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ABSTRACT

Electric motors play a very important part in safe and efficient running of any
industrial plant. Early detection of abnormalities in the motor would help to avoid
costly breakdowns. The bearings play an important role in the reliability and
performance of all motor systems. Majority of faults in motors are due to bearing
failure. The results of many studies show that bearing problem account for over 40%

of all motor failures. Hence, it is essential to check motor condition from time to time.

This project aims at the implementation of motor current signature analysis for
detecting the bearing fault in squirrel cage induction motor. This proposed scheme
monitors the stator current spectrum to detect the bearing faults and to extract fault
signature by using Fast Fourier Transform analyzer. For fault diagnosis, neural
network and fuzzy logic techniques are used. The fuzzy logic based fault detection
scheme is implemented in real time. The experimental results are presented. Since this
scheme detects the faults at their earlier stage, the maintenance can be carried out in
an organized manner, which reduces the down time and repairing cost. This approach

is validated in a 1 HP 415V 50HZ 960-rpm three phase induction motor.
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CHAPTER 1
INTRODUCTION

The simple, robust design and construction of AC induction motor have
encouraged their successful in industry for many years. However, these motors are
required to operate in highly corrosive and dusty environments. These factors coupled
with the natural aging process of any motor make the motor subject to faults. These
faults if undetected, contribute to the degradation and eventual failure of the motors.
As it is not economical to introduce redundant backup motors, condition monitoring
for induction motor is important for safe operation. In order to keep the motor
condition, techniques such as fault monitoring, detection, classification and diagnosis
have become increasingly essential. Earlier detection of the fault reduces repair cost
and motor outage time thereby improving safety.

In general, condition monitoring schemes have concentrated on specific
failures modes in one of three phase induction motor components: the stator, the rotor,
or bearings. Even though thermal and vibration monitoring have been utilized for
decades, most of the recent research has been directed toward electrical monitoring of

the motor with emphasis on inspecting the stator current of the motor.

1.1 BEARING FAULTS IN INDUCTION MOTORS

Bearings play an important role in the reliability and performance of all motor
systems. In addition, most faults arising in motors are often linked to bearing faults.
The result of many studies show that bearing problems account for over 40% of all

machine failures. The several faults and its percentage are shown in the Figure 1.1

PERCENTAGE OF FAULTS

OTHERS ROTOR
14% 9%

STATOR
36%

Figure 1.1 Faults in induction motor



1.2 NEED FOR MONITORING SYSTEM

Machine condition monitoring is gaining importance in industry because of
the need to increase reliability and to decrease the possibility of production loss due to
machine breakdown. By comparing the signals of a machine running in normal and
faulty conditions, detection of faults like mass unbalance, rotor rub, shaft
misalignment, gear failures, and bearing defects 1s possible. These signals can also be
used to detect the incipient failures of the machine components, through the online
monitoring system, reducing the possibility of catastrophic damage and the downtime.
Although often the visual inspection of the frequency domain features of the
measured signals is adequate to identify the faults, there is a need for a reliable, fast,
and automated procedure of diagnostics. Artificial intelligence techniques like Neural
Fuzzy techniques can be implemented in the system for automated detection and
diagnosis of machine conditions.
1.3 OBJECTIVE

To design and implement an intelligent embedded system for condition

monitoring of industrial drives at their earlier stage.

1.4 BEARING STRUCTURAL DEFECTS

Rolling element bearings generally consist of two rings, an inner and an outer
race, between which a set of balls or rollers rotate in raceways. Under normal
operating conditions of balanced load and good alignment, fatigue failure begins with
small fissures, located between the surface of the raceway and the rolling elements,
which gradually propagate to the surface generating detectable vibrations and
increasing noise levels. Continued stress causes fragments of the material to break
loose, producing a localized fatigue phenomenon known as flaking or spalling. Once
started, the affected area expands rapidly contaminating the lubricant and causing
Jocalized overloading over the entire circumference of the raceway. Eventually, the
failure results in rough running of the bearing. While this is the normal mode of
failure in rolling element bearings, there are many other conditions which reduce the
time to bearing failure. These external sources include contamination, corrosion,
improper lubrication, improper installation or brinelling.

Contamination and corrosion frequently accelerate bearing failure because of
the harsh environments present in most industrial settings. Dirt and other foreign

matter that is commonly present often contaminate the bearing lubrication.
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Figurel.2 Misalignment of the bearing
(a) Misalignment (out-of-line), (b) Shaft deflection,

(¢) Crooked or tilted outer race, (d) Crooked or tilted inner race.

Bearing corrosion is produced by the presence of water, acids, deteriorated
lubrication and even perspiration from careless handling during installations.
Improper lubrication includes both under- and over-lubrication. In either case, the
rolling elements are not allowed to rotate on the designed oil film causing increased
levels of heating. The excessive heating causes the grease to break down, which
reduces its ability to lubricate the bearing elements and accelerates the failure process.
Installation problems are often caused by improperly forcing the bearing onto the
shaft or in the housing. This produces physical damage in the form of brinelling or
false brinelling of the raceways which leads to premature failure. Misalignment of the
bearing, which occurs in the four ways depicted in Figure 1.2, is also a common result
of defective bearing installation. The most common of these is caused by tilted races.
Brinelling is the formation of indentations in the raceways as a result of deformation

caused by static overloading.

1.5 LITERATURE SURVEY

Induction Motors are a critical component of many industrial processes and
are frequently integrated in commercially available equipment and industrial
processes. Motor-driven equipment often provides core capabilities essential to

business success and to safety of equipment and personal. There are many published



techniques and many commercially available tools to monitor induction motors to
insure a high degree of reliability uptime. In spite of these tools, many companies are
still faced with unexpected system failures and reduced motor lifetime.
Environmental, duty, and installation issues may combine to accelerate motor failure
far sooner than the designed motor lifetimes. These studies specifically apply to
machines, which are operated in industrial and commercial installations. The results
of these studies show that bearing problems account for over 40% of all machines
failures. Over the fast several decades, rolling-element (ball and roller) bearings have
been utilized in many electric machines while sleeve (fluid-film) bearings are
installed in only the largest industrial machines. In the case of induction motors,
rolling element bearings are overwhelmingly used to provide rotor support. (Kryter et
al 1989).

In general, condition monitoring schemes have concenirated on sensing
specific failures modes in one of three phase induction motor éomponents: the stator,
the rotor, or the bearings. Even though thermal and vibration monitoring have been
utilized for decades, most of the recent research has been directed toward electrical
monitoring of the motor with emphasis on inspecting the stator current of the motor.
In particular, a large amount of research has been directed toward using the stator
current spectrum to sense rotor faults associated with broken rotor bars and
mechanical unbalance. (Cardoso et al1993)

All of the presently available techniques require the user to have some degree
of expertise in order to distinguish a normal operating condition from a potential
mode. This is because the monitored spectral components (either vibration or current )
can result from a number of sources, including those related to normal operating
conditions (schoen et al 1995).This requirement is even more acute when analyzing
the current spectrum of an induction motor since a multitude of harmonics exist due to
both the design and construction of the motor and the variation in the load torque
which are not related to the health of motor typically have exactly the same effect on
the load current. Therefore, systems to eliminate induction motors arbitrary load
effects in currents —based monitoring (schoen et al 1997).

Penman et al (1986) suggested the condition monitoring of the dynamic
performance of electrical drives received considerable attention in recent years. Many
condition monitoring methods have been proposed for different type of rotating

machine faults detection and localization. In fact large electro machine systems are



often equipped with mechanical sensors, primarily vibration sensors based on
proximity probes. Those, however, are delicate and expensive. Moreover, In many
situations, vibration-monitoring methods are utilized to detect the presence of an
incipient bearing failure. However, in Steele (1982) said that the stator current
monitoring can provide the same indications without requiring access to the motor.
This thesis demonstrates the feasibility of bearing detection by correlating the

characteristic bearing frequencies to the spectral components of the stator current.

1.6 ORGANIZATION OF THE THESIS

This report presents about the various structural defects occurring in a bearing
and different techniques which can be implemented to detect those faults at their
earlier stage.

Chapter 1 introduces about the fundamental structure of a bearing, modes of
failure and the necessity of an online monitoring system. The methodology and the
details about the induction motor taken for study and experimentation, the results of
the experimental study and the block diagram has been presented in the Chapter2.
Neural network based fault diagnosis are described in Chapter 3. Fuzzy logic based
fault diagnosis are described in Chapter4 .Hardware implementation and its

description are given in the Chapter 5.



CHAPTER 2
BEARING FAULT DETECTION

2.1. PROBLEM DEFINITION

The relationship of the bearing vibration to the stator current spectrum can
be determined by remembering that any air-gap eccentricity produces anomalies in
the air-gap flux density. In the case of a dynamic eccentricity that varies with rotor
position, the oscillation in the air-gap length causes variations in the air-gap flux
density. This variation affects the inductance of the machine producing stator current
harmonics. Since ball bearings support the rotor, any bearing defect produces a radial
motion between the rotor and the stator of the machine. The cause of air-gap
eccentricity, these variations generate harmonic stator currents at predictable

frequencies, related to the vibration and electrical supply frequencies by

ﬁmg — Ife + m - fll 2.1

Where m = 1, 2, 3, . ., efc and fv is one of the characteristic vibration

frequencies.

