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The state models which tan be developed Using thig
software are of tyg Lypes, namely, Phase variable form ang
Canonica] form, Single input apng Singlie output Systems are
dealt with ip this Software., The algoritchms have beepn
developed Lo tackie Systems g¢of \n‘th order. The maximup
order of the System, whiep this Software Can accept ;g4
65535, but for €ase of yge it has been Curtailed tg 10. Thig

software is also Capable of dealing with S5ystems having

imaginary poles,

C+r+ ig the language with wilich tha Software was
developed. This ig 5 flexible language which involves Object
Oriented Programming, the use of which Simplifieq any g¢fr

the algorithnms Used in the Ssoftware, Test results are

Presented,
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INTRODUCTION

State variable analysis involves a8 general mathematica]
Tepresentation of a4 System which, along with the output,

vields information about the state of the System variablesg

models for linear single-input—single—output Systems. The
State models which this software can develop are the phase
variablae Tepresentation and the Canonical variable
Iepresentation, Each systen is identifiegq by two
polynomials, cne for input and one fgr Cutput. The entire
Project deals with various Polynomial algorithns and
OPerations, s¢ 3 good understanding of polynomial Operations

like their addition, subtraction, multiplication, division,

factorizing and many more ig Needed. Not only an



understanding of their Oberations jg important, but theiyp

Software implementation Must algg be Caken into

consideration.

features like Operator overloading, polymorphism,

inheritance dre at the dispogal of the Programmer, The one

"~ 80ftware is Oberator overloading, which 8reatly Simplifieqd



STATE VARIABLE ANALYSIS

2.1 INTRODUCTION

The classical methods like root locus and frequency of
a system require that the physical system be modelled in the
form of a transfer function. Though the transfer function
model provides us with simple and powerful analysis and
design techniques, it suffers from certain drawbacks. A
transfer function is only defined under zero initial
conditions. Further, it has certain limitations due to the
fact that the transfer function model is only applicable to
linear time-invariant systems and there too it is generally
restricted to single-input-single-output systems as this
approach becomes highly cumbersome for use in multiple-
input-mulitple-output systems. Another limitation of the
transfer function technique is that it reveals only the
system output for a given input and provides no information
regarding the internal state of the system. There may be
situations where the output of the system 1is stable and yet
the system elements may have a tendency to exceed their
specified ratings. In addition to this, it may sometimes be
necessary and advantageous tO provide a feedback
proportiional to some of the internal variables of a system

rather than the output alone, for the purpose of stabilizing

and improving the performance of a system. It is further

O



observed that the classical design methods based on the
transfer function model are essentially trial and error
procedures. Such procedures are difficult to visualize and
organize even in moderately comlex systems and may not lead

to a control system which yields an optimum performance in

-gome defined sense.

The need of a more general mathematical representation
of a system which, along with the output, yields information
about the state of the System varliables at some
predetermined points along the flow of signals, is felrt.
Such considerations have led to the development of the state
variable approach. It is a direct time domain approach which
provides a basis for modern control theory and system
optimization. It is a very powerful technique for the
analysis and design of linear and nonlinear, time-invariant
or time-varying multiple-input-multiple-output systems. The
organization of the state variable approach is such that it

is easily amenable to solution through digital computers.
2.2 CONCEPTS OF STATE, STATE VARIABLES AND STATE MODEL

A mathematical abstraction to represent or model the

dynamics of a system utilizes three types of variables

called the input, the output and the state variables,



The state of a dynamic system is a minimal gset of
variables (known as state variables) such that the knowledge
if these variables at t=to together with the knowledge of

the inputs for t)=to, completely determines the behaviour of

the system for t)to.

For notational economy, the different variables may be
represented by the input vector U(t), output vector Y(t) and
state vector X(t). The state equations for time-invariant
and time varying systems are as given below.

