

GSM GUARD SYSTEM FOR VEHICLES

A PROJECT REPORT

 Submitted by

 KOMALAPRIYA.O.S 71203106025

 KM.KUMKUM SINGH 71203106026

 LAVANYA.B 71203106027

 in partial fulfillment for the award of the degree

 of

 BACHELOR OF ENGINEERING

in

 ELECTRONICS AND COMMUNICATION ENGINEERING

 KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE

 ANNA UNIVERSITY: CHENNAI 600 025

 APRIL 2007

ANNA UNIVERSITY: CHENNAI 600 025

CERTIFICATE

BONAFIDE CERTIFICATE

Certified that this project report “GSM GUARD SYSTEM FOR

VEHICLES” is the bonafide work of

“KOMALAPRIYA.O.S,KM.KUMKUM SINGH,LAVANYA.B”

who carried out the project work under my supervision.

SIGNATURE SIGNATURE

Dr.M.Rajeshwari Mr.G.C.Thiyagarajan

HEAD OF DEPARTMENT SUPERVISOR

Electronics & Communication Electronics & Communication

Engineering, Engineering,

Kumaraguru College of Kumaraguru College of

Technology, Technology,

Coimbatore - 641006 Coimbatore - 641006

The candidates with University Register Nos. 71203106025,

71203106026, 71203106027 were examined by us in the project viva-

voce examination held on _________.

INTERNAL EXAMINER EXTERNAL EXAMINER

(iii)

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

We are grateful to our principal Dr. Joseph V. Thanikal, Ph.D.

Kumaraguru College of Technology, Coimbatore, for his patronage.

We profusely thank our professor and the head of the department

Dr.Rajeshwari Mariappan , Ph.D, for her encouragement and support.

We are highly indebted and grateful to our guide Mr.G.C.Thiyagarajan,

M.E., Senior lecturer, Department of Electronics and Communication

Engineering, for his invaluable suggestions and constant guidance.

We are grateful to our project coordinator Prof. Ramprakash for his

Support and guidance in completing the project in time.

We express our sincere gratitude to Mr. Venkatesh, B.E, AGT Electronics,

Coimbatore for his constant motivation and assistance.

We thank our beloved friends, who stood as moral support for us throughout

the project proceedings. Last but not the least , we are thankful to our

parents who helped us in all aspects.

(vi)

 ABSTRACT

ABSTRACT

 In the existing systems which monitor the vehicle condition, the

parameters of the vehicle are made known to the owner only through the

driver. But in our GSM guard system, the parameters of the vehicle are made

known to the owner automatically without the knowledge of the driver. This

provides security and accuracy of the vehicle condition.

 The parameters of the vehicle monitored are alcohol usage of the

driver, speed, humidity level of the air conditioner, door locking and security

system. They are monitored by the Microcontroller (Atmel 89C52) which

receives inputs from Gas sensor, C type sensor, Temperature sensor.

 The output ports of the microcontroller are connected to the computer.

The computer will give the information in the text format to the mobile

within the guard system.

 Our guard system will send the alcohol level used by the driver, speed

of the vehicle, humidity level of the air conditioner, door locking condition,

security system to the mobile of the owner at regular intervals.

 The mobile in the guard system automatically sends this message to

the owner mobile. The owner checks whether these parameters fall within

the acceptable level, if not he can send the reply message and control the

vehicle.

(viii)

CONTENTS

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE

NO.

 ABSTRACT viii

 LIST OF TABLES xii

 LIST OF FIGURES xiv

1. INTRODUCTION 2

2. PROJECT DETAILS

 2.1 Gas sensor 6

 2.2 C type sensor 12

 2.3 Temperature sensor 18

 2.4 Microcontroller 24

 2.5 GUI 38

3. CONCLUSION 43

 APPENDIX

 Appendix(1) 45

 Appendix(2) 46

 Appendix(3) 68

 Appendix(4) 77

4. REFERENCES 89

(x)

LIST OF TABLES

LIST OF TABLES

S.NO. LIST OF TABLES PAGE NO.

1 Alternate functions of port pin1 27

2 Alternate functions of port pin2 28

3 Timer/counter 2 control register 32

4 Interrupt enable sources 35

(xii)

LIST OF FIGURES

LIST OF FIGURES

S.NO. LIST OF FIGURES PAGE NO.

1 Block diagram of GSM guard system 3

 2 Gas sensor 6

3 Model of inter-grain potential barrier

(in the absence of gas)

7

4 Model of inter-grain potential barrier

(in the presence of gas)

8

5 Infrared emitter & Infrared phototransistor 12

6 Circuit diagram of infrared reflectance sensor 14

7 Slotted optical switch 15

8 A typical Infrared slotted optical switch 16

9 Connection diagram of c-type sensor 19

10 Typical performance characteristics of C-type

sensor

20

11 Temperature to digital converter (serial output) 22

12 Block diagram of 89C52 25

13 Special function register 31

14 Interrupt sources 35

15 Oscillator connection 36

(xiv)

INTRODUCTION

INTRODUCTION

 In today’s world vehicles come with different security mechanism .

But they are mostly mechanical and costly . But here we are going to give

insight into a GSM security system which is purely electronic and more

secure than the conventional security systems available . Here we have

designed an GSM guard system which will have microcontroller , computer ,

mobile within it which is placed within the vehicle.

 We have used microcontroller which monitors the various

parameters of vehicle like the alcohol level used by the driver, speed of the

vehicle, humidity level of the air conditioner, door locking condition and

give it to computer. Then the computer transfers various parameters in the

message format to the mobile in GSM guard system.

 Our guard system provides two way communication facility .

 The mobile in the guard system transfers this information’s to owner’s

mobile automatically and the owner can control the vehicle by sending

message to the mobile in the GSM guard system and vehicle performs

according to message passed by the owner . Thus the main aim of our

project is to prevent accidents

2

BLOCK DIAGRAM

 Fig. 1.1 BLOCK DIAGRAM OF GSM GUARD SYSTEM

3

MICROCONTROLLER

COMPUTER

MOBILE

MOBILE

PROJECT DETAILS

ALCOHOL DETECTOR

ALCOHOL DETECTOR

The alcohol detector has a gas sensor which detects the alcohol level used by

the driver. This information is given to the microcontroller(89C52),computer

and the mobile of the guard system. This information is given to the owner

mobile and the owner can in turn control the motor of the vehicle by sending

a text message.

CIRCUIT DIAGRAM :

.

Fig.2.1.1 Gas sensor

The above circuit diagram consists of a bridge circuit, a voltage regulator, a

gas sensor, a comparator and a LED.

