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ABSTRACT

The ultimate aim of turning is to remove workpiece material in a single cut rather than a
lengthy grinding operation in order to reduce processing time, production cost, surface
roughness and setup time and to remain competitive. The process of turning offers many
potential benefits compared 10 conventional grinding operation. In this work, tool wear,
tool life, quality of surface turned, and amount of material removed are also predicted.
Similarly, three process parameters (cutting speed, feed, and depth of cut) were identified
for optimization subjected to realistic process constraints. This optimization problem
formulated as a multi-objective, multi-variable, and non-linear programming problems.
Several conventional techniques had been suggested in the literature for solving this
problem. But these techniques are not robust and take lot of time to find the global
optimum and are difficult to understand and implement. In order to overcome the
difficulties with conventional techniques, the new techniques called Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO) Techniques are implemented
in this work. PSO is a simple and powerful technique based on the concept of social
interaction to problem solving. In PSO, a swarm search of ‘n’ individuals communicate
cither directly or indirectly with one another for getting the search direction. In ACO
studies, an artificial system that take inspiration from the behavior of real ant colonies
and which is used to solve discrete optimization problems. The proposed algorithm starts
with 20 particles (solutions) and search for the new ones by updating the velocities.
Maximum of 500 iterations were performed and the solutions were obtained. Program
has been written using C language. The solution obtained by this procedure was found to

be superior. The computational effort is very less and easy to implement.



Spihayd smaab.

soLsllas péssrl Gpréab Qarfé S Gureflueme aCGr sLea Cat g
fé@sd D Qe o pusd eofleow wHpmbd CEry@empouner  UTLY
Qpfwaperp dleny ey papawual_ Gopsas GuID.

sLFd (pop Soreirigh wepawal_ U sdlu vesisenar GQupmeTarg.
85 ield @o Gsluomand, G gpudar  Qummafldr Gopuriy srbd 10 H b,
Bi@h Gureflucid e @mansgid gl nue Garargl. 2iGs wrglfl apeim
QuymbLLfadr g lipamoCragassns LfiGerfléstiuiLg. @bs pligamoGeage
gpiiafld - ERET 6, wég-Cauflus e whpd  Hred-afefuy L Crrdlymg.hi

2 (HeuT&sUUL L gl

ue  UeoCGrage LIHH wapsdr Pasdusdlad splucpeararg, 2, RAMTED
@bwrpmy peepadr aaerd Lflba Qardraush@l, BOLPEPUILGSHUSHESD
sip.anb whpd aflerew sar@Ulnd8 Fs TR DjeTmal B(CEYT Gesrrd‘f@m.

@uiirssemanimear Qouée L umigdld  dvaumfd  pligeoGrages  HHID
YR (L e 3, L1iq- o0 CF agen SpEW (P DSET QL. Spliafié
o LQurdsstiu BeTarg. UMTgdld  deaumin SpligenGsage  GTaTLg| erafhu
whgd auedlewwre (WPEDUTGLD. @z sapsd Qpmfy erep Gamumig. 6
opptuaLud Qrudu@goengb. G wepulld g cveurfd g GCsbsew
feovsaow  Sflw " aveunfbaemer CprywraGeun, wenppawrsGeaur Qsm_iLy
Qsmer@Epd. e ameaf SligewGeagar  peopuld &6 shanadls
DIEPOLILITENS Qe smaal adler pLay sl gpon ednEpamial Qaram(
Gupeagu pUigenoCrage Lrésmearsemer pés smgwg. Copsmgu si@erflsd
Bmug Oendyesedr 2 rblss Lyl per@amar Gy Grafliss Qarerdlpg.
oFBULsONE BEIN  HSETEET ey A s@n. A GomGagy vwaLESH
yGrrarmbd  erapsliuBeTerg. @owapuilarrd  ghuBD aflnarey  (aflenL)
o wiarerg. Bbepopsmea BbapapluBsHag craflg), whHpd seorerfuller
uiig lsa|h Genpey.



ACKNOWLEDGEMENT

The author grateful to her guide Prof.T.Kannan, Assistant Professor of Mechanical
Engineering, Kumaraguru College of Technology, Coimbatore for his excellent, utmost
motivation, valuable advice, untiring  support,  timely suggestion, constant
encouragement, enthusiasm, relentless patience, and inspiration throughout the study,

holding in all the places.

The Author is also grateful to pr. N. Gunasekaran , Professor of Mechanical

Engineering for his valuable suggestions and timely help towards her project.

The Author expresses her deep gratitude to Dr.JosephV.Thanikal, Principal,
Kumaraguru College of Technology , Coimbatore for patronizing her, besides providing

all assistance.

The Author owes her immense gratitude and thanks to Dr.P.Palanisamy, Assistant
Professor of Mechanical Engineering, Kumaraguru College of Technology, Coimbatore
for his valuable guidance, encouragement and support during the entire course of this

project.

The Author also expresses her sincere thanks to Dr.R.Saravanan, Head of the
Department of Mechatronics Engineering for his valuable suggestions and timely help

towards her project.

The Author also expresses her sincere thanks to the Faculty and Staff members, those

who helped in carrying out the project work.



CONTENTS
Title

Certificate

Abstract

Acknowledgement

Contents

List of Tables

List of Figures / Photos

List of Symbols & Abbreviations

CHAPTER-1 INTRODUCTION

1.1. Tuming Process

1.2. Design of Experiments

1.3. Particle Swarm Optimization
1.4. Ant Colony Optimization
1.5. Importance of Project

CHAPTER-2 LITERATURE SURVEY

2.1 Introduction
2.2. Selection of Machining Parameters
2.3. About Researchers Explanation

CHAPTER-3 OPTIMIZATION TECHNIQUES

3.1. Introduction

3.2. Need for Optimization

3.3. Types of Optimization Techniques

34. Types of Optimization Problems

3.5. Optimization Techniques — An Overview

CHAPTER-4 DESIGN OF EXPERIMENTS

4.1. Introduction

Page No.
i

i

vii
xi
X1x

xxi

W M R

10
11

16



42.

4.3,

4.4,

4.5.

4.6.

4.7.

4.38.

49.
4.10.
4.11.

412.
4.13.

48.1.
4.38.2.
4.8.3.

4.11.1

4.13.1.
413.2.
4.13.3.
4.13.4.
4.13.5.
4.13.6.
413.7.
4.13.8.

Purpose of Experimentation

Design of Experiments

Design of Experiment Process
Response Surface Methodology
Regression Equation

Objective Function

Constraints

Surface Roughmness

Tool Life

Cutting Forces

Chosen Input Parameters

Chosen Output Parameters

Experimental Details & Specifications
Aluminum

Experimental Work

Experimental Design Procedure

Identification of Factors and Responses

Finding the Limits of the Process Variables
Development of Design Matrix

Conducting the Experiments as Per Design Matrix
Recording the Responses

Development of Mathematical Model

Checking the Adequacy of the Developed Models
Conducting the Conformity Tests

CHAPTER-5 PARTICLE SWARM OPTIMIZATION

5.1.
5.2

Introduction

Background of Artificial Life

16

16

17

18

19

19

19
19
19
20
21
21
21
25
25
25
25
26
26
28
28
28
31
31

33
33



5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

5.2.1.

Bird Flocking

Particle Swarm Optimization Technique

Algorithm of PSO

PSO Parameters Control
Particle Swarm Algorithm
Objective Function
Formulas Used

Results of PSO

CHAPTER-6 ANT COLONY OPTIMIZATION

6.1. Introduction
6.2. Ant Colony Algorithm
6.2.1. Schemes of the Ant Colony Algorithm
6.2.2. Distribution of Ants
6.2.3. Global Search
6.2.3.1 Crossover
6.2.3.2  Mutation
6.2.3.3  Trial Diffusion
6.2.4. Local Search
6.2.5. Algorithm
6.2.6. Results of ACO
CHAPTER-7 CONCLUSION

REFERENCES

34
34
35
35
37
39
39
40

42
43
48
48
48
48
50
50
50
51
53

55



Table
3.1
4.1
42

43
4.4

5.1

LIST OF TABLES

Title
Summary of Machining Optimization Techniques
Limits of Parameters
Design Matrix and the Observed Values of
Machining Parameters
Calculated Regression Coefficients
Design Matrix and the Predicted Values of
Machining Parameters
Sample Results of PSO

Page No.
13
26

27
29

30
40



LIST OF FIGURES

Figure Title Page No.
4.1 Cutting Forces Acting on a Tool 20
42 PSG CNC 110 Lathe 22
43 Turned Components 22
4.4 Experimental Setup 23
5.1 Flowchart of PSO Algorithm 38
52 PSO - Cost Curve 40
6.1 Concept of Ant Colony Algorithm 43
6.2 Representation of Superior Solutions and

Inferior Solutions 48
6.3 A Representation of N-G Parents

& G Child 49
6.4 Distribution of Ants for Local & Global Search 49
6.5 Flowchart of ACO Algorithm 52

