Pa156
EFFICIENT APPROXIMATE QUERY

PROCESSING IN PEER TO PEER NETWORKS
A PROJECT REPORT
Submitted by

ELANGO.V
RAVICHANDRAN.A

In partial fulfillment for the award of the degree
or

BACHELOR OF TECHNOLOGY
IN

INFORMATION TECHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY F

COIMBATORE-641006

ANNA UNIVERSITY: CHENNAI 600 025

ACKNOWLEDGEMENT

We express our sincere thanks to our chairman Padmabhushan
Arutselvar Dr. N. Mahalingam B.Se, F.LE, Vice Chairman Dr. K.
Arumugam B.E., MLS., M.LE., Correspondent
Shri.M.Balasubramaniam and Joint Correspondent Dr.A
Selvakumar for all their support and ray of strengthening hope extended.
We are immensely grateful to our principal Dr. Joseph V. Thanikal
M.E., Ph.D., PDF., CEPIT., for his invaluable support to the outcome of

this project.

We are deeply obliged to Dr.8.Thangasamy, Dean, Department of
Computer Science and Engineering for his valuable guidance and useful

suggestions during course of this project.

We also extend our heartfelt thanks to our project coordinator
Prof.K.R.Baskaran B.E., M.S., Asst. Prof., Department of Information
Technology for providing us his support which really helped us.

We are indebted 1o our project guide Ms. J.Cynthia M.E.,
Sr.Lecturer, Department of Information Technology for her helpful

guidance and valuable support given to us throughout this project.

We thank the teaching and non-teaching staffs of our Depariment
for providing us the technical support during the course of this project.
We also thank all of our friends who helped us to complete this project

successfully.

APRIL 2008

ANNA UNIVERSITY : CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “EFFICIENT APPROXIMATE
QUERY PROCESSING IN PEER TO PEER NETWORKS” is the
bonafide work of,

ELANGO.V : 71204205006
RAVICHANDRAN.A 1 71204205036

Who carried out the project under my supervision.

a
B '_(./ P
SIGNATURE S NA'[{lRE

Dr.S.Thangasamy Ms. J. Cynthia M.E.,

HEAD OF THE DEPARTMENT SUPERVISOR

Department u_f Department of Information Technology,
Computer Science and Engineering, Kumaraguru College Of Technology,
Kumaraguru College Of Technology, Coimbatore-641006.

Coimbatore-641006.

Submitted for the university project viva voice held on

W

FXTFEFRNAL EXAMINER

INTFRNAT FYAMINFR

DECLARATION
We,
Elango.V Reg.No: 71204205006
Ravichandran.A Reg.No: 71204205036

hereby declare that the project entitled “Efficient Approximate Query
Processing In Peer-to-Peer Networks”, submitted in partial fulfillment
to Anna University as the project work of Bachelor of Technology
(Information Technology) degree, is a record of original work done by us
under the supervision and guidance of the Department of Information

Technology, Kumaraguru College of Technology, Coimbatore.

Place: Coimbatore
Date: 22 - ©4 . 209F

Y RPNy
[Elango.v] [Ravichandran.A]
Project Guided by

|Ms. J.Cynthia MLE.]

TABLE OF CONTENTS
CHAPTER TITLE PAGE
NO NO.
Abstract vil
List of figures viil
List of symbols xi
1. Introduction 1

1.1 Peer-to-Peer (P2P) Databases 1

1.2 Aggregation Queries 1
1.3 Approximate Query Processing 3
1.4 Goal of the Paper 4
1.5 Our Approach 5
b Related work 7
3 Foundations of our approach 9
3.1 The Peer-to-Peer Model 9
3.2 Query Cost Measures 10
3.3 Random Walk 12
3.4 Sampling Theorems 15
4. Our algorithm 20
4.1 Count 20
4.2 Sum and Average 21
4.3 Median 22
ABSTRACT

Peer-to-peer (P2P) databases are becoming prevalent on the
Internet for distribution and sharing of documents, applications, and other
digital media. The problem of answering large-scale ad hoc analysis
queries, for example, aggregation queries, on these databases poses
unique challenges. Exact solutions can be time consuming and difficult to
implement, given the distributed and dynamic nature of P2P databases. In
this paper, we present novel sampling-based techniques for approximate
answering of ad hoc aggregation queries in such databases. Computing a
high-quality random sample of the database cfficiently in the P2P
environment is complicated due to several factors: the data is distributed
(usually in uneven quantities) across many peers, within each peer, the
data is often highly correlated, and, moreover, even collecting a random
sample of the peers is difficult to accomplish. To counter these problems,
we have developed an adaptive two- phase sampling approach based on
random walks of the P2P graph, as well as block-level sampling
techniques. We present extensive experimental evaluations to

demonstrate the feasibility of our proposed solution.

FIGURE

NO

0l.

02.

03.

05.

07

Hybrid algorithm
Experimental evaluation
6.1 Implementation

6.2 Generation of P2P networks and

Databases
6.2.1 Synthetic Topology
6.2.2 Real world Topology
6.3 P2P Databases
6.4 Input Parameters
6.5 Evalution Metrics : Cost and Accuracy
6.6 Experiments
6.6.1 Accuracy
6.6.2 Sample Size
6.6.3 Evaluating Sum Query
6.6.4 Estimating the Median
Conclusion
Appendices
A. Screen Lyout
B. Coding

References

LIST OF FIGURES

DESCRIPTION

Required accuracy on the error percentage for the

Count technique

Effects of selectivity on the error percentage for
the Count technique

Effects of the sample size collected for given
required accuracies and initial sample sizes for the
count technique

Effects of the sample size collected for given
required accuracies and initial sample sizes for the
count technique

The number of peers does not make a vast
difference in accuracy

Effects of clustering on the sample size for the
Sum technique

Effects of clustering on the sample size for the

Median technique

27
21
27

27
28
28
29

30
30

35
36
37
38
38

PAGE

NO.

31

32

33

34

34

35

36

LIST OF SYMBOLS

P2P Peer to Peer

AQP Approximate query processing
coL Column

CV ERROR Cross validation error

is, how aggregation queries on such databases can be answered.
Aggregation querics have the potential of finding applications in decision
support, data analysis, and data mining. For example, millions of peers
across the world may be cooperating on a grand experiment in astronomy,
and astronomers may be interested in asking decision support queries that
require the aggregation of vast amounts of data covering thousands of
peers. In addition, there is real-world value for aggregation queries in
network monitoring scenarios such as temperature and anomaly detection
in sensor networks, Intrusion Detection Systems and application signature
analysis in P2P networks. Sensor networks can directly benefit from
aggregation of traffic analysis data by offering a more efficient means of
computing various network-based aggregates such as the average
message size and maximum data throughput within the network, with
minimal energy consumption and decreased response times. We make the
problem more precise as follows: Consider a single table T that is
distributed over a P2P system; that is, the peers store horizontal partitions
(of varying sizes) of this table. An aggregation query such as the
following may be introduced at any peer (this peer is henceforth called

the query node). Aggregation query
SELECT Agg-Op(Col) FROM T WHERE selection-condition

In the above query, the Agg-Op may be any aggregation operator
such as SUM, COUNT, AVG, and so on, Col may be any numeric
measure column of T or even an expression involving multiple columns,
and the selection condition decides which tuples should be involved in
the aggregation. Although aggregation queries have been heavily

e sndiiannl datahaces it e not clear that these

CHAPTER 1
INTRODUCTION
1.1 Peecr-to-Peer (P2P) Databases:

THE P2P network model is quickly becoming the preferred
medium for file sharing and distributing data over the Intemet. A P2pP
network consists of numerous peer nodes that share data and resources
with other peers on an cqual basis. Unlike traditional client-server
models, no central coordination exists in a P2P system; thus, there is no
central point of failure. P2P networks are scalable, fault tolerant, and
dynamic, and nodes can join and depart the network with ease. The most
compelling applications on P2P systems 1o date have been file sharing
and retrieval. For example, P2P systems such as Napster, Gnutella,
KaZaA, and Freenet are principally known for their file sharing
capabilities, for example, the sharing of songs, music, and so on.
Furthermore, researchers have been interested in extending sophisticated
infrared (IR) techniques such as keyword search and relevance retrieval

1o P2P databases.
1.2 Aggregation Queries:

In this Project, however, we consider a problem on P2P systems
that is different from the typical search and retrieval applications. As pP2pP
systems mature beyond file sharing applications and start getting
deployed in increasingly sophisticated e-business and scientific

environments, the vast amount of data within P2P databases poses a

techniques will easily adapt to the P2P domain. For example, decision

support techniques such as online analytical processing (OLAP)
commonly employ materialized views; however, the distribution and
management of such views appear difficult in such a dynamic and
decentralized domain. In contrast, the alternative of answering
aggregation queries at runtime “from scratch™ by crawling and scanning

the entire P2P repository is prohibitively slow.
1.3 Approximate Query Processing (AQP):

Fortunately, it has been observed that in most typical data analysis
and data mining applications, timeliness and interactivity are more
important considerations than accuracy: thus, data analysts are often
willing to overlook small inaccuracies in the answer, provided that the
answer can be obtained fast enough. This observation has been the
primary driving force behind the recent development of AQP techniques
for aggregation queries in traditional databases and decision support
systems. Numerous AQP techniques have been developed: The most

popular ones are based on random sampling,

Where a small random sample of the rows of the database is drawn,
the query is executed on this small sample, and the results are
extrapolated to the whole database. In addition to simplicity of
implementation, random sampling has the compelling advantage that, in
addition to an estimate of the aggregate, one can also provide confidence
intervals of the error, with high probability. Broadly, two types of

sampling-based approaches have been investigated:

1. Precomputed samples, where a random sample is precomputed by
scanning the database and the same sample is reused for several

queries and

2. Online samples, where the sample is drawn “on the fly” upon

encountering a guery.

1.4 Goal of the Project:

In this Project, we also approach the challenges of decision support and
data analysis on P2P databases in the same manner: that is, we investigate

what it takes to enable AQP techniques on such distributed databases.

