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Abstract:

In our project, we develop a new multi-access protocol for ad
hoc radio networks. The protocol is based on the original MACA
protocot with the addition of a separate signaling channel. The unique
feature of our protocol is that it conserves battery power at nodes by
intelligently powering off nodes that are not actively transmitting or
receiving packets. The manner in which nodes power themselves off does
not influence the delay or throughput characteristics of our protocol. We
illustrate the power conserving behavior of PAMAS via extensive
simulations performed over ad hoc networks containing 10-20 nodes. Our
results indicate that power savings of between 10% and 70% are
attainable in most systems. Finally, we discuss how the idea of power

awareness can be built into other multi-access protocols as well.
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1. Introduction;

1.1 General:

Ad Hoc networks are multi-hop wireless networks where al}
nodes cooperatively maintain network connectivity. These types of
networks are useful in any situation where temporary network
connectivity 1s needed. For instance, consider the problem of establishing
a temporary wireless network in a region hit by some natural disaster. An
ad hoc network here would enable medics in the field to retrieve patient
history from hospital databases {assuming that one or more of the nodes
of the ad hoc network are connected to the Internet) or allow insurance

companies to file claims from the field.



1.2 Problem Definition:

Nodes in an ad hoc network communicate via radio and
since the radio channel is shared by all nodes, it becomes necessary to
control access to this shared media. Several persons have developed
channel access protocols for multihop radio networks where the goal has
been maximizing throughput and minimizing transmission delay. Unlike
this previous work, however, we present a channel access protocol that
reduces the power consumption at each of the nodes. Reducing power
consumption is clearly an important goal because battery life is not
expected to increase significantly in the coming vears. In an ad hoc
network, it is even more important to reduce power consumption because

these networks are typically established in mission critical environments.

Channel access protocols for ad hoc networks have to contend
with the problem of hidden terminals in addition to the problem of
contention as in the Ethernet. Here, node A begins transmitting a packet
to node B. However, since node C is out of range of node A, it begins
transmitting a packet some time later. This results in collisions at the
receiver B. Observe that neither of the two senders is aware of the
collision and therefore cannot take preventive measures. It is noteworthy

that this type of a problem does not arise in the Ethernet (for instance)



1.3 Objective of the Project:

The protocol is based on the original MACA protocol with the
addition of a separate signaiing channel. The unique feature of our
protocol is that it conserves battery power at nodes by intelligently
powering off nodes that are not actively transmitting or receiving
packets. The manner in which nodes power themselves otff does not
influence the delay or throughput characteristics of our protocol. We
illustrate the power conserving behavior of PAMAS via extensive
simulations performed over ad hoc networks containing 10-20 nodes. Our
results indicate that power savings of between 10% and 70% are
attainable in most systems. Finally, we discuss how the idea of power

awareness can be built into other multi-access protocols as well.

Significant power is consumed at a node when it either
transmits a packet or when it receives a packet. Thus, the DEC Roam
about radio consumes approximately 5.76 watts during transmission, 2.88
watts during reception and 0.35 watts when idle. The radio used
consumes 15 watts while transmitting, 11 watts while receiving and
50mW in idle mode. Now, notice that in ad hoc networks, a transmission
from one node to another is potentially overheard by all the neighbors of
the transmitting node - thus all of these nodes consume power even

though the packet transmission was not directed 1o them!



For example, in the ad hoc network illustrated in the following
figure, node A's transmission to node B is overheard by node C because
C is a neighbor of A. Node C thus expends power recerving a packet not
sent to it! In our protocol, node C turns itself off during the transmission
from A to B to conserve power. It is easy to see that the potential savings

of this simple approach can be enormous - particularly in dense networks.

A transmits A's transmission
to B is overheard by C
i
B A ] c
T T g e TR -

Figure I.1: Unnecessary power consumption



2. Literature Review:

2.1 Feasibility Study:

An Ad hoc routing protocol is a convention or standard that
controls how nodes come to agree which way to route packets between
computing devices in a mobile ad-hoc network (MANET).In ad hoc
networks, nodes do not have a prior knowledge of topology of network
around them and they have to discover it. The basic idea is that a new
node (optionally) announces its presence and listens to broadcast
announcements from its neighbors. The node learns about new near
nodes and ways to reach them, and may announce that it can also reach
those nodes. As time goes on, each node knows about all other nodes and

one or more ways how to reach them.
Mobile ad-hoc network

A mobile ad-hoc network (MANET) is a kind of wireless
ad-hoc network, and is a self-configuring network of mobile routers (and
associated hosts) connected by wireless links — the union of which form
an arbitrary topology. The routers are free to move randomly and
organize themselves arbitrarily; thus, the network's wireless topology
may change rapidly and unpredictably. Such a network may operate in a

standalone fashion, or may be connected to the larger Internet.

Mobile ad hoc networks became a popular subject for
research as laptops and 802.11/Wi-Fi wireless networking became

widespread in the mid to late 1990s. Many of the academic papers



evaluate protocols and abilities assuming varying degrees of mobility
within a bounded space, usvally with all nodes within a few hops of each
other, and usually with nodes sending data at a constant rate. Different
protocols are then evaluated based on the packet drop rate, the overhead
introduced by the routing protocol, and other measures. The Children's
Machine One Laptop per Child program has developed a cheap laptop for
mass distribution to developing countries for education. The laptops will
use IEEE 802.11s based ad hoc wireless mesh networking to develop

their own communications network out of the box.
Wireless mesh network

A wireless mesh network is a communications network made
up of radio nodes in which there are at least two pathways of
communication to each node. The coverage area of the radio nodes
working as a single network becomes a mesh cloud. Access to this mesh
cloud is dependent on the radio nodes working in harmony with each
other to create a radio network. A mesh network is reliable and offers
redundancy. When a node can no longer operate, all the rest can still
communicate with each other directly or through one or more
intermediate nodes. The diagrams below illustrate how wireless mesh
networks can self form and self heal. Wireless mesh builds routes
between nodes only as desired by originating nodes. It maintains these
routes as long as they are needed by the originating node. Wireless mesh
nodes forms paths in term of hops which connect together to form the

wireless mesh network.



2.L.1 Current Status of Problem:

Channel Access Protocols for Ad Hoc Networks

Distributed power control schemes are extensively empioyed in
the cellular networks and are capable of improving the capacity of the
network. However, the power control schemes from the cellular networks
suffer from performance degradation due to self and direct-interference
and hidden-terminal problems when directly employed in ad hoc
networks. Most of the existing channel reservation-based power control
protocols for ad hoc networks employ incremental power allocation
rather than global allocation of the power to the incoming links; thus,
they may not effectively utilize the spatial frequency reuse in the
network. This paper presents a distributed channel access protocol that
couples the channel reservation and the iterative/global transmission
power control schemes in ad hoc networks. The designed protocol
considers the convergence problem of the global power control in ad hoc
networks. The designed access criteria employ the local admission
control based on the sufficient criteria for admissibility and global power
control for balancing the SIR (signal to interference ratio) of the links. In
the performance evaluation study of the designed protocol, an almost
twofold increase in the throughput and capacity is observed compared to

the existing power-controlled protocol for ad hoc networks.