X(t) = F( X(t), U(t) ) = time-invariant systems

X(t) = F( x(t), Uu(t), t ) - time varying systems

The output equations for time-invarinat and time

varying sytems are as follows.

Y{t)

it

G(C X(t), Uu(et) ) - time-inariant systems

Y(t)

G( X(t), u(ey, t) = time varying systems

The state €quations along with the output equations

constitute the state model of a system,



2.3 STATE MODEL OF LINEAR SYSTEMS

The state model of linear time-invariant systems is

depicted below.

e e
]

AX{(t) + BuU(t) (2.1)

-
]

CX(t) + DU(t) (2.2)

where A and C are matrices of order n x n, B is of order n x
m and D is of order p x m. ‘n' is the number of state
equations, “p' is the number of output equations and ‘m' is
the number of inputs. A is called the system matrix, B is

called the input matrix, C is called the output matrix and C

is called the transmission matrix.

For single~input—single-output systems B is of order n

x 1, C is of order 1 x n and D is constant.

2.4 PHASE VARIABLE REPRESENTATION

Fcr a system defined by the transfer function

(2.3)

n



the phase model is as given below

[~ = — ] C ]
X -a 1 O ... C X
1 1 1
X -a 0 1 ... 0 X
2 2 Z
X -a 0 0 .. 1 X
n n n
o p— — r——— — —

2.5 CANONICAL VARIABLE REPRESENTATION

For the same system considered above the Canonical

model is given by

— -1 —— — p— iy
X r 0 o . 0] b'e
1 1 1
x 0 r 0 0 x
2 2 YA
X 0 1] 0 . I X
n n n
S pr— l—'— — —

(2.6)



*_T - —
y = ic¢ C C ee. C x + b u (2.7)
1 2 3 n 1 8]
X
T - 2
be
n

- - - o —4 -
Having discussed the various representations of system

models in this chapter we go to find how the software can be
implemented to get the same.

o



SOFTWARE IMPLEMENTATION

The software implementation of state models involves
quite a lot of polynomil arithmetic since each transfer

function usually involves two polynomials.

In the case of the Phase variable state model the
elements of the system matrix can be determined from the
equation directly. The elements of the input matrix are

calculated from the different coefficients of both the input

and output equations.

Canonical model of system requires the poles of the
system. To determine the various poles of the system Lin's

method is used. This method is a iterative polynomial

division process. Consider the algebric equation

5 + a s + a s + ... +as +as a-=20 (3.1)

The first trial factor uses the three lowest order terms of
the original equation. For the above equation the trial

factor is

s+ 1 s + 0 (3.2)

[ (¥}



The original equation is divided by this first trial factor.
If the remainder is too large, the next trial factor is
used. This procedure is continued until the remainder is
negligible. The last trial factor is a quadratic factor of
the original equation. The quotient polynomial, which is of
order (n-2) contains the remaining factors of the original
equation. Lip‘s-method is then applied to the guotient
polynomial to obtain the other quadratic factor of the
original equation. Each quadratic factor is then factofized

to obtain the roots of the equation.

This process requires an algorithm for general
polynomial division which in turn requires algorithms for
subtraction and multiplication. This is where the usage of
C++ facilitates. It provides operator overloading which

allows such arithmetic to be done easily. However the

operators must be overloaded properly. In addition to this
there is the possiblity of complex roots, which by itself
requires a lot of algorithms. Complex roots Pose a problem
during the partial fractioning phase of the program. They

also require that the operators be overloaded for them also

in order for easy program development.

Canonical model also requires the transfer function to

be in a partial fractioned form. This process is no mean



task when the system under study has a lot of poles. If
there are repeated poles then there is a nesd for
differentiation also. As mentioned above, the presence of
complex roots presents hinderances for calculation. The
numerator of eéch such complex root also tends to be a
complex one. Complex roots and numerators create problems

during displays also.

i



PROGRAMMING LANGUAGE USED FOR DEVELOPMENT OF SOFTWARE.