The characteristic frequency of bearing failure (bearing pass frequency) is the inverse
number of the time between occurrences of bearing impulses. This frequency can be
calculated by the aid of known bearing geometry and rotational speed. The
dimensions of a bearing are given in the Figure2.1. An outer race defect causes
impulse when ball or roller passes the defected area of race. The theoretical frequency

is thus

— d ..
fo=5 - fr- (1= 5 cosa). 22)

where N is the number of balls or rollers, fr is the rotational speed of rotor, d is the
diameter of the ball, D is the pitch diameter, o is a contact angle of rolling element.

The ball pass frequency of defect on inner race is



CONTACT ANGLE,
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Figure 2.1 Dimensions of a Ball Bearing
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The frequencies of equations (3), (4), and (5) are valid for ideal bearing. In

practice, the roller elements not only rotate on races but also slide. This can be taken

into account by multiplying the theoretical frequencies with a sliding factor ‘e’ that

usually takes value between 0.8 and 1.0. Very often in literature and in practice the

above equations are replaced by approximate equations. For example, for outer race

defect
fo=04-N-F.

and for inner race defect

f,=06-N-f.

(2.6)

(2.7)



The simplified equations are used for two reasons, the geometry of the bearing
is often not known and the actual condition monitoring device can calculate easily the
frequencies of Equations (6) and (7) for couple of possible numbers of rolling

elements.

2.2 FAULT DETECTION SCHEME

The purpose of the monitoring system is to measure the induction motor stator
current and to analyze these data determining the vibration frequencies on the bearing.
The stator current is sensed in any one of the three phases of the induction motor and
its equivalent voltage signal is given to the sound cord of a PC. The analog signal
Captured through the sound cord and it converts the sampled signal whose frequency
is 11.025 kHz, to the frequency domain using Fast Fourier transform (FFT) algorithm.
The current spectrum is generated by t he FFT algorithm with 131072 points and
includes only the magnitude information in decibels for each frequency component.
The magnitude corresponding to the fault frequencies are extracted and it is given to
the fault detection algorithm which is implemented using Fuzzy logic technique.
Condition of the bearing wiil be given as a result of that fuzzy module. Using the FFT

analyzer the spectral values obtained and the required side band at

(f bng = | f,tm f,.,o‘) value is measured. The single phase stator current monitoring

scheme is shown in the Figure 2.2.

R
3 phase */  3Phase
50 Hz Y M
Suppl B
Pply CT »
Rheostat

b4

Rea Time (FFT)

Analvzer
NeuralfFuzzy Fault Bearing Condition
Diagnosis system Momnitoring

Figure 2.2 Single-Phase Stator Current Monitoring scheme.



2.3 EXPRIMENTAL SETUP FOR DATA ACQUISTION

To illustrate the fault detection scheme a 1 HP, six-pole induction motor is
used .The rating of motor is given in Table 2.1. Figure 2.3 shows the experimental
setup and for data acquisition.

The bearings of the induction motor are single row, deep groove ball bearings,
type 6204Z (Shaft end) and 6203Z (Fan end). Each bearing has 8 balls. Experiments
were conducted on 5 bearings: two of these are undamaged (healthy), while three
bearings were drilled through the outer race and inner race with holes of diameters

2mm and 3mm as illustrated in Figure 2.4.

Table 2.1 Rated parameters of the machine under test.

Type Three phase Induction motor
Power 1 HP
Voltage 415V
Frequency 50 Hz
Current 1.7A
Speed 960 rpm
Pole pairs 3

Figure 2.3 Testing equipment & experimental setup




Figure 2.4 Bearings drilled with holes

Experimentation has been conducted by using faulty bearings. Bearing fault is
created by drilling holes of various diameter (say 2mm or 3mm) in the race- ways
both inner and outer which is similar to bearing faulis

Two bearings of 6204Z and one bearing of 62037 type were damaged and
taken for experimental. While these are not realistic bearing failures, the artificial
bearing faults produce characteristic fault frequencies and the type of fault is

determined by the current spectra.

2.4 MOTOR CURRENT SIGNATURE ANALYSIS (MCSA)

From the bearing data sheet, the outside diameter of a 6204Z bearing is 47mm
and inside diameter is 20 mm. Assuming that the inner and the outer races have the
same thickness gives the pitch diameter as equal to 34.15mm (D = 34.15mm). The
bearing has eight balls (N = 8) with approximate diameters of 7.85mm (d =7.85mm).
Assuming a contact angle § = 0o and motor operation at a rated shaft speed of
960rpm, the characteristic race frequencies of the shaft-end bearing are calculated
using equation 2.2 and 2.3 as fo=73.93 Hz and fi = 118.07 Hz for the test motor.

The results show that for a bearing which was damaged from the outer
raceway and inner races with holes, the characteristic frequencies could be seen in the
current spectrum.

The current spectra of the test motor are shown in figures (figure 2.5 to figure
2.7). The frequency components in the current spectra of the motor with defective

bearing at shaft end are |[fe + 1 - fo| = 123.93, [fe + 2 - fo| = 197.86, ifet3 -fo| = 271.79

10



and |fe+4 -fo| = 345.72 Hz frequencies. It is shown that these components are visible
only in the plots of the defective bearing.

Current measurements for the damaged bearings were repeated under loaded
operation of the induction machine. The current harmonics predicted for rated speed
operation can still be found in the current spectrum. This indicates that, regardless of
the load level of the machine, the bearing components are still detectable in the
current spectrum. It is important to note that the frequency components produced by
the bearing defect are relatively small when compared to the rest of the current
spectrum. The largest components present in the current spectra occur at multiples of
the supply frequency and are caused by saturation, winding distribution and supply

voltage.

2.5 EXPRIMENTAL RESULTS
The current spectrum of healthy and faulty machine is shown in Figures

(Figure 2.5 to Figure 2.7)

8w

—r

5FL 18]
STEREEEE

'i‘ii N W %0 o T 8D m W 119 B2 T D 350 1m0 ETD 150 A 20
Freppancy §Hzd

orrend spectrum o heaking mackios 3 phase 1HP motor

Figure 2.5 Current spectrum for healthy machine
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Figure 2.6 Current spectrum for faunlty machine with shaft end
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Figure 2.7 Current spectrum for faulty machine fan end
A comparative study has been made with the current spectrum of motor with

healthy bearing and with a faulty one in both shaft end and fan end of the test motor,

which is shown in Figures (Figure 2.5 to Figure 2.7). Also the data at different

characteristic ffequencies are shown in the Table 2.2 & 2.3

12



Table 2.2 Experimental results of the defective shaft end bearing

Characteristic Quter Race Inner Race
Frequencies f,=173.43 f; =118.067
M 1 2 3 1 2 3
(harmonic order)

Frequency (Hz)

123.93 | 197.86 | 271.79 168.067 | 286.134 | 404.20
At f (bng)
Harmonic amplitude
{gga““y machine In | 56 | 2775 | 3536 | -35.19 | -33.46 | -36.68
Harmonic amplitude
for healthy machine | 3095 | 3548 | 4813 | -40.18 | -44.20 | -50.92
in (dB})

Table 2.3 Experimental results of the defective fan end bearing
Characteristic Outer Race Inner Race
Frequencies f,=73.43 f; =118.067

M 1 2 3 1 2 3

(harmonic order)
Frequency (Hz) 124.1 | 19822127233 | 167.89 | 285.79 | 403.69
At f(bng)
Harmonic amplitude
for faulty machine in | 3557 | 2834 | -40.87 | -38.79 | -36.89 | -45.85
(dB)
Harmonic amplitude
for healthy machine | .3379 | -36.89 | -45.85 = -41.33 | -44.42 | -47.11
in (dB})

13




NEURAL NETWORK BASED FAULT DIAGNOSIS

CHAPTER 3

3.1 INTRODUCTION TO NEURAL NETWORK

An artificial neural network is an information processing system that has

certain performance characteristics in common with biological neural networks.

Laurene Fausett (2004) explains that the artificial neural networks have been

developed as generalization of mathematical models of human cognition or neural

biology, based on assumptions that:

¢ Information processing occurs at many simple elements called neurons.

o Signals are passed between neurons over connection links.

e Fach connection link has as associated weight, which, in a typical neural net,

multiplies the signal transmitted.

« Each neuron applies an activation function (usually nonlinear) to its net input

(sum of weighted input signals) to determine it output signal.

A biological neuron has three types of components that are of particular

interest in understanding an artificial neuron: its dendrites, soma and axon. Dendrites

receive signal from other neurons. The signals are electrical impulses that are

transmitted across a synaptic gap by means of a chemical process. The soma or cell

body sums the incoming signals. When sufficient input is received, the cell fires; that

is, it transmits a signal over its axon to other cells. Figure3.1 shows the structure of

biological neuron.

