Analysis (MCSA).

2.4.1 Broken Bar Detection Scheme

With a symmetrical cage winding, only a forward rotating field exists. If rotor
asymmetry occurs then there will also be a resultant backward rotating field at slip
frequency with respect to the forward rotating rotor. As a result, the backward rotating
ficld with respect to the rotor induces an e.m.f. and current in the stator winding at:

fop =fi(1-2s) Hz (2.1)

This eqn.2.1 is referred to as the lower twice slip frequency sideband due to
broken rotor bars. There is therefore a cyclic variation of current that causes a torque
pulsation at twice slip frequency (2sf}) and a corresponding speed oscillation, which
1s also a tunction of the drive inertia.

This speed oscillation can reduce the magnitude (amps) of the f;(1-2s) sideband but
an upper sideband current component at f(1+2s) is induced in the stator winding due
to rotor oscillation. The upper sideband is enhanced by the third time harmonic flux.
These broken rotor bar specific frequencies are settled around the fundamental stator
current frequency and are termed lower and upper sideband components (Kliman et
al.. 1988, Fillipeti et al.. 1996). Those sideband components around the fundamental
frequency are given by

foo =f1(1228)Hz (2.2)

Thesc two frequency components show predominant variation in their

amplitudes and these two components are taken for the analysis under various broken

bar conditions.
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Fig. 2.5 Sideband frequencies around the fundamental line frequency
The broken bars also give rise to a sequence of other sidebands given by
foo = (12 2ks) £ k=1.2,....kq (2.3)
And are depicted conceptually in Fig. 2.5.
2.4.2 Broken End-Ring Detection Scheme

As shown in the modeling of the motor, the broken condition in the end-ring
will produce backward rotating field, which causes harmonics at specified frequency.
Unlike in the case of broken rotor bar condition it will not induce harmonics at both
the upper and lower sideband frequencies, but will affect only the lower sideband
frequency (Bangura et al., 1999, Demerdash et al., 2000) as given by,

fee=(1-28)} | (2.4)

The harmonic current amplitude level at lower side band frequency for broken
end-ring is higher than that of broken rotor bar because broken cage connectors are far
more disruptive on a global scale to patterns of induced current flows in the entire
squirrel-cage than broken bars which introduce more localized current flow

disruptions.
2.5 METHODOLOGY

The stator current spectrum is converted into an equivalent voltage and
recorded by giving it as the input to the microphone input terminal of the PC by
means of a stereo cable. The input voltage level to the PC sound card is being
adjusted by means of a rheostat to the acceptable level of the sound card. It is
normally 1v pk-pk. The current waveforms are recorded for various numbers of
broken rotors and end-ring.

Fast Fourier transform is done on the recorded waveforms by means of the
FI'T analyzer. The output of the FFT analyzer will be in one of the following forms:
spectrum. octave band or waterfall model. It will be amplitude Vs frequency graph.
The amplitude of the various frequency components is thus displayed in dB. The

values can also be recorded by means of using the option data recorder provided by



broken bar and end-ring conditions.

The diagnosis of the faults is done by means of fuzzy logic and neural network
approach. Both the methods have been successfully implemented to classify broken
rotor bar and end-ring faults by categorizing the (1+2s)f; and (1-2s)f; components by
a sct of rules. Each of these sideband components is described by membership
functions like “very small’,” small’, *‘medium” and ‘large’, ‘very large’. The fuzzy
logic system considered 1s the mamdani type. The fuzzy inference is performed by
using the various fuzzy implication methods and the results are being compared in
each case. A typical rule might read like” If lower side band is very small and the
upper sideband is medium then there is one broken bar.” Similarly in neural network

using back propagation training algorithm the faults are identified.

Recording of Sideband
Stator Amplitode
Current IMeasurement
Waveforras

Display Soft
Ouiput Coraputing
Diagnosis

Figure 2.6 Schematic diagram of Methodology
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To demonstrate the fault detection scheme. experiments were conducted on
the three phase. 1 hp. 415V and 960-rpm induction motor. The motor has 28 rotor
bars. To simulate the broken rotor bar fault, a hole is drilled on the rotor bar. With one
bar broken. the motor is made to run at rated speed. The stator current is measured.
Using the Fast Fourier Transformation (FFT) analyzer, the magnitudes of (1-2s)f;
and (1+2s)f; arc measured. They are denoted as Al and A2 respectively. The similar

procedure is repeated for two to seven broken bars.

3.1 EXPERIMENTAL HARDWARE SETUP

K
3 { 3 phase
phase \ Induction

50Hz \ hotor
supply g ;’CTJ J

Series
Resistor

. AD
| Conmverter

g

Soft Computing Real time
Diagnosis Analyzer

e ——— FFT
Analyzer

Figure 3.1 Experimental setup for data acquisition



Figure 3.2 Photographic view of the setup

The Figure 3.1 shows the experimental setup used for the project. The 30
supply is given to the induction motor. Figure 3.2 from the terminals of the motor,
connections are taken from any phase terminal (here phase B) and are connected to a
current transformer, which steps down the stator current value. As the computer
accepts any signal in the form of voltage, so a rheostat is connected to convert the
current lo voltage. To set that voltage level to 1v, a CRO is connected across the
rheostat to set the range. Across the CRO a stereo cable is connected and is connected
to the microphone input of the computer.

