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ABSTRACT
The ultimate aim of turning is to remove work piece material in a single cut rather
than a lengthy grinding operation in order to reduce processing time, production
cost, surface roughness and setup time and to remain competitive. The process of
turning offers many potential benefits compared to conventional grinding
operation. Optimization of cutting parameters is valuable in terms of providing
high precision and efficient machining. Optimization in turning means
determination of the optimal set of machining parameters to satisfy the objectives
within the operational constraints. In the present work, an attempt is made to
minimize the unit production cost as an objective function subjected to a set of
constraints such as tool life, power, cutting force and surface roughness in turning
by using a genetic algorithm. The main machining parameters which are to be
considered as the variables of the turning process are cutting speed, feed and depth
of cut. The result of the work shows how a complex optimization problem is
handled by a genetic algorithm and converges very quickly. The proposed
algorithm is found to perform better than a goal programming technique. This
work also presents the artificial neural network model for the prediction of surface
roughness and tool wear in turning operation. Cutting speed, feed and depth of cut

were taken as input parameters while surface roughness and tool wear were taken
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1.1 TURNING PROCESS

Turning is the process of reducing the outer diameter of the work piece in which
the tool is moved parallel to the lathe axis. Tuming is performed on a machine
called lathe in which the work piece is rotated while the tool travels at transverse
or longitudinal direction. Work pieces, small and large can be machined in one
setup through multi-tasking capabilities on single and multi-spindle machines. For
larger work pieces, engine lathes, vertical turning centers, and a new generation of

computer numerical control lathes are used. Automation is provided by bar

feeders, robots and pallet delivery systems.

1.2 GENETIC ALGORITHM

It is a population-based search optimization and has been used as a powerful tool
for optimizing cutting parameters. The data processed by GA includes a set of
strings (or chromosomes) with an infinite length in which each bit is called an
allele (or a gene). A selected number of strings are called as population and the
population at a given time is a generation. Generation of the initial population of
strings is done randomly. Since the binary alphabet offers the maximum number
of schemata per bit of information of any coding, a binary encoding scheme is
traditionally used to represent the chromosomes using either zeros or ones.
Thereafter the fitness value (objective function value) of each member is
computed. The population is then operated by the three main operators namely,
reproduction, cross-over and mutation to create a new population. The new

population is further evaluated and tested for determination.

1.3 DESIGN OF EXPERIMENTS



1.4 ARTIFICAL NEURAL NETWORKS

Artificial neural network is an information processing paradigm and is highly
interconnected network of large number of processing element. Non-linear
mapping systems consist of neurons, linked by weighted connections. In ANN, the
processing elements (organized in layers) perform the task of combining several

inputs into a weighed output.

1.5 IMPORTANCE OF THE PROJECT

Optimum machining parameters are of great concern in manufacturing
environments, where economy of machining operation plays a key role in
competitiveness in the global market. Optimization analysis of the machining
process is usually based on either minimizing production rate, or obtaining the
finest possible surface finish by using the empirical relationships between tool life
and the operating parameters. Most of the researchers have published a number of
such equations for the practical turning process in which numerous process
variables are involved. Some researchers reported in the literature attempted to

solve problems for machining conditions by using linear programming.

For solving machining optimization problems, various conventional techniques
had been used so far, but they are robust and have problems when applied to
turning process which involves number of variables and constraints. To overcome
the above problems, genetic algorithm is used in this work it goes through solution

space starting from a group of points and not from a single point.

1.6 OBJECTIVES OF THE PROJECT

1 Tha Arfirrtera e A1 1o 1 a1t o F et c1m F1remmm e v rr S e v 1 33 e e et n. 4t
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Chattopadhyay et al. (1996) has used neural network for evaluation of wear in
carbide inserts. He has taken cutting speed, feed, and depth of cut as input
parameters to develop the model. The feed forward back propagation artificial
neural network has been used and the model results come closer to the actual
values. He has suggested that the accuracy of the model can be improved by

increasing the number of nodes in the hidden layer.

Choudhary et al. (1999) predicted tool wear using neural network and design of
experiments. He analyzed the role of temperature in tool wear. He used the
experimental data from the conducted experiments as per design of experiments
methodology and developed a regression model and neural network model. In his
work, he has considered temperature along with other machining parameters like
feed and cutting speed as input parameters and tool wear as the output parameter.
His results prove that the neural network model is the better model. But one
limitation in his work is that he has not considered tool geometry as an input

parameter.

Choudhuri et al. (2002) optimized the machining parameters in turning process
by using genetic algorithm while taking the multi-objective function as
minimization of production cost per piece, minimization of production time per
piece or any weighted combination both. He used the optimum set of three input
parameters which are cutting speed, feed and depth of cut, after satisfying the
constraints such as power availability, surface roughness condition, tool life,
dimensional tolerance and rigidity. But the limitation is that parameters like tool

geometry, tool material and cutting temperature can also influence the metal

cutting to a oreat extent.



measure the surface roughness, cutting force and vibration for the optimized

cutting parameters.

Ramon Quiza Sardinas et al. (2006) optimized machining parameters in turning
process by using genetic algorithm while taking multi-objective functions as
minimization of production time per part and maximization of the tool life and
used three input parameters which are cutting speed, feed and depth of cut, after
satisfying the constraints such as power, surface roughness and cutting force. An
application sample is developed and its results are analyzed for several different

production conditions.

Radhakrishnan, (2005) have developed a good empirical relationship between
the cutting force in an end milling operation and the cutting parameters such as
speed, feed and depth of cut, by using both multiple regression and neural
modeling processes. He analyzed that milling force data using conventional

regression can lead to a more accurate neural networks model for force prediction.

Asokan et al. (2005) optimized the machining parameters in grinding process by
using particle swarm optimization while taking the multi-objective function as
minimization of unit production cost per piece and minimization of unit
production time. He used the optimum set of four input parameters which are
wheel speed, work piece speed, depth of dressing and lead of dressing, after
satisfying the constraints such as thermal damage constraint, wheel wear

parameter constraint, machine tool stiffness constraint and surface constraint.