4.2 INTRODUCTION-

C++, blending the C language with support fecr object
oriented programing, seems destined to be one of the most
important programming languages of the 1990s. Its C ancestry
brings C++ the tradition of an efficient, compact, fast and
portable language. Its object oriented heritage brings C++ a
fresh programming methodology designed to cope with the
escalating complexity of mordern programming tasks. Another
notable aspect of this language 1is the supporting cast of
new jargons-objects, classes, encapsulation, data hiding,

polymorphism and inheritance, just to name a few.

C++ joins together two separate programming traditions-
the procedural tradition, represented by C, and the object

oriented language tradition, represented by the enhancements

C++ adds to C.
4.2 OBJECT ORIENTED PROGRAMMING

Although the principles of structured programming
improved the clarity, reliability and ease of maintenance of
programs, large scale programming still remains a cnallenge.
Object oriented programming (OCP) brings a new approach to

that challenge. Unlike procedural programming, which



emphasizes algorithms, OOP emphasizes the data. Rather than
trying to fit a problem to the procedural approach of a
language, OOP attempts to fit the language to the problem.
The idea 1is ﬁo design a data form that corresponcds to the
essential features of a problem. In C++, a class 1s a
specification describing such a new data form, and an object
is a particular data structure constructed according to that
plan. In general, a class defines what data is used to

represent an object and the operations that can be performed

upon that data.

The OOP approach to program design is to first design
classes that accurately represent those things with which
the program deals. Then you proceed to design a progran
using objects of those classes. The process of going from a

lower level of organization, such as classes, :o higher

level, such as program design, 1s called Fottom-up

programming.

There's more to QOP programming than the binding of

data and methods into a class definition. 20P, for example,

facilitates creating reusable code, and that eventually c¢an

save a lot of work. Information hiding safeguards data from

improper access. Polymorphism lets you create multiple

definitions for operators and functions, with the

&



programming context determining which definition 1is used.
Inheritance lets you derive new classes from old ones. As
you can see, object oriented programming introduces many new
ideas and in#olQes a different approach to programming than
does procedural programming. Instead of concentrating on
tasks, you concentrate on representing concepts. Instead of

taking a top-down progarmming approach, you sometimes take a

bottom-up approach.

4.3 C++

Like C, C++ began its life at Bell labs, where Bjarne
Strousrup developed the language in the early 1980s. In his
own words, "C++ was primarily designed so that the author
and his friends would not have to program in assembler, C,
or various modern high-level languages. Its main purpose.was
to make writing good programs easier and more pleasant for
the individual programmer.” Strousrup based C++ on C because
of C's brevity, its suitability to system programming, its
widespread avallability, and its close ties to the UNIX
operatin system. C++'s Q0P aspect was inspired by a computer
simulation language called Simula67. Strousrup added 00P
features to C without significantly changing the C
component. ThuS C++ is a superset of C, meaning that any

valid C program is a valid C++ program, too. C++ programs

can use existing C software libraries. This has nelped the



spreading of C++.

The name C++ comes from the C increment operator ++,
which adds 1 to the value of a variable. The name C++
correctly suggests an augmented version of C. A computer
program translates a real life problem to series of actions
to be taken by a computer. While the Q0P aspect of C++ gives
the language the ability to relate to concepts involved in
the problem, the C part of C++ gives the language the
ability to get close to the hardware. This combination of

abilities also has helped the spread of C++.



DEVELOPMENT AND TESTING

This chapter deals with the various flowcharts, source

listings and sample outputs of the project discussed here.

There are three main flowcharts. The first one 1s the

system flowchart and the other two represent the subroutines

for the two phase models.

Four source listings are presented, two of which are
header files. The other two are contain the code for the

various function and class declerations used.

The output is presented for two systems. The order of

the systems being 4 and 5.