The Real Time Analyzer accepts the voltage in the form of sinusoidal
waveform and does the FFT analysis and shows the spectrum of the stator current. If
any broken sections in the rotor bar or end-ring, it shows the presence of harmonics at
the specified frequency in the form of spikes. And to determine the number of broken
rotor bars or the number of sections in the end-ring, the fuzzy logic and neural

network approach are used.

3.2 HARDWARE COMPONENT SPECIFICATION
3.2.1 Induction Motor
A three phase. 50 Hz squirrel cage induction motor is used. The rotor being

casted type made of Aluminum molded bars. Totally there are 28 rotor bars and we
have done the analysis for 7 broken bars.
Specification:

Power : 1HP

Rated voltage ; 415V



No load current : 1.7 A
No. of rotor bars : 28
3.2.2 Current Transformer
Here a current transformer of step down ratio 100:5 is used. The no load line
current of 1.7A is being stepped down to 50mA and it is converted in to an equivalent
voltage signal by connecting a resistor in serious with the secondary coil.
3.2.3 Rheostat
A rheostat is used to get a voltage output at its terminals. The voltage got will
be 1v and it is transferred to the system. The device used here is a 300 Q rheostat. The
voltage is adjusted because the computer accepts any signal only in that range.
3.2.4 Stereo Cable
The input voltage is being given to the PC’s microphone input terminal by
means of a sterco cable. Since the voltage is already being stepped down to
compatible level, there 1s no need of any ohmic connector to limit the voltage.
3.2.5 A/D Converter
By means of the stereo cable we are giving analog voltage signal to the sound
card. There it is converted into a digital form by means of an inbuilt 16 bit A/D
converter. Since the precision of the converter is well enough there is no need of any

external converter.

3.3 SOFTWARE DESCRIPTION
3.3.1 Real Time Analyzer

The stator current spectrum is converted into an equivalent voltage and
recorded in the PC by means of a stereo cable through the microphone input terminal.
The input voltage level to the PC sound card is adjusted by means of a potential
divider to the acceptable level of the sound card. It is normally 1V (peak to peak). The
waveforms are recorded for various numbers of broken bars. In order to perform FFT
analysis on the input waveform software “rcal time analyzer” (figure 3.3) is used. It
permits the analog waveform to be directly recorded by the PC. It is a part of
“Acoustic Analyzing System” which mainly analyzes sound waveforms. The main
advantage of using this software is that it permits the analog waveform to be recorded

directly and it is digitized by means of inbuilt A/D converter of the PC’s sound card.
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Fig.3.3 Real time analyzer

The following description specifies about the main parts of the analyzer and its
function. The three main functions that are used for this project are Recorder,
Oscilloscope. and FFT Analyzer.

3.3.2 Oscilloscope

The Real-time Analyzer is equipped with a Peak Level Monitor. If an
oscilloscope is connected to the output terminal of the sound system under tests,
problems in transition phenomena related to line connections, earths, and levels will
be visible on the oscilloscope screen. Any momentary variances from normal test
signals can be investigated immediately.

[t the oscilloscope (figure 3.4) is used in combination with the signal
generator. it becomes possible to easily check for distortions caused by errors in
dynamic ranges for A/D-D/A converters or various types of built-in PC analog amps.
From the results of these checks, the user can adjust the software volume on the
software mixer. or the program volume on the A/D-D/A converters. Confirmation of
the accuracy of these signals is a fundamental rule of measurement.

The real-time analyzer software can measure not only sound but also voltage
in small electronic circuits. Actually, the soundcard can input any electric signal,
though the attenuator is needed if the signal voltage exceeds the maximum voltage of

the soundcard, Here a potential divider is being used to step down the voltage level.
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Fig 3.4 Oscilloscope
3.2.3 Recorder
The stereo cable carries the voltage across the rheostat to the computer. The
amplitude waveform is recorded and saved in this analyzer. During the online
monitoring period the recorder mode is selected to record the waveform and that can

be recorded for sufficient time (sec).
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Figure 3.5 Recorder
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corresponding waveform is recorded.
3.2.4 FFT Analyzer

By means of FFT analyzer we can perform Fast Fourier Transform on the
recorded waveform. The amplitudes of various frequency components are displayed.
The displaved data can also be recorded every second. We can see the displayed
wavcform in the form of octave band. waterfall, correlation, spectrogram, power
spectrum and phase. Calibration can also be performed in this FFT analyzer. This can
give a clear indication of the amplitude level at each frequency. The mouse pointer
can be used to indicate the amplitude level at required frequency i.e. at 46 and 54Hz.
When using the octave band, the data record can be used to record the amplitude level
at cach frequency during the entire time (sec) period of run. A separate screen copy

can be got to view the spectrum wave.
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analyzer.
3.4.1 Broken Rotor Bar on No-Load condition

‘The healthy condition of induction is made to run and its corresponding
waveform and amplitude level is found out. After that, the rotor is removed and holes
are made in the rotor bars and the motor 1s brought to unsymmetrical condition. The
fault condition of the rotor bars can be seen in the figure 3.7. And then the motor is
made (0 run and the corresponding amplitude waveforms and amplitude level is
found. The process is continued for many broken rotor bars. Thus the amplitude table
1s got for various broken bar conditions. The harmonic effect can be seen at the
frequencies £2sf). Here f] is 50Hz, s=0.04. So the harmonic effect can be seen at the

frequencies of 46Hz and 34Hz.