Goal of the Project: Approximating Aggregation Queries in P2P
Networks. Given an aggregation query and a desired error bound at a
query node peer, compute with “minimum cost” an approximate answer
to this query that satisfied the error bound. The cost of query execution in
_ traditional databases is usually a straightforward concept: It is either 'O
cost or CPU cost or a combination of the two. In fact, most AQP
approaches simplify this concept even further by just trying to minimize
the number of tuples in the sample, thus making the assumption that the
sample size is directly related to the cost of query execution. However, in
P2P networks, the cost of query execution is a combination of several
quantitics such as the number of participating peers, the bandwidth
consumed (that is, the amount of data shipped over the network), the
number of messages exchanged, the latency (the time 1o propagate the
query across multiple peers and receive replies), the /O cost of accessing
data from participating peers, the CPU cost of processing data at

participating peers, and so on. In this Project, we shall be concerned with

information from the visited peers, such as the number of tuples, the
aggregate of tuples (for example, SUM, COUNT, AVG, and so forth) that
satisfy the selection condition, and send this information back 1o the
query node. This information is then analyzed at the query node to
determine the skewed nature of the data that is distributed across the
network, such as the variance of the aggregates of the data at peers, the
amount of correlation between tuples that exists within the same peers,
the variance in the degrees of individual nodes in the P2P graph (recall
that the degree has a bearing on the probability that a node will be
sampled by the random walk), and so on. Once this dala has been
analyzed at the query node, an estimation is made on how much more
samples are required (and in what way should these samples be collected)
5o that the original query can be optimally answered within the desired

accuracy, with high probability.

replies) as our primary quantity to minimize though our technique could

be easily extended to deal with other cost metrics.
1.5 Our Approach:

We briefly describe the framework of our approach. Essentially,
we abandon trying to pick true uniform random samples of the tuples, as
such samples are likely to be extremely impractical to obtain. Instead, we
consider an approach where we are willing to work with skewed samples,
provided that we can accurately estimate the skew during the sampling
process. To get the accuracy in the query answer desired by the user, our
skewed samples can be larger than the size of a corresponding uniform
random sample that delivers the same accuracy; however, our samples are
much more cost efficient to generate. Although we do not advocate any
significant preprocessing, we assume that certain aspects of the P2P
graph are known to all peers, such as the average degree of the nodes. a
good estimate of the number of peers in the system, certain topological
characteristics of the graph structure, and so on. Estimating these
parameters via preprocessing are interesting problems in their own right;
however, we omit these details from this Project. The main point that we
make is that these parameters are relatively slow 1o change and thus do
not have to be estimated at query time: It is the data contents of peers thal
changes more rapidly; hence, the random sampling process that picks a
representative sample of tuples has to be done at runtime. Our approach
has two major phases. In the first phase, we initiate a fixed-length
random walk from the query node. This random walk should be long
enough to ensure that the visited peers represent a close sample from the

wnderlvina stationary distribution (the appropriate length of such a walk

CHAPTER 2
RELATED WORK

P2P systems are becoming very popular because they provide an
efficient mechanism for building large scalable systems [28]. Most recent
work has focused on Distributed Hash Tables (DHTs) [32], 331, [37).
Such techniques provide scalability advantages over unstructured systems
(such as Gnutella); however, they are not flexible enough for some
applications, especially when nodes join or leave the network frequently
or change their connections often. Recent work has proposed different
techniques for exact query processing in P2P systems. Most proposals use
structured overlay networks (DHTSs), such as CAN, Pastry, and Chord.
Such techniques include PIER, DIM, or Pastry, and since they use DHTSs,
they have a different focus and are not directly applicable to our case. A
hybrid system, Mercury [4], using routing hubs to answer range queries
was also recently proposed. This system is also designed to provide exact
answers to range queries. These techniques use Markov-chain random
walks 1o select random peers from the network. Their results show that
when certain structural properties of the graph are known or can be
estimated (such as the second cigenvalue of the graph), the parameters of
the walk can be set so that a representative sample of the stationary
distribution can be collected with high probability. There are known
techniques for computing approximate aggregates in distributed settings
(most notably, the Gossip protocol). The technique works generally as a
preprocessing step where all peers in a network attempt to mix data
among adjacent peers, eventually converging upon a single value. The

fmakilin 1 cantact all nodes in the network makes it exceedingly difficult

domain and previous work on AQP in relational databases. employing
sampling in the database engine to approximate aggregation querics and
to estimate database statistics. Recent techniques have focused on
providing formal foundations and algorithms for block-level sampling
and are thus most relevant to our work. The objective in block-level
sampling is to derive a representative sample by only randomly selecting
a set of disk blocks of a relation .Specifically,presents a technique for
histogram estimation, which uses cross validation to identify the amount
of sampling required for a desired accuracy level. In addition, considers
the problem of deciding what percentage of a disk block should be

included in the sample, given a cost model.

propagated to all the peers in the network and thus consumes excessive
network and processing resources and results in poor performance. Our
approach, on the other hand, uses a probabilistic search algorithm based
on random walks. The key idea is that technique is shown to improve the

search efficiency and reduce unnecessary traffic in the P2P network.
3.2 Query Cost Measures

As mentioned in Section 1, the cost of the execution of a query in
P2P databases is more complicated than equivalent cost measures in
wraditional databases. The primary cost measure that we consider is
latency, which is the time that it takes to propagate the query across
multiple peers and receive replies at the query node. In our algorithm,
latency can be approximated by the number of peers that participate in the
random walk. This measure is appropriate for our algorithm because it
performs a single random walk starting from the query node. Thus,
latency becomes proportional to the total number of visited peers in the
random walk. To see this, we note that the aggregation operator (as well
as the selection filter and 1P address of the query node) can be pushed to
each visited peer. Once a peer is visited by the algorithm, the peer can be
instructed to simply exccute the original query on ils local data and send
only the aggregate and the degree of the node back to the query node,
from which the query node can reconstruct the overall answer. Moreover,
this information can be sent directly without necessitating any
intermediate hops, as the visited peer knows the IP address of the query
node from which the query originated. This is reasonable, considering
that the IP address can be pushed 1o visited peers along with the

anoreaation aneratar and the P2P networks such as Kazaa run on top of a

CHAPTER 3
FOUNDATIONS OF OUR APPROACH

In this section, we discuss the principles behind our approach for

AQP on P2P databases. Our actual algorithm is described in Section 4.
3.1 The Peer-to-Peer Model

We assume an unstructured P2P network represented as a graph
G=(P,E),with a vertex set P ={P1,P2...Pm} and an edge set E. The
vertices in P represent the peers in the network, and the edges in E
represent the connections between the vertices in P. Each peer p is
identified by the processor’s IP address and a port number (IPp and
portp). The peer p is also characterized by the capabilities of the
processor on which it is located, including its CPU speed pepu, memory
bandwidth pmem, and disk space pdisk. The node also has a limited
amount of bandwidth 1o the network, noted by pband. In unstructured
P2P networks, a node becomes a member of the network by establishing
a connection with at least one peer currently in the network. Each node
maintains a small number of connections with its peers: The number of
connections is typically limited by the resources at the peer. We denote
the number of connections that a peer is maintaining by pconn. The peers
in the network use the Gnutella P2P protocol to communicate. The
Gnutella P2P protocol supports four message types (Ping, Pong, Query.
and Query Hit), of which the Ping and Pong messages arc used to
establish connections with other peers, and the Query and Query Hit

messages are used to search in the P2P network. Gnutella, however, uses

efiin Plaandil Bieet Canesh (MRESY techninne in which aneries are

Thus, the bandwidth requirement of such an approach is uniformly very
small for all visited peers: They are not required to send more voluminous
raw data (for example, all or parts of the local database) back to the query
node. In approximating latency by the number of peers participating in
the random walk, we also make the implicit assumption that the overhead
of visiting peers dominates the costs of local computations (such as
execution of the original query on the local database). This is, of course,
true if the local databases are fairly small. To ensure that the local
computations remain small even if local databases are large, our approach
in such cases is 10 execute the aggregation query only on a small fixed-
sized random sample of the local data (that is, we sub sample from the
peer), scale the result to the entire local database, and send the scaled
aggregate back to the query node. This way, we ensure that the local
computations are uniformly small across all visited peers. In contrast,
suppose that instead of a fixed sized sample, we decided on sampling a
fixed fraction of a visited peer’s local database. The main problem with
this approach is that it complicates the query cost model. Now, local
processing costs cannot be ignored and, thus, latency cost of executing a
query cannot be modeled as simply being proportional to the number of
visited peers (or even the overall number of sampled tuples). The latency
now becomes a complex (and, perhaps, system dependent) function of the
cost of visiting peers and local query processing costs. The consequence
of a complicated latency model is that it now becomes difficult to have a
principled two-phase approach to solving the problem because the first
phase now has the task of determining how many peers should be
sampled in the second phase so that the target accuracy can be achieved

with minimum latency. Moreover, even if the first phase can somehow

latency cost of the second phase is unpredictable. It depends on the type
of peers we visit, as peers with large databases will increase latency,
whereas peers with small databases will decrease latency. In summary,
for SUM and COUNT aggregates, latency is shown to be proportional to
the number of peers participating in the random walk. Thus, our goal isto
minimize the number of peers that must be visited in order to arrive at an

approximate answer with the desired accuracy.
3.3 Random Walk

In Graphs In seeking a random sample of the P2P database, we
have to overcome the sub problem of how a random sample of the peers
themselves can be collected. Unrepresentalive samples of peers can
quickly skew results, producing erroneous aggregation statistics.
Sampling in a nonhierarchical decentralized P2P network presents several
obstacles in obtaining near-uniform random samples. This is because no
peer (including the query node) knows the IP addresses of all other peers
in the network: They are only aware of their immediate neighbors. If this
were not the case, then, clearly, the query node could locally generate a
random subset of 1P addresses from among all the IP addresses and visit
the appropriatc peers directly,. We note that this problem is not
encountered in traditional databases, as even if one has to resort to cluster
(ar block-level) sampling such as in [11] and [18], obtaining an efficient
sample of the blocks themselves is straightforward. This problem has
been recognized in other contexts (sce [16] and the references therein),
and interesting solutions based on Markov-chain random walks have been
proposed. We briefly review such approaches here. A Markov-chain

random walk is a procedure that is initiated at the query node, and for

certain specific conditions of connectedness (for example. expander
graphs that are common in P2P networks), convergence can be achieved
in OlogM) steps. In our case, recall from Section | that we assume that
we are allowed a certain amount of preprocessing 1o determine various
properties of the P2P graph that will be useful at query time (under the
assumption that the graph topology changes less rapidly compared 1o the
data content at the peers). The speed of convergence of a random walk in
this graph is determined in this preprocessing siep, in addition 1o ather
useful properties such as the number of nodes M. the number of edges

jEj, and so on.
1. We define speed of convergence as how many hops h are necessary
2. Before one gets close to the stationary distribution.

3. The second eigenvalue tells how well the peers within the network

are
4. Connected, that is, expander versus clustered sets of peers.