6.6 ACO — Cost Curve 53



LIST OF SYMBOLS

Y - Dependent Variable
x - Independent Variable
¢ - Regression Residual
X, - Cutting Speed
X; - Feed
X3 - Depth of Cut
v[] - Particle Velocity
present|[] - Current Particle
pbest[] - Best Solution among Each Particle
gbest[] - Global Best
rand( ) - Random Number between ( 0,1)
o - Inertia Weights
¢l & c2 - Learning Factors
Ra - Surface Roughness
Fc - Cutting Force
P - Power
T - Tool Life
Rag, - Target Value for the Surface roughness
Femin - Target Value for the Cutting Force
Puin - Target Value for the Power
Toin - Target Value for the Tool Life
R - Maximum Step Size
T - Ratio of Current Iteration Number to Total Number
of Iterations
b - Positive Parameter
i - Region Index
¥ - Evaporation Rate
“1; (k) - Pheromone Trial
i (t) - Trial Associated with Solution at Time t

wl to w4 - Weights to each Response



LIST OF ABBREVIATIONS

DNA - Di Nucleic Acid
PSO - Particle Swarm Optimization
ACO - Ant Colony Optimization
DOE - Design of Experiments
RA - Regression Analysis
CNN - Computational Neural Networks
ANOVA - Analysis of Variance
COF - Combined Objective Function

CO - Combinational Optimization



CHAPTER I

INTRODUCTION



1.1 TURNING PROCESS

Tumning produces solids of revolution that can be tightly toleranced because of the
specialized nature of the operation. Turning is performed on a machine called a lathe in
which the tool is stationary and the part is rotated. Workpieces, large and small can be
machined in one setup through multi-tasking capabilities on single- and multiple-spindle
machines. For larger workpieces, workhorse engine lathes, vertical turning centers, and a
new generation of Computer Numerical Control lathes deliver the required power and

accuracy. Automation is provided by bar feeders, robots, and pallet delivery systems.

1.2 DESIGN OF EXPERIMENTS

Design of experimenté is a collection of procedures used to create a set of design
samples. Statistical design of experiments involves the process of planning and designing
an experiment so that appropriate data can be collected and then analyzed by statistical
methods. Application areas include economic parameter analysis in an open market
environment, in beach nourishment, in Di Nucleic Acid (DNA) sequence assembly, in

biotechnology and health informatics, in management, energy and the sciences etc,.

1.3 PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization is similar to evolutionary computation techniques in that a
population of potential solutions to the optimal problem under consideration is used to
probe the search space. Each potential solution is assigned a randomized velocity, and the
potential solutions called particles correspond to individuals. Application areas of Particle
Swarm Optimization include water quality, in power system operations, in stock markets,
in intensity-modulated radiotherapy planning, in sensor networks, in signal detection and

blind extraction etc,.

1.4 ANT COLONY OPTIMIZATION
Ant Colony Optimization (ACO) is a paradigm for designing metaheuristic algorithms
for combinatorial optimization problems. The ant colony optimization algorithm is a

probabilistic technique for solving computational problems which can be reduced to



finding good paths through graphs. They are inspired by the behavior of ants in finding
paths from the colony to food. Application areas include routing in telecommunication
networks, in vehicle routing problems, routing in wireless sensor networks, in 2D and 3D

hydrophobic polar protein folding problem, in software test data generation etc,.

1.5 IMPORTANCE OF THE PROJECT

Optimum machining parameters are of great concern in manufacturing environments,
where economy of machining operation plays a key role in competitiveness in the global
market. Optimization analysis of the machining process is usually based on minimizing
production cost, minimizing production rate, or obtaining the finest possible surface
finish by using the empirical relationships between tool life and the operating parameters.
For solving machining optimization problems, various conventional techniques had been
used so far that have created problems when applied to turning process. To overcome the
above problems, Particle swarm and Ant colony optimization techniques are used in this

work. Moreover, PSO and ACO converge to the global optimal solutions at a faster rate.
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2.1 INTRODUCTION

Recently different methods have been reported in the literature to optimize the machining
parameters using various non-conventional methods. A number of researchers have dealt
with the optimization of machining parameters. The tuming operation was considered by
many researchers and starting from graphical methods to geometric programming

methods have been used to determine the optimum speed and feed.
2.2 SELECTION OF MACHINING PARAMETERS

These include - A simplified approach to optimum selection of machining parameters,
machining economics and industrial data manuals, optimization of the constrained
machining economics problem by geometric programming, a probabilistic approach to
determination of the optimum cutting conditions and machining parameters as cutting
speed, feed and depth of cut with constrains as surface roughness, cutting force, power,

tool life and tool wear.
2.3 ABOUT RESEARCHERS EXPLANATION

Taylor (1907) showed that an optimum or economic cutting speed exists which could
maximize material removal rate. Considerable efforts are still in progress on the use of
handbook-based conservative cutting conditions and cutting tool selection at the process
planning level. Russian handbooks as well in the American handbook, textbook most
authors have not included discussions on the more modern tools, new work materials and
tool coatings. Taylor (1907) and his famous tool life equation, different analytical and
experimental approaches for the optimization of machining parameters have been
investigated.

Gilbert (1950) studied the optimization of machining parameters in turning with respect
to maximum production rate and minimum production cost as criteria. Armarego and
Brown (1969) investigated unconstrained machine-parameter optimization using
differential calculus. Brewer and Rueda (1963) carried out simplified optimum analysis
for non-ferrous materials. Brewer (1966) suggested the use of Lagrangian multipliers for
optimization of the constrained problem of unit cost, with cutting power as the main

constraint. While our previous research focused on tolerance study (Feng et al. 2001,



Feng and Kusiak 2000, and Feng and Kusiak 1997), this one attempts to develop
empirical models with some data mining techniques, such as regression analysis (RA)
and computational neural networks (CNN), to help the selection of cutting parameters

and the improvement of surface roughness.

Gopalakrishnan and Khayyal (1991) described the design and development of an
analytical tool for the selection of machine parameters in turning. Geometric
programming was used as a basic methodology to determine values for feed rate and
cutting speed that minimize the total cost of machining SAE1045 steel with cemented
carbide tools of ISO P-10 grade. Surface finish and machine power were taken as the
constraints while optimizing cutting speed & feed rate for a given depth of cut.

Agapiou (1992) formulated single-pass and multi-pass machining operations. Production
cost and total time were taken as objectives and a weighting factor was assigned to
prioritize the two objectives in the objective function. He optimized the number of
passes, depth of cut, cutting speed and feed rate in his model, through a multi-stage
solution process called dynamic programming. Several physical constraints were
considered and applied in his model. In his solution methodology, every cutting pass is
independent of the previous pass; hence the optimality for each pass is not reached
simultaneously.

Cochran and Cox (1962) quoted Box and Wilson as having proposed response surface
methodology for the optimization of experiments. Lambert and Taraman (1973)
developed an adequate mathematical model for the cutting force acting on a carbide tool
while machining SAE1018 cold-rolled steel in a tuming operation and then utilized the
model in the selection of the levels of the machining variables of cutting speed, feed rate,
and depth of cut such that the rate of metal-removal could be at the highest possible value
without violating some given force restriction.

Bhattacharya (1970) optimized the unit cost for turning, subject to the constraints of
surface roughness and cutting power by the use of Lagrange’s method. Walvekar and
Laﬁbeﬂ (1970) discussed the use of geometric programming to selection of machining
variables. They optimized cutting speed and feed rate to yield minimum production cost.
Petropoulos (1973) investigated optimal selection of machining rate variables that 1s

cutting speed and feed rate, by geometric programming. Sundaram (1978) applied a goal



programming technique in metal cutting for selecting levels of machining parameters in a
fine turning operation on AISI4140 steel using cemented tungsten carbide tools. Ermer
and Kromodiharajo (1981) developed a multi-step mathematical model to solve a
constrained multi-pass machining problem. They concluded that in some cases with
certain constant total depth of cut, multi-pass machining was more economical than
single-pass machining, if depth of cut for each pass was properly allocated. They used
high-speed steels (HSS) cutting tools to machine carbon steel.

Hinduja (1985) described a procedure to calculate the optimum cutting conditions for
turning operations with minimum cost or maximum production rate as the objective
function. Tsai (1986) studied the relationship between multi-pass and single-pass
machining. He presented the concept of a break-even point that is there is always a point,
a certain value of depth of cut, at which single pass and double pass machining are
equally effective. Taraman (1974) investigated multi-machining output mult-
independent variable turning research by response surface methodology.

Hassan and Suliman (1990) presented mathematical models for the prediction of surface
roughness, tool vibration, power consumption and cutting time, when turning medium
carbon steel using tungsten carbide tools under dry condition. El Baradie (1993)
presented a study of a surface roughness model for turning grey cast iron (154BHN)
using tipped carbide tools under dry conditions and for a constant depth of cut
(d=1.00mm). Li and Mathew gave the classification for various direct and indirect
methods for on-line measurement of tool wear particularly during turning operation,
which includes the tool wear and failure monitoring techniques for turning. The
variations in the hardness of material and case depth are the other parameters affecting
surface finish and tool wear is included in an experimental study of the impact of turning
parameters on surface roughness. Dawson and Kurfess stated that the experimental and
theoretical roughness values match very well, except at low feed values. Chang-Xue et al.
explained the various parameters affecting surface roughness of the turned surface. The
method of decreasing machining time and reducing the number of machines required in
hard turning, compared to conventional grinding was described by Konig et al. Negishi et
al. studied the maximum tool life period of carbide tools. Kopac et al. presented the

analysis of machining parameters in the finished turning process.
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3.1 INTRODUCTION

Optimization analysis of the machining process 15 usually based on minimizing
production cost, maximizing production rate, or obtaining the finest possible surface
finish by using the empirical relationships between tool life and the operating parameters.
3.2 NEED FOR OPTIMIZATION

Optimization algorithms are becoming increasingly popular in engineering design
activities, primarily because of the availability and affordability of high-speed computer.
They are extensively used in those engineering problems where the emphasis is on
maximizing or minimizing a certain goal. For example, optimization is routinely used in
aerospace deign activities to minimize the overall weight of the aircraft. Thus the
minimization of the weight of the aircraft components is of major concern to aerospace
designers. Chemical engineers, in the other hand, are interested in designing and
operating a process plant for an optimum rate of production. Mechanical engineers design
mechanical components for the purpose of achieving either a minimum manufacturing

cost or a maximum component life.