Palanisamy et al. (2006) have developed two different models reorescinn madeal



(different grades of polycrystalline cubic boron nitride as the cutting tool. He
described the various characteristics in terms of component quality, tool life, tool
wear, and effects of individual parameters on tool life, material removal and
economics of operation. The hardened material selected for hard turning is

commercially available engine crank pin material.

Choudhury et al. (1999) predicted the tool wear in turning process using neural
network He has taken cutting speed, feed, and depth of cut as input parameters to
develop the model and used an optoelectronic sensor system for monitoring the
tool wear without interrupting the machining process. For the experiments used
for validating the system, the predicted values were found to be within an error of

6 % of the actual measured values.

Tugrul Ozel et al. (2002) has developed exponential regression model and neural
network model to predict surface roughness and tool wear in finish hard turning
using Carbide tools. In the work, material hardness, Carbide content in tool
material, cutting speed, feed and cutting time have been considered as the process
parameters and has found their influence on tool wear and surface finish. He has
compared the neural network model with regression model and found that the
ANN model provided better prediction capabilities because they generally offer
the ability to model more complex non-linearity’s and interactions than linear and

exponential models.

Gopalakrishnan et al. (1991) described the design and development of an
analytical tool for the selection of machining parameters in turning process.

Geometric programming was used as a basic methodology to determine the values



on a single variable by considering a single constraint. In the present work, efforts
have been made to study the influence of feed, depth of cut and cutting speed
during machining on the tool life and surface finish while minimizing the unit

production cost.
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3.1 INTRODUCTION

Optimization analysis of the machining process is usually based on minimizing
production cost, maximizing production rate, or obtaining the finest possible
surface finish by using the relationships between tool life and the operating

parameters.

3.2 NEED FOR OPTIMIZATION

Optimization algorithms are becoming increasingly popular in engineering design
activities, primarily because of the availability and affordability of high-speed
computer. They are extensively used in those engineering problems where the
emphasis is on maximizing or minimizing a certain goal. For example,
optimization is routinely used in aerospace design activities to minimize the
overall weight of the aircraft. Thus the minimization of the weight of the aircraft
components is of major concern to aerospace designers. Chemical engineers, in
the other hand, are interested in designing and operating a process plant for an
optimum rate of production. Mechanical engineers design mechanical components
for the purpose of achieving either a minimum manufacturing costs or a maximum

component life,

Production engineers are interested in designing optimum schedule of the various
machining operations to minimize the ideal time of machines and the overall job
completion time. Civil engineers are involved in designing buildings, bridges,
dams and other structures in order to achieve a minimum overall cost or
maximizing safety or both. Electrical engineers are interested in designing

communication networks so as to achieve minimum time for communication from



3.3 TYPES OF OPTIMIZATION TECHNIQUES
The types of optimization techniques are given below

» Single or multi variable optimization

* Single or multi objective optimization

* Constrained or unconstrained optimization

¢ Linear or non-linear optimization

¢ Non-traditional optimization algorithms

Non-traditional optimization algorithms are fuzzy logic, genetic algorithm, scatter
search technique, particle swarm optimization technique, taguchi technique,

response surface methodology.

3.3.1 Fuzzy logic

Fuzzy logic has great capability to capture human commonsense reasoning,
decision-making, and other aspects of human cognition. Fuzzy logic overcomes
the limitations of classic logical systems, which Impose restrictions on
representation of imprecise concepts. Vagueness in the coefficients and
constraints may be naturally modeled by fuzzy logic. Modeling by fuzzy logic

opens up a new way to optimize cutting conditions and tool selection.

3.3.2 Genetic algorithm

The algorithms are based on mechanics of natural selection and natural genetics,
which are more robust and more likely to locate global optimum. Genetic
algorithm goes through solution space starting from a group of points and not

from a single point. The cutting conditions are encoded as genes by binary

PR A . T = I 1 ~



various economic criteria and numerous practical constraints. It can obtain near-

optimal solutions within reasonable execution time on computer.

3.3.4 Particle swarm optimization technique

This technique simulates the behavior of bird flocking. Suppose a group of birds is
randomly searching for food in an area and there is only one piece of food in the
area being searched. All the birds do not know where the food is. The effective
one is to follow the bird that is nearest to the food and each single solution is a
“bird” in the search space. This is called as “particle”. All of the particles have
fitness values, which are evaluated by the fitness function to be optimized, and
have velocities, which direct the flying of the particles. The particles are flown
through the problem space by following the current optimum particles.

3.3.5 Taguchi technique
Taguchi methods refer to parameter design, tolerance design, quality loss
function, on-line quality control, design of experiments using orthogonal arrays,

and methodology applied to evaluate measuring systems,

3.3.6 Response surface methodology

Experimentation and making inferences are twin features of general scientific
methodology. Statistics as a scientific discipline is mainly designed to achieve
these objectives. The methodology for making inferences has three main aspects.
First it establishes methods for drawing inferences from observations when these
are not exact but subject to variation, because inferences are not exact but
probabilistic in nature. Second it specifies methods for collection of data

appropriately, so that assumptions for the application appropriate statistical

I T T - 4 o - o



3.4 SUMMARY OF MACHINING OPTIMIZTION
TECHNIQUES

The summary of the machining optimization techniques have been given in the

table below.