HO)



5.1 FLOWCHARTS
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5.2 SOURCE LISTING

SOURCE LISTING : POLTM.H

closs polynomizl

{

privaie;
unsigned int degroe; 7/ degree of the polynoniail.
double Ycoeffs; £ coeificiants of various

S = T
i ela Rl e O Rl sizo Dl
i (Cwgraac+ii
FAdouble srraal; v roofts of tho polynomniai
e haoth
fidouble *rimag; A/ real and imaginarcy.
complex addil douhle, doubis, coubie, doubie i
PaoLio:
poiynomiai{unsigned int, douniscy
pml)fno'mial(unsigner_[ inty :
poiynomiall const poiynomials
“polynomiaiivoid)
poiynomiaid aperaitior=( poiynonmiall )
friend polynormial operators ( const polynomiali, const
polynomiali ) }
Fiiend p'Diynorpia.l operator- { <Consi  poiynomiald, consi

o]

)



Fedyniomialie )

friend gpolynomial

0
"0
lii]
v
3]
o
u}
~
E
—~
i
3
3
i)
t
U
Q

ynomiall, const

polymomisald i

Iriand  polynomial operator/ ( const polynemiald,  const
polynomiald )

friend poiynomizl opsrator% { const polynomialk, const
polynomialii X

friend int  operstor  » { zonst poiynomia sons
eolynomiald ¥

triend veoid faciorize! consr polynomiaiy i

friznd vioid  partial Tracil conrzi  poivnomisii, const
Privnomislé, doubie+, Soublos

friend  void  phase_modell const poivnomislh,  const

polynomiaid i
soapiox evaluvatel doubie, double )

vold change vaiues( doubigs ;3

void brim(;

vioid readQ;

)



SOURCE LISTING : COMPLEX.H
A% gompleox.h

ompigy Numbsr Library - [ncluds Fiie

class complex: declarations for compiex

friend compiex _Cdan} acos(complexil;
friend complex Cdeci asinlcomplexi);
friend compior _Cdecl atanlcomploxi);
friend complex _Cdecl logiOicomplexi);
friend complex _Cdeni tanlcomplexndy

friend complex _Cdecl tanhicomplexd);

complex _Cdeci operator+(y

complex _Cdecl operator-0;

#ifndef _ cplusplus

Bercor Must uge C++ for the type complex.

Bapulif
if ‘e fined(_COMPLEX_H)
#define _COMPLEX_H 1

Binclude <math.h>»

class conmnplex (

numbers.

-

s



/Y consfructors
complexidoubls re_val, -doublse im_ val=0Y

compiax();

7/ compléx manipulations

friend double _Cdocl recallcomplex®); // the real

friend double _Cdecl imaglcompiaxik); 4 tho

imaginary part

friend complex _Cdecl conjicomplexiy; a4 the
complox conjugste
friend double _Cdecl aormfcomple L 7/ the square

af the magnitude

friend double Cdered srgicompiex

kB // the angle
in the plane

friznd  complox _Cdesl poiaridoubia mag, double

__angla=0Y
//  Create a complex abject  given

polar coordinates

// Dverioaded ANSI € math functions
friend douvble _Cdec| sbslcomplexiy;
friend complex _Cdeci acos{compiexi)
friend complax _Cdeoci asinicomplexd);

friend compiex _Cdecl 3tanlcomplexit);

h\
N



friond complex
friempd complex
friend compley

frisnd compisx

._.,
"
—_
[or]
ot
)

Lol
]
]
Jos
e
}il
>

__2XPORX

friend complex

__ #2Xponky
friend complex

___Bxponk);
fricnd complax
friond complex
friend complex
frivnd complex

friend complex

_Cdeci

_Cdecl

_Cdaci

_deci

_Cdncl
_Cdecl
_Cdec|
_Cdecl

Cdect

cos(complex&);
cozhicompieoxhy;
exploonpickd)y

Ioglcomplex&);

oglDlcompleniy;

powlcompisxd _ base,. doubie
powldouble _ basc, complexé
powlcomplexd _ b3se, comploxk
sinfcomplaxi;

sinhicomplex&;
sarffcomnplaxiy

tanlcomplox&);

tanhicomplexi;