Figure 3.7 Photographic view of broken rotor

Table 3.1 Harmonic amplitudes for no-load condition of broken rotor bars

" No. of Broken | Harmonic Amplitudes | Harmonic Amplitudes
Rotor Bars at46 HZ at 54 HZ
Al (db) A2 (db)
O(healthy) -56.92 -61.8
I -55.19 -61.58
2 -54.71 -61.06
3 -54.35 -60.32
4 -51.82 -54.81
-5 -50.5 -52.4
6 -48 -50
7 -45 -49




present at these frequencies. The figures 3.9 to 3.15 show the indication of harmonics

at the frequencies 46Hz and 54Hz. So due to the harmonics, the amplitude level will

be higher when compared with the previous value. Therefore, the amplitude level will

get higher and higher when there is more number of broken bars.

But it can be seen that there are harmonics present at other frequencies other than

46Hz and 54Hz. Those harmonics may occur due to other failures in the machine.
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Figure 3.8 Spectrum of a healthy motor
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Figure 3.12 Spectrum at four broken bars
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Figure 3.15 Spectrum at seven broken bars
After around seven broken bars, the amplitude variation won’t be linear anymore, as it
may cause large effects in the machine. So the fault diagnosis is done only for seven
broken rotor bar conditions.
3.4.2 Broken Rotor Bar on Load condition
On Load condition the brake drum will be coupled with a spring balance and

its amplitude values will be noted.

Table 3.2 Harmonic amplitudes for load condition of broken rotor bar

No. of Broken | Harmonic Amplitudes | Harmonic Amplitudes

Rotor Bars at 46 HZ at 54 HZ
Al (db) A2 (db)

O(healthy) -56.92 -61.8

1 -53.84 -59.7

2 -53.2 -58.5

3 -52 -57.8

4 -50.3 -53.6

5 -48.5 -51.92

6 -45 -47.5

' 7 -41.6 -45.7
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waveform and amplitude level is found out. After that the rotor is removed and the
¢cnd-ring is then is made to cut using hacksaw blade at a sections. And then the motor
is made to run and the corresponding amplitude waveforms and amplitude level is
found. The process is continued for many broken end-ring sections. Thus the

amplitude table is got for various broken end-ring conditions.

Figure 3.24 Photographic view of broken end-ring
As discussed earlier. any broken (unsymmetrical) condition in the end-ring
may causc harmonics at only the frequency (1-2s) f, i.e. only the lower side band
frequency will get affected. In the above figure of a broken section in end-ring, the
spikes are present only at 46Hz frequency.

Table 3.3 Harmonic amplitudes for broken end-ring

No. Of Broken End- | Harmonic Amplitudes
ring Sections at46 HZ
Al (db)
O(healthy) -56.92
1 -54.56
""" ) 2 -54.03
3 -49.99
4 -45.6
5 -39.19

36



g - . H
A 92 M 1 J0 A 41 44 49 40 A %2 M W o 6w

Frequanay [Mr

Figure 3.25 Spectrum of healthy condition

-,
N

m,
oy

Al A
"‘“‘“\f\ i gp.f' L’"“HM‘\/&W -\,\\

-l

LRI |

-l

[T P

B e i i et A e 0 £ i T ,_.__,i_._....,%_..._._

i
R S B S TR
sroque Bz

! H oo’ w4

Figure 3.26 Spectrum at one broken end-ring

section

N . I‘H

g |

a, AN
-

R
F

- -
- B
o

m : o]
B B R B R R (S S B R e

oo =

Figure 3.27 Spectrum at two broken end-ring

section

Figure 3.28 Spectrum at threc broken end-ring

section

ﬂr&nxnmedmcsuuuznwwum

e,
Figure 3.29 Spectrum at four broken end-ring

section

EHINT. ]

1 e ' . 1

oMo M@ oW N EID® B R

o .
Figure 3.30 Spectrum at five broken end-ring

section

The table 3.3 clearly indicates that the harmonic amplitudes level is higher

than that due to broken bars. Because broken cage connectors are far more disruptive

on a global scale to patterns of induced current flows in the entire squirrel-cage than

broken bars, which introduce more localized current flow disruptions. (Bangura et al..

2000).