Channel access protocols for ad hoc networks have to contend
with the problem of hidden terminals in addition to the problem of
contention as in the Ethernet. Here, node A begins transmitting a packet

to node B. However, since node C is out of range of node A, it begins



transmitting a packet some time later. This results in collisions at the
receiver B. Observe that neither of the two senders is aware of the
collision and therefore cannot take preventive measures. It is noteworthy
that this type of a problem does not arise in the Ethernet (for instance)
because all nodes can hear one another. Several authors have developed
different solutions to the hidden terminal problem. In this section we
examine some of these proposals. Before doing so, however, it is
impertant to observe that research in building ad hoc packet radio
networks was initiated by DARPA Many access protocols developed as
part of this program used some form of CSMA. Suggested approaches for
dealing with hidden terminals include using appropriate "randomization
delaying” to reduce the probability of receiver-side collisions, the use of
CDMA and the use of adaptive transmission scheduling (based on node
connectivity) which ensures that the probability of two nodes
transmitting to a common receiver is small. We will focus on how the

protocols deal with (or not) the hidden terminal problem.

A ansmils 3 packel to 8

C oansrmits a packst to B

Tira

A ——————

Cothzion at B

Figure 2.1: The hidden terminal problem.

MACA 1s a protocol that many other, more recent, protocols are
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neighbor, it first transmits a RTS (Request To Send) message. The
receiver responds with a CTS (Clear To Send) message. Upon receiving
the CTS message, the sender begins transmitting the packet. How does
this RTS-CTS message exchange aileviate the hidden terminal problem?
In the above figure, C would have received the CTS transmission from B
before A begins transmitting the packet to B. Thus C can hold off
transmitting until B receives A's packet completely (the RTS and CTS
messages contam the length of the packet). It is possible that the RTS
message or its CTS may suffer a collision. In this case the sender
executes a binary exponential back off algorithm and tries to send a RTS

agatn, later.

Even though MACA solves the hidden terminal problem
illustrated earlier, it creates another! A sends a RTS to B who responds
with a CTS. However, D sends a RTS to C at about the time that B is
sending a CTS to A. Thus C hears a collision and does nothing. A
receives the CTS and begins transmitting the data packet. D, on the other
hand, retransmits a RTS after some time. Since C does not know that B
1s receiving a packet, it responds with a CTS. This CTS transmission,
unfortunately, collides with the packet transmission at node B. When
collisions occur in MACA, recovery is left up to the transport layer
thus greatly reducing throughput. MACAW is a modified version of
MACA where link layer ACKs has been added. Thus, a sender can
retransmit a packet that was not successfully received at the receiver. In
the above example, B will not send an ACK for the packet and A will

retransmit 1t again.



FAMA is a refinement of the MACAW protocol in that it
includes a non-persistent CSMA at the begimning of each free slot. In
addition, the length of the CTS is made longer than the RTS to deal with
the situation. If the length of the CTS is longer, node C will receive a part
of the CTS transmission (either the initia] part or the end). It will
interpret this as noise wait for the length of one (maximum length) packet
transmission before doing anything (it will not transmit a packet even if it

receives a CTS from D).

This solution fixes the previous problem also. Here, node C will
hear noise (when control packets collide}) and will ignore  al
transmissions for the length of time taken to lransmit one maximum
length packet. MACA/PR20 is a protocol based on MACAW with the
provision of non-persistent CSMA (as in FAMA). In addition,
MACA/PR supports real-time data traffic by including a reservation
mechanism in the RTS-CTS-Packet-ACK sequence. Finally, the IEEE
802.11 standard for wireless LANSs includes the collision avoidance of
MACA and MACAW.



In addition, all directed traffic uses positive ACKs (again as in
MACAW). A different approach to the problem is described later. In this
system, there is a separate channel used for transmitting "busy tones". Thus,
when a node wants to transmit a packet, it transmits the preamble of jts
packet (this contains the receivers address). The receiver responds with a
busy tone. On hearing the busy tone, the sender continues sending the
packet. It is easy to see that the hidden terminal problems described above
are handled with this solution. Other approaches to channel access include
splitting the network into clusters and using a different spreading code in

each cluster.



2.1.2 Proposed System and its Advantages:

The PAMAS Protocol

The PAMAS protocol is a combination of the original
MACA protocol and the idea of using a separate signalling channel.
Thus, we assume that the RTS-CTS message exchange takes place over a
signalling channel that is separate from the channel used for packet
transmissions. This separate signalling channel enables nodes to
determine when and for how long they can power themselves off. In this
section we first present the PAMAS protocol. Later, we add power
conserving behavior to the protocol in a way that does not change the

delay or throughput behavior of PAMAS.

Receive RTS/Send (TS

Recejve RTSSend CTS*

New RTS/ No Pachet Queue>l, Send RTS . !
Send CTS* or Noise to destination if it is No CTS or Busy Teo
5 ar unrelaied RTS
Await Packet _ Await CTS BEB
{1 time stg 1 lime sie _
[ P) Recetve RTSS { 2 ime expired and destination
Send CTS** i nol wransmitting/Send RTS
Packef received eceive UTS

Transmissipn ends

Trensmit Rusy Tone

Receive Transmit ** . if data channet is idle and
Packet Packet i no noise over control channel

Receive other RTS/Transmit Busy Tgnore RTS/CTS transmissions
Tone. Ignore all CTSs received

Figure 2.2: The PAMAS Protocol



The state diagram outlining the behavior of our protocol 1s
Hlustrated in the above Figure. As indicated in the figure, a node may be
in any one of six states - idle, AwaitCTS, BEB (Binary Exponential Back
off), Await Packet, Receive Packet, and Transmit Packet. When a node is
not transmitting or receiving a packet, or does not have any packets to
transmit, or does have packets to transmit but cannot transmit it is in the
Idle state. When it gets a packet to transmit, it transmits a RTS and enters
the AwaitCTS state. If the awaited CTS does not arrive, the node goes
into binary exponential back off (the BEB state in the figure). If the CTS
does arrive, it begins transmitting the packet and enters the Transmit
Packet state. The intended receiver, upon transmitting the CTS, enters the
Await Packet state. If the packet does not begin arriving within one
roundtrip time (plus processing time), it returns to the Idle state. If the
packet does begin arriving, it transmits a busy tone over the signalling
channel and enters the Receive Packet state. When a node in the idle state
receives a RTS, it responds with a CTS if no neighbor is in the Transmit
Packet state or in the AwaitCTS state. It is easy for a node to determine if
any neighbor is in the Transmit Packet state. However, it is not always
possible for a node to know if a neighbor is in the AwaitCTS state. In
our protocol, if the node heard noise over the control channel within T 2
of the arrival of the RTS, it does not respond with a CTS. If, however, it
does not hear a packet transmission begin within the next T, it assumes

that none of its neighbors is in the AwaitCTS state anymore.