5. Given a pantition of peers in two sets A and B, any edge crossing
from A to be B is crossing the cut. The cut size is sum of the edges
crossing A and B. convergence, we essentially determine a jump
parameter | that determines how many peers can be skipped
between selections of peers for the sample. As the jump increases,
the correlation between successive peers that are selected for the

sample decreases rapidly.

from among its neighbors (and itself and, thus. self loops are allowed). It
is well known that if this walk is carried out long enough, then the
eventual probability of reaching any peer p will reach a stationary

distribution. To make this more precise,
let P= {pl;p2;...;pM} be the entire set of peers,

Let E be the entire set of edges, and let the degree of a peer p be
deg(P). Then, the probability of any peer p in the stationary distribution is

probip)=deg(p)/2|E|

It is important to note that the above distribution is not uniform:
The probability of each peer is proportional to its degree. Thus, even if
we can efficiently achieve this distribution, we will have to compensate
for the fact that the distribution is skewed as above if we have fo use
samples drawn from it for answering aggregation queries. The main issue
that has concerned researchers has been the speed of convergence. | Most
results have pointed to certain broad conneclivily properties that the
graph should possess for this to happen. In particular, it has been shown
that if the transition probabilities that govern the random walk on the P2P
graph are modeled as anM *M matrix, then the second eigenvalue2 plays
an important role in these convergence results. The second eigenvalue
describes connectivity properties of graphs, in particular, whether the
graph has a small cut size,3 which would adversely impact the length of
the walk necessary to arrive at convergence. As the results in [16] show,
if the P2P graph is well connected (that is, it has a small second

eigenvalue, and a minimum degree of the graph is large), then the random

i e ma i Wlacae mamant? ranidle In fact under

3.4 Sampling Theorems

In this section, we shall develop the formal sampling theorems that
drive our algorithm. We shall show how the tuples that are retrieved from
the first phase of our algorithm can be utilized to recommend how the
second phase should be executed, that is, the “query plan™ for answering
the query approximately so that a desired error is achieved. We focus
here on the COUNT aggregale for the purpose of illustrating our main
ideas (our formal results can be easily extended for the SUM and
AVERAGE cases). Finally, to keep the discussion simple, we assume that
all local databases at peers are small, that is, sub sampling is not required
(our results can be extended for the sub sampling case and, in fact, our
algorithm in Section 4 does not make this assumption). As discussed
carlier, our algorithm has two phases. In the first phase, our algorithm
will visit a predefined number of peers m by using a random walk such
that the sample of visited peers will appear as if they have been drawn
from the stationary distribution of the graph. The query will be executed
locally at each visited peer, and the aggregates will be sent back to the
query node, along with other information such as the degrees of the
visited peers (from which information such as the peers’ probabilities in
the stationary distribution can be computed). The query node analyzes
this information and then determines how many more peers need to be
visited in the second phase. The theorems that we develop next provide

the foundations on which the decisions in the first phasc are made.

Recall that P={P1.,P2..Pm] is the set of peers.

For a tuple u, let y(u) = | if u satisfies the selection condition, and y(u)=0

otherwise.
Let the aggregate for a peer p be. Y(p) =7 u€p y(u).
Let y be the exact answer for the query, that is,

y = ? pEpy(p)-
The query also comes with a desired error threshold ? req.

The implication of this requirement is that if y” is the estimated

count by our algorithm, then
ly-y'|<? req
Now, consider a fixed-size sample of peers

S = {sl,s2...sm} where each si is from P. This sample is picked
by the random walk in the first phase. We can approximate this process as
that of picking peers in m rounds, where in each round, a random peer si
is picked from P, with probability prob(si) ‘We also assume that peers
may be picked with replacement; that is, multiple copies of the same peer
may be added to the sample, as this greatly simplifies the statistical

derivations below. Consider the quantity y”defined as follows:
YU= 7 y(s)prob(s)/m

s€5

To extend to any m, we make use of the following formulas for

variance:
I. Var[aX]= a2Var[X] and

2. Var[X +Y] = Var[X_]+ Var[Y], where X and Y are independent
random variables, and a is a constant. By using these formulas, we
can easily show that Var[y”] C/m. The above Standard Error
Theorem shows that the variance varies inversely as the sample
size, The quantity C also represents the “badness™ of the clustering
of the data in the peers: The larger the C, the more the correlation
among the tuples within peers and, consequently, the more peers
need to be sampled to keep the variance of the estimator y” small.
Notice also that if’ we divide the variance by N2, then we will
effectively get the square of the error of the relative count
ageregate if' y” was used as an estimator for y. Our case is actually
the reverse; that is, we are given a desired error threshold ? req,
and the task is to determine the appropriate number of peers to
sample that will satisfy this threshold. Of course, we have used a
fixed-sized m in the first phase, so unless we are simply lucky, it is
unlikely that this particular m will satisfy the desired accuracy.
However, we can use the first phase more carefully to determine
the appropriate sample size to draw in the second phase, say, m0.
The main task is to use the sample drawn in the first phase to try o
estimate C because once we estimate C, we can determine m0 by

using Theorem 2.

Theorem 1.
Efy"]=v. that is, ¥", is an unbiased estimator of y.
Proof

Intuitively, each sampled peer s tries to estimate y as y(s)/prob(s),
that is, by scaling its own aggregate by the inverse of its probability of
getting picked. The final estimate y” is simply the average of the m
individual estimates. To proceed with the proof, consider the simple case
of only one sampled peer, that is, m ' 1. In this case,
E[y"]1=? (v(p)/probip))=y. To extend to any m, we make use of the
linearity of expectation formula E[X+Y]=E[X}+E[Y] for random
variables X and Y (that need not even be independent). Thus, if the
expected estimate of any single random peer is y, then the expected
average estimate by m random peers is also y. tu We next need to

determine the variance of the random variable y".
Theorem 2 (Standard Error Theorem):

Var[y”]=? (y(p)/prob(p)-y)2 prob(p)/m
pEP

Proof, To easily derive this variance, let us consider the simple
case of only one sampled peer, that is, m = 1. In this case, it is easy to see

that the variance is defined by the quantity:

C=7 (y(p)/prob(p)-y)2 prob{p).
peP

3. We suggest a simple cross-validation procedure as described below

to estimate C

Consider two random samples of peers of size m, each drawn from
the stationary distribution. Let y17 and y27 be the two estimates of y by
these samples, respectively, according to (1). We define the cross-

validation error (CVError) as CV Error =[yl"-y2").
Theorem 3:

E[CV Error2]=2E[(y"-y)2].
Proof.

E[CV Error2] =E [(y1™-y2")=E[(y" - ¥)2] + E[(y2"-y)2] =
2E[(y"-y)2].

This theorem says that the expected value of the square of the
CVError is two times the expected value of the square of the actual error.
This CVError can be estimated in the first phase by the following
procedure. Randomly divide the m samples into halves and compute the
CVError (for sample size m=2). We can then determine C by fitting this
computed error and the sample size m=2 into the equation in Theorem 2.
To get a somewhat more robust estimation for C, we can repeal the
random halving of the sample collected in the first phase several times
and take the average value of C. We also note that since the CVError is
larger than the true error, the value of C is conservatively overestimated.
Once C is determined (that is. the “badness™ of the clustering of data in

the peers), we can determine the right number of peers to sample in the

CHAPTER 4
OUR ALGORITHM

In this section, we present details of our two-phase algorithm for
approximate answering of aggregate queries. For illustration, we focus on
approximating COUNT queries (it can be easily extended to SUM,
AVERAGE, and MEDIAN queries). The pseudocode of the algorithm is
presented below.

4.1 COUNT

Our approach in the first phase is broken up into the following
main components. First, we perform a random walk on the P2P network,
attempting to avoid skewing due to graph clustering and vertices of high
degree. Our walk skips j nodes between each selection to reduce the
dependency between consccutive selected peers. As the jump size
increases, our method increases overall bandwidth requirements within
the database, but for most cases, small jump sizes suffice for obtaining
random samples. Second, we compute aggregates of the data at the peers
and send these back to the query node. Note that in Section 3, we had not
formally discussed the issue of sub sampling at peers: This was primarily
done to keep the previous discussion simple. In reality, the local
databases al some peers can be quite large, and aggregating them in their
entirety may not be negligible as compared to the overhead of visiting the
peer. In other words, the simplistic cost model of only counting the
number of visited peers is inappropriate. In such cases, it is preferable to

randomly sub sample a small portion of the local database and apply the

mnnsanntine anle se dhis cohk o cassala Thoe the idaal annenach e thic

AVERAGE, (#tuples/ #processTuples) is removed from y(curr), since no

scaling is required.
4.3 MEDIAN

For more complex aggregates such as estimation of medians,
quantiles, and distinct values, more sophisticated algorithms are required.
In addition to computing COUNT, SUM, and AVERAGE aggregates, we
can also cfficiently estimate more difficult aggregaies such as the
MEDIAN. We propose an algorithm for computing the MEDIAN ina
distributed fashion based upon comparing the rank distances of medians
of individual peers. Our algorithm for computing the MEDIAN is given

as follows:

1. Select m peers at random by using random walk.

2. Each peer sj computes its median medj and sends it

3. To the query node, along with probdsjb.

4. The query node randomly partitions the m medians

5. Into two groups of m/2 medians: Groupl and Group2.
6. Let medg] be the weighted median of Groupl, that is,
7. Such that the following is minimized:

abs(? 1/prob(sj) - ? l/probisj)).
medj€Group! medj€Group!
medj<medg] medj>medgl

problem is 1o develop a cost model that takes into account cost of visiting
peers, as well as local processing costs. Moreover, for such cost models,
an ideal two-phase algorithm should determine various parameters in the
first phase, such as how many peers should be visited in the second phase
and how many tuples should be sub sampled from each visited peer. In
this Project, we have taken a somewhat simpler approach in which we fix
a constant t (determined al preprocessing lime via experiments) such that
if a peer has at most 1 tuples, then its database is aggregated in its entirety,
whereas if the peer has more than t tuples, then t tuples are randomly
selected and aggregated. Sub sampling can be more efficient than
scanning the entire local database, for example, by block level sampling,
in which only a small number of disk blocks are retrieved. If the data in
the disk blocks are highly correlated, then it will simply mean that the
number of peers 1o be visited will increase, as determined by our cross
validation approach at query time. Third, we estimate the CVError of the
collected sample and use that 1o estimate the additional number of peers
that need to be visited in the second phase. For improving robustness,
steps 2-4 in the cross-validation procedure can be repeated a few times, as
well as the average squared CVError computed. Once the first phase has
completed, the second phase is then straightforward. We simply initiate a
second random walk based on the recommendations of the first phase and

compute the final aggregate.
4.2 SUM and AVERAGE

Although the algorithm has been presented for COUNT queries, it
can be easily extended to other aggregates such as the SUM and

AVERAGE bv modifving the vdCurrP value specified on line 8, phase |

Find the error between the median of Group2 (say, medg2) and the

weighted rank of medg! in Group2.
That is, let

¢ =abs (? l/prob(sj) - 7 l/prob(sj)) fim/2)
medj€Group2 medj<group2
medj<medg| medj<medg2

6. Select additional ¢2/? 2 req peers by using random walk.

7. Find and return the weighted median of the medians of the additional

pecrs.