6

GAS SENSOR :

The gas sensor used here is the TGS gas sensor.

GENERAL CHARACTERISTICS :

The sensing material in TGS gas sensors is metal oxide, most typically

SnO2. When a metal oxide crystal such as SnO2 is heated at a certain high

temperature in air, oxygen is adsorbed on the crystal surface with a negative

charge. Then donor electrons in the crystal surface are transferred to the

adsorbed oxygen, resulting in leaving positive charges in a space charge

layer. Thus, surface potential is formed to serve as a potential barrier against

electron flow (Figure 1).

 Fig.2.1.2 Model of inter-grain potential barrier

(in the absence of gas)

Inside the sensor, electric current flows through the conjunction parts (grain

boundary) of SnO2 microcrystals. At grain boundaries, adsorbed oxygen

forms a potential barrier which prevents carriers from moving freely. The

electrical resistance of the sensor is attributed to this potential barrier. In the

7

presence of a deoxidizing gas, the surface density of the negatively charged

oxygen decreases, so the barrier height in the grain boundary is reduced

(Figures 3)

 Fig.2.1.3 Model of inter-grain potential barrier

(in the presence of gas)

The reduced barrier height decreases sensor resistance. The relationship

between sensor resistance and the concentration of deoxidizing gas can be

expressed by the following equation over a certain range of gas

concentration:

 Rs = A[C] –a

8

 where: Rs = electrical resistance of the sensor

 A = constant

 [C] = gas concentration

 a = slope of Rs curve

INSTALLATION :

If the detected gas is LPG, Butane and propane which is heavier than normal

air, the gas sensor is installed about 1.00 meter above the ground, adversely,

For the Natural gas, Methane, coal gas, CO and H2, which is lighter than the

normal air, gas sensor is installed about 1 meter below the roof, For both of

cases there should be good air circulation.

9

Detecting Gas
Calibrating

Concentration

Combustible

gas/Smoke
1000ppm±30%

Natural

Gas/Methane
5000ppm±30%

Coal

Gas/Methane/LPG
2000/5000/2000ppm±30%

LPG 3000ppm±30%

CO 200ppm±30%

Coal Gas 800ppm±30%

COMPARATOR :

The comparator used here is LM324. It consists of four independent, high

gain, internally frequency compensated operational amplifiers which were

designed specifically to operate from a single power supply over a wide

range of voltages. The operational temperature is 0C to +70C. It has a wide

bandwidth of 1MHz.

 VOLTAGE REGULATOR :

The voltage regulator used here is 7805. It is a three terminal, positive fixed

voltage regulator. It provides an output volage of 5V. It has two capacitors.

The input capacitor C1 is usually connected between input terminal and

ground to cancel the inductive effects due to long distribution leads. The

output capacitor C2 improves the transient response

CIRCUIT OPERATION :

The Transformer is used to convert 230V to 12V. The bridge circuit used

here converts the ac voltage to pulsating dc voltage. Then the voltage

regulator 7805 provides a constant dc voltage of 5V. The capacitors are used

to remove ripples. The comparator LM324 compares the applied voltage

with the reference voltage. If the comparator output increases above a

specified level, the LED will not glow indicating the alcohol presence.

This information is then given to the microcontroller 89C52.

10

C TYPE SENSOR

C TYPE SENSOR

Overview

An infrared emitter is an LED made from gallium arsenide, which emits

near-infrared energy at about 880nm. The infrared phototransistor acts as a

transistor with the base voltage determined by the amount of light hitting the

transistor. Hence it acts as a variable current source. Greater amount of IR

light cause greater currents to flow through the collector-emitter leads. As

shown in the diagram below, the phototransistor is wired in a similar

configuration to the voltage divider. The variable current traveling through

the resistor causes a voltage drop in the pull-up resistor. This voltage is

measured as the output of the device.

An IR emitter

An IR phototransistor

Fig.2.2.1 IR emitter and IR phototransistor

12

Applications

One of the applications of the IR emitter and IR phototransistor is a photo-

reflector. The photo-reflector is a small rectangular device that contains an

phototransistor (sensitive to infrared light) and an infrared emitter. The

amount of light reflected from the emitter into the phototransistor yields a

measurement of a surface's reflectance.The photoreflector can be used in

robot to follow a path (e.g. a white line on the floor).

Infrared Reflectance Sensor

IR reflectance sensors contain a matched infrared transmitter and infrared

receiver pair. These devices work by measuring the amount of light that is

reflected into the receiver. Because the receiver also responds to ambient

light, the device works best when well shielded from abient light, and when

the distance between the sensor and the reflective surface is small(less than

5mm). IR reflectance sensors are often used to detect white and black

surfaces. White surfaces generally reflect well, while black surfaces reflect

poorly. One of such applications is the line follower of a robot.

The diagram on the right shows an example of a infrared reflectance sensor.

For this particular example, the IR detector being used can be ordered from

Mouser Electronics (Part# 512-QSE113) and the IR emitter can be ordered

form Digi-Key (Part# LN175PA-ND). The resistors being used in this

example are chosen to match the electrical properties of the IR dectector and

emitter.

13

You might want to choose different resistors if you use different dectectors

and emitters. Different resistor values affect the sensitivity of the infrared

reflectance sensor.

The following is a test IC program used to illustrate how to use the IR

emitter and detector with the Handy Board. The program will switch on a

servo motor when the the IR detector receives enough Infra-red light. The

program uses the analog input 6 of the Handy Board to read from the IR

reflectance sensor. (The lower the value of the variable num is, the higher

the intensity of the IR light)

 Fig . 2.2.2 Circuit diagram of infrared reflectance sensor

IR slotted optical switch

An infrared slotted optical switch is a device similar to the photo-reflector

except that the emitter is pointed directly into the phototransistor. The

slotted optical switch can be used to build shaft encoders. Shaft encoders can

give the robot feedback on how far its wheels have turned or on

14

synchronizing two wheels' velocity. A shaft encoder usually consists of

aslotted optical switch and a striped wheel with a palette of radically

alternating holes or slots on it. The palette of stripes will alternately reflect

or not reflect light to the phototransistor, yielding a pulse-train output. The

robot can then tell how far its wheels have rotated by counting the pulses.

Fig 2.2.3 Slotted optical switch

15

Fig.2.2.4 A typical IR slotted optical switch

The wiring for the slotted optical switch is straightforward. The white dot on

the optical switch corresponds to pin 2 in the pinout diagram and you can

figure out the pins using the pinout diagram shown above. The emitter LED

is powered by te Handy Board's +5V supply, with a 330 ohm resistor in

series to limit the current through the LED to an appropriate value. In fact,

there is a pull-up resistor of 4.7K ohm built in the Handy Board and it is not

shown in the diagram. Different varieties of phototransistor, however, may

perform better with a smaller resistor value than the on-board 47K resistor.