Axon from
another
neuron

Synaptic gap

:

N

Dendnte

Figure 3.1 Structure of biological neuron
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An Artificial Neural Network is characterized by,
e Its pattern of connections between the neurons (called its architecture)
e Its method of determining the weights on the connections (called its training or
learning, algorithm), and
e Its activation function
The network function is determined largely by the connections between
elements. Therefore, a neural network can be trained to perform a particular function
by adjusting the values of the connections (weight) between the elements commonly
neural networks are adjusted, or trained, so that a particular input leads to a specific
target output. Figure3.2 shows back-propagation neural network
The network weight is adjusted based on a comparison of the output and the

target, until the network output matches the target.

3.1.1 NEURON MODEL

Figure 3.2 shows a neuron with a single scalar input with no bias. The scalar
input p, is transmitted through a connection that multiplies its strength by the scalar
weight w, to form the product wp, again a scalar. Here the weighted input wp is the

only argument of the activation function f, which produces the scalar output a.

P w n’lza$

| |

Neuron without bias

a={f(wp)
Figure3.2 Single — Input Neuron without Bias

Figure3.3 shows a neuron with a scalar input, with scalar bias. The bias is
much like a weight, except that it has a constant input of 1. The activation function
net input n, again a scalar, is a sum of the weighted input wp and the bias b., this sum
is the argument of the activation function f. f is an activation function, typically a
step function or a sigmoid function, that takes the argument n and produces the output

a. wand b are both adjustable parameters of the neuron.

15



Iy} f CI'

PN

Neuron with bias

a=f(wp+b)
Figure3.3 Single Input Neuron with Bias
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b
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The central idea of neural networks is that such parameters can be adjusted so
that the network exhibits some desired or interesting behavior. Thus, we can train the
network to do a particular job by adjusting the weight or bias parameters, or perhaps

the network itself will adjust these parameters to achieve some desired end.

3.1.2 ACTIVATION FUNCTIONS

An activation function may be linear or a non-linear function of an. A
particular activation function is chosen to satisfy some specification of a problem that
the neuron is attempting to solve. There are three most commonly used activation

function. They are

(a) Hard limit activation function
(b) Linear activation function
(c) Log-sigmoid activation function

(a) Hard limit activation function:

a = hardlim (n)

Figure3.4 Hard Limit Activation Function
Figure 3.4 shows the graphical representation of the hard limit activation function.

The hard limit activation function sets the output of the neuron to 0 if the function

argument is less than 0, or 1 if its argument is greater than or equal to 0.
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b..Linear activation function:

The output of a linear activation function is equal to its input. The output (a)

versus input (p) characteristic of a single-input linear neuron is shown in Figure 3.5.

a = purelin (n)

Figure3.5 Linear Activation Function

(b) Log-sigmoid activation function:

........................

a = logsig (n)
Figure3.6 Log-Sigmoid Activation Function

Figure 3.6 shows the log-sigmoid activation function. This activation function
takes the input (which may have any value between plus and minus infinity) and

squashes the output into the range 0 to 1, according to expression
a=1/1+e" (3.1)

This activation function is commonly used in multilayer networks that are
trained using the back-propagation algorithm, in part because this function is

differentiable.
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supervised training. The LMS algorithm will adjust the weights and biases to
minijrnize the mean square error, where the error is the difference between the target
output and the network output. The perceptron-net is incapable of implementing
certain elementary functions. These limitations were overcome with improved
(multilayer) perceptron networks. Performance learning is another important class of
learning law, in which the network parameters arc adjusted to optimize the
performance of the network. Back propagation (BP) algorithm can be used to train
multilayer networks. As with the LMS learning law, BP is an approximate steepest
descent algorithm, in which the performance index is mean square error. The
difference between the LMS algorithm and back propagation is only in the way in
which the derivatives are calculated. The single-layer perceptron like networks are
only able to solve linearly separable classification problems. Multilayer perceptron,
trained by BP algorithm were developed to overcome these limitations and is
currently the most widely used neural network. In addition, multi-layer networks can
be used as universal function approximators. A two-layer network, with sigmoid-type
activation functions in the hidden layer, can approximate any practical function, with
enough neurons in the hidden layer. The Figure 3.7 shows the Architecture of BP

Neural Network.

Cutput
layer

Figure 3.7 Architecture of BP Neural Network

The BP algorithm uses the chain rule in order to compute the derivatives of the

squared error with respect to the weights and biases in the hidden layers. It is called
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BP because the derivatives are computed first at the last layer of the network, and then
propagated backward through the network, using the chain rule, to compute the
derivatives in the hidden layers.

The BP training algorithm is an interactive gradient algorithm designed to
minimize the mean square error between the actual output of a feed-forward net and

the desired output.

Step 0: Initialize weights.
Step 1: While stopping condition is false, do steps 2-9,
Step 2: For each training pair, do steps 3-8,

Feed forward:
Step 3: Each input unit (X;, i=1...n) receives input signal x; and broadcasts
this signal to all units in the layer above (the hidden units).

Step 4: ‘Each hidden unit (Z;, j =1...n) sums it weighted input signals,
Z_inj=vej + Y xivif,
£=1

applies it activation function to compute its output signals,
7j=f(z_in;),and sends this signal to all units in the layer above .

Step 5: Each output unit (yx, k=1...m) sums its weighted input signals,
P
Y_Ing = Wa=)_ ZjWjk
i=1

And applies its activation function to compute its signals,
Yk= f(y _ink).
Back propagation of error:

Step 6: Each output unit (y.k=1...m) receives a target pattern corresponding

to input training pattern, computes its error information term ,

& 1=ty )F (y_ing),

Calculates its weight correction term (used to update wjy later),

Awjk = adkzj ,
Calculates its bias correction term (used to update Wok later)
Awok = adk

Step7: Each hidden unit (Z;, j =1...p) sums its delta inputs
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5_inj = Skwjk,
k=1

multiplies by the derivative of its activation function to calculate 1ts
error information term
g =6 _injf"(z _inj),
Calculates its weight correction term (used to update Vj; later),
Avij = adjxi,
And calculates its bias correction term (used to update V,,; later),
Avoj = adj.
Update weights and biases:
Step8: Each output unit (Y, k=1...m) updates its bias and weights (j=0...p):
Wik(new)=wj(old)= Awjk,
Each hidden unit (Z;, j...p) updates its bias and weights (1=0...n),
Vij(new)=vij(old) + Avij

Step 9: Test stopping condition.

3.2.1 CHOICE OF PARAMETERS FOR NETWORK TRAINING

When the basic BP algorithm is applied to a practical problem the training
may take days or weeks of computer time. This has encouraged considerable research
on methods to. accelerate the convergence of the algorithm. The research on faster
algorithms falls roughly into two categories; the first category involves the
development of heuristic techniques, which arises out of a study of the distinctive
performance of the standard BP algorithm. These heuristic techniques include such
ideas varying the learning rate, using momentum and rescaling variables. Another

category of research has focused on standard numerical optimization techniques.

3.2.2 LEARNING RATE

The speed of training the BP network is improved by changing the learning
rate during training. Increasing the learning rate on flat surfaces and then decreasing
the learning rate when slope increases can increase the process of convergence. If the
learning rate is.too large, it leads to unstable learning. And if it is too small, it leads to
incredibly long training times. Hence care has to taken while deciding learning rate.

There are many different approaches for varying the learning rate. The learning rate is
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varied according to the performance of the algorithm. The rules of the variable

learning rate BP algorithm are:

1. If the squared error increases by more than some set percentage &
(typically one to five percent) after weight update, then the weight update
is discarded, the learning rate is multiplied by some factor o <p <1, and

the momentum coefficient v (if it is used) is set to zero.

2. If the squared error decreases after a weight update, then the weight update
is accepted and the learning rate is multiplied by some factor n > . Ify

has been previously set to zero, it is reset to its original value.

3. If the squared error increases by less than & then the weight update is
accepted but the learning rate is unchanged. If y has been previously set to

zero, it is reset to its original value.

3.2.3 MOMENTUM FACTOR

In BP with momentum, the weight change is in a direction that is a
combination of the current gradient and the previous gradient. This is a modification
of gradient descent whose advantage arises chiefly when some training data are very
different from the majority of the data. By the use of momentum larger training rate
can be used, while maintaining the stability of the algorithm. Another feature of
momentum is that it tends to accelerate convergence when the trajectory is moving in
a consistent direction. The larger the value of vy, the more the momentum the

trajectory has. The momentum coefficient is maintained with the range [0, 1].

3.3 STRUCTURE OF BP NETWORK FOR FAULT DETECTION

An artificial neural network is composed of neurons with a deterministic
activation function. The neural network is trained by adjusting the numerical value of
the weights will contain the non-linearity of the desired mapping, so that difficulties
in the mathematical modeling can be avoided. The BP training algorithm is used to
adjust the numerical values of the weights and the internal threshold of each neuron.