Production engineers are interested in designing optimum schedule of the various
machining operations to minimize the ideal time of machines and the overall job
completion time. Civil engineers are involved in designing buildings, bridges, dams and
other structures in order to achieve a minimum overall cost or maximizing safety or both.
Electrical engineers are interested in designing communication networks so as to achieve

minmimum time for communication from one node to another.

All the above-mentioned task either minimization or maximization (collectively known
as optimization) of an objective requires knowledge about the working principles of

different optimization methods.
3.3 TYPES OF OPTIMIZATION TECHNIQUES

The types of optimization techniques are given below :
= Single or multi variable optimization
= Single or multi objective optimization

= Constrained or unconstrained optimization



» Linear or non-linear optimization

= Non-traditional optimization algorithms

Genetic algorithm

e Particles swarm optimization
e Neural networks

¢ Simulated annealing

o Fuzzy logic

3.4 TYPES OF OPTIMIZATION PROBLEMS

Existence of constraints:

An optimization problem can be classified as a constrained or an unconstrained one,
depending upon the presence or not of constraints.

Nature of the equations:

Optimization problems can be classified as linear, quadratic, polynomial, non-linear
depending upon the nature of the objective functions and the constraints. This
classification is important, because computational methods are usually selected on the
basis of such a classification, i.e. the nature of the involved functions dictates the type of
solution procedure.

Admissible values of the design variables:

Depending upon the values permitted for the design variables, optimization problems can
be classified as integer or real valued, and deterministic or stochastic.

Applications in turning optimization problems

Hard turning machining exhibits a unique behavior, which is different than conventional
turning operations. Application of hard turning technology can be improved by utilizing
advanced optimization algorithms which helps manufacturers to make educated decisions
when faced with multiple objectives to be satisfied. Finish hard turning, using cubic
boron nitride (CBN) tools, allows manufacturers to simplify their processes and still
achieve the desired surface roughness, which can compete with grinding operations.

Surface roughness is mainly a result of process parameters such as tool geometry (i.e.,



nose radius, edge geometry, rake angle etc.) and cutting conditions (feed rate, cutting
speed, depth of cut etc.). In finish hard turning, tool wear becomes an additional
parameter affecting surface quality of finished parts. Performance of CBN cutting tools is
highly dependent on cutting conditions such as cutting speed, feed, feed-rate, and depth
of cut. Cutting speed and depth of cut have a particularly significant influence on tool
life. It has been observed that decreasing feed rate helps obtain a good surface finish but
increases machining time. High cutting speeds may help reduce the surface roughness,
but since tool life at high cutting speeds is just a few couple minutes this solution is not
applicable. In some cases surface roughness is improved with increasing tool wear;
therefore, attention should be paid to the relation between tool wear and surface
roughness. It is therefore crucial to obtain a group of optimum conditions, which may
serve different purposes under different circumstances.

3.5 OPTIMIZATION TECHNIQUES — AN OVERVIEW

Most traditional optimization methods used in industrial engineering problems can be
divided into two _broad classes: Direct search method and Gradient search methods. In
which direct search method requires only the objective function values and gradient
search method requires gradient information either exactly or numerically. One common
characteristic of most of this method is that they all work by point-by-point basic. An
algorithm starts with an initial point (usually supplied by the user) and depending on the
transition rules used in the algorithm a new point is determined. Essentially, algorithms

vary according to the transition rule used to update a point.

Among the direct search method, pattern search method and conjugate direction method
have been extensively used. In pattem search methods at every iteration a search
direction is related according to a combination of exploratory search locally and a pattern
search regulated by some heuristics rules. Often this method gets terminated prematurely
and degenerates to a sequence of exploratory moves. In conjugate direction methods, a
set of conjugate directions are generated using the history of a previous few iterations.
Even though this method has been very popular, the common problem with this method
is that often the search directions become independent and occasional restarts are

necessary. Moreover this algorithm has a convergence proof of well-behaved, unimodel

c
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functions. Box’s direct search method is different from these methods in that the

algorithm works with a number of points instead of a single point.

The algorithm resumes with an evenly distributed set of points. At every iteration a new
set of points is created around the best point of the previous iteration. Since no
information about the rejected points is used in choosing new points in subsequent
iterations, the method is slow and inefficient; but the waiting time to obtain the global
solution may be too large to make the search useful in real world problems. Simplex
search method uses a simplex point to create a new simplex according to some rules
depending on the objective function values at all points of the simplex. The essential idea
is to generate the whole space cannot be spanned, the simplex search is blind and cannot

general find the global solution.

Besides, some random search techniques are also used extensively especially in problems
where no knowledge about the problem is known or where the search is large or where
none of the tradittional methods has worked. These methods are also used to find a

feasible starting point especially if the number of constraints is large.

It is to be mentioned here that this discussion is not to say that these traditional are
useless, infact they have been extensively used in many engineering optimization
problems. The suggestion here is that if the solutions obtained by some traditional
methods are satisfactory, there is no problem. But if the solutions obtained are not
satisfactory or some known methods can not be applied, then the user either has to leam

and use some other optimization methods suitable to solve that problem.

The latest techniques for optimization include fuzzy logic, scatter search technique
particle swarm optimization technique, genetic algorithm, taguchi technique, ant colony
optimization technique and response surface methodology.

Fuzzy logic given in Table 3.1, has great capability to capture human commonsense
reasoning, decision-making and other aspects of human cognition. Koska (1997} shows
that it overcomes the limitations of classic logical systems, which impose inherent
restrictions on representation of imprecise concepts.

Genetic algorithm given in Table 3.1, based on mechanics of natural selection and natural

genetics, which are more robust and more likely to locate global optimum. Scatter search



technique given in Table 3.1, originates from strategies for combining decision rules and

surrogate constraints. Genichi Taguchi is a Japanese engineer who has developed both

the philosophy and methodology for process or product quality improvement that

depends heavily on statistical concepts and tools, especially statistically designed

experiments.
TABLE 3.1 SUMMARY OF MACHINING OPTIMIZATION
TECHNIQUES
Technique | References Tools Used Remarks
" Brewer Lagrange’s Used for constrained
% F (1966);Bhattacharya | multiplier optimization
Ep g ' et al. (1970)
Walvekar and Theory is based on | Optimization technique
. Lambert (1970); the arthmetic- developed for solving a class of
g E Petropouluos geometric mean nonlinear optimization problem
5 S (1973); inequality especially found in engineering
© % Gopalakrishnan and design and manufacture
Khayyal (1991)
Agapiou (1992) A collection of Solving sequential or multi-stage

Dynamic programming

algorifhms used to
compute optimal
policies given a
perfect model of

environment

decision problems by solving a
series of single variable
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CHAPTER 4

DESIGN OF
EXPERIMENTS



4.1 INTRODUCTION

Design of experiments {DOE) is a statistical technique used to study multiple variables
simultaneously. Sir R.A Fisher in England introduces DOE in the early 1920s. His
primary goal was to determine the optimum water, rain, sunshine, fertilizer, and soil
condition needed to produce the best crop. Using the DOE technique Fisher was to able
to lay out all combination of the factors included in the experimental study. The
conditions were created using a matrix, which allowed each factor an equal number of
test conditions. Methods for analyzing the results of such experiments were also
introduced. When the number of combinations possible became too large, schemes were
devised to carry out a fraction of total possibilities such that all factors would be evenly
present. Fisher devised the first methods that made it possible to analyze the effect of
more than one factor at a time . DOE is highly effective wherever and whenever it is

suspected that the performance of a part or process is controlled by more than one factor.
4.2 PURPOSE OF EXPERIMENTATION

The purpose of experimentation should be to understand how to reduce and control
variation of a product or process; subsequently, decisions must be made concerning
which parameters affect the performance of a product or process. The loss function
quantifies the need to understand which design factors influence the average and
variation of a performance characteristic of a product or process. By properly adjusting
the average and reducing variation, the product process, the process or Product losses and
minimized.