FAULT DIAGNOSIS

Conventional motor fault detection schemes have achieved a certain degree of
success. either cost inefficient, unreliable or too difficult to use. With the

advanccment in artificial intelligence drive the fault detection technology forward.
4.1 NEURAL NETWORK APPROACH

The network consists of two layers namely hidden layer and the output layer.
There are cight neurons in the hidden layer. The inputs to the neural network are the
amplitudes of A; and A» and the output is the number of broken bars. The network
consists of two input neurons, eight hidden neurons and one output neuron. The BP
algorithm is used for training. The log sigmoid activation function is used in the first
layer and pure linear activation function is used in the output layer. The learning rate

is set to 0.0012, momentum factor is set to 0.8.

Hidden Layer

Smphtude &,

at (1 - 28)f I]:jn 1::::
roken

Lmplitude A . Bars

at (1 + 2sf

Figure 4.1 Structure of BP Network for fault detection
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Table 4.1 Test results of neural network based fault detection scheme

S.No! Alindb A2 in db Target Actual % Error
(No of output
broken bars)
1 -56.92 -61.8 0 0.0696 0
2 -55.19 -61.58 1 1.0238 2.3
3 -54.71 -61.06 2 2.022 1.1
4 5435 -60.32 3 2.9806 0.64
s -51.82 -54.81 4 4.0047 0.11
6 -50.5 -52.41 5 5.0235 0.47
7 -48 -50 6 6.0024 0.04
8T s -49 7 7.0077 0.11
Average 0.596




Table 4.2 Test results of neural network based fault detection scheme

S.No | Alindb | A2indb Target Actual 2

: No of broken ontput Error
bars

1| -55.47 -60.3 0 0.0016 0
2 -53.84 -59.7 I 0.9976 0.24

3 -33.2 -58.5 2 2.002 0.1
4 -52 -37.8 3 2.9991 0.03
5 -50.3 -33.6 4 4.0011 0.0275
6 | -485 -51.92 5 4.9999 0.002
7 45 1 475 6 5.9993 0.011
3 46 1 457 7 7.0006 0.008
Average 0.0523

Training-Blue

, Performance 1s 0.052315, Goal is 0
10« E T 1 T ¥ T T T ¥ T

0 50 00 150 200 250 300 350 408 450 &00
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Figure 4.3 Epoch Vs Error Characteristics
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conditions. The test results are shown in Table 4.1 and 4.2.

4.1.3 Broken End-ring Sections
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1

Figure 4.4 Epoch Vs Error Characteristics
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Table 4.3 Test results of neural network based fault detection scheme

T Alin Target Obtained | %
' 8.No db No of broken connectors Value Error
4 -56.92 0 0.0347 0
1| 5456 I 1.001 0.1
2 -54.03 2 1.999 0.005
3| -4999 3 3 0
4 -45.6 4 4 0
5 -39.19 5 5 0
Average 0.0175
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Figure 4.5 Fuzzy System

There are two number of crisp inputs used in this project, Al and A2, which
specifies about the two harmonic amplitudes at the frequency 46Hz and 54Hz. This is
in case of broken rotor bar condition. But in the case of broken end-ring condition,
there will be only one crisp input. The crisp output in the fuzzy system will display
the total number of broken bars and/or the total number of end-ring sections broken.

The infercnce engine does the fuzzification by using fuzzy concepts. So the
crisp inputs have to be converted into fuzzy input. This process is called
Fuzzification. Fuzzification converts the numerical data (crisp input) into membership
functions (fuzzy input). And also the crisp output displays in the form of numerical
data. So the fuzzy output (membership function) from the inference engine is
converted into crisp output (numerical data). This process is called Defuzzification.
lHere Centroid defuzzification technique is used.

The simulation process is done based on the fuzzy implication and fuzzy rules.
The rules are framed based on the number of membership functions used in both the
input and output. There will be two sets of rules, one for broken rotor bar condition
and other for broken end-ring condition. The inference engine simulates based on the
rules and displays the output for number of broken rotor bars and number of broken
sections in the end-ring,
4.2.1 FAULT DIAGNOSIS FOR BROKEN ROTOR BAR

Two inputs Al and A2 are uscd and the rules are framed based on their
combination to give the output. In each input functions, five membership functions

are implemented.



! Al\'
VS |0 |IF |1 |2 {3
S IF |1 |2 |3 |4
M 1 [2 [3 14 |5
L 2 |3 |4 |5 |6
AONE 4 5 |6 |7

VS: VERY SMALL, S: SMALL. M: MEDIUM, L: LARGE, VL: VERY
LARGE, IF: INCIPIENT FAULT
4.2.1.1 Fuzzification with Semicircular Membership Function
As shown in the rules, there will be five membership functions. The width of

these five functions will be based on the value of the harmonic amplitudes.
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4.2.1.2 Simulation Result

The fuzzy approach is done and the output is got to determine the number of
broken rotor bars in no-load condition and load condition. The actual value 1o be got
and the observed value are compared with each other and the percentage of error that
arises is calculated. This is done to check the performance and how efficient this
approach 1s.