Now consider a node that is in the idle state and has a packet to
transmit. It transmits an RTS and enters the AwaitCTS state. If, however,

a neighbor is receiving a packet that neighbor responds with a busy tone



that will collide with the reception of the CTS. This will force the node to
enter the BEB state and not transmit a packet. If no neighbor transmits a
busy tone and the CTS arrives correctly, transmission begins and the
node enters the Transmit Packet state. Say a node that transmitted a RTS
does not receive a CTS message. It enters the BEB state and waits to
retransmit a RTS. If, however, some other neighbor transmits a RTS to
this node, it leaves the BEB state, transmits a CTS (if no neighbor is
transmitting a packet or is in the AwaitCTS state) and enters the Await
Packet state (i.e. it waits for a packet to arrive). When the packet begins
armiving, it enters the Receive Packet state. If it does not hear the packet
in the expected time (i.e., round trip time to the transmitter plus some
small processing delay at the receiver), it goes back to the Idle state.
When a node begins receiving a packet, it enters the Receive Packet state
and immediately transmits a busy tone (whose length is greater than
twice the length of a CTS). If the node hears a RTS transmission
(directed to some other node) or noise over the control channel at any
time during the period that it is receiving a packet, it transmits a busy
tone. This ensures that the neighbor transmitting the RTS will not receive
the expected CTS. Thus, the neighbor’s transmission (which would have
interfered with the node receiving a packet) is blocked. It is casy to see
that our protocol handles the hidden terminal problems illustrated in the

last diagram.

For instance, in the first example, node B's reception of a packet
from A will not be affected by the transmission of a CTS by node C. In
the second example, when node B begins receiving the packet from A, it

transmits a busy tone that 1s heard by node C. If the busy tone overlaps



with the CTS transmission from node D to node C, node C hears only
noise and will enter the BEB state and transmit a RTS again, later. This
retransmussion of the RTS will be met by another busy tone from B if B
is still receiving the packet. This continues until either B finishes
receiving or D sends a RTS to C (in this case C may begin receiving a

packet from D).

Powering off radios

We found that nodes consume power while transmitting or even
while receiving a packet. Unfortunately, in an ad hoc network, it is
frequently the case that a packet transmission from one node to another
will be overheard by all the neighbors of the transmitter. All of these
nodes will thus consume power needlessly. Consider a simple example
where the network is fully connected (i.e., all nodes are within
transmission range of each other) with n nodes. A transmission here will
be heard by all n -1 nodes. If the power consumed in transmitting a
packet 1s t and r is the power consumed while receiving, we see that the
total power consumed (system-wide) for one packet transmission is t + (n
- D)r. This is a huge waste because the total power consumed for a single
transmission should be no more than t + r (ignoring the power consumed

in the CTS-RTS-Busy Tone transmissions).

We assume that the data channel and the control channel have
identical conditions (e.g., noise). In order to conserve power and extend
the lifetime of mobile nodes, the PAMAS protocol requires nodes to shut

themselves off if they are in a situation where they overhear



transmissions. Thus, our protocol ensures that in the fully connected
example above, n -2 nodes will shut themselves off for the duration of the
transmission. We have identified two conditions under which it is

beneficial for a node to tumn itself off.

* If a node has no packets to transmit, then that node ought to power
itself off if a neighbor begins transmitting.

e Similarly, if at least one neighbor of a node is transmitting and
another is receiving, the node ought to power off because it cannot

transmit or receive a packet (even if its transmit queue is non-empty).

Every node in our system makes the decision to power off
independently. A node knows if a neighbor is transmitting because it can
hear the transmission (over the data channel). Likewise, a node (with a
non-empty transmit queue) knows if one or more of its neighbors is
receiving because the receivers transmit a busy tone when they begin
receiving a packet (and in response to RTS transmissions). Thus, a node
can easily decide when to power off. There are, however, two additional

questions to be answered:

* For how long is a node powered off?
* What happens if a neighbor wishes to transmit a packet to a node that

has powered itself off?

Let us answer the second question first using an example. Say
we have a line network with four nodes (A-B-C-D) and node B is

transmitting to node A. The transmission is overheard by node C (who



powers itself off). Say node D has a packet to transmit to node C. Since C
is powered off, D's RTSs go unanswered causing D to go into BEB.

What happens if C was not powered off? In this case, since C's neighbor
B is transmitting a packet, C will not respond to D's RTSs. Thus, C's
behavior, from the viewpoint of D, is the same irrespective of whether C
is powered off or not! As a corollary, we can see that packet delays do
not increase as a result of powering off nodes. This is because the period
of time when a node is powered off is one where it can neither receive

packets nor can it transmit packets.

To answer the first question we need to consider several cases.
Ideally, a node ought to stay powered off whenever any of the two
conditions (0) hold. However, collisions in the signaling channel and the
data channel may make it difficult for a node to determine the length of a
transmission. Nodes follow the following protocol to determine the

length of time for which they can power off.

e When a packet transmission begins in the neighborhood of a node, it
knows the duration of that transmission (say 1). If the node has an empty
transmit queue, it powers itself off for | seconds.

e [t is possible that one or more neighbors may begin data transmission
while the node is powered off. In this case, when the node powers back
on, it will continue hearing transmissions over the data channpel. If the
node still has an empty transmit queue, it ought to power itself off again.

But, for how long?
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Figure 2.3: Situation when a node powers back on

Figure 2.3 illustrates the case when three neighbors begin
transmission after a node powers off. These transmissions are ongoing
when the node powers back on and it needs to find out the rematning
transmission time (i.e., it needs to find out the value of 12). To do this we
add additional functionality in our protocol. The node, upon waking up,
transmits a t probe packet over the control channel where | is the
maximum packet length. All transmitters with transmissions completing
in time period [1/2, 1] respond with a t probe response (t) packet (t is the
time when this transmitter's transmissions will end). If the packet 1s
received without collision, the node powers itself off until time t.
Otherwise, if there was a collision, it probes interval [31/4, 1]. If there 1s
silence, it probes [1/2, 31/4], and so on. If there was silence in response to
the initial probe, it probes interval {0, /2]. In effect, the node does a
binary search to determine the time when the last (current) transmission

will end.