If the sensitivity of the device is poor, you can try connecting the signal line

to the power supply through another resistor to determine the best response.

16

TEMPERATURE SENSOR

LM35- PRECISION CENTIGRADE TEMPERATURE SENSOR

General description:

The LM35 series are precision integrated circuit temperature sensors, whose

output voltage are linearly proportional to the Celsius temperature. The

LM35 thus has an advantage over linear temperature sensors calibrated in

Kelvin as the user is not required to subtract a large constant voltage from its

output to obtain a convenient centigrade scaling. The LM35 does not require

any external calibration or trimming. Low cost is assured by trimming and

calibration at the wafer level. The LM35’s low output impedance, linear

output, and precise inherent calibration make interfacing to readout or

control circuitry especially easy. It can be used with single power supplies,

or with plus and minus supplies. As it draws only 60micro amperes from its

supply,it has very low self heating, less than 0.1 degree celcius in still air.

The LM35 is available package in hermetic TO-46 transistor packages.

 Features

 Calibrated directly in ° Celsius (Centigrade)

 Linear + 10.0 mV/°C scale factor

 0.5°C accuracy guaranteeable (at +25°C)

 Rated for full −55° to +150°C range

 Suitable for remote applications

 Low cost due to wafer-level trimming

 Operates from 4 to 30 volts

 Less than 60 µA current drain

 Low self-heating, 0.08°C in still air

 Low impedance output, 0.1 Ω for 1 mA load

18

Connection diagram:

Fig.2.3.1 Connection diagram of c- type sensor

Typical performance characteristics:

19

Fig.2.3.2 Typical performance characteristics of c- type sensor

20

Applications:

 The LM35 can be applied easily in the same way as other integrated

circuit temperature sensors. It can be glued or cemented to a surface and its

temperature will be within about 0.01 degree celsius of the surface

temperature.

This presumes that the ambient air temperature is also the same as the

surface temperature; if the air temperature were much higher or lower than

the surface temperature, the actual temperature of the LM35 die would be at

an intermediate temperature between the surface temperature and the air

temperature. To minimize this problem be sure that the wiring to the LM35,

as it leaves the device, is held at the same temperature as the surface of

interest. The easiest way to do this is to cover up these wires with a bead of

epoxy which will ensure that the leads and wires are all at the same

temperature as the surface, and that the LM35 die’s temperature will not be

affected by air temperature.

The TO-46 can also be soldered to a metal surface or pipe without

damage. Of course in that case the V terminal of the circuit will be grounded

to the metal. Alternatively the LM35 can be mounted inside a sealed end

metal tube, and can be dipped into a bath or screwed into a threaded hole in

a tank. As with any IC, the LM35 and accompanying wiring and circuits

must be kept insulated and dry to avoid leakage and corrosion. This is

21

Especially true if the circuit may operate at cold temperatures where

condensation can occur.

These devices are sometimes soldered to a small light weight heat fin

to decrease the thermal time constant and speed up the response in slowly-

moving air. On the other hand a small thermal mass may be added to the

sensor, to give the steadiest reading despite small deviations in the air

temperature.

 Temperature to digital converter:

Fig.2.3.3 Temperature to digital converter (serial output)

22

MICROCONTROLLER
(89C52)

MICROCONTROLLER- AT89C52

The microcontroller used in our project is AT89C52. It has 8Kbytes of

flash memory which is not present in AT89C51.

DESCRIPTION:

The AT89C52 is a low power , high performance CMOS 8-bit

microcomputer with 8K bytes of Flash programmable and erasable read

only memory (PEROM). The device is manufactured using Atmel’s high

density nonvolatile memory technology and is compatible with the

industry- standard 80C51 and 80C52 instruction set and pinout . The on-

chip Flash allows the program memory to be reprogrammed in-system or

by a conventional nonvolatile memory programmer. By combining a

versatile 8-bit CPU with Flash on a monolithic chip , the Atmel

AT89C52 is a powerful microcomputer which provides a highly-flexible

and cost effective solution to many embedded control applications.

24

BLOCK DIAGRAM:

Fig.2.4.1 Block diagram of 89C52

The AT89C52 provides the following standard features:8k bytes of flash

256 bytes of ram, 32 I/O lines ,three 16-bit timers/counters, a six-vector

two level interrupt architecture, a full duplex serial port ,on –chip

oscillator , and clock circuitry . in addition , the AT89C52 is designed

25

with static logic for operation down to zero frequency and supports two

software selectable power saving modes. The idle mode stops the CPU

while allowing the RAM , timers/counters, serial port , and interrupt

system to continue functioning . The power down mode saves the RAM

contents but freezes the oscillator , disabling all other chip functions until

the next hardware reset.

Port 0

Port 0 is an 8-bit open drain bi-directional I/O port . As an output port ,

each written to port 0 pins , the pins can be used as high- impedance

inputs .

Port 0 can also be configured to be the multiplexed low-order

address/data bus during accesses to external program and data memory

.In this mode , P0 has external pull-ups.

Port 0 also receives the code bytes during . Flash programming and

outputs the code bytes during program verification . External pullups are

required during program verification .

Port 1

Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1

output buffers can sink /source four TTL inputs . when 1s are written to

port 1 pins , they are pulled high by the internal pull-ups and can be used

as inputs. As inputs , Port 1 pins that are externally being pulled low will

source current (Iil) because of the internal pull-ups .

26

In addition, P1.0 and P1.1 can be configured to be the timer/counter 2

external count input (P1.0/T2) and the timer/counter 2 trigger input

(P1.1/T2EX).

Port 1 also receives the low –order address bytes during flash

programming and verification.

TABLE 1. Alternate functions of port pin1

Port 2

Port 2 is an 8-bit bi-directional I/O port with internal pull-ups . The Port

2 output buffers can sink/source four TTL inputs . when 1s are written to

Port 2 pins ,they are pulled high by internal pull-ups and can be used as

inputs . As inputs , Port 2 pins that are externally being pulled low will

source current (Iil) because of the internal pull-ups .

Port 2 emits the high –order address byte during fetches from external

program memory and during accesses to external data memory that use

16- bit addresses (MOVX @DPTR). In this application , Port 2 uses

strong internal pull-ups when emitting 1s . During accesses to external

data memory that use 8-bit addresses (MOVX @ r1), Port 2 emits the

contents of the P2 special function register .