The network is trained by, initially selecting small random weights and internal
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threshold and then presenting all training data. Weights and thresholds are adjusted
after every training example is presented to the network; until the weight converges or
the error is reduced to acceptable value. The value of learning rate and momentum
factor are respectively 0.0012 and 0.85. Figure 3.8 shows the structure of BP Network

for Fault Detection.

Hidden Layer
Qutput Layer
Speed in rpm Bearing
condition
Harmonic
amplitude in
dB at fbng

Figure 3.8 Structure of BP Network for Fault Detection

3.4 SIMULATION RESULTS
Table 3.1 shows that input and output of the BP network

Table 3.1 BP network input and output

Harmonic
Speed Amplitude
in rpm in (dB) Target
860 -45 : 0
880 -65 0.5
920 =75 1
950 -85 1
Average error 0.177

23



Feed forward neural networks with two layers are used. The network consists
of two input neuron, five hidden neurons and one output neuron. BP algorithm is used
for training. The activation function in the first layer is log-sigmoid, and the output
layer transfer function is tan-sigmoid function is the output layer. The training
function used is trainlm. Figure 3.9 shows the performance characteristics of the BP

network.

Performance is 0177 Goalis 0
T T

T

Training-Blue

L 1 1 H 1 1
&} 50 100 150 200 250 300 350 400 450 A00
5000 Epachs

Figure 3.9 Epoch Vs Error Characteristics
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CHAPTER 4
FUZZY LOGIC BASED FAULT DIAGNOSIS

4.1 INTRODUCTION

Problems in the real world quite often turn out to be complex owing to an
element of uncertainty either in the parameters which define the problem or in the
situations in which the problem occurs.

The uncertainty may arise due to partial information about the problem, or due
to information which is not fully reliable, or due to inherent imprecision in the
language with which the problem is defined, or due to receipt of information from
more than one source about the problem which is conflicting. 1t is in such situations
that fuzzy set theory exhibits immense potential for effective solving of the
uncertainty in the problem. Fuzziness means ‘vagueness’. Fuzzy set theory is an
excellent mathematical tool to handle the uncertainty arising due to vagueness.

Fuzzy logic systems are universal function approximators. In general, the goal
of the fuzzy logic system is to yield a set of outputs for given inputs in a non-linear
system, without using any mathematical model, but by using linguistic rules. It has
many advantages. They are

o Fuzzy logic is conceptually casy to understand. The mathematical concepts
behind fuzzy reasoning are very simple. What makes fuzzy better is the
"Naturalness" of its approach and not its far-reaching complexity.

o Fuzzy logic is flexible. With any given system, it's easy to massage it or layer
more functionality on top of it without starting again from scratch.

o Fuzzy logic is tolerant of imprecise data. Everything is imprecise if you look
closely enough, but more than that, most things are imprecise even on careful
inspection. Fuzzy reasoning builds this understanding into the process rather
than tac.king it onto the end.

» Fuzzy logic can model nonlinear functions of arbitrary complexity. You can
create a fuzzy system to match any set of input-output data. This process is
made particularly easy by adaptive techniques like Adaptive Neuro-Fuzzy
Inference Systems (ANFIS), which are available in the Fuzzy Logic Toolbox.
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e Fuzzy logic can be built on top of the experience of experts. In direct contrast
to neural networks, which take training data and generate opaque,
impenefrable models, fuzzy logic lets you rely on the experience of people
who already understand your system.

e Fuzzy logic can be blended with conventional control techniques. Fuzzy
systems don't necessarily replace conventional control methods. In many cases
fuzzy systems augment them and simplify their implementation.

e Fuzzy logic is based on natural language. The basis for fuzzy logic is the basis
for human communication. This observation underpins many of the other

statements about fuzzy logic.

4.2 MAMDANI FUZZY LOGIC INFERENCE SYSTEM
Mamdani-type of fuzzy logic controller contains four main parts, two of
which perform transformations. The four parts are
e Fuzzifier (transformation 1)
¢ Fuzzy rule base
o Inference engine( fuzzy reasoning, decision-making logic)

o Defuzzifier( transformation 2)

Knowledge base
(Rule base and

. (Crisp Data base) (Crisp)
h J h 4
P Fuzzifier Defuzzifier P L
(transformation 1) (transformation 2} -
3
h 4
.| Inference
(Fuzzy) | engine (Fuzzy)
Controlled plant

Figure 4.1 Mamdani Fuzzy Logic Inference Systems
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4.2.1 FUZZIFIER

The fuzzifier performs measurement of the input variables (input signals, real
variables), scale mapping and fuzzification (transformation 1).thus all the monitoring
input signals are scaled and fuzzification means that the measured signals (crisp input
quantities which have numerical values) are transformed into fuzzy quantities. This
transformation is performed by using membership functions. In a conventional fuzzy
logic controller, the number of membership functions and the shapes of these are
initially determined by the user. A membership function has a value between ( and 1,
and it indicates the degree of belongingness of a quantity to a fuzzy set. If it is
absolutely certain that the quantity belongs to the fuzzy set, then its value 1s 1(it is
100% certain that the quantity belongs to this set), but if it is absolutely certain that it
does not belong to this set then its value is 0. Similarly if for example the quantity
belongs to the fuzzy set to an extent of 50%, then the membership function is 0.5.

There are many types of different membership functions, piecewise linear or
continuous. Some of these are smooth membership functions, e.g. bell-shaped,
sigmoid, Gaussian etc. and others are non-smooth, e.g. triangular, trapezoidal etc. the
choice of the type of membership function used in a specific problem is not unique.
Thus it is reasonable to specify parameterized membership functions, which can be
fitted to a practical problem. If the number of elements in the universe X is very large
or if a continuum is used for X then it is useful to have a parameterized membership
function, where the parameters are adjusted according to the given problem.
Parameterized membership functions play an important role in adaptive fuzzy
systems, but are also useful for digital implementation. Due to their simple forms and
high computational efficiency, simple membership functions, which contain straight
line segments, are used extensively in various implementations. Obviously, the

triangular membership function is a special case of the trapezoidal one.

0 x<a
(x-a) / (b-a) asx<b @n
MAXAD.C) = ) (y)/(cb) bsxsc '
0 X>C

Triangular membership function depends on three parameters a, b, ¢ and can

be described as follows by considering four regions.
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a b ¥,

Figure 4.2 Triangular membership functions

A triangular membership function is shown in Figure 4.2 is used for both the
input and output variable and the points a, b, ¢ are also denoted. Alternatively, it is
possible to give a more compact form

u (x: a, b, c) =max {min [(x-a)/ (b-a), (c-x) / (c-b)], 0} (4.2)

The detection of bearing fault severity is considered by utilizing Mamdani-
style fuzzy inference and using as input variables are speed and current .Low,
medium, and high are the three membership functions used for the input variables.

Poor, fair, and good are the membership functions used for output variable.

4.2.2 FUZZY RULES

The knowledge base consists of the data base and the linguistic control rule
base. The data base provides the information which is used to define the linguistic
control rules and the fuzzy data manipulation in the fuzzy logic controller. The rule
base specifies the control goal actions by means of a set of linguistic control rules. In
other words, the rule base contains rules such as would be provided by an expert. The
fuzzy logic controller looks at the input signals and by using the expert rules
determines the appropriate output signals (control actions). The rule base contains a
set of if-then rules. The main methods of developing a rule base are:

e Using the experience and knowiedge of an expert for the application and

the control goals;

s Modeling the control action of the operator;

e Modeling the process;

¢ Using a self-organized fuzzy controller;

e Using artificial neural networks;
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When the initial rules are obtained by using expert physical considerations,
these can be formed by considering that the three main objectives to be achieved by
the fuzzy logic controller are:

e Removal of any significant errors in the process output by suitable

adjustment of the control output;

e FEnsuring a smooth control action near the reference value (small

oscillations in the process output are not transmitted to the control input);

e Preventing the process output exceeding user specified values;

By considering the two dimensional matrix of the input variables, each

subspace is associated with a fuzzy output situation.

4.2.3 INFERENCE ENGINE

It is thé kernel of a fuzzy logic controller and has the capability both of
simulating human decision—making based on fuzzy concepts and of inferring fuzzy
control actions by using fuzzy implication and fuzzy logic rules of inference as shown
in Figure 5.3. In other words, once all the monitored input variables are transformed
into their respective linguistic variables, the inference engine evaluates the set of if-
then rules and thus result is obtained which is again a linguistic value for the linguistic
variable. This linguistic result has to be then transformed into a crisp output value of

the fuzzy logic control.