A simplification that can be built into the probe protocol just
described is the following. When the node hears a collision in response to
a probe of the interval [t1, t2], it powers itself oft for the period ti. This
simplification attempts to reduce the probing time by sacrificing some
battery power (since the node will power back on while a transmission is
ongoing). Observe that if the node powers itself off until time t2 (instead
of tl), there is likelihood that packet delays will increase. This is because
the packet transmissions may cease soon after time t! but the node is
powered off until t2. Thus if another node has a packet for this (powered
off) node, that packet cannot be delivered. The node powers off its
control channel as well and therefore does not know the length of the

remaining transmissions.

Next consider the case when a node has a non-empty transmit
queue. When the node powers back on (after it first powered off), it
transmits a RTS (rather than probing, because it needs to transmit a
packet). If any node in its neighborhood is receiving a transmission, that
node responds with a busy tone (containing the length of the remaining
transmission). I the busy tone collides with another busy tone or a CTS
or some other RTS, the node attempts to probe the receivers using the
same binary search algorithm described above but using a r probe(])
packet (the prefix r denotes a receiver probe packet). It probes the
transmitters next using the t_probe(l) packet. Then it powers itself off for
min{r,t} where r is the time the last receiver finishes receiving and t is

the time the last transmitter finishes transmitting.



To understand the reason for taking a min above, consider the
following two cases. If t < r (i.e., all transmitters finish before the
receivers finish) then we need to power on this node so that, if some
other node has a packet for this node, that node can go ahead with its
transmission (to reduce delays). If, on the other hand, t > r, we need to
power back this node after r so that it can begin transmitting packets from

its queue (again to keep delays small).

Finally, it ts important to observe that the probe messages could
get corrupted (say more than one node powers on at the same time and
transmits a probe message). In this case there will be no response to the
probes and the nodes will stay on. A workaround we suggest {(but have
not implemented) is to use p-persistent CSMA when transmitting a probe
packet (with p chosen appropriately). This will reduce the possibility of
collisions of probe packets. We have not implemented this scheme

because of two reasons:

e Under light load conditions, the probability of hearing a new
transmission after a node powers back on is low. Hence there is no need
to build a sophisticated protocol.

e Under heavy loads, it is almost always the case that when a node
powers on there will be ongoing transmissions. In this case, 1t is unlikely
that the node will have an empty transmit queue. So it will try to transmit
RTS messages which will evoke busy tone responses from receivers.
This will quickly inform the node of the additional time it needs to power
off for (we assume that the busy tone transmissions include the length of

the remaining transmission).



It is noteworthy that the above probe protocol can be simplified
considerably if we assume that the node only powers off its data interface
but always leaves the signaling interface powered on. This will enable the
node to always know the length of new transmissions and keep the data

interface powered off appropriately.
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Figure 2.4: Separate interfaces for signaling and data

Figure 2 4 illustrates the block diagram needed for this type of a
communications device. Here, the signaling interface histens to all
RTS/CTS/Busy Tone transmissions and records the length of each
transmission and reception. This information (along with the length of
the transmit queue) 1s fed to the power aware logic which determines
whether to turn the data interface off or on. The power aware logic that
can be used is as described above with the exception of the probe

algorithm.



Effect of powering off on Delay and Throughput

An important concern related to powering off radios is whether
the delay or throughput behavior of PAMAS changes. We claim that
powering off radios, as we have described, does not have any effect
because a radio powers itself off if it either cannot receive data
transmissions directed to it (because a neighbor is transmitting a packet)
or if it cannot transmit a packet (because a neighbor is receiving another
transmission). In these cases, even if the radio was not turned off, it could
not receive/transmit a packet. Thus, powering off the radio has no effect
on the behavior of PAMAS. This statement does have an important
caveat, however. The length of time that a radio is powered off [should
be no longer than necessary (i.e., the two conditions mentioned above
hold for this time period) otherwise the delay and throughput behavior of
PAMAS will be changed. It is for this reason that we use the probe
algorithm to enable nodes to estimate the length of time that a radio can
turn 1tself off. In fact, as we noted in the discussion earlier, we err on the
side of caution and may underestimate the length of this period. This
results in sub-optimal power savings but ensures that the

delay/throughput behavior of PAMAS remains unchanged.



2.2 Hardware Requirements:

Processor

Speed

RAM capacity
Floppy disk drive
Hard disk drive
Key Board
Mouse

CD Writer

Printer
Motherboard

Monitor

Pentium IV
Above 500 MHz
128 MB

.44 MB

20 GB

108 keys
Optical Mouse
Optional
Optional

Intel

17'}1



2.3 Software Requirements:

Operating System
Front end used
Simulator used
Software needed

Coding language

Windows 2000 and above
Java

Glomosim

MS Visual C++ 6.0

Parsec C



2.4 Software Overview:

JAVA Overview:

This language was initially called “Oak™ but was renamed as
“Java”. The primary motivation of was the need for a platform-
independent language that could be used to create software to be
embedded in various customer electronic devices. An easier and most
cost-efficient was needed. In an attempt to find such a solution, the
programmers began work on a portable platform-independent language
that could be used to produce code that run on a verity of CPU’s under

differing environments. This effect led to the creation of Java.

However, with the emergence of World Wide Web, Java was
propelled to be forefront of computer language design, because the web
too demanded portable programs. Java is designed, tested and refined by
real, working programmers. It is a language grounded in the needs and
experience of people who devised it. Thus Java is a programmer’s
language. Java is cohesive and logically consistent. Except for those
constraints imposed by the internet environment, Java gives vou, the
programmer full control. If vou program well, your programs reflect it. [f

you program poorly, your program reflects that too.

Java Applet and Application

Java can used to create two types of programs called “applet

and application”. An application is a program that runs on your



computer, under the operating system of that computer. An applet is an
application designed to be transmitted over the internet and executed by

Java comparable web-server.

Security

When a Java compatible web-server is used, the user can
download applets without fear of virus infection. Java archives this
protection by confining a Java program to the Java execution

environment and not allowing it access to other parts of the computer.

Portability

Many types of computers and operating Systems are in use
throughout the world and many are connected to the internet. For
programs to be dynamically downloaded to all various type of platform
connected to the internet, some means of generating portable executable
code is needed. The same mechanism that helps ensure security also
helps create portability. Indeed, Java’s solution to these two problems is
both elegant and efficient. Java was designed to be easy for the

professional programmer to learn and use effectively.
Object-Oriented
The object model in Java is simple and easy to extend, while

stmple types, such as integers are kept as high-performance nonobjective.

The ability to create robust programs was given a high priority in the



design of Java. To gain reliability, Java restrict user in a few key areas, to
force to find mistakes in early in program development. At the same
time, Java frees the user from having to worry about many of the most
common causes of programming errors. Because Java is strictly typed
language, it checks the user code at compile time and it also checks the

code at runtime.