The error is calculated by the formula,

| Actual vailue ~ observed value|
* 100

Actual value

The results obtained are shown in the table, in no-load condition. ..

Table 4.5 Simulation result of broken rotor bar in no-load condition

S.No' Alindb | A2indb Target Actual % Error
' | (No of output
broken bars)
I 5692 -61.8 0 0.0869 0
2 | 5519 61.58 1 1 0
3 5471 1 -61.06 2 2 0
4 5435 | 603 3 3 0
5 | -51.82 -54.81 4 4 0
6 -50.5 -52.41 5 5 0
7 -48 -50 6 6 0
I RE: -49 7 7.01 0.1
B Average 0.0125
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| SNo | Alindb A2 in db Target Actual %
: No of broken output Error
! bars
I . -5547 -60.3 0 0.0212 0
2 5384 -59.7 1 1 0
3 532 -58.5 2 2 0
"3 i 52 578 3 3 0
5 | -503 -53.6 4 4 0
6 -48.5 -51.92 5 5.01 0.2
7 -45 -47.5 6 6 0
8 416 | 457 7 7 0
| Average 0.025

4.2.1.3 Fuzzification with Triangular Membership Function
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The results obtained are shown in the table. in no-load condition...

Table 4.7 Simulation result of broken rotor bar in no-lead condition

S.No! Alindb A2 in db Target Actual % Error
(No of output
broken bars)
1 -56.92 -61.8 0 0.0269 0
2 -55.19 -61.58 i 1.001 0.1
3 -54.71 -61.06 2 2.02 1
4 -54.35 -60.32 3 3.01 0.3
5 -51.82 -54.81 4 4.02 0.5
6 -30.5 -32.41 5 5 0
7 48 =50 6 6 0
8 -45 -49 7 7.01 0.1
; o Average 0.25

4.2.2 FAULT DIAGNOSIS FOR BROKEN END-RING

The fuzzy logic approach is done to determine the number of section broken at
the cnd-ring. As cxplained in the effects of broken end-ring, the lower side band
frequency will only be disturbed with the harmonics. So the spikes will be present
only in the frequency of 46Hz. One input Al is used as the amplitude and based on
the level of that amplitude the number of sections broken at the end-ring is calculated.
Six membership functions are used in the input and output to determine the amplitude
levels. Fuzzy rules are given as follow

e Ifinputis very very low then healthy machine.

» If input is very low then one end-ring section broken.
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» Ifinput is high then four end-ring sections broken.
e If'inputis very high then five end-ring sections broken.
4.2.2.1 Fuzzification
As shown in the rules there will be six membership functions to determine the
number of sections broken in the end-ring. The width of these six membership

functions is based on the amplitude levels.
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Figure 4.13 Membership function of output
4.2.2.2 Simulation Result
The fuzzy logic approach is done to determine the number of sections broken
in the end-ring. The actual value and the observed values are compared and the
percentage of crror is calculated to find the performance and efficiency of the

approach.

47



db No of broken connectors Value Error

""""" 0 -56.92 0 0.0212 0

1 -54.56 1 1 0

2 -54.03 2 2 0

3 -49.99 3 3 0
4. 456 4 4 0

5 -39.19 5 5 0
- Average 0.00

4.3 COMPARISON OF FUZZY LOGIC SCMF WITH CONVENTIONAL
MEMBERSHIP FUNCTIONS

The above fuzzy logic procedure is done with various conventional

membership functions of triangular, Trapezoidal, gaussian, generalized bell-shaped.

For that the same number of inputs and output membership functions are used with

same membership function range. The result obtained is tabulated

Table 4.9 Simulation result for broken bar un_der no-load condition with

conventional membership-functions

Alin | A2indb | Target % Error
db SCMF TRIMF | TRAPMF | GBELLMF GAUSSMF
-56.92 | -61.8 0 0 0 0 0 0
T5519 | 6158 | 1 0 0.1 0.1 0.6 0.8
5471 | .61.06 | 2 0 1 1 125 1.3
5435 | 6032 | 3 0 0.3 0.6 1.3 1.4
5182 | -54.81 | 4 0 0.5 05 1.6 1.7
505 | -52.41 5 0 0 0.62 1.8 1.7
-48 50 | 6 0 0 0 0.3 0.5
"""" -45 -49 7 0.1 0.1 0.14 0.57 0.5
Average 0.0125 0.25 0.37 0.927 0.9875
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4.4 COMPARISON OF NEURAL NETWORK AND FUZZY BASED FAULT
DIAGNOSIS SYSTEM

Neural network approach is a black box approach, where the expert
knowledge 1s in the form of weights and biases of the neural network. However, in
tuzzy logic based system the actions of a human expert are clearly present in the rule
base. From the table, it 15 inferred that the fuzzy fault diagnosis gives reduced error
compared with neural network based diagnosis.