A H
1 UA1 1 ”81
05~ 05
0 0
X v z
Input variable Qutput variable

Figure 4.3 Graphical interpretation of fuzzification, inference
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4.2.4 DEFUZZIFIER

The second transformation is performed by the defuzzifier which performs
scale mapping as well as defuzzification. The defuzzifier yields a non-fuzzy, crisp
control action from the inferred fuzzy control action by using the consequent
membership functions of the rules. There are many defuzzification techniques. They
are centre of gravity method, height method, mean of maxima method, first of
maxima method, sum of maxima. In this project height method defuzzification
technique is used as shown in Figure 5.4. In this method, the individual output
membership functions for each rule are used (e.g. if for the fuzzy AND the min
operator is used, then these are clipped membership functions) and first, the peak
values (height), px, of the (clipped) consequent membership functions of all rules that
have fired are multiplied by the ordinates of these membership functions(cy). In a
second step, these products are added and then divided by the sum of the peak values

of the (clipped) consequent membership functions. It follows that the output vatue is

Z¥ Y prck (4.3)
2. Px
A y
i

—li
L

< ¢ Output

Figure 4.4 Height Defuzzification Method

4.3 FUZZY LOGIC BASED FAULT DETECTION METHOD

The fuzzy inference system used is Mamdani. Triangular membership function
is used for both the input speed and current and for the output diagnosis. Three
membership functions for the input variables as well as for output variable are

selected.
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Table 4.1 Fuzzy Rules

CURRENT SPEED DIAGONOSIS
LOW LOW BAD
LOW MEDIUM FAIR
LOW HIGH GOOD

MEDIUM LOW FAIR

MEDIUM MEDIUM FAIR

MEDIUM HIGH GOOD
HIGH HIGH BAD
HIGH MEDIUM FAIR
HIGH LOW BAD

Table 4.2 gives the nine fuzzy rules used for bearing fault detection. The
triangular membership function is used for fuzzification, the ranges setting for each
function is follows, For speed, “low” speed between 860 rpm to 885 rpm, “medium”
between 880 rpm to 920 rpm, “high” between 918 rpm to 960 rpm .For current
spectral value, “low” amplitude between -95 db to -73 db, “medium” between -75 db
to -58 db, “high” between -62 db to -40 db. For output; “poor” between 0 to 0.001,
“fair” between 0 tol, “good” between .99 to 1. The membership functions used for
simulation are shown in Figures (Figure4.5— Figure 4.7). The Figure 4.8 shows the

surface viewer of the FFD.

31



Membership function plots Bt peints: [ g9

" ow red

A5G HE0

0
£ b

BE3, 3FD 880 BSG peleal a R0 2330 a8
inpet varigble "speed"

Figure 4.5 Input Membership Functions for speed
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Figure 4.6 Input Membership Functions for current
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Figure 4.7 Qutput Membership Functions for diagnosis
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Figure 4.8 Surface Viewer

4.4 SIMULATION RESULTS
The difference between the target and the actual is calculated for different

inputs. The results obtained are shown in Table 4.2

Table 4.2 Simulation results

Speed Amplitude Target Obtained % of error | Bearing
indb value condition
860 -45 0 0.066%9 0 Poor
880 -65 0.5 0.5 0 Fair
950 -85 1 0.984 0.4 Good
Average error 0.1333

4.5 COMPARISON OF NEURAL NETWORK AND FUZZY BASED FAULT
DIAGNOSIS SYSTEM

Neural network approach is a black box approach, where the expert
knowledge is hidden in the black box system in the form of weights and biases of the
neural network. However, in fuzzy logic based system the actions of a human expert
are clearly present in the rule base. Comparison of both the neural network and fuzzy

based fault diagnoses for both the online and offline is given in Table 4.2
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Table 4.3 Comparison of Neural Network and Fuzzy Based Fault Diagnosis

Neural Network Fuzzy Logic
% Error Diagnosis Diagnosis
0.177 0.133

From the above table, it is inferred that the fuzzy fault diagnosis gives reduced

error compared with neural network based diagnosis.

34



CHAPTER 5
HARDWARE IMPLEMENTATION

For hardware implementation MCSA method is used. Figure 5.1 shows the
schematic diagram of hardware implementation of MCSA method. This method
monitors the frequency components of stator current spectrum for fault detection.
The fuzzy logic is used for fault diagnosis. The detailed information about the fuzzy
logic inference system and ranges of input & output parameters of the system are

discussed in the chapter 4.
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5.1 SCHEMATIC DIAGRAM
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Figure 5.1 schematic Diagram
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5.2 HARDWARE DESCRIPTION

In this hardware, it have several measurement modules such as voltage,
current and speed measurement. In addition to this, P1C motherboard is the core part.
These units require a DC supply ranging from +5 V to +12 V. Thus a regulated power
supply circuit is designed for +5 V and +12 V.

The commonly available source of 230 V, 50 Hz AC is utilized and it is
stepped down to the required maximum voltage, say 12 V AC. Then it is rectified,
filtered and regulated to the required output voltage. +5 V power supply is shown in
the figure 5.2. +12 V power supply is shown in the figure 5.3.

7805

| T +5V
12

[2v]
(%]

7 3

L _1000uF e 10uF, 25
0-230% % \ ‘ E T ey 25.‘;2 ey u it

1hmp
IN 4007 X 4
Figure 5.2 +5 V Power supply
7912
-+
P.T 1 T
12 1 12V
* * z| 3
0-230v % \ \ é -;;lDUBuF — 10uF, 25V
25v
%
0
T GND
lAnp
IN 4007 x 4

Figure 5.3 +12 V Power supply
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AC 230V, 50 Hz supply is given to the primary side of the step down
transformer of 230V/ 0-12V type to perform step down operation. The current rating
of the transformer is 1A. Now this can be used for rectification purpose. Rectification
is achieved using a full bridge rectifier circuit which comprises of four IN 4007 solid
state diodes. Two diodes will conduct during the positive cycle and the other two will
conduct during the negative half cycle. The output obtained is not a pure DC and
therefore filtration has to be done. Filter circuits usually consist of a capacitor, which
smoothens the pulsating DC. It is helpful in reduction of the ripples from pulsating
(1000uF/ 25V) and it maintains stability at the load side (10uF/ 25V).

5.3 VOLTAGE REGULATORS

Voltage regulators play an important role in any power supply unit. The
primary purpose of a regulator is to aid the rectifier and filter circuit in providing a
constant DC voltage to the device. Power supplies without regulators have an inherent
problem of changing DC voltage values due to variations in the load or due to
fluctuations in the AC line voltage. IC 7805 and IC 7812 are used to provide +3V and
+12V regulated DC supply respectively.

5.4 VOLTAGE MEASUREMENT

FROM 10k TO PIC -
PT { AAA RAD
230V/ O-

-

1000uF/25V

1N 4007 x 4

10k

M

Figure 5.4 Voltage measurement circuit

The voltage measurement circuit of this project is shown in the Figure 5.4. In
case of voltage measurement, among three phases of the supply only one of the
phases is monitored using a 230V/ 0-6V PT. The AC output of the PT is rectified,
filtered and converted into DC. The converted DC voltage is dropped across a

variable resistor and given into the PIC microcontroller. This unit is calibrated to
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415V (Line to line voltage) and displayed in the LCD. Voltage measured is not used

as an input parameter to the system.

5.5 CURRENT MEASUREMENT

Vee + 12V

|
i

FROM 7 100k
CT

TO PIC —

2.
LM358

100 ohm

1000uF/25Y

1N 4007 x 4

A—H
10 chm/ 5W
i

0 5V

Figure 5.5 Current measurement circuits

The current measurement circuit of this project is shown in the Figure 5.5. A
Current transformer (5:1) is connected in series with one of the phases which is
connected to the motor. A shunt resistor of value 10 ohm/ 5W is connected across the
rectified and filtered signal. Thus the current signal is converted into its equivalent
voltage signal. The voltage signal of very small current value is amplified using a
negative feedback amplifier and given to the PIC microcontroller. The PIC is
calibrated to the original value of current by adjusting the value of the feedback
resistor.

5.6 SPEED MEASUREMENT

The speed sensing unit of this project is shown in the Figure 5.5. An inductive
type proximity sensor is placed near the metal strip, which is fixed on the rotor whose
speed is to be measured. When the rotor rotates, the strip disturbs the magnetic field
produced by the sensor in each revolution. The output will be in pulses and the time
difference between the pulses are calculated, from this speed can be calculated. The

in-built timer control is used for this purpose.
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Yco
I GND

. Output
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Figure 5.6 Speed measurement circuit

5.7 PIC INTERFACE
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FOR SERIAL
2 COMMUNICATION
26
L » TO ALARM
15 CIRCUIT

The microcontroller interface diagram is shown in the figure the motor
parameters are interfaced to the PIC via ports. The port assignment tabular column is

shown in Table 5.1
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Table 5.1 Port assignments

PORT ASSIGNMENT
RAO VOLTAGE SENSE
RAI CURRENT SENSE
RBO SPEED SENSE
RCO ALARM CIRCUIT

RDO -RD7 LCD DATA INTERFACE
REQ - RE2 LCD CONTROL PINS
RC6, RC7 RS 232 INTERFACE

The sensed signals are digitalized using the in-built A/ D converter in the PIC
microcontroller. The digital value is then converted into its equivalent numeric value
and it is displayed in the LCD. These data are given to the Fuzzy module as well as

interfaced with the PC through RS232. The PIC also controls the relay - alarm circuit.