Multithreaded

Java was designed to meet the real-world requirements of
creating interactive, networked programs. To accomplish this, Java
supports multithreaded programming, which allows the user to write

programs that do work simultaneously.

Architecture-neutral

A central issue for Java designers was that of code longevity

and portability. One of the main problems facing programmers that no
guarantee exists that if you write a program today, it will run tomorrow,
even in the same machine, operating system upgrades, processor
upgrades, changes in core system resources can all combine to make
program malfunction. But in Java the goal was “write once, run

anywhere, any time, forever™.



Interpreted and High Performance

Java enables cross-platform program by compiling into a
intermediate representation. The code can be interpreted on any system
that provides Java virtual machine. Cross-platform solution has done at

the expense of performance. Java, however, was desi gned to perform
well on very low-power CPUs. Java runtime machine that provides this
feature lose none of the benefits of platform-independent code. “High

erformance cross-platform™ is no loneer an ox moron.
fon

Distributed

Java is designed for distributed environment of the internet,
because it handles TCP/IP protocols. The original version of Java (Qak)
includes features for intra-address-space messaging. This allows objects

on two computers to execute procedures remotely. Java has revived these

interfaces in a package called remote method invocation (RMI).

Dynamic

Java programs carry with them substantial amounts of run-time
type information that is used to verify and resolve accesses to objects at
runtime. This makes it possible to dynamically link code in a safe and

expedient manner.



GLOMOSIM Overview:

Our project has been done using a scalable simulation
environment called GloMoSim (for Global Mobile Information System
Simulator) that effectively utilizes parallel execution to reduce the
simulation time of detailed high-fidelity models of large communication
networks. GloMoSim has been designed to be extensible and
composable: the communication protocol stack for wireless networks is
divided into a set of layers, each with its own API. Models of protocols at
one layer interact with those at a lower (or higher) layer only via these
APls. The modular implementation enables consistent comparison of
multiple protocols at a given layer. The parallel implementation of
GloMoSim can be executed using a variety of conservative
synchronization protocols, which include the null message and

conditional event algorithms.

Parsec

PARSEC (for PARallel Simulation Environment for Complex
systems) 1s a C-based simulation language developed by the Parallel
Computing Laboratory at UCLA, for sequential and parallel execution of
discrete-event simulation models. It can also be used as a parallel
programming language. PARSEC runs on several platforms, including
most recent UNIX variants as well as Windows. PARSEC adopts the
process interaction approach to discrete-event simulation. An object (also
referred to as a physical process) or set of objects in the physical system

is represented by a logical process. Interactions among physical processes



(events) are modeled by time-stamped message exchanges among the
corresponding logical processes. One of the important distinguishing
features of PARSEC is its ability to execute a discrete-event simulation
model using several different asynchronous parallel simulation protocols
on a variety of parallel architectures. PARSEC is designed to cleanly
separate the description of a simulation model from the underlying
simulation protocol, sequential or parallel, used to execute it. Thus, with
few modifications, a PARSEC program may be executed using the
traditional sequential (Global Event List) simulation protocol or one of
many parallel optimistic or conservative protocols. In addition, PARSEC
provides powerful message receiving constructs that result in shorter and

more natural simulation programs.

About Glomosim

GloMoSim is a mobile simulator built using C language. All
message transfers and other network elements are handled by the
individual layer coding built in C. To make the concepts clear,
GloMoSim provides users with a Visualization Tool (VT) built using
Java. The VT helps us understand the network environment, the node

positions, message transfers, clustering details, etc.

Glomosim Architecture

The networking stack is decomposed into a number of layers as

shown in Figure 2.5. A number of protocols have been developed at each



layer and models of these protocols or layers can be developed at

different levels of granularity.

In our project we deal with all these layers, but most of the
coding has been implemented in the Clustering and Routing layvers. The
dynamic clustering algorithm is implemented in these two layers. The
ciustering algorithm has been fully implemented in the Clustering layer.
The coding present in the Routing layer has been largely modified
according to the cluster formation. The algorithm used for routing 1is the
Bellman-Ford algorithm. This algorithm maintains a routing table for

every node being simulated.
The communication between the various layers is accomplished

by means of the various APIs available. A common API between two

layers helps in the communication between those two layers.
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Figure 2.5: GloMoSim Architecture



Glomosim Library

GloMoSim is a scalable simulation library for wireless network
systems built using the PARSEC simulation environment. GloMoSim
also supports two different node mobility models. Nodes can move
according to a model that is generally referred to as the “random
waypoint” model. A node chooses a random destination within the
simulated terrain and moves to that location based on the speed specified
in the configuration file. After reaching its destination, the node pauses
for a duration that is also specified in the configuration file. The other
mobility model in GloMoSim is referred to as the “random drunken”
model. A node periodically moves to a position chosen randomly from its
immediate neighboring positions. The frequency of the change in node

position is based on a parameter specified in the configuration file.



3. Details of the Methodology Employed:

In order to characterize the power (or energy) conserving
behavior of our protocol we conducted extensive simulations where we
compared the energy expended by PAMAS without power conservation
and PAMAS with power conservation. The simulations were conducted
in three different network topologies that, we believe, represent most ad
hoc networks. Thus, we ran PAMAS in a random network topology, a
line iopology and a fully connected network topology. We conjectured
that networks where nodes are densely connected will show the most
power savings while networks that are sparse will show the least amount
of power savings. The reason is that, in a dense network, if one node
transmits most of its neighbors can power off. In a sparse network, on the
other hand, fewer nodes call power off because more simultaneous
transmissions are possible. An implication of this is that the throughput
will typically be higher in sparse networks because more transmissions

can go on simultaneously.

In the simulations, we used fixed size packets (512 bytes). The
RTS and CTS packets were 32 bytes each and the busy tone was twice as
long. The bandwidth was assumed to be 12.8Kbps (observe that our
results also hold for higher data rates - we used this rate to keep the
length of the simulation time small). In terms of power conservation, we
assumed that no power is consumed when a node 1s 1dle (1.e., powered on
but not hearing any transmissions), I unit of energy 1s consumed for 32
bytes of transmission and., 0.5 units of energy are consumed at a receiver

for every 32 bytes processed (again, data or control). We ran simulations



for networks with 10 and 20 nodes to see how energy conservation
scaled. For the random networks, we generated edges randomly
uniformly with probabilities between 0.1 and 0.9 {for different
experiments. A probability of 0.1 generates sparse networks while an
edge probability of 0.9 yields dense networks with much better energy
conserving behavior. Traffic arrived at each node according to a poisson
process. The destination was chocsen randomly uniformly from the
remaining n - 1 nodes and the packet was routed using the shortest path.
All nodes maintain a FIFO buffer of packets awaiting transmission. The
length of this buffer is fixed at 2n per nodes. Packets arriving at a node
with a full buffer are dropped. Finally, to measure the power savings, we
calculated the total mumber of bytes transmitted Bt during a run of the
experiment, the total number of bytes received Br. A packet may be
received by more than one node and is therefore counted more than once)
and the total number of the packets P transmitted during the experiment.
The energy expended per packet is then,