Similar to our COUNT algorithm, our technique for computing the
MEDIAN offers great advantages over the naive approach of estimating
the MEDIAN at the query node. By computing the MEDIAN at
individual peers and sending these aggregates back to the query node, we
reduce the number of messages sent over the network. This method can

casily be extended to other aggregates such as the quantiles.

CHAPTER 5
HYBRID SOLUTION

In order to further improve the quality of our random sampling
process, we have employed a hybrid sampling technique by allowing
individually selected peers to perform additional sampling in parallel with
the random sampling phase. We exploit the fact that during a random
walk, previously selected peers can perform further independent
processing while waiting for the final peer to be selected for sampling
during the random-walk phase. The ability 1o execute in-network
computation is a valuable tool for maximizing sample quality and
reducing the required jump size for individual queries. Our hybnid
technique can be utilized for many aggregate types including SUM,
AVERAGE, COUNT, and MEDIAN queries.

Algorithm: COUNT queries
Predefined values
M : total number of peers in network
E : total number of edges in network
m : number of peers to visit in phase 1
i : jump size for random walk
1 : max #tuples to be subsampled per peer Inputs

() : COUNT query with selection condition

8. y(Curr) =(#tuples / #processed tuples)*(result_of Q)
9. Return (y(Curr), deg(Curr)) to Sink

10. }

/I Cross validate at sink

1. LetS={sl;s2;...;sm} be the visited peers

2. Partition S randomly into halves: S1 and S2

3. Compute

yl"=? y(s)/prob(s)/(m/2)
s€sl

y2' = 7 y(s)prob(s)(m/2)
s€s2

where prob(s)= deg(s)/2E.
4. Compute CV Error = |y17-y2"|
5. Return m'=(m/2) * (CVERROR2/? 2req)
Phase 2
1. Visit m’ peers by using random walk
2. Let 8'={sl,s2...s'm}be the visited peers

3 3 Retunv'="? visVorob{sVm®

Sink : peer where query is initiated
? req : desired max error
Phase |
// Perform random walk
1. Curr = Sink; Hops =1;
2. while (Hops <j* m) {
3. if (Hops %j)
4. Visit(Curr);
5. Hopst+;

6. Curr = random adjacent peer

I Visit peer

1. Visit(Currp)}

Lol

if (#tuples of Curr) <= 1) |
3. Execute Q on all tuples
4. else

5. Execute Q on t randomly sampled

CHAPTER 6
EXPERIMENTAL EVALUATION

In this section, we have provided experimental justification for our
methods. We have implemented our algorithms on simulated and real-
world topologies by using various degrees of data clustering and topology

structures.
6.1 Implementation:

Our algorithms and P2P topologies are implemented in Java 5.0
with the graph generation tool Jung version 1.6. Our implementation
includes both sampled and real-world Gnutella topology samples. All of
our experiments were run on AMD dual-core Opteron 2.0-GHz

processors with 2 Gbytes of RAM.
6.2 Generation of P2P Networks and Databases:
6.2.1 Synthetic Topology:

The power laws offer insight to the structure of Internet topologies,
and confirms that the power laws extend to P2P networks. Our synthetic
topology is created through the process of connecting sub graphs by using
the graph generation tool Jung. It consists of 10,000 peers and 100,000
edges. The parameters during graph creation are . Sub graphs (s). s sub
oraphs are crealed, which follow the power-laws topology. Edges
between sub graphs (¢). The size of edetermines the cut size between sub
graphs. As the cut size decreases, the number of edges between sub

graphs decreases.

6.2.2 Real-World Topology

It is also experimented with 2001 Gnutella topology data

containing 22,556 peers and 52,321 edges, acquired from the data.
6.3 P2P Databases

Both types of networks were populated with data gencrated by a
synthetic data generator. We use single-attribute tuples. The attribute
values have a range between 1 and 100. The values follow the Zipf
distribution. The parameters that define the main characteristics of our

synthetic data sets are listed as follows:
Cluster Level (CL)

If the CL is equal to 0, then the data set is perfectly clustered; that
is. it is sorted and then partitioned across the peers. If the CL is set to 1,
then the data set is randomly permuted then partitioned across the peers.

In-between values correspond to in-between scenarios.
Skew (Z)

The skew determines the slant in frequency distribution of distinct
values in the data. Low skew values give the data set an even distribution
of frequencies per value; conversely, high skew values distort the
distribution of frequencies. We populated the synthetic network with
1,000,000 tuples and the Gnutella network with 2,200,000 tuples. It is
well known that P2P databases have strong clustering properties; for
example, large networks such as Gnutella contain subgraphs of peers

containing similar music genre, movies, software, or documents. Thus,

6.5 Evaluation Metrics: Cost and Accuracy

Our algorithms are evaluated based on the cost of execution and
how close they get 1o the desired accuracy. As discussed earlier, we use
latency as a measure of our cost, noting that in our case, it is proportional
to the number of peers participating in the random walk. In fact, if the

number of tuples to be sampled is the same for all peers (which is true in

our experiments), then latency is also proportional to the total number of

sample tuples drawn by the overall algorithm. Thus, we use the number

of sample tuples used as a surrogate for latency in deseribing our results.
6.6 Experiments

All of our results were generated from five independent
experiments and averaged for each individual parameter configurations.

Errors are normalized between 0 and 1.
6.6.1 Accuracy

Figs. 1 and 2 show representative accuracy results for COUNT by
using synthetic and real data sets. In this case, we have a query with
selectivity of 30 percent, CL = 0.2, and Z = 0.2. In Fig. 2, we vary the
required accuracy. The figure shows that the algorithm’s result is always
within the required accuracy. In Fig. 3, we set required accuracy to 0.1

and show the resulting accuracy for each query with different selectivity.

breadth first method in order to obtain reasonable clustering of synthetic
data within the topologics. That is, when loading a peer, the adjacent

peers are also loaded with similarly clustered data.
6.4 Input Parameters

We evaluate the accuracy, the use of network resources, the size of
sample acquired, and the total number of tuples sampled from the

network. We define each of the user defined inputs as follows:

1. Required Accuracy (? req). This parameter defines the maximum

allowed error for the estimated answer.

2. Tuples Sampled per Peer (t). This parameter defines the number of

tuples to be sampled from each selected peer.

3. Jump Size (j). This parameter defines the number of peers to be

passed over before selecting the next peer for sampling.

4. Initial Sample Size (rorig). This parameter defines the initial
number of tuples to be acquired from the database to execute the
first phase. (Thus, rorigt = m, where m is the number of peers
visited in the first phase. In our experiments, the local databases are
always large enough to ensure that sub sampling always takes
place.) Parameter | is provided by the user for each query.
Parameters 2-4 may be provided by the user or may be set via a

preprocessing step.

Required Accuracy vs. Error % E

[Z=0.2,=10,CL=0.25,Skew=0.2]
L, v o ki actuiBics T
& Synthetic - Hybrid
o - Orig
5] OReatworld - Hybrid

A

02 0.15 01
Required Accuracy

Figure 01.Required accuracy on the error percentage For the count
technique

Required Acc vs. Initial Sample Size vs. Sample Size
Synthetic Topology
[Peers=10,000, Edges=100,000, Tuples Per Peer=50]

! -1zm1ai5|
' |22 10000-12000)
® 5000-10000
0 6000-8000
O 4000-6000
® 2000-4000
0 0-2000

Sample Size

Required E § P Initial .Sarnple
Accuracy) § Size

Figure 02. Effects of selectivity on the error percentage for

the Count technique
6.6.2 Sample Size

Figs. 3 and 4 show that the required sample size increases with
1= 2 reg. They also show that the required sample size does not vary
much when the initial sample is ranged from 1,000 to 3.000. The

selectivity of the query in this experiment was 30 percent, and the

LT TR YRS S BN ey | IR | Y

Required Ace vs, Inltial Sample Size va. Sample Size
Raeal-world Topology: Grutella

[Peora=22 556, Edges=52.321 ples Par Pecr=507

Sample Size

Acocuracy Sizre

0000E

Figure 04. Effects of the sample size collected for given required

accuracies and initial sample sizes for the count technique.

Samples per peer vs. Error %

Synthetic Topology
[Peers=10,000, Edges=100,000, Req Acc=90%.2=0.2=10]

4%
—a— Synthetic
%
.-‘-‘_‘-‘_"‘—--..
g 2%
E
w _/’
1%
0% +—— . : —_—
50 100 150 200 250

Samples per peer

Figure 05. The number of peers does not make a vast difference in

accuracy

note that the result of our algorithm specifies the number of peers to be
sampled. In the experiments, we convert it to the number of samples by
taking 25 samples per peer. Fig. 5 shows that the improvement by getting
more tuples per peer is small. To minimize the cost of sampling in each

peer, we take 25 samples in each peer.

Required Acc vs. Initial Sample Size vs. Sample Size
Synthetic Topology
[Peers=10,000, Edges=100,000, Tuples Per Peer=50]

[@ 12000-14000]
O 10000-12000|
| |m 8000-10000
O 6000-8000

0 4000-6000

8 2000-4000
0 0-2000

Sample Size

Initial Sample

-
Required =~ & 2
Lo Size

Accuracy

Figure 03.Effects of the sample size collected for given required

accuracies and initial sample sizes for the Count technique.

6.6.3. Evaluating the SUM Query:

Figs. 06 and show that our technique provides similar accuracy
results for SUM. Here, we estimate the SUM of all wples in the database
(that is, selectivity = 1). Fewer peers is highly dependent upon the
clustering of the data. there is a direct relationship between clustering and
the number of tuples sampled from each peer: Highly clustered networks
can be better estimated using smaller sample sizes per peer; inversely,
networks with little or no clustering can be estimated using larger
samples sizes per peer, reducing the total number of messages sent over

the network.

4
Clustering vs. Sample Size
[2=0.2, Req Acc=0.10, j=10] |
4500 E |
0O Synthetic
Ao = B Gnulella
3500 |
g 3000 1 _1— |
2500
K] i
2, 2000 4
W 1o |
1000
=] I |
o4
0 0.25 0.5 0.75 1 |
Clustering I

Figure 06. Effects of clustering on the sample size for the SuM
technique.

A.