4.3 DESIGN OF EXPERIMENTS

A designed experiment is the simultaneous evaluation of two or more factors
(parameters) for their ability to affect the resultant average or variability of particular
product or process characteristics. It is important to note that this is an iterative process;
the first round through the DOE process will many times lead to subsequent rounds of
experimentation. The beginning round, often referred to as a screening experiment, is
used to find the few important, influential factors out of the many possible factors

involved with a product or process design. This experiment is typically a small



experiment with many factors at two levels. Later rounds of experiments typically
involve few factors at more than two levels to determine conditions of further

improvement.
4.4 DESIGN OF EXPERIMENTS PROCESS

The DOE process is divided into three main phases, which encompass all
experimentation approaches. The three phases are

(1) Planning phase,

(2) Conducting phase, and

(3) Analysis phase.
The planning phase is by far the most important phase for the experiment to provide the
expected information. The planning phase is when factors and levels are selected and,
therefore, is the most important stage of experimentation. Also, the correct selection of
factors and levels is non-statistical in nature and is more dependent upon product and
process expertise.
The second most important phase is the conducting phase, when test results are actually
collected. If experiments are well planned and conducted, the analysis is actually much
easier and more likely to yield positive information about factors and levels.
The analysis phase is when the positive or negative information concerning the selected
factors and levels is generated based on the previous two phases. The analysis phase is
least important in terms of whether the experiment will successfully yield positive results.
This phase, however, is the most statistical in nature of the three phases of the DOE by a
wide margin. Because of the heavier involvement of statistics, the analysis phase is
typically the least understood by the product or process expert.
The major steps to complete an effective designed experiment are listed in the following
text. The planning phase includes steps 1 through 9, the conducting phase is step 10, and
the analysis phase includes steps 11 and 12.

1. State the problem(s) or area(s) of concem.

2 State the objective(s) of the experiment.

3. Select the Quality characteristic(s) and measurement system(s).

4 Select the factors that may influence the selected quality characteristics.
5 Identify limits of factors



6. Select levels for the factors.

7. Select the appropriate design

8. Select interactions that may influence the selected quality characteristics or go

back to step 4 (iterative steps).

9. Assign factors to design and locate interactions.

10.  Conduct tests described by trials in design.

11.  Analyze and interpret results of the experimental trials.

12.  Conduct confirmation experiment.
These steps are fundamentally the same regardless of whether one is designing a
Taguchi-based experiment or a classical design. All designed experiments require that a
certain number of combinations of factors and levels be tested to observe the results of
those test conditions. Two or more passes through the process are often utilized; earlier
rounds of experimentation provide a growth of knowledge and a basis for later rounds of

experimentation.
4.5 RESPONSE SURFACE METHODOLOGY

Experimentation and making inferences are the twin features of general scientific
methodology. Statistics as a scientific discipline is mainly designed to achieve these
objectives. Planning of experiments is particularly very useful in deriving clear and
accurate conclusions from the experimental observations, on the basis of which
inferences can be made in the best possible manner. The methodology for making
inferences has three main aspects. First, it establishes methods for drawing inferences
from observations when these are not exact but subject to variation, because inferences
are not exact but probabilistic in nature. Second, it specifies methods for collection of
data appropriately, so that assumptions for the application of appropriate statistical
methods to them are satisfied. The advantages of design of experiments are as follows:

e Number of trials is reduced

e Optimum values of parameters can be determined

e Assessment of experimental error can be made

¢ Qualitative estimation of parameters can be made

e Inference regarding the effect of parameters on the

characteristics of the process can be made



4.6 REGRESSION EQUATION

A statistical technique used to explain or predict the behavior of a dependent varable. A
regression equation takes the form of
Y=a+bx+c _
where, Y - dependent variable
x - independent variable
¢ - regression residual

a & b — constants
4,7 OBJECTIVE FUNCTION

The purpose is to investigate the optimal cutting parameters for minimizing machining
time of the turning operation while maintaining material removal rate. The main
parameters in machining affecting machining time are cutting speed, feed and depth of
cut. The optimal cutting parameters are subjected to an objective function of minimum

machining time with the feasible range of cutting parameters.
4.8 CONSTRAINTS
4.8.1 Surface Roughness

Surface roughness has received serious attentions for many years. It has been an
important design feature and quality measure in many situations such as parts subject to
fatigue loads, precision fits, fastener holes and esthetic requirements. Furthermore,
surface roughness in addition to tolerances imposes one of the most critical constraints

for cutting parameter selection in manufacturing process planning.

4.8.2 Tool life

Cutting tool computer programs for analyzing general two-dimensional cutting tool
geometries has been developed over a wide range of operating conditions. These
programs can be used to predict chip shape and form, cutting forces, tool pressure
distribution, and temperatures in the work piece, chip, and tool. This information can be
used for further tool analysis, such as calculating tool wear rates, tool stresses, and a
tool's chip breaking potential. Tool designers can use these programs to achieve optimal
cutting efficiency through the design of proper cutting tool geometries and tool materials.

Manufacturing engineers can use the programs to select the best cutting tool for a



particular cutting operation. The ultimate result is improved cutting efficiency, work
piece quality, and tool performance.

Predicting tool performance

Using the cutting tool programs, a more methodical approach can be taken for designing
new high performance cutting tools than trial-and-error approaches used in the past. An
engineer can explore the effects of tool geometry changes on cutting tool performance.
Tools can be redesigned to achieve lower temperatures, higher cutting speeds, and
reduced tool forces, thereby improving cutting efficiency and because a tool can be
evaluated before it is fabricated, less reliance is placed on prototype building. Several
important variables can be included in a simulation, including workpiece and tool thermal
properties, cutting speed, feed rate or depth of cut, and frictional effects.

4.8.3 Cutting forces

There are three cutting forces which are acting on a single point tool and shown in
figurel. The Fy is the feed force which is acting on the X direction, the Fy is cutting force
acting of on Y direction and F, is the radial force acting on the Z direction. The vibration
will be more in the direction of cutting force F, than that in the radial direction. Shintani
et al with the increase of feed or depth of cut, vibration increase the tool wear when
machining at feed of 0.125 mm/ rev. The cutting force Fy was low and almost equal to Fy
and F, and gives better results at higher cutting speed. During machining at 0.16 mm /
rev feed force F, was high and shows increasing trend. Ulvi Seker and Hasan Hasirci
stated that cutting forces remained at about 20 % when machining austempered ductile

irons and considerable improvement in surface quality.

FIGURE 4.1 CUTTING FORCES ACTING ON A TOOL



4.9 CHOSEN INPUT PARAMETERS

The following input parameters were chosen for this study:

¢ Cutting speed

e Feed

¢ Depth of cut
4.9.1 Feeds ,Speeds & Depth of cut
For all metal-cutting processes, "speeds and feeds" are important parameters. The
colloquial term "speeds and feeds" refers to the speed, feed, and depth of cut of a metal-
cutting process. To describe these parameters, we will be using the turning process. The
figure below shows the important geometry. The speed is the cutting speed, which is a
measure of the part cut surface speed relative to the tool. Speed is a velocity unit, which
is typically listed in terms of feet/min, inches/min, meters/second, or meters/min. Feed is
the amount of material removed fdr each revolution or per pass of the tool over the
workpiece. Feed is measured in units of length/revolution, length/pass, length/tooth,
length/time, or other appropriate unit for the particular process. The depth of cut, DOC
represents the third parameter for metal cutting. For turning, DOC is the depth that the
tool is plunged into the surface. The DOC is half of the difference in the diameters D, and
Dy, the initial and final diameters, respectively.

4.10 CHOSEN OUTPUT PARAMETERS

The following output parameters were chosen for this study:
» Surface roughness
e Tool life

e Cutting force

* Power

4.11 EXPERIMENTAL DETAILS & SPECIFICATIONS
s Machine - PSG CNC 110 lathe
e  Work piece material - Aluminum

¢ Tool material - Insert carbide tip 4035



FIG 4.2 PSG CNC 110 LATHE

FIG 4.3 TURNED COMPONENTS




CNC Lathe:

Spindle:

FIG 4.4 EXPERIMENTAL SETUP

e Type of bed

e Swing over bed covers

¢ Maximum tuming diameter
of chucking job

¢ Maximum turning length
(between centers)

¢ Maximum boring length

e Spindle nose

* Hole through spindle
¢ Spindle bore taper

e Spindle speed range

infinitely variable

: Inclined 45° to vertical

215 mm

: 110 mm

: 210 mm

: 90 mm
tA2-3”
: 22 mm

: MT4

: 40 — 3000 rpm



Axes Travel:

Tailstock:

Turrent:

Power:

Accuracies:

Fixed speeds — 4

Feed range x and z axis
Rapid traverse rate

X and z axis

Threading pitch

Cross slide stroke

Tailstock spindle diameter
Tailstock spindle stroke

Tailstock spindle taper

Number of tools

Turrent indexing positions
Turrent indexing accuracy
Turrent tool shank size
Turrent actuation
Maximum shank diameter
of boring tool

Indexing time

Power of spindle drive motor :

Power of hydraulic motor

Power of coolant pump motor:

Positioning accuracy
Repeatability
Programming resolution

Feedback resolution

: 720, 960, 144081920 rpm
-1 = 3750 mm/min

;5 m/min
:025-16 mm

: 80 mm

: 50 mm
. 60 mm

: MT3

: 8(4 ID and 4 OD tools)

: 8 7
: + 6 seconds

212 * 12 mm

: electric

: 20 mm
: 45° indexing:0.6 seconds

: 180° indexing:2.0 seconds

2.2 KW continuous

:0.75 KW

0.1 KW

:£0.010 mm
1+ 0.010 mm
:+0.001 mm
1+ 0.001 mm



4.11.1 Aluminum

Aluminum is the world’s most abundant metal and is the third most common element
comprising 8% of the earth’s crust. The versatility of aluminum makes it the most widely
used metal after steel. Bauxite is converted to aluminum oxide (alumina) via the Bayer
Process. The alumina is then converted to aluminum metal using electrolytic cells and the
Hall-Heroult Process. Worldwide demand for aluminum is around 29 million tons per
year. About 22 million tons is new aluminum and 7 million tons is recycled aluminum
scrap. The use of recycled aluminum is economically and environmentally compelling. It
takes 14,000 kWh to produce 1 tonne of new aluminum. Conversely it takes only 5% of
this to remelt and recycle one tonne of aluminum. There is no difference in quality
between virgin and recycled aluminum alloys. Pure aluminum is soft, ductile, corrosion
resistant and has a high electrical conductivity. It is widely used for foil and conductor
cables, but alloying with other elements is necessary to provide the higher strengths
needed for other applications. Aluminum is one of the lightest engineering metals, having
a strength to weight ratio superior to steel. By utilizing various combinations of its
advantageous properties such as strength, lightness, corrosion resistance, recyclability
and formability, aluminum is being employed in an ever-increasing number of
applications. This array of products ranges from structural materials through to thin

packaging foils.