Table 4.10 Comparison of neural network and fuzzy based fault Diagnosis

Condition of Motor % Error
Neural Fuzzy Logic
Network Diagnosis
Diagnosis
Broken bars under no-load condition | 0.596 0.0125
Broken bars under load condition 0.052315 0.025
Broken end-ring 0.0175 0.0
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5.1 INTRODUCTION TO GENETIC ALGORITHM

Genetic algorithms are search algorithms modeled after the mechanics of
natural genetics. They are useful approaches to problems requiring effective and
efficient scarching, and their use is widespread in applications to business, scientific,
and ¢ngineering fields. In an optimally designed application, Ga’s can be used to
obtain an approximate solution for single variable or multivariable optimal problems.
Before a GA is applied. the optimization problem should be converted to a suitably
described function. The corresponding function is called “fitness function™. It
represents a performance of the problem. The higher the fitness value, the better
system’s performance. The objective of a GA is to imitate the genetic operation
process, e.g.. reproduction, crossover, or mutation, to obtain a solution corresponding
to the fitness value.

The basic construction of a GA can be simply described as follows.

1) Define the String of a Chromosome: The string of searching parameters for
the optimization problem should be defined first. These parameters are genes
in a chromosome, which can be binary coded or real coded and termed
“chromosome”. Different chromosomes represent different possible solutions

2) Define the Fitness Function: The fitness function is the performance index of
a GA to resolve the viability of each chromosome. The design of the fitness
tunction is according to the performance requirements of the problem, e.g.,
Convergence value, error, rise time, etc.

3) Generate an Initial Population: N sets of chromosomes should be randomly
gencrated before using a GA operation. These chromosomes are called the
mitital population. The size of the population, N, is chosen according to the
sophistication of the optimization problem. Generally speaking, the larger
values of N require fewer generations to come to a convergent solution.
However, the total computation effect depends on N times the generation
numbers.

4} Generate the Next Generation or Stop: GA’s use the operations of

reproduction. crossover, and mutation to generate the next generation. From
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a. Reproduction: Reproduction is the operator carrying old strings
through into a new population, depending on the fitness value. Stings
with high fitness values obtain a larger number of copies in the next
generation. An example of such an operation is shown in table 5.1.

b. Crossover: Crossover is a recombination operator incorporated with
reproduction. It is an effective way of exchanging information and
recombining segments from high fitness individuals. The crossover
procedure is to randomly select a pair of strings from a mating pool,
and then randomly determine the crossover position. An example of
the operation is shown in table 5.2.

c. Mutation: The mutation operator is used to avoid the possibility of
mistaking a local optimum for a global one. It is an occasional random
change at some string position based on the mutation probability. An
example of the operation is shown in table 5.3.

Table 5.1 Example of the Reproduction of 2 GA
i Old chromosome Fitness value New chromosome
11.3,2.3.2.3. 1] 80 [1.3,2.3,2,3.1]

[2.3.1,1,3,2.2] 67

[3.1.1.3.2.3, 3] 56

[1.2.3.2,2,2.1] 33

Table 5.2 Example of the Crossover of a GA
. Old chromosome Fitness value New chromosome
[1.3.2,3.2,3,1] 80
[2.3,1.1,3,2,2] 67 [2,1,1,3.2,2,2]
1T
e
[3.1.1.3.2.3.3] 56 [3.3,1.1.3.3.3]
{1.2.3,2.2,2, 1] 33
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"{1.3.2.3 2.3.1] 80

(2.3.1.1,3.2.2] 67

[3.1,1.3,2.3.3] 56

f1.2,3.2,.2.2.1] 33 [1.2.1.2.3.2. 1]
T

5.2 MEMBERSHIP FUNCTION OPTIMIZATION

5.2.1 Tuning Membership Function

In a fuzzy logic system it is possible to obtain final (tuned) membership
functions by using genetic algorithms. For this purpose initial membership functions
for the various fuzzy variables are assumed and concatenated to make one long string
to represent the whole parameter set of the membership functions. A fitness function
is then used to evaluate the fitness value of each set of membership functions. Then
the reproduction. crossover operators are applied as to obtain the optimal population
(membership functions), or more precisely, the final tuned value of the parameter set
describing the membership functions used. The Figure 5.1-5.3 show the input variable

for the optimization.

Figure 3.2 Membership Function of Input A;
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Step 4 : Using fuzzy rules and defuzzification, find the actual values,
Step 5 : Calculate the fitness function f{(x) =target - actual
Step 6 . Termination criteria is f{x) =0. If termination criteria is satisfied,

terminate. Else new mating pool is created by Roulette-wheel reproduction method.
Step 8 : Select the swapping pair for crossover and mutation. Then the new

population is created.

Step9 : Repeat the above procedures.