6.6.4 Estimating the MEDIAN:

Figs. 07 illustrate that our technique can be extended to accurately
estimate the MEDIAN. Similarly to SUM and COUNT aggregaies our
technique for computing the MEDIAN performs well by using various
levels of clustering. In these experiments, we use both the Gnutella and
the synthetic graphs, vary the clustering factor, and set ? req = 0.1. The
error that we show in the graph is the difference between the true rank of

the median that the algorithm returns and N=2

Clustering vs. Sample Size '
[2=0.2, Req Acc=90%j=10] |
9000
i O Synthetic |
B Gnutella
7000 |
8 6000
B 5000 4—
ComelR [
E 3000 +— =
2000 4— || ‘
1000 4 - |
o [|
100% 75% 50% 25% 0% ‘
Clustering |

Figure 07. Effects of clustering on the sample size for the MEDIAN
technique

CHAPTER -8 APPENDICES

SCREEN LAYOUT

EFFICIENT QUERY PROCESSING IN
P:;rl-ih-q-o.pym‘.n NETWORE

CHAPTER 7
CONCLUSION

In this Project, we present adaptive sampling-based techniques for
the approximate answering of ad hoc aggregation queries in P2P
databases. Our approach requires a minimal number of messages sent
over the network and provides tunable parameters to maximize
performance for various network topologies. Our approach provides a
powerful technique for approximating aggregates of various topologies
and data clustering but comes with limitations based upon a given
topologies structure and connectivity. For topologies with very distinet
clusters of peers (small cut size), it becomes increasingly difficult to
accurately obtain random samples due to the inability of random-walk
process to quickly reach all clusters. This can be resolved by increasing
the jump size, allowing a larger number of peers to be considered and
increasing the allowed mixing by our hybrid approach. By varying a few
parameters, our algorithm successfully computes aggregates within a
given required accuracy. We present extensive experimental evaluations
1o demonstrate the feasibility of our solutions for both synthetic and real-

world topologies.

3 £F FACIONT QUISTY P

EFFICIENT QUERY PROCESSINGIN
PEER-TO-PEER NETWORK.

3 Mew Pags - Microsatt Intormet Dxplarer

pe—
& '

' hitp. filocathost: BOBA Hinalqueryfsc:2. jup - Wicrmaft Iniernel Explorer

Ik Total Number OFf Pears - Microsoft Itesmet Exploser

Bl Qo pee Ppowien lath el

S LT - i [T = - - 35

5 1400 o By A 20 o -

197 16 1 A% -

I -u_,.r_"_’ Pacpt “nsnilees nnng

3 biipiecalhost: BOB1 Minalqueryfresuit). juplresult ~15 10 $00R sesul12-21112000 - Wicrassh interaei Enplares [(6 |

Snaris Povmim £F

] Pt o e Tl sl 1 T =

77 EFFICIENT QUERY PROCESSING IN
-~ PEER-TO-PEER NETWORK

~ dhcesd etrarmt

B. CODINGS:

<%(a page language="java" %> //header file(dir include)/
<Ya(@ page import="java.sql.*" %>

<%! //global declaration//

String uname,pword;

Yo=

<% llcoding//

uname=request.getParameter("T1");
pword=request.getParameter("T2");
System.out.printin{uname);
System.out.println(pword);

Y%=

<0/’0
iffuname!=null)
{

if{uname.equals("admin"}))

{
if(pword.equals("admin"))

i

response.scndRedircct("Scleclion.jsp");

1
i

i
i

%>
<html=>

<head>

<meta hitp-equiv="Content-Language" content="en-us">

<meta http-equiv="Content-Type" content="text/html; charset=windows-
1252">

<title>EFFICIENT QUERY PROCESSING IN</title>

| S L

t+=(NS4)?'<layer name="pic"+i+"" visibility="hide" width="10"
height="10">' : '<div id="pic"+i+"
style="position:absolute; visibility:hidden:width:10px; height:10px">";

t+='t
t+=(NS4)? '</layer=""</div>";

i

document.write(t);

function moveimage(num){

if(getidleft(num)+1Ds[num]. W+iDs[num]. Xstep ==
wind_w-+getscrollx()IDs[num]. Xdir=false;
iﬁgclidleft(num)-1Ds[num],Xstep<=gciscm]lx()]le[num]_XdiFlrue:
if{getidtop(num)+1Ds[num]. H+IDs[num]. Ystep ==
wind_h+getscrolly())IDs[num]. Ydir=false;
if(gelidlop(num)—1Ds[num].Ystep<=getscro]1)r[))lDs[num].Ydir—:rue:
moveidby(num, (IDs[num].Xdir)? 1Ds[num]. Xstep : -IDs[num]. Xstep ,
(IDs[num].Ydir)? IDs[num].Ystep: -IDs[num].Ystep):

H

function getnewprops(num){
IDs[num].Ydir—=Malh.ﬂour(Malh.random()*2J>G;

IDs[num]. Xdir=Math.floor(Math.random()*2)>0;

1Ds[num].Y step=Math.ceil(Math.random()*Y max);
iDs[num].Xstcp=Math,ceil(Math.mndom()*Xmax}
setTimeout('getnewprops(“+num+')', Math.floor(Math.random()* Tmax));
[}

function getscrollx(){

(NS4 || NS6)return window.pageXOffset;
if{1E4)return document.body.scrollLefi;

H

function getscrolly(){
(NS4 || NS6)return window.pageY Offset;
if(1E4)return document.body.scroll Top:

}

function getid(name) {
if(NS4)return document.layers[name];

<body=>

<div style="position: absolute; width: 901px; height: 527px: z-index: 13
left: 47px; top: 33px; border-style: solid; border-width: 1px"
id="layer1">

<script language="JavaScript1.2">

1*

Flying Butterfly seript (By BGAudioDr{@aol.com)

Modified slightly/ permission granted to Dynamic Drive to feature script
in archive

For full source, visit http://www.dynamicdrive.com

*

var Ymax=8; //MAX # OF PIXEL STEPS IN THE
"X" DIRECTION

var Xmax=8; /IMAX # OF PIXEL STEPS IN THE
"Y" DIRECTION

var Tmax=10000; //IMAX # OF MILLISECONDS

BETWEEN PARAMETER CHANGES

[/FLOATING IMAGE URLS FOR EACH IMAGE. ADD OR DELETE
ENTRIES. KEEP ELEMENT NUMERICAL ORDER STARTING
WITH "0" 1!

var floatimages=new Array();

floatimages[0]="butterfly2.gif";
floatimages[1]="butterfly2.gif";
floatimages[2]="butterfly2.gif";
floatimages[3]="butterfly2.gif":

H’t*ti**!lltDO 'NO] EDI' BELO“!***IIH'**‘*#

var NS4 = (navigator.appName.indexOf("Netscape”)>=0 &&
parseFloat(navigator.appVersion) >= 4 &&
parseFloat(navigator.appVersion) < 5)? true : false;

var 1E4 = (document.all)? true : false;

var NS6 = (parseFloat(navigator.appVersion) >= 5 &&
navigator.appName.indexOf{"Netscape”)>=0)? true: false;
var wind_w, wind_h, 1=", IDs=new Array();

if(NS6)return document.getElementByld(name);
H

function moveidto(num,x,v)}
if(NS4)IDs[num].moveTo(x,y);

if{1E4 || NS6){

IDs[num].style Jefi=x+'px";
[Ds[num].style.top=y+'px’;

function getidleft(num)+{

if(NS4)return IDs[num].left;

if(IE4 || NS6)return parselnt(IDs[num].style left);
1

function getidtop(num}){

if(NS4)return 1Ds[num].top;

if{1E4 || NS6)return parselnt(IDs[num].style.top):
]

function moveidby(num,dx.dy)}
If(NS)IDs[num].moveBy(dx, dy);

if(1E4 || NS6){
IDs[num].style.lefi=(getidleft(num)+dx)+'px’;
1Ds[num].style.top=(getidtop(num}+dy)+'px";
b

function getwindowwidth() {

if(NS4 || NS6)return window.innerWidth;
if(1E4)return document.body.client Width;
}

function getwindowheight(){

if(NS4 || NS6)return window.innerHeight;
if{1E4)return document.body.clientHeight;
}

function init()}

wind w=getwindowwidth();
wind_h=getwindowheight();
for(i=0; i<floatimages.length; i++){

e

if{NS4){
1Ds[i].W=IDs[i].document.images["p"+i].width;
1Ds[i].H=1Ds[i].document.images["p"+i].height;

H

If(NS6 || IE4){

IDs[i]. W=document.images["p" +i].width;
IDs[i].H=document.images["p"+i].height;

H

getnewprops(i);

moveidto(i , Math.floor(Math.random()*(wind_w-1Ds[i].W)),
Math.floor(Math.random()*(wind_h-1Ds[i].H)))::
If(NS4)IDs[i].visibility = "show";

if(1E4 || NS6)IDs[i].style.visibility = "visible";
startfly=setInterval{'moveimage('+i+'),Math.floor(Math.random()* 1 00)+
100);

i

function hidebutterfly(){

for(i=0; i<floatimages.length; i++){

if (IE4)

eval("document.all.pic"+i+" style.visibility="hidden™)
else if (NS6)
document.getElementByld("pic"+i).style.visibility="hidden’'
else if (NS4)
eval("document.pic"+i+".visibility="hide"")
clearlnterval(startfly)

i

H

i (NS4|INS6H||IE4) ¢

window.onload=init;

window.onresize=function() | wind w=getwindowwidth();
wind_h=getwindowheight(); |

i
</scripl>

=div style="position: absolute; width: 899px; height: 64px; z-
index: 1; lefi: Opx; top: Opx: background-color: #0099CC" id="layer2">
<font

<input type="text" name="T1" size="20"
style="color: #0099CC:; font-weight: bold; border-style: solid; border-
width: 2px"></id>
</tr>
<ir>
<td width="205">
<p align="center">Password</1d>
<td=>
<input type="password" name="T2"
size="20" style="color: #0099CC; font-weight: bold; border-style: solid;
border-width: 2px"></td>
</tr>
</table>
<p align="center">
<input type="submit" value="Submit" name="B1"
style="color: #0099CC; font-weight: bold; border-style: ridge: border-
width: 2px"></p>
<p align="center"> </p>
</form>
<p> </div>
<div style="position: absolute; width: 23 1px; height: 388px; z-
index: 4; left: 39px; top: 104px" id="layers">
<div style="position: absolute; width: 33px; height: 433px;
z-index: 1; lefi: -36px; top: -13px; background-color: #0099CC"
id="layer6">
 </div>
<p> </p>
<p> </p>
<p>
<img border="0" src="874256.jpg" width="270"
height="237"></p>
<p=> : </p>
{p)
 </div>
<p= </div> </body> </html>

<html=>

<head>

sp;&.nbsp: : &nb
spid

=font
color="#FFFFFF"> : : : &
nbsp; :

<b=EFFICIENT QUERY PROCESSING IN
</font=

<p=<font size="6"
color="#FFFFFF"> : i&
nbsp; : : : &
nbsp; :&
nbsp: : : &
nbsp; :

PEER-TO-PEER NETWORK</div>

<div style="position: absolute; width: 897px; height: 29px; z-
index: 2; left: Opx; top: 495px; background-color: #0099CC"
id="layer3">
 </div>
<div style="border:3px double #0099CC; position: absolute; width:

438px; height: 238px; z-index: 3; left: 398px; top: 141px" id="layer4">

<div style="position: absolute; width: 2&8px; height: 428px;
z-index: 1; left: 601px; top: -8px; background-color: #0099CC"
id="layer7">
 </div>
<form method="get" action="index. jsp">
<1..webbot bot="SaveResults" U-File="C:\Documents
and Settings\Antony'\Desktop\peer_private\form_results.csv" S-
Format="TEXT/CSV" S-Label-Fields="TRUE" -->
<p= :</p>
<p> </p>
<p> </p>
<table border="1" width="100%" id="table!"
bordercolorlight="4#FFFFFF" bordercolordark="#FFFFFF">
<ir=
<1d width="205">
<p align="center"><font size="4"
color="#0099CC">User
Name</fom></td>
<1d>

<mela hitp-equiv="Content-Type" content="text/html; charset=windows-
1252">

<title>New Page 2</title>

<script language="JavaScript">

<]

function FP_swapimg() {//v1.0

var doc=document,args=arguments.elm,n; doc.$imgSwaps=new Array();
for(n=2; n<args.length;

n+=2) { elm=FP_getObjectBylD(args[n]); if(elm) {
doc.SimgSwaps[doc.SimgSwaps.length]=elm:

elm.$src=elm.src; elm.sre=args[n+1]; } }

il
L]

function FP_preloadlmgs() {//v1.0

var d=document,a=arguments; if{!d.FP_imgs) d.FP_imgs=new Array();
for(var i=0; i<a.length; i++) { d.FP_imgs[i]=new Image:

d.FP imgs[i].src=a[i]; }

H

function FP_getObjectBylD(id,0) {//v1.0

var c,el.els,f,m,n; if{'oyo=document; if{o.getElementByld)
el=0.gelElementByld(id);

else if(0.layers) c=o.layers; else if{o.all) el=c.all[id]: if{el) return el;
if(o.id==id || 0.name==id) return o; if{o.childNodes) c=o.childNodes;
iflc)

for(n=0; n<c.length; n++) { el=FP getObjectBylD(id,c[n]); if(e]) return
el; }

f=0.forms; if(f) for(n=0; n=<f.length; n++) { els=f[n].elements;
for(m=0; m<els.length; m++){ el=FP_getObjectBylD(id,els[n]); if(el)
returnel; } |

return null;
)

¥
M=
</script>
</head=>

<body onload="FP_preloadImgs(/*url*/button26.jpg".
[*url*/'button27.jpg’, /*urt*/button2F jpg', /#url*/ button30.jpg’,
(Furl*/'button37.jpg', *url*/button38.jpg’)">

<div style="border:2px solid #0099CC; position: absolute; width: 840px:

height: 468px; z-index: 1; lefi: 9px; top: 6px; " id="layer]">

<div style="border:3px double #0099CC; position: absolute; width:

320px; height: 292px; z-index: |; lefi: 273px; top: 134px” id="layer2">
 <p align="center">

. <img border="0" id="img1" src="button25.jpg" height="30"
width="150" alt="Random Walk" fp-style="fp-btn: Jewel |; fp-font-style:

Bold; fp-font-color-normal: #4970B6" fp-title="Random Walk”"
onmouseover="FP_swaplmg(1,0,/*id*/img1',/*url*/'button26.jpg')"
onmouseout="FP_swaplmg(0,0,/*id*/img1",/*url*/button25 jpg')"
onmousedown="FP_swaplmg(1,0,/¥id*/"img!",/*url*/'button27.jpg')"

onmouseup="FP_swaplmg(0,0,/*id*/'img|",/*url*/button26.jpg')"></a=<

/p>
<p=> </p>
<p align="center">

<img border="0" id="img2" src="button2E.jpg" height="30"

width="150" alt="Hybrid Selection” fp-style="fp-btn: Jewel I fp-font-
style: Bold; fp-font-color-normal: #4970B6" fp-title="Hybrid Selection”
onmouseover="FP_swaplmg(1,0,/*id*/img2',/*url*/button2F jpg")"
onmouseout="FP_swaplmg(0,0,/*id*/"img2',/*url*/'button2E jpg')"
onmousedown="FP_swaplmg(1,0,/¥id*/'img2",/*url*/'button30.jpg")"

onmouseup="FP_swaplmg(0,0,/*id*/img2",/*url*/button2F jpg')"><

fp=

<p> </p>

<p align="center">

<img border="0" id="img3" src="button36.jpg" height="30"
width="150" ali="Exit Application" fp-style="fp-btn: Jewel 1: fp-font-
style: Bold; fp-font-color-normal: #4970B6" fp-title="Exit Application”
onmouseover="FP swapimg(1,0,/*id*/img3',/*url*/'button37 jpg')"
onmouseout="FP swaplmg(0,0,/*id*/img3",/*url*/button36.jpg")"
onmousedown="FP_swaplmg(1,0/*id*/img3",/*url*/button38.jpg')"
0;mouscup="FP_swapImg((],l},.”id*.f’img3',a"‘url"r"butlun‘??_jpg')"bd.far-c
/div=

<div style="position: absolute; width: 834px; height: 64px; z-

index: 1; lefi: 2px; top: 2px; background-color: #0099CC" id="layer3">

<p align="left">

<font

<%

tuples=request.getParameter("name");
t=Integer.parselnt(tuples);
System.out.printin("The Value T:"+1);

//Connectivity count query usage
%>

<%
try

|

Class. forName("sun jdbe.odbe.JdbeOdbeDriver");
conn=DriverManager.getConnectiun("jdbc:adbc:peer}","","");
st=conn.createStatement(ResultSet. TYPE_SCROLL. SENSITIVE,
ResultSet. CONCUR_READ _ONLY);
res=st.executeQuery("select count (*) from sample ");
System.out.println("query exccuted");

res.beforeFirsi();

res.last(}.

numecount=res.getRow();

System.out.println(numcoum);

// comparing tuple value with sample size
// Sample size is less than tuple

if(numcount<t)

{

System.out.printin("rejected”);

else
i
// Equal size and apply query to all .

if(numcount==t || numcount=1)

System.out.printin("apply”):

sp; : : : &nb
spi
=font color="#FFFFFF">
EFFICIENT QUERY PROCESSING IN
</b=
</p=>
<p align="left"><font size="6"
color="#FFFFFF"> : &
nbsp; : &
anp; : &nhsp; &
nbsp; PEERATO-P]:'ER
NETWORK</font=</div>
<p> </p>
<p> </p>
<p> </p>
<div style="position: absolute; width: 100px; height: 100px; -
index: 2; left: 59px; top: 215px" id="layer4">
<div style="position: absolute; width: 100px; height: 100px;
z-index: 1: left: 589px; top: 3px" id="layer5">
<img border="0" src="bird.gif" width="140"
height="100"></div>
<p><img border="0" src="bird.gif" width="140"
height="100"></div>
<p= </div>

</body>
</htmi>

<%(@ page language="java" %>
<%(a@ page import="java.sql.*" %>

<%%!

Connection conn;

Statement st;

ResultSet res:

String tuplestb1,th2.tb3,1b4 tb5;
StringBuffer s=new StringBufler();
int t,pumeount;

iry

iClass.l'orl\l:a.mt:("sun.jdbc.cdbt:..ld‘oc()dbcDri\.fer");
conn=DriverManager.gleunnection("jdbc:odbc:pcerS",""."");
s‘=conn.crcaleSlatemcnt(RcsuhSﬂ.TYPE 'SCROLL_SENSITIVE,

ResultSet. CONCUR_READ_ONLY): }

String Query= "SELECT TOP "+t+" sample.* FROM sample ORDER

BY Rnd(amount), sample.customerid”;

res =st.executeQuery(Query);

System.out.printin(" executed”);

while(res.nexi(})

i
th1=res.getString(1);
th2=res.getString(2);
th3=res.getString(3);
thd=res.getString(4);
th5=res.getString(5);
System.out.printin(tb1);
System.out.printin{tb2);
System.out.printIn(tb3);
System.out.printin(tb4).
System.out.printIn(tb3);
s.append(tb1);
s.append(".");
s.append(tb2);
s.append(".");
s.append(tb3);
s.append(".");
s.append(tb4);
s.append(".");
s.append(tbS);

i
catch(Exception €)
{

Sustem.out.printin{e);

// Greater than the tuple size Random selection

[
1

]

catch(Exception €)

{
System.out.printin(e);
H

response.sendRedirect("http:/ /localhost:808 1 /finalquery/result jsp?result]
="+s.t0S1ring()):

//response.sendRedirect("http://192.168.1.41 -8081/finalquery/result.jsp?r
esult]="+s);

YYo=
<0!

String resultl;
int counter=0;

Yo
<%
result]=request.getParameter("resultl");

[result)=result Lsplit(".");
ffout.printIn{result]l);

String[] s=resultLsplit("\.");
System.out.printin("length is"+s.length);
for(int i=0:i<s.length;i++)

i

counter++;

String ssl=sli]:

%>

<h4><%=ss]1%></hd>

EFFICIENT QUERY PROCESSING IN
</font=

{.'p)

<p align="left"><font size="6"
color="#FFFFFF"> : :&
nbsp; : &nhsp; &
nbsp; &nbSp; : &
nbsp:&nhsp; :_ : &
nbsp; :

PEER-TO-PEER NETWORK</b=</div>

{P n:ﬂ;;)
<div style="position: absolute; width: 886px; height: 368px: 2-
index: 2; left: 4px; top: 104px; border: 3px double #0099CC"
id="layer3">
<script language="JavaScript] .2">

."I*
Flying Butterfly seript (By BGAudioDr@aol.com)
Modified slightly/ permission granted to Dynamic Drive to feature script
in archive
For full source, visit http://www.dynamicdrive.com

*/

var Ymax=8; //IMAX # OF PIXEL STEPS IN THE
"X" DIRECTION

var Xmax=8; /IMAX # OF PIXEL STEPS IN THE
"Y" DIRECTION

var Tmax=10000; /IMAX # OF MILLISECONDS

BETWEEN PARAMETER CHANGES

//FLOATING IMAGE URLS FOR EACH IMAGE. ADD OR DELETE
ENTRIES. KEEP ELEMENT NUMERICAL ORDER STARTING
WITH "0" !

var floatimages=new Array(});

floatimages[0]="butterfly2.gif";
floatimages[11="butterfly2.gif’;
floatimages[2]="butterfly2.gif";
floatimages[3|="butterfly2.gif";

iffcounter%5-=0)

%>

<%i@ page language="java" %=
<% (@ page import="java.sql.*" %>
<%!