4.12 EXPERIMENTAL WORK

The experiments were conducted using PSG CNC 110 Lathe. Aluminum test pieces of
size 100 mm length and 35 mm diameter were turned using a tungsten carbide tip - 4035
tool.

4.13 EXPERIMENTAL DESIGN PROCEDURE

The experimental design procedure used for this study is briefly explained below.
4.13.1 Identification of Factors and Responses
The chosen factors were cutting speed (omy/min), feed (mm/rev), and depth of cut (mm).

The chosen response was surface roughness, cutting force, tool life and power.



4.13.2 Finding the limits of the process variables

The working ranges of all selected factors are fixed by conducting trial runs. This was
carried out by varying one of the factors while keeping rest of them at constant values
[6]. The upper limit of a factor was coded as +1.68 and the lower limit was coded as -
1.68. The chosen levels of the selected process parameters with their units and notations

are given in Table 4.1

TABLE 4.1. LIMITS OF PARAMETERS

LIMITS
PARAMETERS UNIT
-1.68 -1 0 +1 +1.68
Cutting speed m/min 75 87.5 162.5 2375 400
Feed mm/rev 0.025 0.0375 | 0.0625 | 0.0875 0.15
Depth of cut mm 0.25 0.375 0.625 0.875 1.5

4.13.3 Development of design matrix

The design matrix chosen to conduct the experiment was a central composite rotatable

design. The design matrix comprises a full replication of 2* (=8) factorial design plus 6

center points and 6 star points [7] which 1s shown in Table 4.2.




TABLE 4.2. DESIGN MATRIX AND THE OBSERVED VALUES OF

MACHINING PARAMETERS
Trial | Cutting Feed Depth Surface Cutting Tool Power
No. Speed | (mm/rev) | of Cut | Roughness | Force Life required
(m/min) (mm) (pm) (N) (mins) for
turning

(KW)

1 -1 -1 -1 1.1 30.57 16138.0 0.037
2 1 -1 -1 0.76 2297 | 509.800 0.101
3 -1 1 -1 1.62 66.48 8948.30 0.087
4 1 1 -1 1.28 4997 | 282.670 0.237
5 -1 -1 1 1.25 77.63 10929.1 0.087
6 1 -1 1 0.91 5835 | 345.250 0.237
-1 1 1 1.76 168.85 | 6059.90 0.204

8 1 1 1 1.43 126.60 | 191.430 0.554
9 -1.68 0 0 1.82 89.52 15241.6 0.089
10 1.68 0 0 1.02 5546 | 46.5100 0.476
11 0 -1.68 0 0.86 30.97 1986.81 0.077
12 0 1.68 0 1.98 160.15 | 570.900 0.464

- 13 0 0 -1.68 1.17 26.19 | 1600.45 0.077
14 0 0 1.68 1.5 187.98 | 701.920 0.464
15 0 0 0 1.3 71.76 1050.00 0.193
16 0 0 0 13 71.76 1050.00 0.193
17 0 0 0 1.3 71.76 1050.00 0.193
18 0 0 0 1.3 71.76 1050.00 0.193
19 0 0 0 1.3 71.76 1050.00 0.193
20 0 0 0 1.3 71.76 1050.00 0.193




4.13.4 Conducting the experiments as per the design matrix

The experiments were conducted at the CAM Lab in Kumaraguru College of
Technology, Coimbatore. In this work, twenty deposits were made using machining
condition corresponding to each combination of parameters shown in Table 4.2 at
random.

4.13.5 Recording the responses

The responses, surface roughness, tool life, cutting force and power were measured as
shown in Table 4.2.

4.13.6 Development of a mathematical model

The response function representing any of the machining parameters can be expressed

using the equation 4.1

Y=f(X, XX3) (4.1)
where
Y = Response or yield
X = Cutting Speed (v) in m/min
Xy = Feed ( f) in mm/rev
X; = Depthof cut ( d ) in mm

The second order response surface model for the four selected factors is given by the

equation 4.2

4 4
Y =80+ ZBXi+ ZBXE +Z XX e 4.2)
=1  i=1 i<j

The second order response surface model [equation 4.3] could be expressed as follows
Y=Bo+Bv+Baf+Bsd+Bvi+Bpf?+Bad?+ BovE+B svd+Baafd......... (4.3)

Where By is the free term of the regression equation, the coefficients B; [, and f; are
linear terms, the coefficients By, B2; and B33 are the quadratic terms, and the coefficients
B2, By3 and By; are the interaction terms. The coefficients were calculated using QA six

sigma software (DOE-PCIV) and the same was verified using the software SYSTAT 7.0



which is shown in Table 4.3. After determining the coefficients, the mathematical model

were developed and given below:

TABLE 4.3 CALCULATED REGRESSION COEFFICIENTS

Surface Roughness Cutting Force Tool Life Power
1.304 72.353 985.788 0.196
-0.197 -10.470 -4857.10 0.100
0.290 32.203 -1086.00 0.093
0.084 39.081 -722.810 0.093
0.014 -3.5080 2743.38 0.013
0.014 4.6650 488.140 0.009
-0.016 8.7490 442.905 ' 0.009
0.001 -3.9850 1459.74 0.036
0.001 -4.6780 980.193 0.036
-0.001 12.070 299.230 0.031

Surface Roughness:
Ra (um)=1.304 - 0.197v+ 0.29f + 0.084d + 0.014v* + 0.014f* - 0.016d* + 0.001vd +
0.001£d -0.001vf
Cutting Force :
Fc (N) = 72.353 - 10.47v + 32.203f + 39.081d - 3.508v* + 4.665f" + 8.749d> - 3.985vf -
4.678vd +12.07fd

Tool life:
T (mins) = 985.788 - 4857.1v-1086f - 722.81d + 2743.38v* + 488.14f" + 442.905d*

+1459.74vE+ 980.193vd + 299.23fd

Power :

P (KW) = 0.196 + 0.1v + 0.093f + 0.093d + 0.013v*+ 0.009f>+ 0.009d” + 0.036vf +
0.036vd + 0.031fd

These mathematical models have been used to predict the values of the output parameters

which is shown in Table 4.4.



TABLE 4.4 DESIGN MATRIX AND THE PREDICTED VALUES OF

MACHINING PARAMETERS
Trial | Cutting Feed |Depth| Surface Tool | Cutting Tool Power
No. | Speed | (mm/rev)| of |Roughness| Wear Force Life required
(m/min) Cut (um) (mm) (N) (mins) for

(mm) turning

(KW)

1 -1 -1 -1 1.14 0.057 | 24.852 | 140653 | 0.044
2 1 -1 -1 0.74 0.087 | 21.238 | 528.000 | 0.100
3 -1 | -1 1.72 0.097 | 73.088 | 8375.31 | 0.096
4 1 1 -1 1.32 0.127 | 53.534 | 1258.00 | 0.296
5 -1 -1 1 1.30 0.091 | 88.230 | 10060.8 | 0.096
6 1 -1 1 0.91 0.121 | 65.904 | 652.356 | 0.296
7 -1 1 1 1.88 0.119 | 184.74 | 5567.75 | 0.272
8 1 1 1 1.49 0.149 | 146.48 | 733.465 | 0.616
9 -1.68 0 0 1.67 0.0890 | 80.041 | 16888.6 | 0.064
10 1.68 0 0 1.01 0.139 | 44.862 | 568.822 | 0.400
11 0 -1.68 0 0.85 0.083 | 31.418 | 4188.03 | 0.065
12 0 1.68 0 1.83 0.140 | 139.62 | 538.997 | 0.377
13 0 0 -1.68 1.11 0.065 | 31.390 | 3450.17 | 0.065
14 0 0 1.68 1.39 0.112 | 162,70 | 1021.51 | 0.377
15 0 0 0 1.30 0.092 | 72.353 | 985.788 | 0.196
16 0 0 0 1.30 0.092 | 72.353 | 985.788 | 0.196
17 0 0 0 1.30 0.092 | 72.353 | 985.788 | 0.196
18 0 0 0 1.30 0.092 | 72.353 | 985.788 | 0.196
19 0 0 0 1.30 0.092 | 72.353 | 985.788 { 0.196
20 0 0 0 1.30 0.092 | 72353 | 985.788 | 0.196




4.13.7 Checking the adequacy of the developed models

The adequacies of the developed models were tested using the analysis of variance
{(ANOVA) technique. As per this technique if the calculated F-ratio values for the
developed models do not exceed the standard tabulated values for a desired level of
confidence (95%) and the calculated R-ratio values of the developed model exceed the
standard tabulated values for a desired level of confidence (95%), then the models are
said to be adequate within the confidence limit. The conditions were satisfied for the

developed model.