TABLE 3.1 SUMMARY OF MACHINING OPTIMIZTION

TECHNIQUES
Technique Reference Tools used Remarks
Lagrange’s Brewer (1966); Lagrange’s Used for constrained
Method Bhattacharya multiplier optimization
(1970)
Geometric Walvekar & Theory is based on Developed for solving a
Programming | Lambert (1970): the arithmetic- class of nonlinear
Gopalakrishnan & | geometric mean optimization problem
Khayyal (1991) inequality found in engineering
design and manufacture
Goal Sundaram (1978) Goal programming Form of multi-objective
programming combines the logic of | optimization
optimization in
mathematical
programming with
the decision maker’s
desire to satisfy
several goals
Dynamic Agapiou (1992) A collection of Solving sequential or
programming algorithms used to multi-stage decision
compute optimal problems by solving a
polices given a series of single variable
perfect model of problems
environment




Technique Reference Tools used Remarks

Genetic Kuo (2002): A CGI (common Based on machining model

Algorithm Wang (2004) gateway interface) developed from theoretical

program analysis, experimental

database and numerical
methods

Scatter Chen (2003) A program designed | A generalized optimization

search by Laguna and Marti | methodology for

in C code machining Problems that

have no restrictive
assumption about objective
function, parameter set and
constraint set

Taguchi Pignatiello (1993): | Design of Based on actual

technique Tsui (1999): Singh | experiments, experimental work and

& Kumar (2003, Orthogonal arrays, determination of optimum
2004, 2005) ANOVA conditions using statistical

tools

Response Taraman (1974): Design expert Based on machining model

surface Hassan & Suliman | software (DX6) developed by mathematical

methodology | (1990): Baradie and statistical techniques

(1993); Noordin
(2004)

Genetic algorithms use only the values of the objective function. The derivatives

are not used in the search procedure. A population of points is used for the starting

procedure instead of a single design point. Since several points are used as
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4.1 INTRODUCTION

Genetic algorithm simulates the survival of the fittest among individuals over
consecutive generation for solving a problem. Each generation consists of a
population of character. Each individual represents a point in a search space and a
possible solution. The individual in the population are then made to go through a
process of evaluation. The basic idea of genetic algorithm is to use the power of

evolution to solve optimization problems.

The basic concept of genetic algorithm is to encode a potential solution to a
problem as a series of parameters. A single set of parameter value is treated as the
genome of an individual solution. An initial population of individuals is generated
at random or statically. Every generation the individuals in the current population
are decoded according to a fitness function. The chromosomes with the highest

population fitness are selected for mating.

The genes of the two parents are allowed to exchange to reproduce off Springs.
These children then replace their parents in the next generation. Thus the old
population is discarded and the new population becomes the current population.
The current population is checked for acceptability of solution. The iteration is
stopped after the completion of maximal number of generations or on the

attainment of the best results.

4.2 OBJECTIVE FUNCTION

The objective functions and constraints of this optimization problem have been
formulated as below, considering a practical problem of D = 35 mm, L = 100 mm,
T = 0.5 min / edoe T: = 15 i



Tool life, T is obtained from the tool life equation as given by [2]

48.24 10"
= V5.263f1.894d0.421 (3)

Substituting equations (2) and (3) in equation (1) and using the values of C, and
Cias Rs 3/ min and Rs 15 / edge, respectively, the expression of unit production
cost Cpy is [4]

Cor=(45+32.987V 7' £ 1 +3.761x 1071 4263 Fo¥goat 4)

4.3 CONSTRAINTS

There are four constraints that must be satisfied to give the optimal of feed, depth
of cut and cutting speed. These constraints are tool life, power, cutting force and

surface roughness

4.3.1 Tool life

Tool life (T) can be defined as a tool’s useful life until it no longer produces
satisfactory parts. When the wear reaches a certain value the tool is not capable of
further cutting unless it is resharpened. Life of the tool is affected by various
parameters such as cutting speed, depth of cut, feed, tool geometry and cutting
fluid. [2]

48.24 x10" _
= W 2 30min 5

4.3.2 Power
The power consumed during a turning operation is given by the equation [15]
Po lfg-x f Ax‘ci xV

o

<2 2kw o



4.3.4 Surface roughness
Surface roughness can be defined as an integral of the absolute value of the
roughness profile measured over evaluation length. It is expressed in thousands of

millimeter [16]

_125x £ (8)

R <3.2um

Fe

4.4 WORKING PRINCIPLE OF GA

The genetic algorithm (GA) is a population-based search optimization technique
and has been used as a powerful tool for optimizing cutting parameters in turning
opérations. The data processed by GA includes a set of strings (or chromosomes)
with an infinite length in which each bit is called an allele (or a gene). A selected
number of strings are called as population and the population at a given time is a
generation. Generation of the initial population of strings is done randomly. Since
the binary alphabet offers the maximum number of schemata per bit of
information of any coding, a binary encoding scheme is traditionally used to

represent the chromosomes using either zeros or ones,

Thereafter, the fitness value (objective function value) of each member is
computed. The population is then operated by the threec main operators, namely,
reproduction, crossover, and mutation to create a new population. The new
population is further evaluated and tested for determination. One iteration of these
three operators is known as a generation in the parlance of GA. The range of

cutting parameters variables are given in Table 4.1.

TARIF A1 CTTTTTINLG AT A AT VT TS o



45 IMPLEMENTATION OF GA

Initialize the population
|
Evaluate individuals
l
™ Selection
I

Reproduction

[
Mutation

[
Evaluate individuals

I
Replace individuals

FIGURE 4.1 FLOWCHART OF GENETIC ALGORITHM

4.5.1 Coding

In order to use Genetic algorithms to solve the problem, variables are first coded
in some string structures. Binary-coded strings having ones and zeros are
primarily used. The length of the string is usually determined according to the

desired solution accuracy. In order to solve thic mrabhlam 11otme £ A Lo e



function F(x) is derived from the objective function and is used in successive
genetic operations. For maximization problems, fitness function can be considered
the same as the objective function. The minimization problem is an equivalent
maximization problem such that the optimum point remains unchanged. A number

of such transformations are possible.

4.5.3 Basic operators of GA

1. Reproduction

Reproduction is the first oOperator applied on a population. In this process
individual strings are copied into a separate string calied the ‘mating pool’
according to their fitness values, i.e. the strings with a higher value have a higher
probability of contributing one or more offspring in the next generation. A
reproduction operator can be implemented in algorithmic form in a number of
ways. The easiest way is to create a biased roulette wheel where each current
string in the population has a roulette-wheel-slot-size in proportion to its fitness.
In this way more highly fit strings have higher numbers of offspring in the
succeeding generation. Once the string has been selected for the reproduction an

extra replica of the string is made. The string is entered into the mating pool.

2. Crossover

After reproduction, the population is enriched with good strings from the previous
generation but does not have any new string. A crossover operator is applied to
the population to hopefully create better strings. The total number of participative
strings in crossover is controlled by crossover probability, which is the ratio of
total strings selected for mating and the population size. The crossover operator is

mainly responsible for the search aspects of GA.