A/ Binory Operator Functions

friomd complex
friend complex
frismnd cowmplox
fricend compliex
frisnd complax
fricnd compiax

frived complax

_Cdeal

3

operator+icomplond, compiexdi
operator+idoubie, complexi);
gperstor+f{complexl, double);

cperator-icomploxt, complexi);

aperstor-idouble, complaxi);
operator-fcomplex&, doublel;

operator4icomplexk, complexi);

My
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Frisne iy Tl !
fricmd complox il

friend

Q

omplex _Cdeoi
complex _C
COMmMpPie

_Cdeod

feicnd int

_Cdocol 1-.12-_3
frierd int
compleyi

-~ complexi  Cidaal

LA BRRIEER

complexi  Cdect

comeiexd  Cdecl nperators mloomplexi)

COHP K

O
b
]

1P\- T

nporator -sicomploaxi;

operateor-=tdo:

w

e rator itr;r;mlr{r,j,

oDeratorAidonbi s

operator/lcomplioxd, doublo)

operstorsidoubie

St ocperator+-idoublerl;

-
z
]

far+4={doubiol

complaxd
DM N
Coanpiox

COMpPinK

Coderin]

Crdeci

Coa)

_Cdoed

opoarator/stcomplexd

]

porators =(

e

oparator sy

np2ratar -ih

S5 dmplementation

dounle e, im;

FoAniEee compiox functions

Wi, doubhloy

y complexé);
K, complax

-3

y complax®);
complaxi;

complexiki;

&
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infine comploxicompioxidouble re_vsi, double
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inling complext Cdoe] complexisoporator

“lcomnploxd .z
{
re 4= Z3re;
tmovs 23 im
roturn #fhis;
3
iniine oemplesd Cdoal Fempleioperator s cidnobie rR_vatd
!

inling

% =2
f
res T TZ. e
Im -= 22 m;
Feturn rinig,
) .
RN E T AREL R b R A Y e COMfHaNIapErstor o =04
.

IRRR R e

re vaiZi

Pril i swumplow? Cooae r_'.-';‘mplew::op-::rator'=ld-:n.!bl'?

o
i



{
re /s reE_wvalld;
im /= re_vall;

o

return *this;

A Definitions of nwan- amber compley fopctions

inline doobl

]
[
o]
a

roallcompioxt x

ratsrn Z.ray

iniines doubie Cdec| imag(-:qmpinx?. -
I

ryiben Z.imy
3
intime complex _Cdecl conitcompioxi =l
[

return compiea Zore, - Z.imh:

g‘?



iniftez complex  Cdaai

-

refurn

S5 Definitionsg

Pl

of non-membesr

aridoubis mag, doubisg angle)d
mme iz mago*anal anglar,

hinsry operator funotions

inline  compiex Cdecl  operatordicomplexd oE somploxd
zZ)
I
refurn compiexl _ zl.re - =Z.T e, zl.im +
za.im)
)
inlineg gomplex  Ddecl operstor+idoubls ra wvail, compiexh
IR
{
return compiexl  re vail o« TI.re, TZ.imh
}
inline gompiax Cdocl operstortlcompiexk =i, doublo
re_vaiz}
]
return campiexe_ zlee ¢ re_vaiz, ziimi;

22
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peratoridostroam&, complexi);

paraftory>listreandk, complexh)y

Bondif

B



=
o

#

i

%

3

B include"c:\tcp\bharath\po!yn.h"

o

DURCE LISTING : LINSA.CPP

include<iostream.hy
include<compisx.h>»
includes<stdio.h>

include{conio.hy

ouble* read_coseffs( intx e

int maind

r
1

inft g

doublex sr;
clegep(l;

doublox a;
doubies h;

doubie nall = (2,5,2);

doubla dal] {5,11,5,1);
pPolynomial niz,na)l;

polynomial d(3,da);