Port 2 also receives the high –order address bits and some control signals

during flash programming and verification.

27

Port 3

Port 3 is an 8-bit bi-directional I/O port with internal pull-ups .

The Port 3 output buffers can sink/source four TTL inputs .

When 1s are written to port 3 pins , they are pulled high by the internal

pull-ups and can be used as inputs. As inputs , Port 3 pins that are

externally being pulled low will source current (Iil) because of the pull-

ups .

Port 3 also serves the functions of various special features of the

AT89C51.

Port 3 also receives some control signals for Flash programming and

verification.

TABLE 2. Alternate functions of port pin3

RST

Reset input . A high on this pin for two machine cycles while the

oscillator is running resets the device .

Address latch enable is an output pulse for latching the low byte of the

address during accesses to external memory .

28

This pin is also the program pulse input (PROG) during flash

programming .In normal operation , ALE is emitted at a constant rate of

1/6 the oscillator frequency and may be used for external timing or

clocking purposes . Note , however , that one ALE pulse is skipped

during each access to external data memory .

If desired , ALE operation can be disabled by setting bit 0 of SFR

location 8EH. With the bit set , ALE is active only during a MOVX or

MOVC instruction . Otherwise , the pin is weakly pulled high . Setting

the ALE –disable bit has no effect if the microcontroller is in external

execution mode .

Program store enable is the read strobe to external program memory .

When the AT89C52 is executing code from external program

memory is activated twice each machine cycle , except

that activations are skipped during each access to external data

memory.

 External access enable . must be strapped to GND in order to

enable the device to fetch code from external program memory locations

starting at 0000H up to FFFFH.Note ,however , that if lock bit 1 is

programmed , will be internally latched on reset .EA should be strapped

to Vcc for internal program executions . This pin also receives the 12- volt

programming enable voltage (Vpp) during flash programming when 12-volt

programming is selected .

29

 XTAL1

Input to the inverting oscillator amplifier and to the internal clock

operating circuit.

 XTAL2

Output from the inverting oscillator amplifier .

SPECIAL FUNCTION REGISTERS:

A map of the on chip memory area called the special function register

(SFR) is shown in table . note that not all the addresses are occupied

addresses may not be implemented on the chip . Read accesses to these

addresses will in general return random data , and write accesses will

have an indeterminate effect .

User software should not write 1s to these locations , since they may be

used in future products to invoke new features .In that case , the reset or

inactive values of the new bits will always be 0.

30

Fig2.4.2 SFR register

Timer 2 Registers Control and status bits are contained in registers

T2CON and T2MOD for Timer 2 . The register pair (RCAP2H,RCAP2L)

are the capture /reload registers for timer 2 in 16-bit capture mode or 16-

bit auto –reload mode.

Interrupt Registers The individual interrupt enable bits are in the IE

register . Two priorities can be set for each of six interrupt sources in the

IP register .

31

TABLE 3. Timer /counter 2 control register

 DATA MEMORY

 The AT89C52 implements 256 bytes of on chip RAM . The upper 128

bytes occupy a parallel address space to the special function registers.

That means the upper 128 bytes have the same addresses as the SFR

space but are physically separate from SFR space . When an instruction

accesses an internal location above address 7FH, the address mode used

in the instruction specifies whether the CPU accesses the upper 128 bytes

of RAM or the SFR space . Instructions that use direct addressing access

SFR space .

For example , the following direct addressing instruction accesses the

SFR at location 0A0H(which is P2).

MOV 0A0H, #data

32

 Instructions that use indirect addressing access the upper 128 bytes of

RAM. For example , the following indirect addressing instruction , where

R0 contains 0A0H, accesses the data byte at address 0A0H, rather than

P2(whose address is 0A0H).

MOV @R0, #data

Note that stack operations are examples of the indirect addressing , so the

upper 128 bytes of data RAM are available as stack space.

TIMER 0 and 1:

Timer 0 and Timer 1 in the AT89C52 operate the same way as Timer 0

and Timer 1 in the AT89C51.

TIMER 2:

Timer 2 is a 16-bit Timer / counter that can operate as either a timer or an

event counter . The type of operation is selected by bit C/T2 in the SFR

T2CON .

Timer 2 has three operating modes :

1.capture

2. Auto-reload(up or down counting)

3.Baud rate generator.

The modes are selected by bits in T2CON . Timer 2 consists of two 8-bit

registers , TH2 and TL2 . In the timer function ,the TL2 register is

incremented every machine cycle . Since a machine cycle consists of 12

oscillator periods , the count rate is 1/12 of the oscillator frequency .

33

UART:

The UART in the AT89C52 operates the same way as the UART in the

AT89C51.

INTERRUPTS:

The AT89C52 has total of six interrupt vectors : two external interrupts

(INT0 and INT1), three timer interrupts (Timers 0,1, and 2), and the

serial port interrupt . These interrupts are shown in fig .

Each of these interrupt sources can be individually enabled or disabled by

setting or cleaning a bit in special function register IE. IE also contains a

global disable bit ,EA , which disables all interrupts at once.

Note that table shows that bit position IE.6 is unimplemented . In the

AT89C51, bit position IE.5 is also unimplemented . User software should

not write 1s to these bit positions , since they may be used in future AT89

products.

Timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2

in register T2CON. Neither of these flags is cleared by hardware when

the service routine is vectored to. In fact , the service routine may have to

determine whether it was TF2 or EXF2 that generated the interrupt , and

that bit will have to be cleared in software .

 The Timer 0 and Timer 1 flags , TF0 and TF1 , are set at S5P2 of

the cycle in which the timers overflow .The values are then polled by the

circuitry in the next cycle .However the Timer 2 flag , TF2, is set at S2P2

and is polled in the same cycle in which the timer overflows.

34

 TABLE 4. Interrupt enable register

Fig2.4.3 Interrupt sources

35

OSCILLATOR CHARACTERISTICS:

XTAL1 and XTAL2 are the input and output , respectively , of an

inverting amplifier that can be configured for use as on –chip oscillator as

shown in fig.

Either a quartz crystal or ceramic resonator may be used . To drive the

device from an external clock source , XTAL2 should be left

unconnected while XTAL1 is driven.

There are no requirements on the duty cycle of the external clock signal ,

since the input to the internal clocking circuitry is through a divide –by –

two flip-flop but maximum and minimum voltage high and low time

specifications must be observed.