4.6 TOURNAMENT SELECTION

The fitness-proportionate described requires two passes through the population at
each generation. One pass to compute the mean fitness (for sigma scaling and the
standard deviation.) and one pass to compute the expected value of each
individual. Rank scaling requires sorting the entire population by rank a
potentially time consuming procedure. Tournament selection is similar to rank
selection in terms of selection pressure, but it is computationally more efficient
and more amenable to parallel implementation. Two individuals are chosen at
random from the population. A random number is then chosen between 0 and 1; if
individuals are selected to be parent otherwise the less fit individual is selected.
The two are then returned to the original population and can be selected again. An
analysis of this method was presented by Golgberg and Deb.

4.7 GA PARAMETERS
The GA parameters are given in the table 4.2
TABLE 4.2 GA PARAMETERS
S S

Selection operator Tournament selection

Crossover probability P,

Mutation probability P,

No of generations




4.8 OPTIMIZATION RESULTS
The optimization results are given in the table 4.3

TABLE 4.3 OPTIMIZATION RESULTS

Min Objective
Gen. No . Functign Average Objective Function
Unit Production Cost (Rs)
(Rs)

0 47.295 1151029.5
1 47.038 689079.938
2 46.496 417058.875
3 50.093 566485.688
4 49.967 510474.938
5 47.721 539199.438
6 47.56 226317.438
7 46.892 261489312
8 46.895 381357

9 46.484 262605.844
10 47.668 157106.109
11 47.6 164805.797
12 47.223 198362.734
13 47.222 134977.172
14 46.988 206690.5
15 46.493 395687.469
16 46.492 120553.469
17 46.499 170834.641
18 46.53 201050.609
19 46.393 166951.391
20 46.743 302559.094
21 46 4 [T bt b e L T 2




30 47.085 199731.797
31 46.838 72647.758
32 46.807 161553.391
33 46.536 229631.109
34 46.597 145701.703
35 46.482 281040.125
36 46.555 334291.312
37 47.091 204113.641
38 46.636 220203.594
39 46.725 110579.789
40 46.379 160066.562
41 46.868 330565.656
42 46.377 185892.734
43 46.377 259356.094
44 47.618 208443.328
45 46.887 191521.078
46 47.395 197744.062
47 46.792 262406.594
48 46.907 186171.5

49 46.645 223493.719
50 46.372 246352.641
51 46.374 115562.398
52 46.373 288520.938
33 46.372 256811.859
54 46.356 250022.719
35 46.851 194026.516
56 46.364 144599.938
57 47.078 189437.891
58 47.636 1RQ4A0 50




67 46.748 277033.844
68 46.669 154733.688
69 46.568 189973.859
70 46.545 104762 461
71 46.528 98730.555

72 46.536 175159.75

73 46.392 150163.359
74 46.387 134920.734
75 46.47 350949.688
76 46.738 233852.766
77 46.649 291737.062
78 46.49 204026.047
79 46.615 215088.906
80 46.657 134052.953
81 46.749 124643.273
82 46.812 78529.398

83 46.566 303234.188
84 46.846 306623.344
85 46.968 267917.219
36 46.927 298190.531
87 46.867 228334.312
88 46.998 131366.297
89 47.612 353540.469
90 47.497 50130.195

91 47.197 195709.781
92 46.345 245675.047
93 46.348 149800.359
94 46.507 195497.047
95 46.37 333348 504




The results are explained in the following graphs
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F IGUERE 4.2 GENERATION NUMBER VS AVERAGE
OBJECTIVE FUNCTION

Figure 4.2 shows that generation number is taken in the x axis and average

objective function is taken in the in y axis.
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TABLE 4.4 OPTIMIZATION RESULTS

Gen.No | Toollife | power (kw) | Cutting force | Surface roughness |

(min) ) ()
0 873.92 0.85 348.60 1.27
1 453.30 0.96 336.38 1.27
2 286.27 1.32 47391 2.60
3 21368.11 0.25 183.90 0.64
4 177514.46 0.32 529.02 2.52
5 1062.43 0.91 386.39 0.90
6 666.88 1.32 531.20 0.90
7 1399.73 0.34 138.51 2.33
8 969.84 0.80 361.25 2.33
9 16201.31 0.30 229.92 1.63
10 7133.44 0.52 377.78 2.52
11 4880.90 0.82 592.45 2.40
12 2144.69 0.94 550.17 2.40
13 2249.22 0.84 485.85 2.40
14 1592.00 0.52 247.36 2.40
15 378.82 0.94 340.20 2.81
16 392.25 0.86 310.59 2.81
17 477.41 0.59 206.56 2.81
18 413.85 0.87 318.78 2.72
19 234.01 0.98 313.83 2.81
20 334.16 0.91 315.09 2.72
21 248.45 0.96 310.06 2.72
22 214.84 1.08 347.46 3.11
23 857.87 1.01 456,97 2?75




32 1303.26 0.78 389.81 3.11
33 413.96 1.22 483.46 2.93
34 49336 0.72 261.72 2.52
35 518.35 0.49 169.46 293
36 472.37 1.04 415.88 2.93
37 446.59 0.87 290.13 1.13
38 759.99 0.42 153.00 2.60
39 339.22 0.88 289.07 1.72
40 241.03 1.55 559.97 3.11
41 494.73 0.95 353.50 1.72
42 334.99 .65 210.33 3.02
43 337.29 0.64 206.61 3.02
44 10851.68 0.32 244.93 3.02
45 330.62 1.21 411.27 1.41
46 1795.91 0.47 213.38 1.50
47 444 .60 0.63 206.03 1.63
48 1557.26 0.46 212.71 2.60
49 366.00 0.61 196.61 2.60
30 246.99 1.19 406.59 3.02
51 251.11 1.17 399.20 3.02
52 259.48 1.08 366.41 3.02
53 263.44 1.04 352.20 3.02
54 237.86 1.13 377.47 3.02
35 1358.29 0.45 200.03 2.60
56 313.26 0.67 215.80 3.02
57 498.36 0.77 261.06 1.21
58 2544.49 0.35 157.96 1.27