Initialize the population

¥
/Getthe input of/
Al & A2

L 4
Fuzzified these input. Then find
.| actual value by using fuzzy rules
and defuzzification

b4

Calculate fitthess function

fx)=target-actual

erminaticn
criteria fix)=0

Yes

Create new population
using repraduction

v
Agply crossover and

mutation

Figure 5.5 Flowchart
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Population size =15

Number of gene in a chromosome = 18(r 1 to r18)

Table 5.4 Fuzzy Optimization Using Genetic Algorithm

T Al VS S M L VL
| Population rl r2 13 r4 rs
1 125 |0.84 |364 |04 1.55
2 0.15 |074 1363 |04 2.5
3 0.9 0.55 |[2.0 3.1 2.515
4 0315 |146 [363 |06 2.5
3 0.15 1156 |05 |36 25
I 6. 1.3 2.2 275 |36 43
7 oe2s o045 |32 0.1 1.78
8 032 [022 |16 0.2 1.54
9 L 0.4 0.4 1.8 0.3 2
10 086 | 054 (275 3.6 3.4
11 05 0.4 0.9 1.2 1.8
12 1.3 0.7 3.2 0.7 1.7
E 035 [084 [363 |09 2.5
14 0512 |046 [263 [06 1.5
RE 042 | 0.62 1.8 1.2 2.54
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A2 VS S M L VL
Population 6 7 r8 19 r10
1 0.415 2.72 1.65 2.4 1.4
2 1.315 2.72 6.65 04 2.4
3 0.415 0.27 3.145 2.72 1.65
4 1.5 1.32 6.6 0.12 2.4
5 0.5 0.732 | 3.65 0.12 4.4
6 1.34 2.32 2.76 0.24 4.4
7 1.45 3.23 2.90 0.4 32
8 1.7 1.5 2.2 0.2 2
9 1.1 098 |04 32 1.5
10 0.535 0.265 2.76 0.24 3.3
11 (.6 1.2 04 2.0 1.5
12 0.615 29 1.9 2.4 1.4
13 2.315 3.1 7.0 0.6 2.3
14 1.8 1.32 5.65 0.12 2.4
15 1.7 1.5 2.6 0.4 2.7
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[ Qutput | © 1 3 4 5 6 7
Po‘pma rll r12 | 13 | rl4 rl5 16 7 1
tion

1 078 | 038 | 056 | 015 | 044 | 073 | 0.12 | 042
2 028 | 048 | 066 | 0.15 | 044 | 032 | 058 | 042
3 10.1415 | 0.5265 | 0.68 | 0.565 | 0.705 | 0.605 | 0.45 | 0.625
4 038 | 021 | 04 | 045 | 0354 |0.73 024 | 053
5 063 | 051 | 05 1 0.5 0.54 0.5 0.5 0.52
6 0.5 051 | 05 | 043 |0.54 0.5 0.5 0.52
7 0.3 04 | 07 | 02 |04 0.5 0.54 0.4
8 0.5 04 |045] 065 |05 0.6 0.4 0.6
9 1034 |06 035 [054 [034 |044 [065 |0.71
10 0025 |0326 (046 [0612 (049 [063 |054 |0.56
11 054 [0.55 [045 (08 032 [056 (035 1056
12 078 (038 [056 [0.15 [044 [073 [0.12 |0.42
13 028 [0.58 [056 [035 1044 1032 |058 |0.62
14 |048 [021 024 [053 [054 [073 (024 053
15 1075 034 [045 [065 |035 |06 0.4 0.6

in this project first the semi-circular membership function center is assumed.
Using genetic algorithm, the radius of the membership function is only optimized.
The tables 5.4-5.6 give the various radius values; among these the best fit is selected
by choosing the lowest error in the Tables. The Al semicircular membership
functions center are assumed as —36.32, -55.03, -52.6, -48.2 and —43.315. The A2
semicircular membership functions center are assumed as —62.085, -61.43, -58.145, -

52.72. -49.35. Similarly the output semi-circular membership functions centers are

assumed as 0.1.2.3.4,5,6 and 7.

Comparison of 1the fuzzy approach using conventional method and
optimization technique using genetic algorithm for fault detection is shown in Table
5.7. From the table it is inferred that the error percentage compared with the

conventional technique is reduced in optimization technique using genetic algorithm.
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SCHEME

An On-Line broken rotor bar and end-ring fault detection scheme has been
developed for thrce phase squirrel cage induction motor. The stator current spectrum
of broken rotor bar and end-ring are recorded using real time analyzer and the
harmonic amplitude levels at the particular frequency (Here 46Hz and 54Hz) are
monitored using MATLAB. The amplitude levels were given as input to fuzzy logic.
The output of the fuzzy logic will indicate the condition of the rotor like one broken

rotor bar or zero broken bar.
6.1 SOFTWARE DESIGN

A similar software approach is done to find the status of both the end-ring and
rotor bars by checking their amplitudes at the specified frequencies using MATLAB
software package.

6.1.1 Algorithm

Step 1: Start.

Step 2: To record current signal from the sound card.
Step 3: Perform FFT analysis.

Step 4: Extract magnitude at the particular frequency.
Step 5: Perform fuzzy diagnosis.