P=(Bt+0.5xBr)/P
If we use power conservation, the number of bytes received tends to be
smaller, say it is Brc. Then, the energy expended is,

Pc = (Bt+10.5 x Brc)/P
and the power savings can be written as,

Percentage of Power Saved = P -Pc/P
We ran each experiment 150 times and computed 95% confidence
intervals for the percentage of power saved. The interval halt-widths is

kept to less than 5% of the point values in all cases.
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Figure 3.1: Power saved in cdmplete networks with 10 or 20 nodes

Figure 3.1 plots the power saved in a line network (i.e., fully
connected) topology as a function of load lambda (packets/sec/node). We
ran the experiments with 10 nodes and with 20 nodes. It is easy to see
that PAMAS reduces power consumption by almost 50% for high loads
and by even more for low loads. The reason for the higher savings at Jow
loads is that, at low loads, there is less contention for the channel
resulting in fewer control message transmissions (i.e., RTS/CTS/Busy
Tone transmissions). At high loads, almost all the nodes have packets to
send and thus contention for the channel is high. This results in fewer
actual packet transmissions (which is the only time when n -2 of the n
nodes not involved in the transmission can power off) and lower power

savings. Finally, observe that the power savings at low loads are higher



for networks with more nodes. This is because the number of nodes that

can power off 1s greater when there are more nodes in the network.
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Figure 3.2: Power saved in line networks with 10 or 20 nodes

The complete network case illustrates the best case performance
of PAMAS. At the opposite end of the spectrum we have a line network
where, as expected, the savings in power were not as dramatic. The
savings here range from 20% at light loads to less than 10% at heavy
loads. The reason for these lower savings is that in a line network, a large
number of packet transmissions can go on simultaneously. Thus, fewer

nodes are in a position to overhear unintended transmissions.



Bounds and Approximations on Energy Savings

An ad hoc network can be modeled by a graph, where the nodes
represent the mobile radio units and edges represent neighboring nodes.
Battery power is consumed by a radio when transmitting or receiving a
packet. Most radios available in the market operate by consuming about
twice as much power (Pt) when in transmit mode compared to being in
receive mode (Pr). A radio also consumes a very small amount of power
when in idle mode (Pi), i.e., powered on, but neither transmitting nor
recetving. Whenever a node k is powered on and a neighbor node
transmits a packet, it will consume power Pr even if the transmission is
not mntended for k. Battery power can be saved if we can turn off the
radios whenever a neighbor transmits packets not intended for that node.
For this analysis, we consider normalized power consumption by a node
to be I unit in transmit mode, 0.5 unit in receive mode, and 0 units in idle

mode.

Assuming point-to-point communication, we can establish
some bounds on power savings in an ideal situation. When a radio
transmits a packet, it will be intended for one of its neighbors. Therefore,
ideally, for each packet transmission exactly one intended neighbor
should be powered up to receive the packet and the rest of the nodes
should be powered off to maximize power savings. In a fully connected
topology of n nodes, for each packet transmission, n - 2 nodes can be
powered off. Our PAMAS protoco!l achieves this maximum power
savings as the unintended nodes can power themselves off during each

packet transmission. In addition, all the nodes know exactly how long to



turn themselves off, and therefore, our protocol is optimal for the fully

connected topology.

Bounds for the Line Topology

Consider a line topology with n nodes. Each node has at most
two neighbors. In this topology, when a middle node is transmitting one
of its neighbors should be turned off if that neighbor is neither
transmitting nor able to receive without interference. In the following
figure, we show various scenarios with transmitters and receivers being
paired off. A node with symbol T indicates it is a transmitting node, a
node with symbol R indicates a receiving node, and a node with symbol 0
can be off. Note that two adjacent nodes can both be transmitting to their
neighbors on the opposite sides without interference. Figure (a) shows
the most tight packing where almost all nodes are transmitting or
receiving. Figures (c,d) show the situation where the most energy savings
is possible. Here, for every transmitting node one neighbor can be turned
off as it 1s neither transmitting nor receiving. Figure (b) shows the
situation which is somewhere in between. In the following, we will
derive the bounds on energy savings by considering light load and heavy
load conditions.

(a) T~R---R~T~T~R---R~T~T~

(b) T~R---R---T--O~T~R---R~T~
(¢) O~T~R---- O~T~R--- O~T~R----
(d) R—---T~0O~ O---T---R~R---T~O~



4. Performance Evaluation:

4.1 Simulation Environment:

In the simulation environment, we used fixed size packets (512
bytes). The RTS and CTS packets were 32 bytes each and the busy tone
was twice as long. The bandwidth was assumed to be 12.8Kbps (observe
that our results also hold for higher data rates - we used this rate to keep
the length of the simulation time small). In terms of power conservation,
we assumed that no power is consumed when a node is idle (i.e., powered
on but not hearing any transmissions), 1 unit of energy is consumed for 32
bytes of transmission and., 0.5 units of energy are consumed at a receiver

for every 32 bytes processed (again, data or control).

We ran simulations for networks with 5 to 10 nodes to see how
energy conservation scaled. For the random networks, we generated
edges randomly uniformly with probabilities between 0.1 and 0.9 for
different experiments. A probability of 0.1 generates sparse networks
while an edge probability of 0.9 yields dense networks with much better
energy conserving behavior. Traffic arrived at each node according to a
poisson process. The destination was choosen randomly uniformly from
the remaining n - 1 nodes and the packet was routed using the shortest
path. All nodes maintain a FIFO buffer of packets awaiting transmission.
The length of this buffer is fixed at 2n per nodes. Packets arriving at a

node with a full bufter are dropped.



Finally, to measure the power savings, we calculated the total
number of bytes transmitted Bt during a run of the experiment, the total
number of bytes received Br. A packet may be received by more than one
node and is therefore counted more than once) and the total number of

the packets P transmitted during the experiment.

The primary purpose of the Java VT is to help network
designers debug their protocols. It is written in Java to provide portability
across multiple platforms. The GloMoSim simulation can be run with or
without the VT. If run without the VT, it can Jjust be executed from the
command line. However, if run with the VT, it must be executed through

the GUI provided by the VT rather than from the command line.

There are basically two ways to run GloMoSim with the VT
real time and play back. If we choose "Real Time" from the Simulate
menu, then the VT will display the results of GloMoSim while
GloMoSim is running. If we wish to run GloMoSim first and then play

the results of the simulation back later, then we need to do the following.