67 41859 13 41492 179
63 424.40 122 474.68 233
69 513.90 111 461.29 3.02
70 27356 132 459.83 233
71 336.93 0.74 241.90 333
7 346,34 0.74 24226 233
73 26033 147 533.66 311
74 217.28 1.52 525.90 2,93
75 358.61 137 538.75 311
76 41131 1.08 39835 1.96
77 304.73 1.61 596.74 214
78 313.02 0.35 103.82 333
79 297.16 1.54 568.16 225
80 736.17 0.92 406.52 3.02
81 546.02 0.61 21335 1.96
82 102455 036 135,57 225
83 501.66 0.48 159.32 2.40
84 849.81 0.42 153.18 1.96
85 918.62 0.73 309.00 1.9
36 806.42 0.91 390.39 2.07
87 64429 126 549.97 214
88 (421.83 0.72 354.93 2.40
89 | 5546.64 0.64 45257 2.40
50 591.71 130 503.39 0.90
91 598.28 0.62 207.50 1.08
92 183 81 133 42380 2.31
o3 195.08 120 380.14 581
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FIGURE 4.4 GENERATION NUMBER VS TOOL LIFE

Figure 4.4 shows that generation number is taken in the x axis and tool life is

taken in y axis, The tool life is 214.84 min at the optimum point.
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FIGURE 4.6 GENERATION NUMBER VS CUTTING FORCE

Figure 4.6 shows that generation number is taken in the x axis and cutting force is

taken in y axis. The cutting force is 347.46 N at the optimum point.
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The optimum point is at generation number 22, where the unit production cost is

minimum. The optimal values are given below.

% Minimum unit production cost = 46.309 Rs
% Cutting speed = 182.81 m / min

% Feed = 0.141 mm /rev

% Depth of cut = 1.372 mm

< Tool life = 214.84 min

< Power=1.08 kw

¢ Cutting force = 347.46 N

% Surface roughness = 3.11 ym



Chapter 5



5.1 INTRODUCTION

The design of experiments is one of the statistical analysis technique widely used
to develop the statistical mathematical models. The experiment should provide the
required information with minimum time and effort. Therefore, the experimental
plan and program must be well prepared and designed to conduct experiments.
Experimental design is an important tool to aid in coping with the complexities of
technical investigation. This is an organized approach to the collection of

information.

The various steps involved in the design of experiments are given below
* Identifying the important process control variables
* Finding the upper and the lower limits of the selected control variables
* Development of the design matrix

¢ Conducting the experiments as per the design matrix

5.2 IDENTIFICATION OF THE PROCESS VARIABLES

This is the first step in process of developing the mathematical model. This step
deals with the selection of the input parameters or the variables that has to be used
during the experimentation. These input parameters would vary depending upon
the problem that is handled. The input variables have to be chosen depending
upon the output responses that is to be considered. The process parameters are
those, which affect the output variables to some considerable extent. Normally
there would be a lot of process variables that might affect the output variables. But
only a limited number of parameters which substantially influence the responses

of the process have to be chosen so as to avoid the state of considering many input



It is not a good practice to conduct a large experiment involving many factors or
process variables. If none of the factors or process variables is significant, the
expetiment would then be a waste of time and money. Screening experiments are
widely accepted in industries for screening out the key factors, which influence
the quality characteristic of a product from a large number of factors. For
example, one may be able to study seven factors using just eight experimental

trials.

Usually the process of identifying the important process variables is also done by
the experimenter’s previous experience in that particular field. It reduces the cost
and time consumption. It is advisable not to invest more than 25 percent of the
experimental budget in the first phase of experimentation such as screening. By
this experimental scheme, one may be able to develop the regression based
mathematical model that depicts the relationship between the key process
variables and the process response. This model can then be used to predict the

values of the responses at different variable settings.

In this work, the selected machining process, input parameters and responses were
as follows

Machining process : Turning process. ‘

Input parameters  : Cutting speed (m/min), Feed (mm/rev) & Depth of cut {mm)

Responses : Tool wear (mm) and Surface finish (Microns)

3.3 FINDING THE LIMITS OF THE PROCESS VARIABLES

The working ranges of all process variables selected had to be determined to fix
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where X; is the required coded value of a variable X, X is any value of the variable
from Xpin t0 Xipax, Xmin 18 the lower limit of the variable and X, 1s the upper
Iimit of the variable. The selected process parameters of the experiment for tool
‘wear and surface roughness, with their limits, units and notations, are given in

Table 5.1.

TABLE 5.1 PROCESS VARATABLES AND THEIR LEVELS

Limits
Process Units | Notation
Parameters -1.682 -1 0 +1 +1.682
Cutting
m/ min v 75 87.5 162.5 | 237.5 400
speed
mm /
Feed f 0.025 | 0.0375 | 0.0675 | 0.0875 0.15
rev
Depth of cut mm d 0.25 | 0.375 | 0.675 | 0.875 1.5

After selecting the working range of the experimentation, the intermediate process
variables are selected and all the actual variables are converted into the coded

variables.

5.3.1 Specification of CNC 110 Turning Centre

Capacities:

Type of bed — Inclined 45 deg to vertical
Swing over bed covers — 215 mm
Maximum turning diameter — 110 mm

Maximum turning length — 210 mm

- x - o - o o~




FIGURE 5.1 PSG CNC 110 TURNING CENTRE




Tailstock:
Tailstock spindle diameter — 50 mm
Tailstock spindle stroke — 60 mm

Tailstock spindle taper — 50 mm

Axes travel:

Feed range X and Z axis — 1 to 3750 mm/min
Rapid traverse rate X and Z axis — 5Sm/min
Threading pitch — 0.25 to 16 mm

Cross slide stroke — 80 mm

Turret:

Number of tools — 8 (4 internal & 4 external tools)
Turret indexing positions — 8

Turret tool shank size — 12 x 12 mm

Maximum shank diameter of boring tool — 20 mm
Indexing time 45 degree indexing — 0.6 seconds

Indexing time 180 degree indexing — 2.0 seconds

Power:
Power of the spindle motor — 2.2 kw
Power of the hydraulic motor — 0.75 kw

Power of the coolant pump motor — 0.1 kw

5.4 DEVELOPMENT OF DESIGN MATRIX

In factorial design, the experiments are conducted for all possible combinations of



intermediate (0} level constitute the centre points and the combinations of each of
the process parameter variables at either it’s lowest (-1.682) or highest (+1.682)
with two other variables of the intermediate levels constitute the star points. In this
matrix, twenty experimental runs provide ten estimates for the effect of three
parameters. Thus the design matrix has allowed the estimation of linear, quadratic
and two-way interactive effects of the selected process parameter variables on tool

wear and surface roughness.