Fig.2.4.4 Oscillator connection

36

GRAPHICAL USER
INTERFACE

 Screen before process

38

 when speed exceeds 2000rpm,motor of the vehicle gets off automatically

39

 Reply message to turn on the motor vehicle

40

 Message sent from the guard system when alcohol is detected

41

 CONCLUSION

CONCLUSION

 The problems that we are facing and the results of these problems .

The problems that we are facing due to the over speed and driving after

having alcohol are increasing desperately. In order to prevent these type of

problems our GSM guard system are very much useful in avoiding the

unnecessary vehicle accidents and it will safeguard the precious human life.

 At present in call taxi’s wacky talkies are used for knowing the

status of the vehicle. In future our project can be implemented in all types of

four wheelers for continuously monitoring the status of the vehicle and thus

preventing accidents.

43

APPENDIX

APPENDIX(1)-SCHEMATIC DIAGRAM OF THE PROJECT

45

APPENDIX(2)-CODING

**

#include<stdio.h>

#include<reg52.h>

#define ON 1

#define OFF 0

#define HIGH 1

#define LOW 0

#define LCD_DATA P2

sbit LCD_RS = P2^4;

sbit LCD_EN = P2^5;

#define uchar unsigned char

 #define ACK 0

#define NACK 1

#define ADDRTC 0xd0 /* I2C slave address */

#define DS1307 /* compile directive, modify as required */

bit once_speed,once_liquor,once_key,once_key_off,once_temp;

unsigned char drunken='0',keystatus='0';

 //---

 //rx 3^0

 //tx 3^1 //interrupts int0

//speed 3^3 //int1

46

sbit GO = P3^3;

sbit WRIT = P3^4;

 //interrupts int0

sbit alcohol_sensor= P3^6;

sbit recording1_1 =P3^7;

sbit car_stop =P0^0;

sbit buzzar =P0^1;

sbit car_key =P0^2;

sbit press_key1 =P0^3;

sbit sendsms =P0^4;

void readadc();

 bit chkbit;

 unsigned char tt;

 unsigned int sdelay;

 unsigned int longcut,store;

sbit scl = P0^6; /* I2C pin definitions */

sbit sda = P0^7;

void delayms(unsigned char dly);

void I2C_start();

void I2C_stop();

void I2C_write(unsigned char d);

unsigned char I2C_read(unsigned char);

void initialize();

void disp_clk_regs(void);

 47

void I2C_start() /* --- */

{

sda = 1; scl = 1; /* Initiate start condition */

sda = 0;

}

void I2C_stop() /* --- */

{

sda = 0; sda = 0; sda = 0; sda = 0; /* Initiate stop condition */

scl = 1; scl = 1; sda = 1;

}

void I2C_write(uchar d) /* ----------------------------- */

{

uchar i;

scl = 0;

for (i = 1; i <= 8; i++)

{

sda = (d >> 7);

scl = 1;

d = d << 1; /* increase scl high time */

scl = 0;

}

sda = 1; /* Release the sda line */

scl = 0;

scl = 1;

if(sda) printf("Ack bit missing %02X\n",(unsigned int)d);

48

scl = 0;

}

uchar I2C_read(uchar b) /* ----------------------------------- */

{

uchar d, i;

sda = 1; /* Let go of sda line */

scl = 0;

for (i = 1; i <= 8; i++) /* read the msb first */

{

scl = 1;

d = d << 1;

d = d | (unsigned char)sda;

scl = 0;

}

sda = b; /* Hold sda low for acknowledge */

scl = 0;

scl = 1;

if(b == NACK) sda = 1; /* sda = 1 if next cycle is reset */

scl = 0;

sda = 1; /* Release the sda line */

return d;

}

void initialize() /* -- initialize the time and date using entries from stdin --

*/

/* Note: NO error checking is done on the user entries! */

{

49

uchar yr, mn, dt, dy, hr, min, sec;//, day;

I2C_start(); /* The following Enables the Oscillator */

I2C_write(ADDRTC); /* address the part to write */

I2C_write(0x00); /* position the address pointer to 0 */

I2C_write(0x00); /* write 0 to the seconds register, clear the CH bit */

I2C_stop();

printf("Enter the year (0-99): \n");

scanf("%bx", &yr);

printf("Enter the month (1-12): \n");

scanf("%bx", &mn);

printf("Enter the date (1-31): \n");

scanf("%bx", &dt);

printf("Enter the day (1-7): \n");

scanf("%bx", &dy);

printf("Enter the hour (1-23): \n");

scanf("%bx", &hr);

hr = hr & 0x3f; /* force clock to 24 hour mode */

printf("Enter the minute (0-59): \n");

scanf("%bx", &min);

printf("Enter the second (0-59): \n");

scanf("%bx", &sec);

I2C_start();

I2C_write(ADDRTC); /* write slave address + write */

I2C_write(0x00); /* write register address, 1st clock register */

I2C_write(sec);

I2C_write(min);

I2C_write(hr);

50

I2C_write(dy);

I2C_write(dt);

I2C_write(mn);

I2C_write(yr);

#if defined DS1307 || defined DS1338

{

I2C_write(0x10); /* enable sqwe, 1Hz output */

}

#endif

I2C_stop();

}

uchar Sec, Min, Hrs, Dte, Mon, Day, Yr, mil, pm;

void disp_clk_regs() /* --- */

{

//printf("Yr Mn Dt Dy Hr:Mn:Sc\n");

if(1) /* Read & Display Clock Registers */

 {

 I2C_start();

 I2C_write(ADDRTC); /* write slave address + write */

 I2C_write(0x00); /* write register address, 1st clock register */

 I2C_start();

 I2C_write(ADDRTC | 1); /* write slave address + read */

 Sec = I2C_read(ACK); /* starts w/last address stored in register

 pointer */

51

]Min = I2C_read(ACK);

 Hrs = I2C_read(ACK);

 Day = I2C_read(ACK);

 Dte = I2C_read(ACK);

 Mon = I2C_read(ACK);

 Yr = I2C_read(NACK);

 I2C_stop();

 if(Hrs & 0x40)

 mil = 0;

 else

 mil = 1;

 if(1) /* display every time seconds change */

 {

 if(mil)

 {

// printf("%02bX/%02bX/%02bX %2bX ", Yr, Mon, Dte, Day);

 printf("<%02bX:%02bX-%02bX>", Hrs, Min, Sec);

 }

 else

 {

 if(Hrs & 0x20)

 pm = 'A';

 else

 pm = 'P';

 Hrs &= 0x1f; /* strip mode and am/pm bits */

// printf("%02bx/%02bx/%02bx %02bx", Yr, (Mon & 0x1f), Dte, Day);