//factorize(dy;

par tiai__fract(n,d,a,b);

/#*ar = road_cosffs( dg ;

Poiynomial nud dg, ar 3



mLshawll
isiebe ar;
ar = read_coeffs( hdg X
polynomial dol dg, 3t %
de.showil;

phase_model{ nu, do ix*/

double* resd_ceeffs( int* dog )

{
int dg.i:
doubla* orr;
cirzeril
cout{{"Entor the dagree : 7
scanf("ed", &dg);
Adeg = dg;
arr = now deublol dg ¥ 1 T;
for{ i = dg; i »= Q; i-- 23
{
cout<<"Enter the coefficient of degreos "I4<7 @ %
scanf("®if"&arrlil);
coutLi™MmnT;
}
raoturn 3rr;
, .



AAURCE LISTING 1 POLYN,CFFP
gincindpiiostroam.h?
tt_i"nc!ude"{conio.h_‘z
.’@tincludeﬂ'stdio.h}'
#include<complex.h>

tinciudeTc:ivtop\bharath\polyn.h”

polynomialupolynomiall unsignad dag, double #cof 3

{
int i;
degree = deg;
cnaffs = new doublel deg + 1 1}
for( i = Q7 i < dag + L i+»?
coeffs{ i 3 = cofl 1 &
)

poiynomialupolynomia funsigned deg)

i
int i
degreo = dag; ‘
coeffs = new doublel degree + 1 1}
iff conffs == NULL ? coub<<"Not onough memsory’;
forl i = Q5 1 < dag + 13 i+ )
coeffsl 1 1 = O
}

35
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fymomialiupolynomiall const polynomial® a)

int i;
dogrese = J.degros;
cogffs = now doublel degreoc + 1}

fort 1 = 0; 1 <= degreo; 1t+ }

[t}

cowffsl 1 1 ag.coeffsl i 1;

poiynomizi T poiynoniall;

o~

D
@
or
[}
[y
e}
i}
"t
~h
Lt

complex poiryrnomialaaddit double i, double

qa}

doublo 1

double r, i;

r = rl + r2;

compiex rsl r, i )%

return rs;

i1,

dipuible

e

L



vpid polynomisluchange_values( doubleX val

i
int I
fori i = O; i < degres + L i4+ )
cogffst i 7 = vall 1 X
)

vo_igi polynomialishowld
i
“int i;
cout<a™ni™
for( i = degras; 1 »= Q5 i-- )

couti<™ ™{coaffslilddM"];

coutdd"™ 1'%

viid potynomialatrimO

int i

iong cont

3

double round;

fort i = 0O; 1 <= dogree; 1++:
{
conts = 1ongliD00.0#%coeffs(il+0.5)

round doubleleents)/1000,0;



——

] 1 1 . 3 re =
polynomiaid polynomiaiveopsrators=t

-

cosffslil = round;

b
e

for{ i = deagren; coaffsii}l == O

degrec = ij

ift 1 £ Q2
dogroe = 05
*»fhis = *Lhnis;

polynomiali

int i3

if¢ this == bpy } cout<{"Yasz"

double#* temp = new doublel py.degres + 1 1

for{ 1 = 0O; 1 <= py.degree; i++ 3
templ 1 7] = pr.coeffsl I L;

delets coeffs;

degree = py.degree;

co9ifs = new doubisl degres + 1 i

for( 1 = 0O; i <= degrer; i++ }

tamp;

roturn #this;

ey

.
v



polynomial operstor+{ const polynomislh &, const rolynoniati

b
{
int 1;
polynomial rsl ( a.dsgres » buadegrsc 3 7 z.degres
b.degres J;
fort i = 0; 1 <= rg.degroca; i++ )
{
rs.coaffslil] += { a.degrae »= 1 ) 7 as.coefrsiid @ O
rs.coeffsli)l += ( bdeggree »= 1 ) 7 b.eoesifslil @ O
}
return rs;
}