The Central composite design is constructed as per the following procedure:
Step 1: Construct a complete or factorial 2* factorial layout, describing on the

need for efficiency and the ability to ignore interaction effects.

Step 2: Add 2* axial or star points along the coordinate axes. Each pair of star

points is denoted using coded levels as follows:

(ta, 0, 0)
(0, £a, 0)
(0, 0, +a)

Where “a” is a constant, which can be chosen to make the design

rotatable or to satisfy some other desirable property.

Step 3: Add “m” repeat observations at the deign center:

(0, 0....0)

Step 4: Randomize the assignment of factor level combinations to the

experimental units or to the run sequence, whichever is appropriate.



TABLE 5.2 DESIGN MATRIX

Exno %;tetierég Feed Depth
(m/min) {mm/rev) of cut (mm)

1 -1 -1 -1
2 -1 -1 1
3 -1 1 -1
4 -1 1 1
5 1 -1 -1
6 1 -1 I
7 1 1 -1
3 1 1 1
9 -1.682 0 0
10 +1.682 0 0
11 0 -1.682 0
12 0 +1.682 0
13 0 0 -1.682
14 0 0 +1.682
15 0 0 0
16 0 0 0
17 0 0 0
18 0 0 0
19 0 0 0
20 0 0 0




5.6 EXPERIMENT DETAILS

The experimental details are as given below:
5.6.1 Work piece specification

Work piece material : Aluminium (HE- 9}
Length of the work piece : 100 mm

Diameter of the work piece : 35 mm

5.6.2 Composition of the work piece material:

Work piece material is Aluminium HE-9, this alloy which is in accordance with
BS 1474 No. 6063 TF, has a 0.2 % proof stress value of 160 Mpa, and a tensile
strength of 185 Mpa and an elongation at break of 7 %. The chemical composition

of the work piece as shown in table 5.3

TABLE 5.3 WORK PIECE COMPOSITIONS

Si 0.2 -0.6 %
Fe 0.35 %
Cu 0.1%
Mn 0.1%
Mg 0.45-0.9%
Cr 0.1%
Zn 0.1%
Ti 0.1%

5.6.3 Cutting tool specification
Tool material : Carbide tip

Make : WIDIA
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5.7.1 Surface tester specification

Make : Hommel
Type : T 1000

Measuring ranges 1% 80 um
Resolution :0.01 pm

FIGURE 5.3 HOMMEL SURFACE TESTER

5.7.2 Tool maker’s microscope specification

The flank wear values have been measured offline with a tool maker’s microscope
(Metzer-1395, Metzer, Indig; size travel up to 50 mm in each direction, least count
0.001 mm) for each combination of cutting Conditions Cutting was started with a
sharp insert and stopped every 4 runs (passes) of cut for tool flank wear

measurement using a toolmaker’s microscope.

Type : Digital microscope.
Magnification factor : Maximum of 150 X
Least count : 0.001 mm

Field of view : 8 mm diameter

Working distance 1 80 mm (approx)



TABLE 5.4 MEASURED SURFACE ROUGHNESS AND TOOL

WEAR VALUES

. Surface
foro | G | ped | DR g | e

(m/min) (mm/rev) (mm) measured values(mm)

values(pm)

1 87.5 0.0375 0.375 1.1 0.055
2 237.5 0.0375 0.375 0.76 0.075
3 87.5 0.0875 0.375 1.62 0.096
4 237.5 0.0875 0.375 1.28 0.121
5 87.5 0.0375 0.875 1.25 0.092
6 237.5 0.0375 0.875 0.91 0.114
7 87.5 0.0875 0.875 1.76 0.123
8 237.5 0.0875 0.875 1.43 0.142
9 75 0.0625 0.625 1.82 0.086
10 400 0.0625 0.625 1.02 0.154
11 162.5 0.025 0.625 0.86 0.092
12 162.5 0.15 0.625 1.98 0.140
13 162.5 0.0625 0.25 1.17 0.072
14 162.5 0.0625 1.5 1.5 0.112
15 162.5 0.0625 0.625 1.3 0.09
16 162.5 0.0625 0.625 1.3 0.092
17 162.5 0.0625 0.625 1.3 0.091
18 162.5 0.0625 0.625 1.3 0.09
19 162.5 0.0625 0.625 1.3 0.091
20 162.5 0.0625 0.625 1.3 0.093
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6.1 INTRODUCTION

Artificial Neural Networks are relatively crude electronic models based on the
neural structure of the brain. The brain basically learns from experience. It is
natural proof that some problems that are beyond the scope of current computers
are indeed solvable by small energy efficient packages. This brain modeling also
promises a less technical way to develop machine solutions. This new approach to
computing also provides a more graceful degradation during system overload than

its more traditional counterparts.

These biologically inspired methods of computing are thought to be the next
major advancement in the computing industry. Even simple animal brains are
capable of functions that are currently impossible for computers. Computers do
rote things well, like keeping ledgers or performing complex math. But computers
have trouble recognizing even simple patterns much less generalizing those

patterns of the past into actions of the future.