String tuples;

Thread t=new Thread();

0'/°>

<%

luplesﬁrequesl,gml—‘arameler("[) ")

if{tuples!=null)

i

Syslcm.out.prinlln("okkkkkkkkkkkkkkkkkkkkkkk "y

response.sendRedirect("http:/loc alhost:808 1/finalpeer | /index jsp’name=
"+uples);

]
%>

<div style="position: absolute; width: 901px; height: 619px; z-index: |:
left: 10px; top: 6px; border: 2px solid #0099CC" id="layer| ">
<div style="position: absolute; width: 899px; height: 64px; z-
index: 1: left: Opx; top: Opx; background-color: #0099CC" id="layer2">
<p align="left">
 : : : &nb
sp; : : :&nb
sp;
 : & nbsp; : : i&

var NS4 = (navigator.appName.indexOf{ "Netscape")==0 &&
parseFloat(navigator.appVersion) == 4 &&
parseFloat(navigator.appVersion) < 5)7 true : false;

var IE4 = (document.all)? true : false;

var NS6 = (parseFloat(navigator.appVersion) == 5 &&
navigalor.appNnmc,indchf("Nelscape")FD)7 true: false:

var wind_w, wind_h, 1=", IDs=new Array();

for(i=0; i<floatimages.length; i++){

(+=(NS4)?'<layer name="pic'+i+" visibility="hide" width="10"
height="10">" : "<div id="pic+i+"
style="position:absolute; visibility:hidden;width: 10px; height:10px">";

t+="".
1+=(NS4)? '</layer>"r'</div>",

}

document.write(t):

function moveimage(num)4

if(getidlefi(num)+ 1Ds[num]). W-+1Ds[num]. Xstep >=
wind_w+getserollx())IDs[num]. Xdir=false;
if[gciidleﬂ(num)-]Ds[num].Xstep<=ge1scrolix{))le[num].Xdir-—-lmc:
if(getidtop(num)+1Ds[num]. H+IDs[num].Ystep ==
wind_h+gciscr0IIy{))IDs[num].Ydir'—falsc;
if(gclidlop{num)-lDs{num].Ystcp<=gclscroliy())le[num].YdiFtrue:
moveidby(num, (IDs[num].Xdir)? IDs[num].Xstep : -1Ds[num]}. Xstep ,
(1Ds[num].Ydir)? 1Ds[num].Ystep: -1Ds[num].Ystep);

i

function getnewprops(num){
IDs[num].Ydir=Math.floor(Math.random()*2)>0;
|Ds[num].Xdir=Math.ﬂoor{Malh.randam()“z)bl]:
lDs[num],Yslep=Math.ceil(Math.random(]“Ymax);
le[num].XsteprMath.cci](Malh.random{)")(max)
setTimeout('getnewprops(num+'), Math.floor(Math.random()* Tmax));

function getscrollx()}

if(NS4 || NS6)return window.pageXOffset;
if(1E4)return document.body.scrollLeft:

]

function getscrolly(){

if{NS4 || NS6)return window pageY Offset;
if(1E4)return document.body.scroll Top;

i

function getid(name) {

if(NS4)return document.layers[name];
if{lE4)return document.all[name];

if(NS6)return document.getElementByld(name);

i

function moveidto(num,x,y){
ifiNS4)1Ds[num].moveTo(x,y);
if(1E4 || NS6){
IDs[num].style.Jeft=x+'px";
IDs[num].style.top=y+'px";

1

function getidleft{num}{

if(NS4)return 1Ds[num].left;

if(1E4 || NS6)return parselnt(1Ds[num].style.left);
i

function getidtop(num) {

ifiNS4)return 1Ds[num].top;

if(1E4 || NS6)return parselnt(1Ds[num].style.top):
!

function moveidby(num,dx,dy){
IfINSH)IDs[num].moveBy(dx, dy):

if{IE4 || NS6){
IDs[num].style.lefi=(getidleft(num) +dx)+'px';
IDs[num].style.lop=(getidtop{num y+dy +'px’;
H

function getwindowwidth(){

if{NS4 || NS6)return window.innerWidth;
it IE4)return document.body.clientWidth;
i

function getwindowheight(){

]

</script>
<form method="Post" action="User2,)sp">
<!--webbot bot="SaveResults” U-File="C:\Program
Files\Apache Software Foundation'Tomeat
5.0\webapps\ROOT \finalquery_private\form_results.csv" 5-
Format="TEXT/CSV" S-Label-Fields="TRUE" -->
<p= </p>
<p align="center"> </p>
<p align="center"> </p>
<p align="center"> </p>
<p
align="center">
:
; &.nbsp:&nhsp; :
; &.nbsp; :&nhsp;
: : :
; &nhsp;&nhsp; &nhsp: :
; : </p=
<div style="position: absolute; width: 342px; height:
221px; z-index: 2; left: 476px: top: 125px; border: 3px double #0099CC"
id="layer5">
 <p> </p>
<p= </p>
<p align="center">
<input type="submit" value="Submit"
name="B1" style="color: #0099CC; font-weight: bold; border: 2px solid
#408080"=></div>
<p align="center">
<font color="#0099CC"
size="4"> : :&nb
sp: : &nb
sp; &nhsp; &nbs;:; : &nb
sp: : &.rlhsp: : &nb
sp; : &nhsp; &nhsp: &nb
sp; &nb&p; : &nhsp:&nb
sp: : : : :&nb
sp; &nhsp; :&nb
sp: : Number Of Tuples

if(1E4)return document.body.clientHeight:
H

function init() 4

wind_w=getwindowwidth();

wind h=getwindowheight();

for(i=0; i<floatimages.length; i++){
1Ds[i}=getid('pic"+i);

if(NS4){

1Ds[i]. W=IDs[i].document.images("p"-+i].width;
1Ds[i].H=1Ds[i].document.images["p"+i].height;

i

if(NS6 || TE4){

1Ds[i]. W=document.images["p"+i].width;
IDs[i].H=document.images["p"+i].height;

H

getnewprops(i);

moveidto(i , Math.floor(Math.random()*(wind_w-IDs[i].W)),
Math.floor(Math.random()*(wind_h-IDs[i].H)});
if{NS4)1Ds[i].visibility = "show";

if(1E4 || NS6)IDs[i].style.visibility = "visible";

startfl y=sctlmcrvai('mcveimage(’+i+')',Math,ﬂoor(Malh.random()* 100+
100);

1

function hidebutterfly()}
for(i=0; i<floatimages.length; i++)|

if (IE4)

eval("document.all.pic™+i+" style.visibility="hidden™)

else if (NS6)
document.getElementByld("pic"+i).style.visibility="hidden’
else if (NS4)

eval("document.pic"+i+".visibility="hide™)
clearlnterval(startfly)

i

1

if (NS4|[NS6/[1E4) {
window.onload=init;
window.onresize=function(){ wind w=getwindowwidth();

<select size="1" name="D1" style="color: #0099CC:
font-weight: bold; border: 2px solid #408080">
<option>25</option=>
<option=50</option=
<option=75</option=

</select></p>
<p align="center"> </p>
<p align="right"> </p>
<p=> </p>
<div style="position: absolute; width: 309px; height:
219px; z-index: 1; lefi: 44px; top: 129px; border: 3px double #0099CC"
id="layer4">
<img border="0" src="1315054.jpg"
width="270" height="202"></div>
<p= :</p>
<p=> :;</p>
<p= </p>
</form>
<p= </div=>
<p= :</div>

<%(@ page language="java" %>
<%(@ page import="java.sql.*" %>

<%!

Connection conn;

Statement st;

ResultSet res;

String tuples:

int t,sumamt, numcount,ycurr;
%>

<%

tuples=request.getParameter("name”);

/Connectivily count query usage
Y=

<%
try

{
Class.forName("sun.jdbe.odbe. JdbeOdbeDriver”);
conn=DriverManager.getConnection("jdbc:odbe:peer| ",","");

st=conn.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,

ResultSet. CONCUR_READ ONLY);

res=st executeQuery("select count (*) from sample ");
System.out.println("query executed”);

res.beforeFirst();

res.last();
numcount=res.getRow();
System.out.printin{numcount);

/! comparing tuple value with sample size

/I Sample size is less than tuple

iflnumcount<t)

|

System.out.println("rejected”);

1
]

else
{

// Equal size and apply query to all .

ifinumeount==1 || numcount=>t)

System.out.printIn("sum"+sumamt);
yeurr=(numcount/t)*sumamt;
System.out.println("resultant value is™+ycurr);
String resultl=new String();

resultl=result] .valueOf{ycurr);

response.sendRedirect("http:/localhost:808 1 /finalpeer2/index.jsp?name=

"+tuples+"&result1="+resultl);
%>

<%@ page language="java" %>
<%(@ page import="java.sql.*" %>
<%!

Connection conn;

Statement st;

ResultSet res;

String tuples,result],result2;
int t,sumamt,numcount,ycurr;
LA

<%

tuples=request.getParameter("name");
t=Integer.parselint(tuples);
resultl=request.getParameter("result]");

//Connectivity count query usage
Yo

<%
try
t
Class.forName("sun.jdbc.odbe JdbcOdbeDriver");
conn=DriverManager.getConnection("jdbc:odbe:peer2”,"","");
st=conn.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_READ ONLY);

res=st.executeQuery("select count (*) from sample ");
System.out.printin("query executed”);

Syslem.oul,prinlln("apply"];

try

{

Class.forName("sun.jdbe.odbe JdbeOdbeDriver");
conn=DriverManager.getConnection("jdbc:odbe:peer| i)
si=conn.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,

ResultSet. CONCUR_READ _ONLY);

String Query= "SELECT sum(amount) FROM sample ";

res =st.executeQuery(Query):
System.out.printin(" executed");

while(res.next{)}

i

sumami=res.getint(1);

catch{Exception €)
]

L)
System.out.printin(e);
'

b

H
J/ Greater than the tuple size Random sclection

1

]

catch(Exception ¢)

i
System.out.printin(e);
H

System.out.printin("tuples™+numecount);

res last():

numcount=res,getRow();
Sysu:m_out.pﬁntln{numconnl];

// comparing tuple value with sample size

// Sample size is less than tuple

if(numcount=<t)

{
Syslern,out.printIn("rejecled");

else

i
// Equal size and apply query to all .

if(numcount==t || numcount=t)

i

System.out.printin("apply");

try

i

Class.forNamc("sun,jdbc.odbc.JdchdbcDriver"):
conn=DriverManager.getConnection(“jdbe:odbe:peer2”,"","");
si=conn.createStatement(ResuliSet. TYPE_SCROLL_ SENSITIVE,

ResultSet. CONCUR_READ_ONLYY);

String Query= "SELECT sum(amount) FROM sample ":

res =st.executeQuery(Query);

System.out.println(” executed”);

while(res.next())

i

sumamt=res.getInt(1):

1
L

1

]

catch(Exception)

t
System.out.printin(e):

4

|

// Gireater than the tuple size Random selection

H

catch(Exception e)

{
System.out.printin(e);
1

'