4.13.8 Conducting the conformity test
Confirmation tests were conducted in the same experimental setup to confirm the results
of the experiment and demonstrate the reliability of the predicted values. The conformity

tests show the accuracy of the models developed, which is above 95%.



CHAPTER 5

PARTICLE SWARM
OPTIMIZATION



5.1 INTRODUCTION
Dr. Russell C. Eberhart first introduced particle Swarm Optimization and Dr.James
Kennedy in 1995. As described by Eberhart and Kennedy, the PSO algorithm is an
adaptive algorithm based on a social-psychological metaphor; a population of individuals
(referred to as particles) adapts by returning stochastically toward previously successful
regions. Particle Swarm has two primary operators:

Velocity update

Position update
During each generation each particle is accelerated toward the particles previous best
position and the global best position. At each iteration a new velocity value for each
particle is calculated based on its current velocity, the distance from its previous best
position, and the distance from the global best position. The new velocity value is then
used to calculate the next position of the particle in the search space. This process is then

iterated a set number of times or until a minimum error is achieved.

5.2 BACKGROUND OF ARTIFICIAL LIFE

The term "Artificial Life" (Alive) is used to describe research into human-made systems
that possess some of the essential properties of life. Alive includes two-folded research

topic:
i.  Alive studies how computational techniques can help when studying
biological phenomena.

ii.  ALife studies how biological techniques can help out with computational

problems

The focus of particles swarm optimization is on second life. Actually, there are already
lots of computational techniques inspired by biological systems. For example, artificial
neural network is a simplified model of human brain; genetic algorithm is inspired by the

human evolution.

Another type of biological system - social system, more specifically, the collective
behaviors of simple individuals interacting with their environment and each other.

Someone called it as swarm intelligence. There are two popular swarm inspired methods



in computational intelligence areas: Ant colony optimization and particle swarm
optimization. ACO was inspired by the behaviors of ants and has many successful

applications in discrete optimization problems.
5.2.1 Bird Flocking

As stated before, PSO simulates the behaviors of bird flocking, suppose the following
scenario: a group of birds are randomly searching food in an area. There is only one piece
of food in the area being searched. All the birds do not know where the food is. But they
know how far the food is in each iteration, so what’s the best strategy to find the food?
The effective one is to follow the bird, which is nearest to the food.

In PSO, each single solution is a “bird” in the search space. We call it “particle”. All of
particles have fitness values, which are evaluated by the fitness function to be optimized,
and have velocities, whicﬁ direct the flying of the particles. The particles are “flown”
through the problem space by following the current optimum particles by Murthy et al.
(2003).

5.3 PARTICLE SWARM OPTIMIZATION TECHNIQUE

The particle swarm concept originated as a simulation of simplified social system. The
original intent was to graphically simulate the choreography of bird of a bird block or fish

school. However, it was found that particle swarm model can be used as an optimizer.

As stated before, PSO simulates the behaviors of bird flocking. Suppose the following
scenario: a group of birds are randomly searching food in an area. There is only one piece
of food in the area being searched. All the birds do not know where the food is. But they
know how far the food is in each iteration. So what's the best strategy to find the food?

The effective one is to follow the bird which is nearest to the food.

PSO learned from the scenario and used it to solve the optimization problems. In PSO,
each single solution is a "bird" in the search space. We call it "particle”. All of particles
have fitness values which are evaluated by the fitness function to be optimized, and have
velocities which direct the flying of the particles. The particles fly through the problem

space by following the current optimum particles.



PSO is initialized with a group of random particles (solutions) and then searches for
optima by updating generations. In every iteration, each particle is updated by following
two "best" values. The first one is the best solution (fitness) it has achieved so far. (The
fitness value is also stored.) This value is called pbest. Another "best” value that is
tracked by the particle swarm optimizer is the best value, obtained so far by any particle
in the population. This best value is a global best and called gbest. When a particle takes
part of the population as its topological neighbors, the best value is a local best and is
called lbest.

5.4 ALGORITHM OF PARTICLES SWARM OPTIMIZATION

Most of evolutionary techniques have the following procedure:
i.  Random generation of an initial population

ii. Reckoning of a fitness value for each subject. It will directly depend on

the distance to the'optimum.
iii. Reproduction of the population based on fitness values.
iv.  If requirements are met, then stop. Otherwise go back to 2.

From the procedure, we can learn that PSO shares many common points with GA. Both
algorithms start with a group of a randomly generated population, both have fitness
values to evaluate the population. Both update the population and search for the optimum

with random techniques. Both systems do not guarantee success.

However, PSO does not have genetic operators like crossover and mutation. Particles
update themselves with the internal velocity. They also have memory, which is important

to the algorithm.

5.5 PSO PARAMETERS CONTROL

There are two key steps when applying PSO to optimization problems: the representation
of the solution and the fitness function. One of the advantages of PSO is that PSO take
real numbers as particles. It is not like GA, which needs to change to binary encoding, or
special genetic operators have to be used. Then we can use the standard procedure to find

the optimum. The searching is a repeat process, and the stop criteria are that the



maximum iteration number is reached or the minimum error condition is satisfied. There
are not many parameter need to be tuned in PSO. Here is a list of the parameters and their

typical values.
The number of particles:

The typical range is 20 - 40. Actually for most of the problems 10 particles is large
enough to get good results. For some difficult or special problems, one can try 100 or 200

particles as well.

Dimension of particles:

It is determined by the problem to be optimized.
Range of particles:

It is also determined by the problem to be optimized, you can specify different ranges for

different dimension of partiéles.
Vmax:

It determines the maximum change one particle can take during one iteration. Usually we

set the range of the particle as the Vmax.
Learning factors:

C1 and C2 usually equal to 2. However, other settings were also used in different

literatures. But usually C1 equals to C2 and ranges from [0, 4]
The stop condition:

The maximum number of iterations the PSO execute and the minimum error requirement.
Global version vs. local version: we introduced two versions of PSO. global and local
version. global version is faster but might converge to local optimum for some problems.
local version is a little bit slower but not easy to be trapped into local optimum. One can

use global version to get quick result and use local version to refine the search.



5.6. PARTICLE SWARM ALGORITHM
Step 1:

The random particles (X) and velocity vector (V) are initialized and the optima
for updating generations are searched.
Step 2:

For each particle, the fitness is evaluated. If the fitness value is better than the best
fitness value (pbest), then current value new pbest is set as shown in fig.5.1.
Step 3:

The particle with the best fitness value of all the particles, the global best ghbest is
chosen as shown in fig.5.1
Step 4:

For each particle, the particle velocity and particle position are calculated by the

equations,

v[]=&W*Vv[] + C1*rand( )*( pbest[] - present[] ) + C2*rand*( gbest[] - present[] )

present[] =present[})+v(] (5.2)

where, V[ ]= Particle velocity
persent[ ] = Current particle (solution)
pbest[ ] = Best solution among the each particle
gbest] ] = Best among defined as stated before.
rand ( ) = Random numbers between (0,1)
) = Inertia Weights. Usually 0.8 or 0.9
C1, C; are learning factors. Usually C; = C, = 2.

Step 5:
If the sum of the accelerations would cause the velocity on that dimension to exceed
Vmax, which is the parameter specified by the user, then the velocity on that dimensions

is limited to Vmax.



Step 6:
Termination criteria are maximum number of iterations or minimum error

conditions.

Initialize population with Random
Particles (X} and Velocity Vector (V)

A 4

For each Particle

-

h 4 F 3
Evaluate Fitness of the Particles

A

If Fitness (X) > fitness (gbest) -
X = gbest Update each Particle

A

A 4

If Fitness (X) > fitness (pbest) )
X = pbest Update Velocity vector

F 3

A 4

Check for termination criteria

4

4

Parameters of best solution = gbest

FIG 5.1 FLOW CHART OF PSO ALGORITHM
5.7 OBJECTIVE FUNCTION
The optimization problem for the turning operations can be formulated as a multi-
objective, multi-variable, and nonlinear optimization problem with multi-constraints. In
order to overcome the large differences in numerical values between sub objectives, each
sub objective is normalized. The following resultant weighted objective function is to be

minimized:



COF=w]1 (Ra/Ramy) + W2 (Fc/Femin) + W3 (P/Puin) - W4 (T/Tonax)

Where:

COF = Value of combined objective function

Ra = Surface roughness
Fe = Cutting force

P = Power

T = Tool life

Ramn = Target value for the surface roughness
Femin = Target value for the cutting force
Pmin = Target value for power

Tmax = Target value for tool life

wlto w4 — Weights that give different status (importance) to each response.