* Choose "Write Trace” from the Simulate menu. A dialog will pop up
asking for the name of the executable and the name of the trace file to
write the output from GloMoSim to.

¢ Once the trace file has been written to, you can play it back by
choosing "Play Back" from the Simulate menu. A dialog will pop up

asking for the name of the trace file to play back.



4.2 Simulation Outcome:

Statistics for Simulation of the MACA Protocol:

Node:
Node:
Node:

Node:
Node:
Node:

Node:
Node:
Node:

Node:
Node:
Node:

Node:
Node;:
Node:

Node:
Node:
Node:

0, RadioAccnoise, Collisions: 1
0, RadioAccnoise, Energy consumption (in mWhr): 150.012
0, Networklp, Number of Packets Delivered To this Node: 32

1, RadioAccnoise, Collisions: 0
1, RadioAccnoise, Energy consumption (in mWhr): 150.007
1, NetworkIp, Number of Packets Delivered To this Node: 38

2, RadioAccnoise, Collisions: 0
2, RadioAccnoise, Energy consumption (in mWhr): 150.005
2, Networklp, Number of Packets Delivered To this Node: 23

3, RadioAccnoise, Collisions: 5
3, RadioAccnoise, Energy consumption (in mWhr): 150.005
3, Networklp, Number of Packets Delivered To this Node: 24

4, RadioAccnoise, Collisions: 7
4, RadioAccnoise, Energy consumption (in mWhr): 150.000
4, Networklp, Number of Packets Delivered To this Node: 0

5, RadioAccnoise, Collisions: 1
5, RadioAccnoise, Energy consumption (in mWhr): 156.000
5, Networklp, Number of Packets Delivered To this Node: 0



Statistics for Simulation of the PAMAS Protocol:

Node:
Node:
Node:

Node:
Node:
Node:

Node:
Node:
Node:

Node:
Node:
Node:

Node:
Node:
Node:

Node:
Node:
Node:

0, RadioAccnoise, Collisions: 0
0, RadioAccnoise, Energy consumption (in mWhr): 134.992

0, Networklp, Number of Packets Delivered To this Node: 82

1, RadioAccnoise, Coliisions: 0
t, RadioAccnoise, Energy consumption (in mWhr): 134.989
1, Networklp, Number of Packets Delivered To this Node: 90

2, RadioAccnoise, Collisions: 0
2, RadioAccnoise, Energy consumption (in mWhr): 134.985
2, NetworklIp, Number of Packets Delivered To this Node: 34

3, RadioAccnoise, Collisions: 0
3, RadioAccnoise, Energy consumption (in mWhr): 134.984
3, Networklp, Number of Packets Delivered To this Node: 36

4, RadioAccnoise, Collisions: 0
4, RadioAccnoise, Energy consumption (in mWhr): 134.984
4, NetworkIp, Number of Packets Delivered To this Node: 28

5, RadioAccnoise, Collisions: 0
3, RadioAccnoise, Energy consumption (in mWhr); 134.984

5, Networklp, Number of Packets Delivered To this Node: 32



Energy Calculations:

Energy Consumed in MACA Protocol:

Simulation time: 10 minutes

Total energy consumed (in mWhr): 900.029
Total number of packets delivered: 117

Energy consumed per packet (in mWhr): 7.69255

Total number of collisions occurred: 14

Energy Consumed in PAMAS Protocol:

Simulation time: 10 minutes

Total energy consumed (in mWhr): 809.918
Total number of packets delivered: 302

Energy consumed per packet (in mWhr): 2.68185

Total number of collistions occurred: 0

Energy Conserved:

Energy conserved per packet (in mWhr): 5.0107

Percentage of energy conserved: 65.14 %



5. Conclusion:

In this project, we developed a novel multiaccess protocol for
ad hoc networks that conserves power by turning off radios under certain
conditions. We implemented and measured the performance of the
PAMAS protocol and showed that power savings range from 10% (in
cases where the network is sparsely connected) to almost 70% in fully-
connected networks. The noteworthy aspect of our protocol is that it
achieves these power savings without affecting the delay or throughput
behavior of the basic protocol. Finally, we will discuss the applicability
of our power saving ideas to other multi-access protocols and show how
our ideas may be easily incorporated into these protocols without

affecting their delay/throughput performance.



6. Future Enhancements:

From the discussion so far, 1t is clear that the PAMAS protocol
has very good power conserving behavior. However, it is also clear that
the ideas of power awareness that we have developed can be used to
make other multi-access protocols power conserving as well. This is
because nodes are powered off only when they are blocked from
transmutting or receiving. Thus, the delay characteristics of these
protocols will not change. Now, we discuss possible extensions to
PAMAS to improve its power conserving behavior and extensions to

handle broadcasts.

Using Power Awareness in other Multi-access Protocols

In order to conserve power, PAMAS powers off the radio
interface in the event that a node is unable to either transmit or receive a
packet. If we are to incorporate power awareness in other multi-access
schemes, we need to develop similar protocols that will enable a node to
determine when and for how long it needs to power off. Interestingly,
however, it turns out that using the same channel for signalling and data
hmits the extent of power awareness that can be built into these

protocols.

Based on our discussion, it is clear that, ideally, a node ought to
power off etther 1if it has no packets to transmit and a neighbor is
transmitting or if at least one neighbor is transmitting and another is

recerving. However, in order to implement this idea, we need to develop



a protocol for powering off that answers the following questions based on

feedback received from the radio channel:

e When does a node power off?
e For how long does it power off?
e What happens when a node powers on and sees an ongoing data

transmission?

Let us first look at the FAMA protocol. Here, a node 1s in the
Passive state if it does not hear anything on the channel and does not
have a packet to transmit. If it receives a packet to send in the Passive
state, it transmits a RTS and transitions to the RTS state awaiting a CTS.
If no CTS arrives, it enters a BACKOFF state. It stays here for the
appropriate interval, and if it does not hear anything on the channel for
the entire period, upon coming out of back off, it transmits a RTS. If it
hears a transmission, it goes into the Remote state. A station transitions
from the Passive state to the Remote state upon hearing a transmission or
noise. In the Remote state, the node waits for a time period before

returning to the Passive state. The time period is determined as follows:

e If the station hears a RTS, it waits for the time needed to transmit a
CTS plus the start of a packet. If it does not hear anything after this time,
it goes back to the Passive state (or transmits a RTS 1f it has a packet to

send).



o If 1t hears noise it waits for the time to send a maximum sized data
packet. If 1t hears a CTS, it waits for the time required to send the data

packet.