polynomial operator-( const polynomialid a3, const polynomisld

o) -
i
. int i
polynomiai rs{ { as.degree » b.degr=s ¥ 7 z.degroe

b.degdree X

forl 1 = O i <= rs.degres; 1++ )

i
rs.coeffsi{il += ( a.dogree »= i } 7 a.cosffsiil 1 O;
rs.coaffsli] -= ( b.degrees »= 1 3 7 b.coaffs(ii @ 0;

4
@



rs.degraog = O;
//rs = I3S;3

return rs;

polynomial operator4 { const pelynomislk

polynomiall at ?

int i, i3

<

poiynomial rs mr.degres + mt.degrees )

for{ i = 0; i <= mr.degroe; i++ D
for{ 3 = 9; 3 <= mi.dsgreae; 44 3
res.soffsl 1 v 1} *F= mr.coeffsl I 1 #
eifslii == O; 1 — 3

forl 1 = rs.dagrag; rs.co

rs.degree = i

ife 1 < G

mr,

~t



polynomial pparsater/ { oonst poiynomiaté = const
polynonmialé v )
f
int, i, i, quo_dgg = d.dograe - V.GR5T08;
doubles ta = now double [ quo_ceog + 15
polynomial q { quo_oeg i
polynomial tg ( quo_deg %
polynomial fd = df
sivd = g
for{ i = 0O; i <= gquo_dog; 1++ I .
{
forl j = 0; j <= quo_deg; j++ 1}
tal 31 = O
tal <quo_deg i 3 = td.coeffsi{ td.degres 1 / v.coeifst

t-- tg.changoe_values( ta 4

td = td -~ tg * v

deiste Laj

refturn gj



polynomial ppaErator®% { waonst

polynomisli v

polynomiai rs( v.degres - 1 %

rs = d - d / v * v

rs.trimid;

return sy

polynomlail d, CONs%

compigx polynomia]::evaiuvatr_-.(. double ri, doubles im

int i
doubla rl, re;
complex rs{ O %

compiex 3{ ri, im 3

ift pl == O &% im == €
rs = cooffsl O %
eglge

fForl 1 = 2; 1 47 dogroe; L+

rs += powl a, i } # coaffsl

ri = double ( longl reail rs 3

rz = doubla ( longl imagl rvs )

10000 + 0.5 )y s 10000



complex ratl rl, T2 %

return ret;

void factorize! coanst poiynomiaik 3, doubies r©, doubisH

int ts, rc = 9O, ic = {4
doubie fempl 2 k
double dd, rl, r2, 1, iZ;

//double® r = new doublol a.degreo 4

//doubic* i = nocw doubiel adsgrec i
tompl © 1 = s.coefisl O &

il

tempi 1 1 a.coeffsl 1 I;
polynomial rrl 1, temp )
templ 1 I++;

polynomiai prl 1, temp %

polynomial vi Z )

poiynomial gi 2 &

—
"

poiynomial nuiC 1

polynomial d = a;

whiie{ d,degres » 2 )

B}

vionaifsl 2 3 = &
v.engifsl 1 1 = dwgoeffsl 1 1 7 ducoefisl Z 0§



whilel pr » rr )

ict++;
- v.zhow();

PP = rr o+ nl_l_i;

ts = q.degreo;

q,.j»_:gr»)e = )

v,ocogaefisl O 1 = v.weoeliisi O ]
voaooefisl 203 = L3
g.degres = Ls;