System.out.println("tuples"+ numcount);
System.out.println("processedtuples”+t);
System.out.printin("sum"-+sumamt);
yeurr=(numcount/ty*sumamt;
System.out.printin("resultant value is"+yeurr);
result2=result2.valueOf{ ycurr);

response.sendRedirect("http:/localhost:808 1/finalquery/result] Jsplresult

1="+result 1 +"&result2="+result2);

0‘/0)
<%!
String result], result2;
int resultpl, resultp2;
float prob,deg.edge,y1,y2.error;

String s|=new String();
String s2=new String():
String e=new String();

var Ymax=8; /IMAX # OF PIXEL STEPS IN THE
"X" DIRECTION

var Xmax=8; /IMAX # OF PIXEL STEPS IN THE
"Y" DIRECTION

var Tmax=10000; /IMAX # OF MILLISECONDS

BETWEEN PARAMETER CHANGES

JELOATING IMAGE URLS FOR EACH IMAGE. ADD OR DELETE
ENTRIES. KEEP ELEMENT NUMERICAL ORDER STARTING
WITH "0" !t

var floatimages=new Array();

floatimages[0]="butterfly2.gif";

floatimages[1]="butterfly2.gil’;

floatimages[2]="butterfly2.gif';

floatimages[3]="butterfly2.gif";

H**‘*"‘**Do NOT ED[I BELOW‘**‘?I.‘*‘**

var NS4 = (navigator.appName.indexOf("Netscape")>=0 &&
parseFloat(navigator.appVersion) >= 4 &&
parseFloat(navigator.appVersion) < 5)? true : false;

var |F4 = (document.all)? true : false;

var NS6 = (parscFloat(navigator.appVersion) >= 5 &&
navigator.appName.indexOf("Netscape")>=0)? true: false:

var wind_w, wind_h, =", IDs=new Array();

for(i=0; i<floatimages.length; i++){

t+=(NS4)?<layer name="pic'+i+" visibility="hide" width="10"
height="10">" : ‘<div id="pic'+i+"
style="position:absolute; visibility:hidden;width:10px; height:10px">=a
href="javascript:hidebutterfly()">",

ti="";
1+=(NS4)? "</layer=>""</div>",

I}

L}
document.write(t);

function moveimage(num) |

if(getidlefi(num)+1Ds[num]. W+1Ds[num].Xstep >=
wind_w-+getscrolix())IDs[num]. Xdir=false:

if{getidlefi(num)-1 Ds[num]. Xstep=<=getscrollx())IDs[num]. Xdir=true;
ift getidiop(num)+1Ds[num].H+ 1Ds[num]. Y step ==

wind h+getscrolly()IDs[num]. Ydir=false;
iﬂgclidlop{num)-lDs[num].Yslep<=gc15cmlly(]]IDs[num’].Ydir—'lruc;

<%

resull1=rcqucsl.gc1Paramctcr("resullI Y
rcsultZ-—requcsl,gclParamcler("rcsult2“):
//System.//out.printin("result |==="+resultl);
HSystem.J'foul,pr‘inlh'l("resulLZ——'—-"—"+rcsu|12);

resultpl=Integer.parselnt(resultl);
resultp2=1 nteger.parselnt(result2);

deg=3;

edge=8;

prob=deg/edge;

fout.println("!!!1! 4 prob),

y1=((float)resultpl/prob)/(3/2);
Jfout.printin("The Y1 Value:"+yl),
y2-‘-({ﬂoal)rtsullpla’pmb)f(:ir?);
{fout.printin{" The Y2 Value:"+y2);

error=(y!1-y2);

:'fa'Sys!em,oui,primln("The Error Rate:"+error);
int =Math.round{y2);

[lout.printin(r);

sl=sl.valueOfiyl);
§2=52.valueOf{y2);
e=¢.valueOf{error);
Yo
<div style="position: absolute; width: 901px: height: 527px; z-index: 1;
lefi: 47px; top: 33px; border-style: solid; border-width: 1px"
id="layerl">
<script language="JavaScript].2">

If’#

Flying Butterfly script (By BGAudioDr@aol.com)

Modified slightly/ permission granted to Dynamic Drive to feature script
in archive

For full source, visit http://www.dynamicdrive.com

*f

moveidby(num, (1Ds[num]. Xdir)? 1Ds[num].Xstep : -1Ds[num]. Xstep .
(IDs[num].Ydir)? 1Ds[num]. Y step: -1Ds[num].Ystep):
i

function getnewprops(num) |

IDs[num].Y dir=Math.floor(Math.random()*2)=0;

1 Ds[numl,XdiFMath.ﬂoor[MathAm ndom()*2)=0;

1Ds[num].Y step=Math.ceil(Math.random()* Y max);

IDs[num]. Xstep=Math.ceil(Math.ra ndom()* Xmax)
setTimeout('getnewprops(“+num+')’, Math.floor(Math.random()* Tmax));

function getscrollx(){

if{NS4 || NS6)return window pageXOffset;
if{1E4)return document.body.scrollLeft;

H

function getscrolly(){
if(NS4 || NS6)return window.pageY Offset;
if(1IE4)return document.body.scroll Top;

function getid(name)}{

if{NS4)return document layers[name]:
if(1E4)return document.all[name];

ifiNS6)return document.getElementByld(name);
}

function moveidto(num,x,y){
if(NS4)IDs[num].moveTo(x,y):
if(1E4 || NS6){
IDs[num].style.left=x+'px’;
IDs[num].style.top=y+'px";

i

function getidiefi(num){

H(NS4)return IDs[num].left;

if{1E4 || NS6)return parselnt(1Ds] num].styleleft);
1

if{NS4)return [Ds[num].top;
if{1E4 || NS6)return parselnt{IDs[num].style.top):
H

function moveidby(num,dx,dy){
if(NS4)IDs[num].moveBy(dx, dy);

if(1E4 || NS6)1{
IDs[num].style.left=(getidleft(num)+dx)+'px";
1Ds[num].style.top=(getidtop(num)+dy)+'px";
i

function getwindowwidth(){

if(NS4 || NS6)return window.innerWidth;
if{1E4)return document. body.clientWidth;
i

function getwindowheight(){

if(NS4 || NS6)return window.innerHeight;
if{1E4)return document.body.clientHeight;
H

function init(){

wind_w=getwindowwidth();
wind_h=getwindowheight():

for(i=0; i<floatimages.length; i++)|
1Ds[i]=getid("pic'+i);

if(NS4){

1Ds[i]. W=1Ds[i].document.images["p"+i].width;
1Ds[i].H=1Ds[i].document.images["p"+i].height:

]

If(NS6 || 1E4){

1Ds[i]. W=document.images["p"+i].width;
1Ds[i].H=document.images["p"+i].height:

i

getnewprops(i);

moveidio{i , Math.floor{ Math.random()*{wind_w-1Ds[1].W)).
Math.floor{ Math.random()*{wind_h-1Ds[1].H})):
if(NS4)1Ds[i].visibility = "show™;

i{IE4 || NS6)IDs[i].style.visibility = "visible":
startfly=setInterval('moveimage("+i+')',Math.floor(Math.random(}* 100)+

<l--webbot bot="SaveResults" U-
File="fpweb:///_private/form_results.csv" S-Format="TEXT/CSV" -
Label-Fields="TRUE" -->

<p> :</p>

<p> </p>

<p=<font face="Century Schoolbook" color="#0099CC"
size="2">Result

From System 1: </font=<font color="#0099CC"
size="3" face="Century Schoolbook">

<input name="T1" size="20" value="<%=51%>"
disabled="false" style="border:1px solid #0066CC: font-weight:
700"></p>

<p=<font face="Century Schoolbook" color="#0099CC"
size="2">Result

From System 2: </font=<font color="#0099CC"
size="3" face="Century Schoolbook">
<input name="T2" size="20" value="<%=52%>" disabled="false"
style="border: 1 px solid #0066FF; font-weight: 700"></p>

<p=<b=><font face="Century Schoolbook" color="#0099CC"
size="2">Error

Rate : :&n
bsp; : : :&n
bsp:

: <font color="#0099CC" size="3"
face="Century Schoolbook">

<input name="T3" size="20" value="<%=e%>"
disabled="false" style="border:1px solid #0066FF; font-weight:
T00"></p>

</form>
<p> </div>
 </div>

<p> </p>

<p> </p>

-\:p;‘v

<img border="0" src="874256.jpg" width="270"
height="237"></p>

<p=> : :; </p=</div=>

<p= </div>

<h5> </h5>

1%
LN

function hidebutterfly(){

for(i=0; i<foatimages.length; i1++){

if (1E4)

eval("document.all pic"+i+" style.visibility="hidden")
else if (NS6)
document.getElementByld("pic"+i).style.visibility="hidden’
else if (N54)
eval("document.pic"+i+".visibility="hide")
clearlnterval(startfly)

H

B

i (NS4|[NS6||IE4){

window.onload=init;

window.onresize=function(){ wind_w=getwindowwidth();
wind h=getwindowheight(); }

1

</scriplt>
<div style="position: absolute; width: 897px; height: 86px; z-
index: 1; left: 2px; top: 2px; background-color: #0099CC" id="layer2">
<p align="center"><font color="#FFFFFF"
size="6"> EFFICIENT QUERY PROCESSING IN

</p>
<p align="center"><fonl size="6"
color="#FFFFFF"> PEER-TO-PEER NETWORK</div>
<div style="position: absolute; width: 897px; height: 29px: z-
index: 2; left: Opx: top: 495px: background-color: #0099CC"
id="layer3">
 </div>
<div style="position: absolute; width: 231px; height: 388px; z-
index: 4; left: 39px; top: 104px" id="layer5">
<div style="position: absolute; width: 33px; height: 433px;
z-index: 1 left: -36px; top: -13px; background-color: #0099CC™"
id="layer6">
<div style="position: absolute; width: 331px; height: 321px; z-index: I,
left: 388px; top: 35px" id="layer§">

CHAPTER 9
REFERENCES
BOOKS AND JOURNALS:

1. S. Acharya, P.B. Gibbons, and V. Poosala, “Aqua: A Fast Decision
1h

Support System Using Approximate Query Answers,” Proc. 25
Int’l Conf. Very Large Data Bases (VLDB '99), 1999.

2. L. Adamic, R. Lukose, A. Puniyani, and B. Huberman, “Search in
Power-Law Networks,” Physical Rev. E, 2001.

3. B. Babcock, S. Chaudhuri, and G. Das, “Dynamic Sample
Selection for Approximate Query Processing,” Proc. 22nd ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD "03), pp.
539-550, 2003.

4. A.R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” Proc. ACM Ann. Conf.
Applications, Technologies, Architectures, and Protocols for
Computer Comm. (SIGCOMM "04), 2004.

5. S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Analysis and
Optimization of Randomized Gossip Algorithms,” Proc. 43 rd IEEE
Conf. Decision and Control (CDC "04), 2004.

6. http://www,.jlee.com

7. http:/www.apache.com