52

printf(" %<02bx:%02bx-%02bx> %cM", Hrs, Min, Sec, pm);

 }

 }

}

}

 void sleep()

{

 delayms(250);

 delayms(250);

 delayms(250);

 delayms(250);

}

void lcdinit();

void Lcd_Clear();

void Lcd_WriteChar(unsigned char b);

void Lcd_WriteString(unsigned char *);

void LcdAddress_Position(unsigned char,unsigned char);

void Lcd_DisplayNumber(unsigned int a, unsigned char nodig);

void ext0intr(void);

code const unsigned char Data1[]= {" Automatic Car "};

code const unsigned char Data2[]= {" Monitor&Control"};

code const unsigned char Data3[]= {" K.C.T "};

code const unsigned char Data7[]= {"alcohol detected"};

53

code const unsigned char Data8[]= {"SPEED detected "};

code const unsigned char Datax[]= {"1234567890abcdef"};

code const unsigned char Data9[]= {"rpm: S: "};

code const unsigned char Datab[]= {"alcohol detected"};

code const unsigned char Datac[]= {"Car Monitor T: "};

code const unsigned char Datas[]= {"Car started: "};

code const unsigned char Datat[]= {"Car stopped: "};

code const unsigned char Datate[]= {"HIGH TEMPERATURE"};

code const unsigned char Datad[]= {" GUIDED BY "};

code const unsigned char Datae[]= {"Mr.VENKATESH B.E"};

unsigned char ddata[4]={" "};

unsigned char rx_data[4]={" "};

unsigned char i;

 unsigned int alcohol,rain;

 unsigned char adc,adc2=0,gasleaked=0;

 unsigned int adcount=0;

void main(){

P3=0XFF;

buzzar=1;

car_stop=0;

 once_speed=0;

 once_liquor=0;once_key=0;once_key_off=0;

 once_temp=0;

54

 SCON = 0x50; /* SCON */ /* setup serial port control */

 TMOD = 0x21; /* TMOD */ /* hardware (2400 BR@12MHZ)*/

 TCON = 0x69; /* TCON */

 TH1 = 0xE8; /* TH1 */

 ES=1;

 ES=0;

 TI=1;

 printf ("\n\nC CLUSTER program\n\n");

 ES=1;

 EX0 = 1; // Enable External Interrupt 0

 IT0 = 1; // Set Falling Edge for EX0

 EA = 1;

// EX1 = 1; // Enable External Interrupt 0

// IT1 = 1; // Set Falling Edge for EX0

 lcdinit();

 Lcd_Clear();

 LcdAddress_Position(1,0);

 Lcd_WriteString(Data1);

 sleep();

 LcdAddress_Position(2,0);

 Lcd_WriteString(Data2);

 sleep();

 LcdAddress_Position(2,0);

 Lcd_WriteString(Data3); //sec

 sleep();

 Lcd_Clear();

55

LcdAddress_Position(1,0);

 Lcd_WriteString(Datad); //sec

 LcdAddress_Position(2,0);

 Lcd_WriteString(Datae); //sec

 sleep();

 Lcd_Clear();

 LcdAddress_Position(1,0);

 Lcd_WriteString(Data1);

 LcdAddress_Position(2,0);

 Lcd_WriteString(Data9);

 LcdAddress_Position(1,0);

 Lcd_WriteString(Datac);

 ES=0;

 TI=1;

// initialize();

 ES=1;

 TR0=1;

 ET0=1;

 adcount=0;

 buzzar=1;

 while(1)

 {

 adcount++;

 if (adcount==20)

 {

 adcount=0;

 EA=0;

56

 readadc();

 EA=1;

 }

 LcdAddress_Position(1,12);

 Lcd_DisplayNumber(adc2=adc*2,3);

 //--------------------------

 LcdAddress_Position(2,13);

 Lcd_DisplayNumber(longcut,3);

 if(chkbit==1)

 {

 LcdAddress_Position(2,4);

 Lcd_DisplayNumber(store,4);

 chkbit=0;

 if((store>2000)&&(once_speed==0))

 {

 ES=0;

 TI=1;

 printf("$%d&%d@%c%c#",

 store,(unsigned int) adc2,drunken,keystatus);

 disp_clk_regs();

 ES=1;

 once_speed= 1;

 LcdAddress_Position(1,0);

57

Lcd_WriteString(Data8);

 buzzar=0;

 car_stop=0;

 sleep();

 sleep();

 sleep();

 sleep();

 buzzar=1;

 }

 }

 if((car_key==0)&&(once_key==0))

 {

 keystatus='1';

 once_key=1;

 once_key_off=0;

 car_stop=1;

 LcdAddress_Position(1,0);

 Lcd_WriteString(Datas);

 ES=0 ;

 TI=1;

 printf("$%d&%d@%c%c#",

 store,(unsigned int)adc2,drunken,keystatus);

58

 disp_clk_regs();

 ES=1;

 }

 if((car_key==1)&&(once_key_off==0))

 {

 keystatus='0';

 once_key_off=1;

 once_key=0;

 car_stop=0;

 LcdAddress_Position(1,0);

 Lcd_WriteString(Data);

 ES=0;

 TI=1;

 printf("$%d&%d@%c%c#",

 store,(unsigned int)adc2,drunken,keystatus);

 disp_clk_regs();

 ES=1;

 }

 if((alcohol_sensor==0)&&(once_liquor==0))
 {

 drunken='1';

 once_liquor=1;

 buzzar=0;

 car_stop=0;

 LcdAddress_Position(1,0);

59

 Lcd_WriteString(Data7);

 ES=0;

 TI=1;

 printf("$%d&%d@%c%c#",

 store,(unsigned int)adc2,drunken,keystatus);

 disp_clk_regs();

 ES=1;

 sleep();

 sleep();

 sleep();

 sleep();

 buzzar=1;

 }

 if((adc2>50)&&(once_temp==0))

 {

 once_temp=1;

 buzzar=0;

 car_stop=0;

 LcdAddress_Position(1,0);

 Lcd_WriteString(Datate);

 ES=0;

 TI=1;

 printf("$%d&%d@%c%c#",

 store,(unsigned int)adc2,drunken,keystatus);

 disp_clk_regs();

 ES=1;

60

 sleep();

 sleep();

 sleep();

 sleep();

 buzzar=1;

 }

 if(press_key1==0)

 {

 once_speed=0;

 once_liquor=0;

 once_key=0;

 once_key_off=0;

 once_temp=0;

 sleep();

 sleep();

 sleep();

 sleep();

 sleep();

 sleep();

 sleep();

 }

 if(sendsms==0)

 {

 ES=0;

 TI=1;

 printf("$%d&%d@%c%c#",

61

 store,(unsigned int)adc2,drunken,keystatus);

 disp_clk_regs();

 ES=1;

 sleep();

 sleep();

 sleep();

 sleep();

 sleep();

 sleep();

 sleep();

 sleep();

 }

 }

 }

 void ext1intr(void) interrupt 2 using 1

{

}

void ext0intr(void) interrupt 0

{

longcut++;

}

void tm0intr(void) interrupt 1

{

 sdelay++;

 if(sdelay==100)

 {

 sdelay=0;

62

 store=longcut;

 longcut=0;

 chkbit=1;

 }

 }

 void serial_isr() interrupt 4

{ TI=0;

 if(RI)

 {

 RI = 0;

 rx_data[i] = SBUF;

 if(rx_data[0] == '!')