3

a4 = g nuis

dd = wv.coeffsl 1] % v.iooetfs{ 1 3
v.coeifzsi O3 3

if¢ dd »= O 3

{
tl = { -w.coeffsl L 3 + sqric Za

2 1%

P2 = ( -vweoetffsl 1 1 - sertf od
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4]
i)

rl ro J = ri;

il re 1= 14 -
Cou.tf("\n"ﬂ'.';'_r{ ro 1947+ ra i
kel 8 4

rf ro 1 = rZ;

il re 1 = 1Z;

rot -+

cout<d"\n™<rf rc K" + "KL re 3

tampl O 1 = d.ucosefisl O §
tampl 11 = dooerfsi 10}

rr.cherge_vailuvaos{ Lemp ;
templ L it

pr.change_valuesi Ltomp i

»

R0

-}



il ro 1 = O

coub{<{™Mn"<rl rg 447 4+
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[
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Vi

-

¥
r2 = { -dwoosffsl 11 - sgril dd @ /{2 % duoooifsl

i)
[0}
o

ey

dd = -d3; -

[~
*

vl = r2 = - dugoeffst 1 1) /4

doowmefisl 203 0%
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—
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int

operato

do, douni
int 1,13

doublox
dounie#
reo=

new

'L = neow

r » { const P
= D

{ a.coefict O
a,zoertst 103
I_fraanl ooas

rr;
ri;

doubiel

doubiel

jus
w)
[
o
il

da,32

i
2

paEms

rea

w

1
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‘actorizefl da, r©r

-,

forll = dedegree-1110=0 ; - -
coub<{rplii<<{™"<rilil;
Aldouble rril = { -2, -2, -1 i

SAdouble il = L 1, 1 i

i
-

p
Y

or = new doublel deode
ci = new doublel do.degreog §
complex a¢( 10

Sfzompigx nil 9, 2 0k

J/complexs r3 = now complexl do.deograo If
Sloomplex rotyaily
fAfactorizel do X
fort i = 05 i < de.degreos; i+
i

A = o4 - ac + i

forC 3 = 2; 3 < de.degrsa; j++)

a = de,addii reli), rilil, -orlii, -r0ilil o

FiooutddTmon™ Y an;

22 = nu,ovalyvateld rriil, rifil! ¥ 7/ os

P

Slcout<l{no;

zrliii=raa.lacy
-cilil=lmaglac);

sout<<n"<or

(S
~,

i

rsoril;

-~
L



poutid"Ivstom matrixinin®

i = de.desgres - L i

i
ift i == 317
arinbfUES, 2155211
olge
orint {7 i
printfc™ ™)
3

st

vl polynomislieesdl

-

1

sonbas"Enter Lhe dogoes 7

= O
j =
"
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,Ln_i

Gooniil T

dopres = dog;

T 5 s 4 -
§

coolfs = now doubiol degred b oL 4

2
A
e

vioid phnase _mod32il Ionolynomisiy T, U205t 7
{
int i, 3
Clrscriy
mautdi"Systom HESTHE
for{ 1 = ndegres - LD oFE Ly Lo ¥
{
{onr( i = nudegres - Ly Por= 0y I :
{
if0 3 T onadegr - LG
printfmes. 210", -d,oopffisiil X
oisa if( 1 - 5 == 1 : )

o
i
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printfl” i)

P 2 ",
mouhal™n

//setohly

coubad™Mnininees

fopl i = rnuegres

mobrinsnsny
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T
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5.2 SAMPLE OUTPU

Cntor ths deggres 104
- R
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CONCLUSION

A software has been developed in C++ to generate LWO
different types of state models for linmear systems. A SISO
systems was considered for the development of the software.
Systems upto 5th order have been tested successfully.

However it can be extended to systems of higher orders.

concerned. The computational time required increases

considerably with increase in the order of the system.

This program does not work efficiently when the poles
of the system are repetitive in nature. This problem can be

over come by using a different algorithm for factorization.

Another limitation is that only SISO systems can De
analysed. Further improvements in this sofrware can e made

to make it handle MIMO systems.

This software is quite useful for control system

engineers.

There are a few limitations as far as this software 1is
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