5.8 FORMULAE USED

PSO is initialized with a group of random particles (solutions) and then searches for

optima by updating generations. In every iteration, each particle is updated by two best

values. The first one is the best solution (fitness) it has achieved so far. The value is

called Pbest. Another best value obtained so far by any particle in the population. This

best value is called Gbest After finding the two best values, the particle updates its

velocity and position with the following equations.

V1=V1+C1*rand*(Pbest- present)+C2*rand*{Gbest-present)

Presentl= present + V1

V1 = particle velocity,

Present = current particle (solution),
Pbest and Gbest = defined as stated before.

Rand = random number between (0-1),

C1,C2 = learning factors. Usually C1=C2=2.



5.9 RESULTS OF PSO

The software for the optimal allocation of total stock, minimization of total production
cost using PSO has been implemented in C language. The present work is an
optimization problem with constraints. The objective function is the total production cost,
which consists of different passes. In the present work involving turning, the optimum
results could be obtained with the population size of 10 and 500 generations. The
optimum cost (Rs 46.194 ) is obtained .The sample results obtained using PSO are
presented in the following Table 5.1.

TABLE 5.1 SAMPLE RESULTS OF PSO

Cutting speed Feed Depth of cut Cost
(m/min) (mm/rev) (mm) (Rs)
350 0.117 1.685 45.947433
227 0.106 1.631 46.412426
318 0.093 1.415 46.224903
PSO-COST CURVE
52 -
- . - _
0
o
o - _
0 100 200 300 400 500
ITERATIONS
F1G.5.2. COST CURVE

From fig.5.2, the cost is continuously decreased up to the optimum value



CHAPTER 6

ANT COLONY
OPTIMIZATION



6.1 INTRODUCTION
Ant Colony Optimization (ACO) studies artificial systems that take inspiration from the

behavior of real ant colonies and which are used to solve discrete optimization problems.

Ant Colony Optimization is a class of algorithms, whose first member, called Ant
System, was initially proposed by Colorni, Dorigo and Maniezzo The main underlying
idea, loosely inspired by the behavior of real ants, is that of a parallel search over several
constructive computational threads based on local problem data and on a dynamic
memory structure containing information on the quality of previously obtained result.
The collective behavior emerging from the interaction of the different search threads has
proved effective in solving combinatorial optimization (CO) problems,

Ant colony optimization is a kind of non traditiona! optimization technique in which the
main idea underlying is that of a parallelizing search over several constructive
computational threads , all based on a dynamic memory structure incorporating
information on the effectiveness of previously obtained results and in which the behavior
of each single agent is inspired by the behavior of real ants. Researchers are also
fascinated by seeing the ability of the almost blind ants to establish the shortest route
from their nests to the food source and back. These ants secrete a substance called
“pheromone™ and use its trials as a medium for communicating information among each
other .the probability of the trial being followed by other ants is reinforced by increased
trial deposition of others following this trial.

This cooperative search behavior of real ants inspired the new computational paradigm
for optimizing real life systems and it is suited for solving large scale optimization
problem. ACO has also been applied to other optimization problems like the quadratic
assignment problem. More recently, a modified ACO was presented as an effective
global optimization procedure by introducing bi-level search procedure called local and
global search. The important aspect in ACO is that the artificial ants select the soltion.
They move with the selection probability proportional to the pheromone trial.

A set of computational concurrent and asynchronous agents (a colony of ants) moves
through states of the problem corresponding to partial solutions of the problem to solve.

They move by applying a stochastic local decision policy based on two parameters, called



trails and attractiveness. By moving, each ant incrementally constructs a solution to the
problem.

When an ant completes a solution, or during the construction phase, the ant evaluates the
solution and modifies the trail value on the components used in its solution. This
pheromone information will direct the search of the future ants.

Furthermore, an ACO algorithm includes two more mechanisms:

Trail evaporation:

Trail evaporation decreases all trail values over time, in order to avoid unlimited
accumulation of trails over some component.

Daemon actions:

Daemon actions can be used to implement centralized actions that cannot be performed
by single ants, such as the invocation of a local optimization procedure, or the update of
global information to be used to decide whether to bias the search process from a non-

local perspective.

6.2 ANT COLONY ALGORITHM
Nest - Food
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FI1G.6.1 CONCEPT OF ANT COLONY ALGORITHM



Consider the following figure in which ants are moving on a straight line which
connects a food source to the nest. It is well-known that the main means used by ants to
form and maintain the line is a pheromone trail. Ants deposit a certain amount of
pheromone while walking, and each ant probabilistically prefers to follow a direction
rich in pheromone rather than a poorer one. This elementary behavior of real ants can
be used to explain how they can find the shortest path which reconnects a broken line
after the sudden appearance of an unexpected obstacle has interrupted the initial path as
shown in fig.6.1. In fact, once the obstacle has appeared, those ants which are Just in
front of the obstacle cannot continue to follow the pheromone trail and therefore they
have to choose between turning right or left. In this situation we can expect half the
ants to choose to turn right and the other half to turn left. The very same situation can
be found on the other side of the obstacle. It is interesting to note that those ants which
choose, by chance, the shorter path around the obstacle will more rapidly reconstitute
the interrupted pheromone trail compared to those which choose the longer path.
Hence, the shorter path will receive a higher amount of pheromone in the time unit and
this will in turn cause a higher number of ants to choose the shorter path. Due to this
positive feedback (autocatalytic) process, very soon all the ants will choose the shorter
path. The most interesting aspect of this autocatalytic process is that finding the shortest
path around the obstacle seems to be an emergent property of the interaction between
the obstacle shape and ants distributed behavior: Although all ants move at
approximately the same speed and deposit a pheromone trail at approximately the same
rate, it is a fact that it takes longer to contour obstacles on their longer side than on their
shorter side which makes the pheromone trail accumulate quicker on the shorter side. It
- 1s the ants preference for higher pheromone trail levels which makes this accumulation

still quicker on the shorter path.

Ant Colony Algorithms are typically use to solve minimum cost problems. There are
two working modes for the ants: either forwards or backwards. Pheromones are only
deposited in backward mode. The ants memory allows them to retrace the path it has
followed while searching for the destination node as shown in fig.6.1. Before moving

backward on their memorized path, they eliminate any loops from it. While moving



backwards, the ants leave pheromones on the arcs they traversed. The ants evaluate the
cost of the paths they have traversed. The shorter paths will receive a greater deposit of
pheromones. An evaporation rule will be tied with the pheromones, which will reduce

the chance for poor quality solutions.

The nature metaphor on which ant algorithms are based is that of ant colonies. One of the
problems which confronted scientists was to understand how almost blind ants could
establish the shortest route from their nests to the food source and back. Their results
revealed that these ants used their pheromone trails as a medium for communicating
among themselves. A moving ant lays various quantities of pheromone on its route. To
apply the ant colony optimization methodology for continuous function optimization
problems, the domain has to be divided first into a specific number of regions. The fitness
of the regions are first evaluated and stored in descending fitness. A total of “4” number
of ants explore these regions and updating of the region is done locally and globally with
the local search mechanism respectively. Thus these ants are divided into “G” global ants
and “L” local ants. In the local search, the local ants have the capability of selecting
regions proportional to the current pheromone values of these regions. The age of the
region is another important parameter in the CACOQO algorithm. The size of the ant
movement in the local search depends on the current age. The search radius is maximum
for zero age and minimum for maximum age, with the variation in radius set to follow a
linear relationship. The global search creates “G™ new regions by replacing the weaker
portions of the existing one. The natural metaphor on which ant algorithms are based is
that of ant colonies. Researchers are fascinated by seeing the ability of the almost blind
ants to establish the shortest route from their nests to the food source and back. These
ants secrete a substance called ‘pheromone’ and use its trails as a medium for
communicating information among each other. The probability of the trail being followed
by other ants is enhanced by increased trail deposition of others following this trail. This
co-operative search behavior of real ants inspired the new computational paradigm for
optimizing real life systems and it is suited to solving large-scale optimization problems.
ACO has also been applied to other optimization problem like the traveling salesman

problem, scheduling etc. More recently, the modified ACO is made as effective global



optimization procedure by introducing bi-level search procedures called local and global
search. The important aspect in ACO is that the artificial ants select the solution to which
they move with a selection probability proportional to the pheromone trial.

Ants

ANTS is an extension of the some under defined elements of the general algorithm, such
as the attractiveness function to use or the initialization of the trail distribution. This turns
out to be a variation of the general ACO framework that makes the resulting algorithm
similar in structure to tree search algorithms. In fact, the essential trait which
distinguishes ANTS from a tree search algorithm is the lack of a complete backtracking
mechanism, which is substituted by a probabilistic (Non-deterministic) choice of the state
to move into and by an incomplete (Approximate) exploration of the search tree: this is
the rationale behind the name ANTS, which is an acronym of Approximated
Nondeterministic Tree Search. In the following, we will outline two distinctive elements
of the ANTS algorithm within the ACO framework, namely the attractiveness function
and the trail updating mechanism.