5.8 LCD DISPLAY

Liquid crystal displays (LCDs) have materials which combine the properties
of both liquids and crystals. Rather than having a melting point, they have a
temperature range within which the molecules are almost as mobile as they would be
in a liquid, but are grouped together in an ordered form similar to a crystal. An ~ LCD
consists of two glass panels, with the liquid crystal material sandwiched in between
them. The inner surface of the glass plates are coated with transparent electrodes
which define the character, symbols or patterns to be displayed polymeric layers are
present in between the electrodes and the liquid crystal, which makes the liquid
crystal molecules to maintain a defined orientation angle. One each polarizer are
pasted outside the two glass panels. This polarizer would rotate the light rays passing
through them to a definite angle, in a particular direction ~ When the LCD is in the
off state, light rays are rotated by the two polarizer and the liquid crystal, such that the

light rays come out of the LCD without any orientation, and hence the LCD appears
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transparent.  When sufficient voltage is applied to the electrodes, the liquid crystal
molecules would be aligned in a specific direction. The light rays passing through the
1.CD would be rotated by the polarizer, which would result in activating / highlighting
the desired characters. The LCDs are lightweight with only a few millimeters
thickness. Since the LCD’s consume less power, they are compatible with low power
electronic circuits and can be powered for long durations. The LCD doesn’t generate
light and so light is needed to read the display. By using backlighting,. reading 1s
possible in the dark. The LCD’s have long life and a wide operating temperature
range. Changing the display size or the layout size is relatively simple which makes
the LCDs more users friendly. The recent advances in technology have resulted in
better legibility, more information displaying capability and a wider temperature
range. These have resulted in the LCDs being extensively used in telecommunications
and entertainment electronics.

The power supply should be of +5V, with maximum allowable transients of
10mv. To achieve a better / suitable contrast for the display, the voltage (VL) at pin 3
should be adjusted properly. A module should not be inserted or removed from a live
circuit. The ground terminal of the power supply must be isolated properly so that no
voltage is induced in it. The module should be isolated from the other circuits, so that
stray voltages are not induced, which could cause a flickering display.
5.9 LCD MODULE - PIN DETAILS

The microcontroller is interfaced with the LCD module to display the
parameters measured. The data from the controller is send to the 16 pin LCD module
through 8 bit data bus. The pin details about the LCD module used, is given in the
Table 5.2.

Table 5.2 Pin details of the LCD module

PIN NUMBER DETAILS
1,16 Ground
2 Vee
3 Contrast control
4 RS
5 RW
6 EN
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5.10 ALARM CIRCUIT

Pin RCO of the microcontroller is assigned to this alarm circuit. It consists of a

relay activated buzzer. On logic HIGH signal from PIC, will activate the buzzer. The
alarm circuit used in this project is shown in the Figure 5.8

/]

FROM PIC - RCO

v

BUZZER

A\J

RELAY

N\

Figure 5.8 Alarm circuit

5.11 MICROCONTROILLER

Microcontroller is a general purpose device, which integrates a number of the
components of a microprocessor system on to single chip. It has inbuilt CPU, memory
and peripherals to make it as a mini computer. A microcontroller combines on to the

same microchip:

» The CPU core
» Memory(both ROM and RAM)
» Some parallel digital i/o
Microcontrollers will combine other devices such as:
» A timer module to allow the microcontroller to perform tasks for certain
time periods.
» A sérial I/O port to allow data to flow between the controller and other
devices such as a PIC or another microcontroller.
> An ADC to allow the microcontroller to accept analog input data for
processing.
Microcontrollers are:
» Smaller in size
» Consumes less power
» Inexpensive
Micro controller is a stand alone unit, which can perform functions on its own

without any requirement for additional hardware like i/o ports and external memory.
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The heart of the microcontroller is the CPU core. In the past, this has traditionally
been based on an 8-bit microprocessor unit. For example Motorola uses a basic 6300
microprocessor core in their 6805/6808 microcontroller devices.

In the recent years, microcontrollers have been developed around specifically

designed CPU cores, for example the microchip PIC range of microconirotlers.

5.11.1 INTRODUCTION TO PIC:

The microcontroller that has been used for this project is from PIC series. PIC
microcontroller is the first RISC based microcontroller fabricated in CMOS
(complimentary metal oxide semiconductor) that uses separate bus for instruction and
data allowing simultaneous access of program and-data memory.

The main advantage of CMOS and RISC combination is low power
consumption resulting in a very small chip size with a small pin count. The main

advantage of CMOS is that it has immunity to noise than other fabrication techniques.

5.11.2 PIC 16F877:

Various microcontrollers offer different kinds of memories. EEPROM,
EPROM, FLASH etc. are some of the memories of which FLASH is the most recently
developed. Technology that is used in PXC16F877 is flash technology, so that data is
retained even when the power is switched off. Easy Programming and Erasing are

other features of PIC 16F877.

5.11.3SPECIAL FEATURES OF PIC MICROCONTROLLER:
» High-performance RISC CPU
» Only 35 single word instructions to learn

» All single cycle instructions except for program branches which are two

Y

Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle
» Up to 8K x 14 words of Flash Program Memory,
Up to 368 x 8 bytes of Data Memory (RAM)
Up to 236 x 8 bytes of EEPROM data memory
» Pin out compatible to the PIC16C73/74/76/77

v

Interrupt capability {up to 14 internal/external

> Eight level deep hardware stack
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Y

Direct, indirect, and relative addressing modes

Power-on Reset (POR)

Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)

> Watchdog Timer (WDT) with its own on-chip RC Oscillator for reliable

A7

\;7

operation
» Programmable code-protection
» Power éaving SLEEP mode
» Selectable oscillator options
> Low-power, high-speed CMOS EPROM/EEPROM technology

3 Fully static design
% In-Circuit Serial Programming (ICSP) via twb pins
» Only single 5V source needed for programming capability
» In-Circuit Debugging via two pins
3 Processor read/write access to program memory
3 Wide operating voltage range: 2.5V to 5.5V
» High Sink/Source Current: 25 mA
# Commercial and Industrial temperature ranges
» Low-power consumption:
v <2mA typical @ 5V, 4 MHz
v 20mA typical @ 3V, 32 kHz
v" < 1mA typical standby current

5.11.4 PERIPHERAL FEATURES:
» Timer0: 8-bit timer/counter with 8-bit prescaler
% Timerl: 16-bit timer/counter with prescaler, can be incremented during sleep
via external crystal/clock
$ Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
» Two Capture, Compare, PWM modu
v’ Capture is 16-bit, max resolution is 12.5 ns,
v" Compare is 16-bit, max resolution is 200 ns,
v" PWM max. resolution is 10-bi |
» 10-bit multi-channel Analog-to-Digital converter
» Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)

with 9- Bit addresses detection.
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» Brown-out detection circuitry for Brown-out Reset (BOR)

5.11.5 PIC 16F877 - PIN CONFIGURATION

The pin out diagram for 16F877 is shown in the Figure 3.9.
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5.12 1/0 PORTS

512.1 PORTA AND TRISA REGISTER:

PORTA is a 6-bit wide bi-directional port. The corresponding data direction
register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin
an input, i.e., put the corresponding output driver in a Hi-impedance mode. Clearing a
TRISA bit (=0) will make the corresponding PORTA pin an output, i.e., put the
contents of the output latch on the selected pin. Reading the PORTA register reads the

status of the piﬁs whereas writing to it will write to the poi't latch. All write operations
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are read-modify-write operations. Therefore a write to a port implies that the port pins
are read; this value is modified, and then written to the port data latch. PORTA pins
are multiplexed with analog inputs and analog VREF input. The operation of each pin
is selected by clearing/setting the control bits in the ADCONI register (A/D Control
Register1).

The TRISA register controls the direction of the RA pins, even when they are
being used as analog inputs. The user must ensure the bits in the TRISA register are

maintained set when using them as analog inputs.

5.12.2 PORTB AND TRISB REGISTER:

PORTB is an 8-bit wide bi-directional port. The corresponding data direction
register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin
an input, i.e., put the corresponding output driver in a hi-impedance mode. C.learing a
TRISB bit (=0) will make the corresponding PORTB pin an output, i.e., put the
contents of the output latch on the selected pin. Three pins of PORTB are multiplexed
with the Low Voltage Programming function; RB3/PGM, RB6/PGC and RB7/PGD.
The alternate functions of these pins are described in the Special Features Section.
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on
all the pull-ups.

Four of PORT B’s pins, RB7:RB4, have an interrupt on change feature. Only
pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin
configured as an output is excluded from the interrupt on change comparison). The
input pins (of RB7:RB4) are compared with the old value latched on the last read of
PORTB. The “mismatch” outputs of RB7:RB4 are OR’ed together to generate the RB
Port Change Interrupt with flag bit RBIF (INTCON<O0>). This interrupt can wake the
device from SLEEP.