 {

 i++;

 if(i==4)

 {

 i=0;

 rx_data[0]==0;

 if (rx_data[3]=='*')

 {

 if(rx_data[1]=='0')

 buzzar =1;

 else buzzar =0;

 if(rx_data[2]=='0')

 car_stop =0;

63

 else car_stop =1;

 rx_data[0]==0;

 }

 }

 }

 }

}

void lcdinit()

{

 LCD_RS = 0; // write control bytes

 delayms(15); // power on delay

 Lcd_WriteChar(0x02); //PORTD = 0x02; // attention //4 bit mode

 delayms(5);

 Lcd_WriteChar(0x02);

 delayms(100);

 Lcd_WriteChar(0x02);

 delayms(5);

 Lcd_WriteChar(0x28); // 4 bit mode,5*7 matrix,2 line mode

 Lcd_WriteChar(0x08); // display off,underline off, blink off

 Lcd_WriteChar(0x0F); // display on, blink curson on, underline on

 Lcd_WriteChar(0x06); // display shift off,increment

}

void Lcd_WriteChar(unsigned char b)

{

64

 LCD_DATA = (LCD_DATA & 0xF0) | (b >> 4);

 LCD_EN = 1;

 delayms(1);

 LCD_EN = 0;

 LCD_DATA = (LCD_DATA & 0xF0) | (b & 0x0F);

 LCD_EN = 1;

 delayms(1);

 LCD_EN = 0;

}

void LcdAddress_Position(unsigned char LineNo, unsigned char Position)

{

 LCD_RS = 0;

 if(LineNo == 1)

 {

 Lcd_WriteChar(0x80 + Position);

 }

 if(LineNo == 2)

 {

 Lcd_WriteChar(0xC0 + Position);

 }

 delayms(1);

}

void Lcd_Clear()

{

 LCD_RS = 0;

65

 Lcd_WriteChar(0x01);

 delayms(5);

}

void Lcd_WriteString(unsigned char *a)

{

 LCD_RS=1;

 while(*a)

 Lcd_WriteChar(*a++);

}

void Lcd_DisplayNumber(unsigned int a, unsigned char nodig)

{

unsigned char temp;

 if (a!=0)

 {

 ddata[0]=((a%10)+0x30);

 a=a/10;

 ddata[1]=((a%10)+0x30);

 a=a/10;

 ddata[2]=((a%10)+0x30);

 a=a/10;

 ddata[3]=((a%10)+0x30);

 a=a/10;

 }

 else

 {

66

 ddata[0]=0x30;

 ddata[1]=0x30;

 ddata[2]=0x30;

 ddata[3]=0x30;

 }

 LCD_RS=1;

 for (temp=1;temp<=nodig;temp++)

 {

 Lcd_WriteChar(ddata[nodig-temp]);

 }

}

void readadc()

 {

 WRIT=0;

 WRIT=1;

 WRIT=1;

 adc=0;

 while(GO==1);

 WRIT=0;

 adc= P1;

 WRIT=1;

 }

67

void delayms(unsigned char dly)

{

 while(dly--)

 {

 B = 125;

 while(B--);

 }

}

APPENDIX(3)-CODING – VISUAL BASICS

Dim strData As String

Private Sub Command1_Click()

 Dim msg As String

 msg = "M1:OFF-M2:OFF"

 Call ReceiveMessage(122, msg)

End Sub

Private Function ReceiveMessage(ph As String, str As String)

 Dim Dev1 As Integer

 Dim Dev2 As Integer

 Dim Dev1Status As String

68

 Dim Dev2Status As String

 Dim MsgFormat As String

 Dim DIDX As Integer

 If Len(Trim(str)) < 15 And InStr(1, Trim(str), "-", vbTextCompare) > 0

Then

 DIDX = InStr(1, str, "-", vbTextCompare)

 If Mid(str, 1, 2) = "M1" Then

 If Mid(str, 4, (DIDX) - 4) = "ON" Then

 Dev1Status = "ON"

 Dev1 = 1

 ElseIf Mid(str, 4, (DIDX) - 4) = "OFF" Then

 Dev1Status = "OFF"

 Dev1 = 0

 End If

 End If

 If Mid(str, DIDX + 1, 2) = "M2" Then

 If Mid(str, DIDX + 4, (Len(str) - (DIDX + 4)) + 1) = "ON" Then

 Dev2Status = "ON"

 Dev2 = 1

 ElseIf Mid(str, (DIDX + 4), (Len(str) - (DIDX + 4)) + 1) = "OFF"

Then

 Dev2Status = "OFF"

 Dev2 = 0

 End If

 End If

 MsgFormat = "SPEAKER: " & Dev1Status & " MOTOR:" &

Dev2Status

 Call StoreReceivedMessage(ph, MsgFormat)

69

 Dim DS As String

 DS = "!" & CStr(Dev1) & CStr(Dev2) & "*"

 MSComm1.Output = DS

 Else

 lblStatus.Caption = "Received Message Format is Not Clear."