Step 6: Display the status of End-ring and Rotor bar.
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=

Figure 6.1 Flowchart of Software algorithms
6.2 PROGRAM

function varargout = flab(varargin)

oui_ Singleton = 1;

gui State = struct('gui_Name', mfilename, ...
'oui Singleton’, gui_Singleton, ...
'gui_OpeningFen', @tlab_OpeningFen, ...
'gui_QutputFen', @flab_OutputkFen. ...
'oui LayoutFen', []. ...
‘oui_Callback’, []);

if nargin && ischar(varargin{1}}
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i nargout
[varargout{ 1:nargout}] = gui_mainfen(gui_State, varargin{:}):
else
gui_mainfen(gui State, varargin{:}):
end
function flab_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
olobal FLAG;
FLAG=L1:
sct(handles.stopf.'Enable'.'off");
function varargout = flab_OutputFen(hObject, eventdata, handles)
varargout{1} = handies.output;
function startf Callback(hObject, eventdata, handles)
set(handles.startf,'Enable’,'off");
set(handles.stopf.'Enable’.'on');
global FLAG:
I{FLAG==0)
FLAG=1:
end
pause(0.01):
while FLAG==1
eval('flab("xvz Callback”,gcbo,||,guidata(gcbo))):
pause(0.01):

end

function stopf Callback(hObject, eventdata, handles)
global FLAG:
set(handles.startf,'Enable'.'on’);
set(handles.stopf,'Enable’,'off);
FLAG=0;
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function forty Callback(hObject, eventdata, handles)
function forty CreateFen(hObject. eventdata, handles)
if ispc
set(hObject.'BackgroundColor','white');
else
set(hObject. BackgroundColor',get(0, defaultUicontrolBackgroundColor'));
end
function fifty Callback(hObject, eventdata, handles)
function fifty CreateFen(hObject, eventdata, handles)
if ispc
set(hObject, BackgroundColor','white’):
else
sct(hObject,'BackgroundColor‘_.get(O,'defaultUicontrolBackgroundColor'));
¢nd
function eresult_Callback(hObject, eventdata, handles)
function eresult CreateFen(hObject, eventdata, handles)
if ispc
set(hObject, BackgroundColor','white');
clse
set(hObject,'BackgroundColor',get(O,'defaultUicontrolBackgroundColor‘));
end
function bresult_Callback(hObject, eventdata, handles)
function bresult_CreateFen(hObject, eventdata, handles)
it ispc
set(hObject, BackgroundColor','white");
clse
set(hObjecl,‘BackgroundColor',get(O,‘defaultUicontrolBackgroundColor'));

end

function xyz_Callback(hObject. eventdata, handles)
Fs = 96000;

y = wavrecord(3*Fs.Fs.'double’);



size=131072*2:
Y = fft(y.size):
Pvy = abs(YYsize;
Plog = 20 * loglO(Pyy):
f=Fs*(]:size)/size;
% -- MAGNITUDE AT 46 Hz -- %
x = (f-46)/46:
for i=1:size

if( x(1) <0)

x(=x(H*(-1:

end
end
[c.j=min{x};
abc = Plog(l);
% -- MAGNITUDE AT 54 Hz - %
z = ([-54)/54;
for 3=1:size

i z(j) <0)

2 y=e(D*C-1);

end
end
[d.m]=min{z)
def=Plog{m),
set(handles.forty,'String’,abc):
set(handles. fifty,'String',def);
plot(f(10:400),Plog(10:400)):
fismat1= readfis('one.[is"):
out! = evalfis(abe. fismatl);
if (out1<0.1})

out!="0 BAR BROKEN';
clse

if {out1>0.9})
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iffout!< 0.6 && outi>0.4)

outl='4 BROKEN BAR'";

end
end

end

set(handles.bresult,'String’.outl);

set(handles.eresult,'String'.'0");

6.3 PICTURE OF THE SOFTWARE

AGE

il

0

&7

ROTOR BAR STATUS

Figure 6.2 Picture of the Software
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7.1 CONCLUSION

The frequency components of the stator current have been experimentally
analyzed for broken rotor bar and broken end-rings. Then, this work suggests that the
non-invasive diagnostic system of motor current signature analysis monitoring can
lead to an improvement in the reliability of diagnosis of rotor broken bars and
connectors. This fault detection scheme can also be extended to other types of motors.
Semi-circular membership function has been used and proved that it is better than
other conventional membership functions for fuzzy fault diagnosis technique. Using
genetic algorithm the fuzzy membership functions were optimized. The on-line fault

detection scheme was done by fuzzy logic approach upto seven broken bars.

7.2 FUTURE SCOPE

The fault detection scheme can be carried out using neuro-fuzzy techniques.
While neural networks can be used to correctly monitor the condition of a motor, they
cannot provide general heuristic or qualitative information about what contributes to a
fault. For these reasons. fuzzy logic can be used to provide a general heuristic solution
to a particular problem with the use of general heuristic knowledge about the problem.
Howcver. a priori knowledge about the system is necessary to develop the fuzzy rules
and membership functions. So this problem can be solved by integrating the use of
fuzzy logic within the neural network structure.

Fuzzy rules can be optimized using genetic algorithm. And also this fault

detection scheme can be extended to other types of motors.
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