5.12.3 PORTC AND THE TRISC REGISTER:

PORTC is an 8-bit wide bi-directional port. The corresponding data direction
register is TRISC. Setting a TRISC bit (=1) will make the corresponding PORTC pin
an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a
TRISC bit (=0) will make the corresponding PORTC pin an output, ie., put the
contents of the output latch on the selected pin. PORTC is multiplexed with several
peripheral functions. PORTC pins have Schmitt Trigger input buffers.
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5.12.4 PORTD AND TRISD REGISTERS:

This section is not applicable to the 28-pin devices. PORTD is an 8-bit port
with Schmitt Trigger input buffers. Each pin is individually configurable as an input
or output. PORTD can be configured as an 8-bit wide microprocessor Port (parallel
slave port) by setting contro! bit PSPMODE (TRISE<4>). In this mode, the input
buffers are TTL.

5.12.5 PORTE AND TRISE REGISTER:

PORTE has three pins REGQ/RD/ANS, RE1/WR/ANG6 and RE2/CS/AN7, which
are individually configurable as inputs or outputs. These pins have Schmitt Trigger
input buffers.

The PORTE pins become control inputs for the microprocessor port when bit
PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the
TRISE<2:0> bits are set (pins are configured as digital inputs). Ensure ADCONI is
configured for digital I/0. In this mode the input buffers are TTL.

PORTE pins are multiplexed with analog inputs. When selected as an analog
input, these pins will read as '0's. TRISE controls the direction of the RE pins, even
when they are being used as analog inputs. The user must make sure to keep the pins

configured as inputs when using them as analog inputs.

5.13 SOFTWARE DESCRIPTION
In the software part, two different modules are present. One is for the
implementation of the embedded system in the microcontroller (PIC 16F877A),which

based on simulation results.

5.13.1 ALGORITHM FOR PIC PROGRAMMING
The PIC 16F877A microcontroller used in this project is programmed using
Hi-tech C. The program is converted into machine language using MPLAB software.

The algorithm and flowchart (Figure5.9) for this module are as follows:

Stepl. Start the program.
Step2. Assign the ports in the microcontroller as input/ output depending upon the
requirements.

Step3. Initialize the Registers as per the requirements.
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Step4.
Steps.

Step6.
Step7.
Step&.
Step?.

Enable the global and peripheral interrupt.

The current measured in one of the phase is multiplied by a suitable value to
obtain the original value.

Similar procedure is repeated for voltage also.

Pulses are counted and the speed is calculated.

The values of voltage, current and speed are given to the LCD display.

The measured values, current and speed are given to the rule based module for

diagnostics.

Step10.Details about the fault is given to the LCD display.

Step!1.The values of voltage, current, speed and the diagnostic results are given to the

PC.

Stepl2.1f the severity of the fault is more; an alarm will be activated as a warning

signal.

Step13.Else step5 to stepl1 are repeated continuously.
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5.13.2 FUZZY BASED PROGRAMMING

This is a software developed using MATLAB7 and its features, Graphical
User Interface. This is programmed to capture the current signal through sound card
and required data is extracted from it. The algorithm and flowchart (Figure 5.10 ) for

this module are as follows:

Stepl. Start the program

Step2. Get the analog input through sound card

Step3. Signal processing is done on the signal to make it digitized.

Step4. Fast Fourier Transform is performed on the processed signal

Step5. Required data is acquired and given to the Fuzzy module

Step6. Diagnostic result is displayed on the screen.

Step7. The process is repeated from Step2 to Step6 for every 10 or 20 seconds as per

the requirement.

This software is based on stator current analysis. It is featured in such a way
that the user can be able to feed the data about the test motor details and the bearing
dimensions. From these input data, the developed software will calculate the
characteristic frequencies of the bearing failure. Fast Fourier transform is performed
and the magnitude components are extracted for the corresponding characteristic
frequenc‘:y.

The current spectrum is displayed for visual inspection at a particular range.
The data extracted undergoes fuzzy diagnosis and the result of the fuzzy system is
displayed in figure 5.11. It gives the condition of the bearing as the diagnostic result.

This is an online process which keeps repeating the procedure after every 10

or 20 seconds as per our requirements.
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5.13.3 EXPERIMENTAL RESULTS
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Figure 5.11 experimental results fuzzy logic based bearing fault detection
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CONCLUSION

The bearing fault detection methods for three phase induction motor have been
investigated using neural network and fuzzy logic. The technique proposed is based
on monitoring the current spectrum and speed .The current spectrum value and speed
are taken as the inputs for neural network and fuzzy logic fault detector .The
performance of neural and fuzzy fault detection is compared in terms of percentage of
error. From the simulation results, it is inferred that the fuzzy logic based fault
diagnosis gives the reduced percentage error than the neural network based fault

diagnosis. Hence fuzzy logic based fault diagnosis is the effective method for fault
detection. The fuzzy logic based fault detection scheme has been implemented in real

time. The experimental results were verified with IHP 415 Volts 50Hz 960-rpm three

phase induction motor and are presented in this report.
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APPENDIX A: MATLAB PROGRAMMING CODE

function setf_Callback(hObject, eventdata, handles)
a=str2double(get(handles.freq, String’));
b=str2double(get(handles.poles, String’));
c=str2double(get(handles.speed,'String'));
d=str2double(get(handles.N_SE,'String"));
e=str2double(get(handles.d SE,'Stning'));
f=str2double(get(handles.Dp_SE,'String’));
g=str2double(get(handles.a_SE,'String’});
h=str2double(get(handles.N_FE,'String"));
i=str2double(get(handles.d_FE,'String")),
j=str2double(get(handles.Dp_FE,'String'));
k=str2double(get(handles.a_FE,'String"});
if( isnan(a} )

warndlg(FREQUENCY FIELD IS EMPTY","" ! Waming ! !');

else
if( isnan(b) )
warndlg('No. OF POLES FIELD IS EMPTY","t ! Warning ! ')
else
if( isnan{c) )
warndlg('SPEED FIELD IS EMPTY"."! ! Warning ! !');
else
if{ isnan(d) )
warndlg('FIELD IS EMPTY",'l ! Warning !!').
else
if( isnan(e) )
warndlg('FIELD IS EMPTY",'' | Warning !!');
else
if( isnan(f) )
warndlg(FIELD IS EMPTY",1 ! Warning ! !');
else
if( isnan(g) )
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wamndlg('FIELD IS EMPTY"','! ! Warning ! !);
else
if( isnan(h) )
warndlg('FIELD IS EMPTY","! ! Warning ! !').
else
if( isnan(i} )
warndlg('FIELD IS EMPTY"I' ! Warning ! !');
else
if{ isnan(j) )
warndlg('FIELD IS EMPTY",'l! Warning !!");
else
if( isnan(k) )
warndlg('FIELD IS EMPTY",''! Warning!!");
else
set(handles.freq,'Enabie','off");
set(handles.poles,'Enable’,'off");
set(handles.speed,'Enable’,'off");
set(handles.N_SE,’Enable’,'off");
set(handles.d_SE,'Enable’,'off’);
set(handles.Dp SE,'Enable','off");
set(handles.a_SE,'Enable','off");
set(handles.N FE,'Enable','oft"},
set(handles.d FE,'Enable','off");
set(handles.Dp_FE_ 'Enable’,'off');
set(handles.a_FE,'Enable’,'off");
Frotor = (¢)/60;
set(handles.Fr,'String' Frotor);

Fouter = (d/2)*(Frotor)*(1-((e/f)*(cosd(g))));
set(handles.Fo_SE,'String',Foutér);

Finner = (d/2)*(Frotor)*(1+{(e/fy*(cosd(g)))):
set(handles.Fi_SE,'String’ . Finner):

Fbouter = a + Fouter;

set(handles.Fbo_SE.'String’ Fbouter);
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Fbinner = a + Finner;

set(handles.Fbi_SE,'String’,Fbinner);

F2outer = (b/2)*(Frotor)*(1-((i/j)*(cosd(k))));
set(handles.Fo_FE,'String’ . F2outer);

F2inner = (W/2)*(Frotor)*(1+((i/j}*(cosd(k))));
set(handles.Fi FE.'String'.F2inner);

F2bouter = a + F2outer;

set(handles.Fbo_ FE,'String'.F2bouter);
F2binner = a + F2inner;
set(handles.Fbi_FE,'String'.F2binner);
set(handles.analyze,'Enable’,'on’);
set(handles.startf,'Enable','on');
set(handles.stopf, Enable’,'off');
set(handles.setf,'Enable','off’");
set(handles.changef,'Enable’,'on');

end

end
end
end
end
end
end
end
end
end
end

clear;

function analyze Callback(hObject, eventdata, handles)

giobal ULIMIT;
global LLIMIT;,
global FS;
global SIZE;
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FS =11025;