Now, advances in biological research promise an initial understanding of the
natural thinking mechanism. The brains store information as patterns. Some of
these patterns are very complicated and allow us the ability to recognize
individual faces from many different angles. This process of storing information
as patterns, utilizing those patterns, and then solving problems encompasses a new
field in computing. This field does not utilize traditional programming but
involves the creation of massively parallel networks and the training of those
networks to solve specific problems. This field also utilizes words very different
from traditional computing, words like behave, react, self-organize, learn,

generalize, and forget.



many collateral connections as desired. The most widely used technique, the feed
forward back propagation neural network, is adapted for the prediction of tool
wear and surface roughness in the turning operation. It is a gradient descent error-
correcting algorithm, which updates the weights in such a way that the network
output error is minimized. The feed forward back propagation network consists of
an input layer (where the inputs of the problem are received), hidden layers
(where the relationship between the inputs and outputs are determined and
represented by synaptic weights) and an output layer (which emits the outputs of

the problem).

6.2 ANALOGY TO THE BRAIN

The exact workings of the human brain are still a mystery. Yet, some aspects of
this amazing processor are known. In particular, the most basic element of the
human brain is a specific type of cell which, unlike the rest of the body, doesn't
appear to regenerate. Because this type of cell is the only part of the body that isn't
slowly replaced, it is assumed that these cells are what provides us with our
abilities to remember, think, and apply previous experiences to our every action.
These cells, all 100 billion of them, are known as neurons. Each of these neurons
can connect with up to 200,000 other neurons, although 1,000 to 10,000 are
typical. The power of the human mind comes from the sheer numbers of these
basic components and the multiple connections between them. It also comes from

genetic programming and learning.

The individual neurons are complicated. They have a myriad of parts, sub-
systems, and control mechanisms. They convey information via a host of

electrochemical pathways. There are over one hundred different classes of



was never about replicating human brains. It is about machines and a new way to

solve problems.

6.3 ARTIFICIAL NEURONS AND HOW THEY WORK

The fundamental processing element of a neural network is a neuron. This
building block of human awareness encompasses a few general capabilities.
Basically, a biological neuron receives inputs from other sources, combines them
in some way, performs a generally nonlinear operation on the result, and then

outputs the final result.

Within humans there are many variations on this basic type of neuron, further
complicating man's attempts at electrically replicating the process of thinking.
Yet, all natural neurons have the same four basic components. These components
are known by their biological names - dendrites, soma, axon, and synapses.
Dendrites are hair-like extensions of the soma which act like input channels.
These input channels receive their input through the synapses of other neurons.
The soma then processes these incoming signals over time. The soma then turns
that processed value into an output which is sent out to other neurons through the

axon and the synapses.

Recent experimental data has provided further evidence that biological neurons
are structurally more complex than the simplistic explanation above. They are
significantly more complex than the existing artificial neurons that are built into
today's artificial neural networks. As biology provides a better understanding of
neurons, and as technology advances, network designers can continue to improve

their svstems bv building unon man's understandine of the biological brain.



Wi F\
X —— » Sum | Transfer
W, J Output
Path

X, Processing element

“IN

FIGURE 6.1 A BASIC ARTIFICAL NEURON

Figure 6.1 shows a fundamental representation of an artificial neuron. Various
inputs to the network are represented by the mathematical symbol, X (n). Each of
these inputs is multiplied by a connection weight. These weights are represented
by W (n). In the simplest case, these products are simply summed, fed through a
transfer function to generate a result, and then output. This process lends itself to
physical implementation on a large scale in a small package. This electronic
implementation is still possible with other network structures which utilize

different summing functions as well as different transfer functions.

Figure 6.2 shows the simlink model where the cutting speed, feed and depth of cut

are input parameters while surface roughness and tool wear are the output
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FIGURE 6.2 SIMLINK MODEL
6.4 TYPES OF ANN

Basically there are two types of ANN
1. Supervised Networks

2. Unsupervised Networks

6.4.1 Supervised Networks

Supervised neural networks as in figure 6.3 are trained to produce desired outputs
in response to sample inputs, making them particularly well suited to modeling
and controlling dynamic systems, classifying noisy data, and predicting future
events. Some of the supervised networks available are Feed-forward networks,

Radial basis networks, recurrent networks, Learning Vector Quantification
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values. The aim 1s to determine a set of weights, which minimize the error. One
well-known method, which is common to many learning paradigms, is the least -

mean square (LMS) convergence.
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FIGURE 6.3 SUPERVISED LEARNING PROCESS
6.4.2 Unsupervised Networks
Unsupervised neural networks are trained by letting the network continually adjust
itself to new inputs. They find relationships within data and can automatically
define classification schemes. Some of the available such type of networks are

competitive layers, self-organizing maps, etc.

Generally, the learning process of a back-propagation neural network takes place
in two phases. In the forward phase, the output of each neuron in each layer and
the errors between the actual output from the outer layer and the target outputs are

computed; in the backward phase, weights are modified by the back-propagating



standard part propagates forward through the entire network to compute the output

of each neuron in the hidden and output layer.

For each neuron in the output layer, its output value is compared with the
corresponding target value to calculate the error of each neuron of the output
layer. If the output error of the training part geometry is within a predefined
tolerance, the training of the network is accomplished; otherwise the learning
continues, that is, the weights are modified by calculating and propagating the
error of each neuron in the output layer backward through the entire network. A
similar computation is performed for the output value of each neuron in a forward
phase by the new modified weights. In a target pattern representing a part family
only one-neuron value is defined as one and the other values are zero. After the
neural network ahs been trained, it assigns an input part in the form of a binary

image to a family, even if the shape is incomplete.

6.5 FEED FORWARD BACK PROPAGATION NETWORK

Several ANN topologies have been developed for different applications, the most
popular being the Feed Forward Back Propagation Network. It is a gradient
descent error-correcting algorithm, which updates the weights in such a way that
the network output error is minimized. The way that the neurons are organized
forms the structure of the neural network, such as single-layer feed forward
networks and multilayer-feed forward networks. A feed forward back propagation
network consists of an input layer (where the inputs of the problem are received),
hidden layers (where the relationship between the inputs and outputs are

determined and represented by synaptic weights) and an output layer (which emits
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demonstrated their efficacy on many practical problems and have been shown to

be relatively easy to use. Hence, this technique is adopted in this study.