 End If

End Function

Private Sub Form_Load()

 portnumber = 2

 MobilePort = 1

 phNumber = "9994416670"

 Call InitializePort

 lvMessages.ListItems.Clear

 lvMessages.ColumnHeaders.Clear

 lvMessages.View = lvwReport

 lvMessages.ColumnHeaders.Add 1, , "Message Details", 5700

 lvMessages.ColumnHeaders.Add 2, , "Date/Time", 2400

 lvReceivedMsg.ListItems.Clear

 lvReceivedMsg.ColumnHeaders.Clear

 lvReceivedMsg.View = lvwReport

 lvReceivedMsg.ColumnHeaders.Add 1, , "Phone Number", 1800

 lvReceivedMsg.ColumnHeaders.Add 2, , "Message", 4250

 lvReceivedMsg.ColumnHeaders.Add 3, , "Date/Time", 2200

End Sub

70

Private Sub InitializePort()

 With MSComm1

 If .PortOpen = True Then .PortOpen = False

 .CommPort = portnumber

 .Settings = "1200,N,8,1"

 .InputLen = 0

 .RThreshold = 1

 .SThreshold = 1

 .InputMode = comInputModeText

 .InBufferSize = 256

 .OutBufferSize = 256

 .Handshaking = comNone

 .PortOpen = True

 End With

End Sub

Private Sub Form_Unload(Cancel As Integer)

 If Mobile1.State <> 0 Then

 Mobile1.Close

 End If

End Sub

Private Sub mnuConnect_Click()

 If ConnectCellPhone = True Then

 lblStatus.Caption = "Cell Phone Connected..."

 Else

 lblStatus.Caption = "Cell Phone not Connected..."

 End If

71

End Sub

Private Sub mnuDisconnect_Click()

If Mobile1.State <> 0 Then

 Mobile1.Close

 lblStatus.Caption = "Mobile Disconnected..."

End If

End Sub

Private Sub mnuExit_Click()

 End

End Sub

Private Sub mnuPort_Click()

 Form3.Show vbModal

 Call InitializePort

End Sub

Private Function ConnectCellPhone() As Boolean

Mobile1.Close

Mobile1.ComNumber = MobilePort

Mobile1.ConnectionMode = 0 'DAU-9P

If Mobile1.Open = True Then ConnectCellPhone = True Else

ConnectCellPhone = False

End Function

72

Private Function SendMessage(sMsg As String) As Boolean

Dim SendFlag As Boolean

Mobile1.SMSCenterNumber = Mobile1.GetDefaultSMSCenterNumber

SendFlag = Mobile1.SendSMSMessage(phNumber, sMsg, 167, False, False,

"")

If SendFlag Then

 SendMessage = True

Else

 SendMessage = False

End If

End Function

Private Function StoreMessage(msg As String)

 lvMessages.ListItems.Add 1, , msg

 lvMessages.ListItems(1).ListSubItems.Add 1, , Now

End Function

Private Function StoreReceivedMessage(phNumber As String, msg As

String)

 lvReceivedMsg.ListItems.Add 1, , phNumber

 lvReceivedMsg.ListItems(1).ListSubItems.Add 1, , msg

 lvReceivedMsg.ListItems(1).ListSubItems.Add 2, , Now

End Function

Private Sub Mobile1_OnSMSMessageReceived(ByVal Index As Long,

ByVal Time As Double, ByVal Text As String, ByVal PhoneNumber As

String, ByVal HasPicture As Boolean)

 Call ReceiveMessage(PhoneNumber, Trim(Text))

End Sub

73

Private Sub MSComm1_OnComm()

 Select Case MSComm1.CommEvent

 Case comEvReceive

 Do

 strData = strData & MSComm1.Input

 Loop Until Mid(strData, Len(strData), 1) = "#"

 End Select

 If InStr(1, strData, "$", vbTextCompare) > 0 And InStr(1, strData, "#",

vbTextCompare) > 0 Then

 Debug.Print strData

 MessageDetails (strData)

 Else

 Debug.Print strData

 strData = vbNullString

 Exit Sub

 End If

End Sub

Private Function MessageDetails(sData As String) As Boolean

strData = ""

Dim Speed As String

Dim Temp As String

Dim Alcohol As String

Dim KeyPosition As String

Dim IDX As Integer

Dim IDX1 As Integer

74

Dim Message As String

If InStr(1, sData, "&", vbTextCompare) > 0 And InStr(1, sData, "@",

vbTextCompare) > 0 Then

 IDX = InStr(1, sData, "&", vbTextCompare)

 IDX1 = InStr(1, sData, "@", vbTextCompare)

 Speed = Mid(sData, 2, IDX - 2)

 Temp = Mid(sData, IDX + 1, (IDX1 - IDX) - 1)

 If Mid(sData, IDX1 + 1, 1) = "0" Then Alcohol = "No Alcohol." Else:

Alcohol = "Alcohol Used."

 If Mid(sData, IDX1 + 2, 1) = "0" Then KeyPosition = "Vehicle Key Off."

Else: KeyPosition = "Vehicle Key On."

Else

 MsgBox "Message Not Properly Received. Please send it Again"

End If

Message = "Speed: " & Speed & ". Temperature: " & Temp & ". " &

Alcohol & " " & KeyPosition

If SendMessage(Message) = True Then

 Call StoreMessage(Message)

 lblStatus.Caption = "Message Sent Successfully..."

Else

 lblStatus.Caption = "Message Sent Failed..."

End If

End Function

75

Port Settings:

Private Sub cmdSavePort_Click()

If cboPort.Text <> vbNullString And cboMobilePort.Text <> vbNullString

And txtPh.Text <> vbNullString Then

 portnumber = Val(cboPort.Text)

 MobilePort = Val(cboMobilePort.Text)

 phNumber = txtPh.Text

 Unload Me

Else

 MsgBox "Please fill all the details."

 Exit Sub

End If

End Sub

Private Sub Form_Load()

Dim i As Integer

cboPort.Clear

txtPh.Text = "9994416670"

For i = 1 To 4

 cboPort.AddItem (i)

 cboMobilePort.AddItem (i)

Next

End S

Module

Public portnumber As Integer

Public MobilePort As Integer

Public phNumber As String

76

APPENDIX(4)-DATA SHEETS

AT89C52

The microcontroller used in our project is 89C52 because it has 8Kbytes of

flash memory compared to 89C51.The DC and AC characteristics of 89C52

are given below:

FEATURE:

1. Compatible with Mcs-51 products.

2. 8k Bytes of in system reprogrammable flash memory.

3. Endurance:1,000 write/Erase Cycles.

4. Fully static operation: 0 Hz to 24 MHz.

5. Three- level program memory lock.

6. 256* 8- bit internal RAM.

7. 32 programmable I/O lines.

8. Eight interrupt sources.

9. Three 16-bit timers/counters.

10. Programmable serial channel.

11. low power idle and power down modes.

PIN CONFIGURATION:

77

AT89C52

78

AT89C52

79

80

81

82

83

LM 35 PRECISION CENTIGRADE TEMPERATURE SENSOR

84

85

86

87

88

REFERENCES

1. A book on “89C52 MICROCONTROLLER “ by John Peatman.

2. Data sheets of various IC’S.

3. www.carbodyengineering.com

4. www.visualbasic.com

89