SIZE =131072;
set(handles.ll,'Enable’,'on");
set(handies.ul,'Enable’,'on’);
set(handles.fset,'Enable’,'on");

y = wavrecord(5*FS,FS,'double’);
Y = fit(y,SIZE);

Pyy = abs(Y)/SIZE;

Plog = 10*logl10(Pyy);
f=FS*(1:SIZE)/SIZE;

f1 = str2double(get(handles.Fbo_SE,'String"));
f2 = str2double(get(handles.Fbi SE,'String"));
3 = str2double(get(handles.Fbo_FE,'String"));
4 = str2double(get(handles.Fbi_FE,'String"));

% MAGNITUDE - OUTER - SHAFT END
x=(f-f1)/f1;
for i=1:SIZE

if{ x(i) <0)

x(i=x(0)*(-1;

end
end
[c,]]=min(x);
abe = Plog(l);
set(handles.Mo_SE,'String',abc);

% MAGNITUDE - INNER - SHAFT END
x=(f-£2)/£2;
for i=1:SIZE
if( x(i) <0)
X()=x()*(-1);
end

end
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out4 = evalfis( mife fismat);
%SHAFT END DIAGNOSIS
if outl > -1 && outl <0.1)
outl=0;
else
if( outl > 0.4 && outl <0.6)
outl=0.5;
else
if{ outl > 0.9 && outl <1.1)
outl=1;
end
end
end
if( out2 > -1 && out2 <0.1)
out2=();
else
if( out2 > 0.4 && out2 <0.6)
out2=0.5;
else
if(out2>09 && out2 <1.1)
out2=1;
end
end

end

if{fout]1==0 || out2==0)
set(handles.secon,'String’,'Poor');
set(handles.secon, BackgroundColor',Red');
else
if(outl==1 && out2==1)
set(handles.secon,'String','Good");
set(handles.secon,'BackgroundColor','Green');
else

set(handles.secon,'String','Fair');
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set(handles.secon, BackgroundColor','Yellow');
end

end

%FAN END DIAGNOSIS
if( out3 > -1 && out3 <0.1)
out3=0;
else
if{ out3 > 0.4 && out3 <0.6)
out3=0.5;
else
if( out3 > 0.9 && out3 <1.1)
out3=1;
end
end
end
if outd > -1 && out4 <0.1)
outd={};
else
if( outd > 0.4 && outd <0.6)
out4=0.5;
else
if( outd > 0.9 && outd < 1.1)
outd=1;
end
end
end
if(out3==0 || out4==0)
set(handles.fecon,'String','Poor’);
set(handles.fecon, BackgroundColor','Red');
else
if(out3==1 && outd==1)
set(handles.fecon,'String','Good');

set(handles.fecon,'BackgroundColor','Green'),
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else
set(handles.fecon,'String', Fair');
set(handles.fecon,'BackgroundColor','Yellow'),
end

end
%END OF DIAGNOSIS

Sfunction closef Callback(hObject, eventdata, handles)

close;

function startf Callback(hObject, eventdata, handles)

set(handles.analyze,'Enable’,'off');

set(handles.changef,'Enable','off");

set(handles.stopf, Enable','on’);

set(handles.startf,'Enable'foff);

pause(2);

global FLAG

while FLAG==
eval(INTELLIGENT BEARING FAULT DETECTION_SYSTEM("
analyze Callback",gcbo,[],guidata{gcbo))’);
pause(20);

end

Sfunction stopf Callback(hObject, eventdata, handles)
set(handles.analyze,Enable','on");
set(handles.changef,’Enable’,'on’);
set(handles.stopf,'Enable’,'off");
set(handles.startf,'Enable','on');
global FLAG
FLAG=0;
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APPENDIX B: PIC PROGRAMMING CODE

#include<pic.h>
#include<led . h>
unsigned int voltl,curl;
unsigned char
VIHUN,VITEN,VIONE,ITHUN,J1TEN.I1ONE,NITENTHONITHO,NITHUN,N1T
EN,N10ONE;
unsigned int 11,12, V1,F1,N1,N2 t,rpm;
unsigned int t1,t2,set,fsch,fact;
signed float f;
void main()
{
TRISA=0XFF;
TRISD=0X00;
TRISE=0X00;
PORTD=0;
PORTE=(;

TRISC=0X380;
PORTC=0;

SPBRG=0X19;
BRGH=1;

TXSTA=0X24;
RCSTA=0X80;

TRISB=0x03;
PORTB=0;
OPTION=0x88;

GIE=PEIE=INTE=TOIE=1;

lcd_init_();
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cursor_loc(0X80);
display_string("BEARING COND'T™);
cursor loc(0XC4),
display_string("CHECKER");

delay2();
delay2();
delay2();

led init();

while(1)

{

ADCONO0O=0X81;

delay();

ADGO=1;

while(ADGO); //status check
volt1=ADRESH*256+ADRESL;

delay();
delay();

ADCON0=0X89;

delay();

ADGO=1;

while(ADGO); //status check
curl=ADRESH*256+ADRESL;
delay();

delay();

Vi=voltl/2:
I1=curt/1;
I1=curl/1;
12=11,
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VI1HUN=V1/100;
V1=V1%100;
VITEN=V1/10;
V1=V1%10;
VIONE=VI;
[THUN=I1/100;
[1=11%100;
[ITEN=I1/10;
[1=11%10;
[1ONE=I1;
=1000000/t;
rpm=£f*60;
Nl=rpm;
N2=N1,

NITENTHO=N1/10000;

N1=N1%10000;
NITHO=N1/1000;
N1=N1%1000;
NIHUN=N1/100;
N1=N1%100;
NITEN=N1/10;
NI1=N1%10;
NIONE=NI;

clear lcd();
cursor_loc(0X80);
display_string("V=");
display_data(VIHUN);
display data(V1TEN);
display_data(V1ONE);
cursor_loc(0x87);
display_string("I=");
display _data(I1THUN);
display_string(".");
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display_data(I1TEN);
display_data(I1ONE);
cursor_loc(0xC0);
display_string("N=");
display_data(N1THO);
display data(N1THUN),
display data(N1TEN);
display_data(N10ONE);

TXREG='V';
while(ITRMT);

delay();

TXREG="="
while(!TRMT);

delay();
TXREG=0x30+V1HUN,;
while(!TRMT);

delay();
TXREG=0x30+VITEN;
while(!TRMT);

delay();
TXREG=0x30+V10ONE;
while(!TRMT),

delay();

TXREG=';",
while(!TRMT);

delay();

TXREG=T;
while(!TRMT);

delay();

TXREG="=",
while(!TRMT);

delay();
TXREG=0x30+I1HUN;
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delay();
TXREG=B";
while('TRMT);
delay();
TXREG="=";
while(! TRMT);
delay();

cursor loc(0xC7);

display string("B=");

t=0;

If(12>=70 && 12<90)
{
Hf(N2>=850 && N2<890)

{
display_string("POOR™");

TXREG="P"
while(!TRMT);
delay();
TXREG='0";
while(!TRMT);
delay();
TXREG="0";
while(!TRMT);
delay();

TXREG='R";
while(!TRMT);

delay();

RCO=1:
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delay();
TXREG='0;
while(!TRMT);
delay();
TXREG='0";
while(I'TRMT);
delay();
TXREG="D",
while(!TRMT);
delay();
RC0=0;

if(12>=130 && 12<170)
{
if(N2>=850 && N2<890)

{
display_string("GOOD");

TXREG='G",
while(!TRMT);
delay();
TXREG='0',
while(!TRMT);
delay();
TXREG='0";
while(!TRMT);
delay();
TXREG=D";
while(!TRMT);
delay();

RC0O=0;
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if(N2>=890 && N2<930)

{
display_string("FAIR");
TXREG='F";
while(!TRMT);
delay();
TXREG='A";
while(ITRMT);
delay();
TXREG=T,;
while(!TRMT);
delay();
TXREG='R";
while(!TRMT);
delay();
RCO=0;

if(N2>=930 && N2<1000)

{
display_string("POOR");

TXREG="T";
while( TRMT);
delay();

TXREG='0";
while(!TRMT);
delay();
TXREG='0";
while(!TRMT);
delay();
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TXREG='R";
while(!TRMT);

delay();
RCO=1;
;
}
TXREG="",
while(!TRMT);
delay();
delay2();
}
h
delay()
d
unsigned int i=0;
for(i=0;i<=400;i++);
1
delay2()
{
unsigned int j=0;
for(j=0;j<=40000;j++);
}
void interrupt isr()
{
/**********SPEED START***********/
If(INTF==1)
{
INTF=0;
t1=t2;
t2=TMRO;
if(set==0)

t=t2-t1;
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else

t=((set*256)-t1)+2;

set=0;

}

if(set==1000)
set=0;

if(TOIF==1)

{
TOIF=0;
set++;

¥
JE sk kR R QPREED END % * %+ k4 %% /

}
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