6.6 MATLAB SOFTWARE

MATLAB stands for MATrix LABoratory developed by The Mathworks
Incorporation, USA and is an interactive system for matrix-based computation
designed for scientific and engineering use. It is good for many forms of numeric
computation and visualization. Besides dealing with explicit matrices in linear
algebra, it can handle differential equations, polynomials, signal processing, and
other applications. Results can be made available both numerically and as
excellent graphics. It is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-use

environment where problems and solutions are expressed in familiar mathematical

notation.
Typical uses include:
1. Math and computation
2. Algorithm development
3. Modeling, simulation, and prototyping
4, Data analysis, exploration, and visualization
5. Scientific and engineering graphics
6. Application development, including Graphical User Interface building

In University environments, it is the standard instructional tool for introductory
and advanced courses in mathematics, engineering, and science. In industry,

MATLAB is the tool of choice for high-productivity research, development, and
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processing, control systems, neural networks, fuzzy logic, wavelets, simulation,

and many others.

6.7 TRAINING THE NETWORK

MATLAB 6.1 has been used for training the network model for tool wear and
surface roughness prediction. There are 20 training patterns considered for
prediction of surface finish and tool wear. Each neuron is a processing element,
which performs a weighed sum of all input vaniables that feed it. Depending on
the value of weighted sum of the variables, the neuron gives a signal to the
neurons in the adjacent layer through a non-linear transfer function. The algorithm

used is feed forward backward propagation algorithm’

6.8 RESULTS OF ANN

The result of the ANN is given below

Number of input nodes 3

Number of hidden nodes 27

Number of output nodes 2

Type of learning method Supervised learning
Algorithm - Back propagation
Learning rule Gradient descent rule

Number of learning patterns used 20
The leaning parameter used 0.5

Number of epochs 1000

Pefarmance 1z 3 S48533e-008, Soal n. 0
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ANN training graph for surface roughness and tool wear for 27 neurons is given in
the figure 6.4. The predicted values of surface roughness and tool wear by the
ANN model are compared with the experimental values for the validation set of

experiments.

TABLE 6.1 COMPARSION OF MEASURED AND PREDICTED
SURFACE ROUGHNESS VALUES

fano | S | o | D | s | g | %

(m/min) rev) (mm) measured predicted error

values (um) values (um)

1 87.5 0.0375 | 0.375 .1 1.12 -1.82
2 237.5 0.0375 | 0.375 0.76 0.73 3.95
3 87.5 0.0875 | 0.375 1.62 1.6 1.23
4 237.5 0.0875 | 0.375 1.28 1.31 -2.34
5 87.5 0.0375 | 0.875 1.25 1.21 3.33
6 237.5 0.0375 | 0.875 0.91 0.9 1.10
7 87.5 0.0875 | 0.875 1.76 1.71 2.84
8 237.5 0.0875 | 0.875 1.43 1.47 -2.8
9 75 0.0625 | 0.625 1.82 1.84 -1.1
10 400 0.0625 | 0.625 1.02 0.99 2.94
11 162.5 0.025 0.625 0.86 0.88 -2.33
12 162.5 0.15 0.625 1.98 1.98 0
13 162.5 0.0625 0.25 1.17 1.12 4.27
14 162.5 0.0625 1.5 1.5 1.49 0.67
15 162.5 0.0625 | 0.625 1.3 1.29 0.77
16 162.5 0.0625 | 0.625 1.3 1.29 0.77




TABLE 6.2 COMPARSION OF MEASURED AND PREDICTED

TOOL WEAR VALUES
Cutting Feed Depth Tool wear Tool ‘wear 9
Ex no speed (mm/ of cut measured predicted

(m/min) rev) (mm) | values (mm) | values (mm) error
1 87.5 0.0375 | 0.375 0.055 0.053 3.64
2 237.5 0.0375 | 0.375 0.075 0.073 2.67
3 87.5 0.0875 | 0.375 0.096 0.098 2.08
4 237.5 0.0875 | 0.375 0.121 0.121 0
5 87.5 0.0375 | 0.875 0.092 0.096 -4.35
6 237.5 0.0375 | 0.875 0.114 0.112 1.75
7 87.5 0.0875 | 0.875 0.123 0.119 3.25
8 237.5 0.0875 0.875 0.142 0.14 1.41
9 75 0.0625 | 0.625 0.086 0.089 -3.49
10 400 0.0625 | 0.625 0.154 0.156 1.3
11 162.5 0.025 0.625 0.092 0.088 4.35
12 162.5 0.15 0.625 0.140 0.136 2.86
13 162.5 0.0625 0.25 0.072 0.075 4.17
14 162.5 0.0625 1.5 0.112 0.116 357
15 162.5 0.0625 | 0.625 0.09 0.089 1.11
16 162.5 0.0625 | 0.625 0.092 0.089 3.26
17 162.5 0.0625 | 0.625 0.091 0.089 2.0
18 162.5 0.0625 | 0.625 0.09 0.089 1.11
19 162.5 0.0625 | 0.625 0.091 0.089 22
20 162.5 0.0625 | 0.625 0.093 0.089 4.26




Chapter 7



The following conclusions were made from the project.

An effective method of finding the optimal parameters for turning process
using genetic algorithm has been proposed.

In the turning process parameters cutting speed, feed and depth of cut are
used as input parameters to reduce the unit production cost while
considering the constraints such as tool life, power, cutting force and
surface roughness.

The optimum point is at generation number 22, where the unit production
cost is minimum. The optimal values at generation 22 are

Minimum unit production cost = 46.309 Rs

Cutting speed = 182.81 m / min

Feed = 0.141 mm / rev

Depth of cut = 1.372 mm

Tool life = 214.84 min

Power = 1.08 kw

Cutting force = 347.46 N

Surface roughness = 3.11 pm

This method can be applied to any kind of optimization problems with
suitable modifications.

One of the innovative models, ANN is used for predicting surface
roughness and tool wear in turning operation.

Experiments have been performed to ascertain surface roughness and tool
wear in a CNC turning center for machining aluminium HE-9 specimens
using Carbide tipped cutter.

The predictive ANN model is found to be capable of better predictions of
surface roughness and tool wear within the range that they had been
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