Attractiveness

The attractiveness of a move can be effectively estimated by means of lower bounds
(upper bounds in the case of maximization problems) on the cost of the completion of a
partial solution. In fact, if a state corresponds to a partial problem solution it is possible to
compute a lower bound on the cost of a complete solution containing i. Therefore, for
each feasible move iy, it is possible to compute the lower bound on the cost of a
complete solution containing y: the lower the bound the better the move. Since a large
part of research in ACO is devoted to the identification of tight lower bounds for the
different problems of interest, goodlower bounds are usually available. When the bound
value becomes greater than the current upper bound, it is obvious that the considered
move leads to a partial solution which cannot be completed into a solution better than the
current best one. The move can therefore be discarded from further analysis. A further
advantage of lower bounds is that in many cases the values of the decision variables, as
appearing in the bound solution, can be used as an indication of whether each variable
will appear in good solutions. This provides an effective way of initializing the trail

values.



Trail update

A good trail updating mechanism avoids stagnation, the undesirable situation in which all
ants repeatedly construct the same solutions making any further exploration in the search
process impossible. Stagnation derives from an excessive trail level on the moves of one
solution, and can be observed in advanced phases of the search process, if parameters are
not well tuned to the problem. The trail updating procedure evaluates each solution
against the last & solutions globally constructed by ANTS. One of the most difficult
aspects to be considered in met heuristic algorithms is the trade-off between exploration
and exploitation. To obtain good results, an agent should prefer actions that it has tried in
the past and found to be effective in producing desirable solutions (exploitation); but to
discover them, it has to try actions not previously selected (exploration). Neither
exploration nor exploitation can be pursued exclusively without failing in the task: for
this reason, the ANTS algorithm integrates the stagnation avoidance procedure to
facilitate exploration with the probability definition mechanism based on attractiveness
and trails to determine the desirability of moves.

Pheromone

In ACS once all ants have computed their tour (i.e. at the end of each iteration) As
updates the pheromone trail using all the solutions produced by the ant colony. Each edge
belonging to one of the computed solutions is modified by an amount of pheromone
proportional to its solution value. At the end of this phase the pheromone of the entire
system evaporates and the process of construction and update is iterated. On the contrary,
in ACS only the best solution computed since the beginning of the computation is used to
globally update the pheromone. As was the case in AS, global updating is intended to
increase the attractiveness of promising route but ACS mechanism is more effective since
it avoids long convergence time by directly concentrate the search in a neighborhood of
the best tour found up to the current iteration of the algorithm. In ACS, the final
gvaporation phase is substituted by a local updating of the pheromone applied during the
construction phase. Each time an ant moves from the current city to the next the
pheromone associated to the edge is modified in the following way: () #ij ¢ = r *t ij (¢ -
DH(1- 7) x¢t 0 where 0 £ r £ 1 is a parameter (usually set at 0.9) and /0 is the initial

pheromone value. 0 is defined as 10=(n-Lnn)-1, where Lnn is the tour length produced by



the execution of one ACS iteration without the pheromone component (this is equivalent
to a probabilistic nearest neighbor heuristic). The effect of local-updating is to make the
desirability of edges change dynamically: every time an ant uses an edge this becomes
slightly less desirable and only for the edges which never belonged to a global best tour
the pheromone remains 70. An interesting property of these local and global updating
mechanisms is that the pheromone £ij(f} of each edge is inferior limited by #0.

6.2.1 Schemes of the ant colony algorithm

The 200 solutions are then sorted in ascending order with respect to the objective
function. The regions pertaining to minimum production cost are referred to as superior
solutions, while regions pertaining to the maximum production cost are referred to as

inferior solutions. A typical representation of the superior and inferior solutions is shown

in fig.6.2.

< N >
1 2 3 ' CEEBPE SRR BRIy 12‘0 121 ............... 190 200

Superior solutions (min. cost) inferior solutions (max. cost)

F1G.6.2 REPRESENTATION OF SUPERIOR SOLUTIONS AND
INFERIOR SOLUTIONS

6.2.2. Distribution of ants
The total numbers of ants, 4, is 100, which is half of N and is distributed as 80 for global
(G) and 20 for local search (L)
6.2.3 Global search
Using global search, global ants create G new regions by replacing the inferior solutions
of the existing solutions. It consists of the following operations:
e  Crossover
e mutation
e trail diffusion.
6.2.3.1 Crossover
Parents are selected from superior solutions (N -G) (i.e,, minimum cost region) and

randomly selected from 90% of the inferior solutions for crossover. Then, the randomly



selected n numbers are replaced by corresponding chosen parents, if the probability is
equal to or greater than the crossover probability (Cp) 0.75. A representation of N -G

parents (superior solutions) and G children (inferior solutions) is shown in Fig.6.3.

1 2 3 veresee veeneee | 120 [ 121 ...... cessnsees 190 | 200
. Superior solutions (min. cost) inferior solutions (max. cost)
< N-G Parents > < G region (child) -—»

—

FIG. 6.3 A REPRESENTATION OF N -GPARENTS & G CHILD

The 90% of the solutions (randomly chosen) in the inferior solutions are replaced with

randomly selected solutions from the superior solutions. The distribution of ants, as well

as the selection of solutions is illustrated in fig.6.4.

/_\
Total no of ants : 100
(which is equal to half
the total number of

solutions)

Ratio of Ants 8:2

No of global ants : 80
(for inferior solutions
only)

No of local ants : 20 (for
superior solutions only )

Ratio of Ants 9:1

No of ants for trial
diffusion: 8

No of ants for

crossover and
mutation : 72

FIG. 6.4 DISTRIBUTION OF ANTS FOR LOCAL AND GLOBAL
SEARCH



6.2.3.2 Mutation
After the random walk step, randomly adding or subtracting a value to each variable of
the newly created solutions in the inferior region with a probability equal to a suitably

defined mutation probability. The mutation size is reduced as per the relation

AT, R)=R(-r(1-T)b) . (6.1)

where, » = random number from [0, 1],

R = the maximum step size,

T = the ratio of the current iteration number to that of the total number of
Iterations, and

b = positive parameter controlling the degree of nonlinearity. The value of b

considered in this work is 10, which is arrived at by a trial basis.
6.2.3.3 Trial diffusion
Trail diffusion, which is another element in global search, is applied on the inferior
solutions that were not considered during the random walk and mutation stages. Here,
two parents are selected at random from the present parent superior solutions. The
variables of the child’s position vector can have either

1. the value of the corresponding variable from the first parent,

2. the corresponding value of the variable from the second parent,or

3. a combination arrived at from a weighted average of the above:

x(child) = (a).xi (parentl )+(1- a).xi (parent2)  ............ (6.2)

where , a is a uniform random number in the range [0, 1].
The probability of selecting the third option is set equal to the mutation probability while
allotting equal probability of selecting the first two steps. The trail value of the newly

created child solutions is assigned a trail value lying between the values of the original

parent solutions.
6.2.4 Local search
In the ACO algorithm, local (artificial) ants select a region / with a probability.

ti(t)



where, i is the region index and
1; (k) is the pheromone trail on region i at time ¢.
After selecting the region the ant moves through a short distance (finite random
increment). The direction of movement is retained if the fitness value improvement is
observed, otherwise it is reverted. Correspondingly the solution’s position vector is
updated and the pheromone trail value is improved based on the fitness value. The
variables of this problem are velocity, feed rate and depth of cut, which can have any
continuous value, subject to the limits available. In the continuous algorithm, the
pheromone values are decreased after each iteration by:
Ga~)=¥4a0 (6.3)
where , Pis the evaporation rate which is assumed to be 0.2 on a trial basis and
% () is the trail associated with solution at time ¢.
6.2.5. Algorithm
Step 1:
Initialization phase
The initial pheromone for each edge is set.
Step 2:
Repeat
For each ant a starting node is selected randomly.
Repeat
The next node is moved according to the node
transition rule, until a tour is completed.
Using the pheromone updating rule, update the
pheromone intensity for each edge, until the stopping
criterion is satisfied.
Step 3:
Output the global best tour
The best tour reported by this algorithm is the attempt to

optimize the problem objective under a certain condition.
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6.2.6 Results of ACO

The software for the optimal allocation of total stock, minimization of total production
cost using ACO has been implemented in C language. The present work is an
optimization problem with constraints. The objective function is the total production cost,
which consists of different passes. In the present work involving turning, the optimum
results could be obtained with the population size of 10 and 500 generations. The

optimum cost (Rs 46.4 ) is obtained .

ACO -COST CURVE
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FIG. 6.6. COST CURVE

From fig.6.6, the cost is continuously decreased up to the optimum value



CHAPTER 7

CONCLUSIONS



The following conclusions were drawn from this work :

This project presents a practical method of optimizing machining

parameters to minimize production cost under the machining constraints.

PSO was used to determine the optimal parameters such as speed ,

feed & depth of cut in each pass has yielded a minimum production cost.

The working ranges of cutting speed, feed and depth of cut for
turning of aluminum using tungsten carbide tipped tool — 4035 has been
established.

A five level three factor full factorial design matrix based on
central composite rotatable technique was used for the development of

mathematical models to predict the outputs.

Based on the computational results presented herein, it may be
concluded that the proposed nontraditional methods formulated present a

significant enhancement in reducing unit production cost.

It is also observed that the PSO algorithm can obtain a near
optimal solution when compared to ACO in an extremely large solution

space.

The developed mathematical models can be used for optimizing

the machining parameters using other intelligent optimization techniques.
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