In the Passive state, there is no need to power off the node
because it 1s not expending power receiving a transmission. However,
power savings can be obtained by turning off the node when it is in the
Remote state. In the first case, when the node hears an RTS and hears the
start of packet transmisston, the node could power off for the duration of
the transmission (since it knows the packet length). Likewise, if it hears a
CTS/noise, it can power off for the appropriate time period. It is clear
that the delay and throughput behavior of FAMA does not change with
these modifications while its power conserving properties do improve.
However, the power savings are not the best possible. This is because,
when a node powers back on, it may continue hearing noise/
transmissions. This can happen if a node has two or more neighbors (who
are not neighbors of each other) who begin transmissions at different
times. When the node powers back on, it will not know the remaining
length of the current transmissions (this is true even if it had not powered
off because 1t will not hear the CTS due to collisions with ongoing packet
transmissions). Therefore, it will have to remain powered on until the
transmissions complete. Observe that under heavy load conditions, this
situation will occur frequently resulting in relatively poor power savings.
In contrast, in our protocol, the node transmits probe packets (on the
control channel) to determine the additional length of time for which it

can power off.



In the MACA and MACAW protocols, a node enters the Quiet
state when it hears a RTS or a CTS. In the former case, it waits for the
packet transmission to begin and once started, it waits for the packet
transmission to end. In the latter case, it waits for the packet transmission
to end before transitioning out of this state. In either case, it makes sense
to power off the node for the duration of the packet transmission. As in
the FAMA, however, if new transmissions begin while a node 1s waiting
for an ongoing one to complete, it does not know when the new
transmission(s) will end. Thus, once it powers on after staying powered
off for the duration of the first transmission, it will have to remain
powered on until all the current transmissions finish. This results in
needless power consumption. Finally, the MACA protocol can also be
modified in a similar fashion (since it is based on MACAW and FAMA)
but it suffers from the same drawbacks when it comes to conserving

power.

The clustering mechanisms used in contrast to the schemes
discussed above, are far more amenable power savings. Clustering
divides the network into distinct components and a different spreading
sequence is used for transmission within each cluster. Transmission
within a cluster i1s accomplished using TDMA. Thus, every node is
assigned a slot for transmitting its packets (modifications to the basic
TDMA allow for the implementation of QoS guarantees). As such, the
TDMA scheme is not amenable to power saving because a node cannot
really power off; (some node may be transmitting a packet to it).
However, if we add minislots to the start of each TDMA cvcle, we can

implement power awareness as follows. For each node in the cluster,



allocate a one-bit minislot. All the minislots are set to zero initially. If a
node A wants to transmit to node B, A sets the bit in B's minislot. Thus B
will remain powered on for the duration of the TDMA cycle. If, on the
other hand, a node's minislot has not been set and it does not have a

packet to transmit, it powers itself off for the length of the TDMA cycle.

Several enhancements are possible to the basic PAMAS
protocol we have described. In this section we outline some of the more
obvious ones. The first modification would be to add ACKs as has been
done in MACAW. Thus, the receiver transmits an ACK when a packet is
received correctly. In addition, if the sender does not receive the, ACK
and transmits a RTS with the same packet number again, the receiver
responds with an ACK instead of a CTS. Another modification that will
improve throughput is to allow a node to transmit multiple packets when
it has acquired the channel. This will serve to reduce time spent on
channel access (but may increase delays). In order to implement power
savings, we will need to ensure that the RTS/CTS/Busy Tone messages
include the total length of the transmission (length of all packets being
transmitted). Thus, a node will know the length of time for which 1t can

power off.

Another possible enhancement to PAMAS is to power off the
data interface of a node when its signalling interface is trying to acquire
the channel. Thus, in a line sub network A-B-C-D, if C 1s transmitting to
D while B is sending an RTS to A, powering off B's data interface

ensures that C's transmission does not result in power consumpticn at B.



Support for Broadcasting

Broadcasting is often necessary in networks and, even though
broadcasting is typically a network layer function, it is often necessary to
provide MAC layer support. In PAMAS and other ad hoc network MAC
laver protocols, a sequence of message exchanges (RTS-CTS) precedes
transmission of a packet. This message exchange ensures that the
recejver is ready to recetve the transmission. However, if a node needs to
broadcast a message to all its neighbors using the RTS-CTS sequence 1s
meaningless because all the neighbors are potential receivers of the
broadcast. If they all respond with a CTS (or if some respond with a CTS
and others with a Busy Tone), the transmitter will hear noise and will be

unable to decide what to do.

In PAMAS, the transmitter transmits a RTS B message when it
needs to transmit a broadcast. As in the basic PAMAS protocol, however,
it transmits this message if no neighbor is transmitting or 1s scheduled to
transmit upon hearing the RTS B, a node receiving another transmission
responds with a Busy Tone. Nodes those are free to receive the broadcast
do not respond. If the transmitter does not hear any response in time
equal to one roundtrip time plus processing delay, it transmits the
broadcast message. If it hears a Busy Tone or noise in response to the
RTS B, it refrains from transmitting. It waits for the ongoing
transmisston to end (i.e., it waits for a maximum, packet transmission
time in case it heard noise or for the length of time specified in the Busy

Tone) and retries when a node begins receiving the broadcast packet, it



transmits a Busy Tone to warn other neighbors to refrain from

transmitting,.

A potential problem in this protocol is that a broadcast may
collide with another transmission at some receiver. This is because nodes
do not transmit CTSs in response to a RTS_B. Thus, their neighbors, two
hops away from the transmitter of the broadcast, are unaware that it is
about to receive a broadcast. If a node that heard a RTS B heard noise
when it expected the broadcast, it waits for the transmission to cease and
transmits a NACK_B packet to the sender over the data channel (after the
usual RTS-CTS exchange). We leave recovery from this situation to the
network layer because the network layer is aware of the network
topology and is in the best position to decide whether the broadcast need

be repeated.

Power awareness can be easily incorporated here as follows. If
we assume that every broadcast packet has a unique identifier (that is
included in the RTS B message) then a neighbor of the transmitter who
has already received the packet can power itself off for the duration of the

transmission.



7. Appendix:

Appendix A: Simulation Snapshots:

Glomosim Simulation Environment:
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Figure 7.1: Glomosim Visualization Tool

Simulation Time : 10 Minutes
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Terrain Dimensions : (600,600)
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Glomosim Statistics File for MACA Protocol:

] GloMosSim Statistics File: g'lomﬁ.s'tat

‘ ode: 0, Layer: RadioAccnoise, Collizions: 1
idode: 0, Layer: RadioRceonoise, Energy consumption (in nWhrl: 150.012
i&ode: 0, Layer: HetworkIp, Bumber of Parkets Delivered To this Node: 32
hﬂnde: 1, Layer: Radiodccnnize, Collisions: O
;Node: 1, Layer: Radiohceonnise, Enerogy consamption (in mWhr): 150,007

vl RaticAccnoise HBode: 1, Layer: NetworkIp, Mumber of Packets Delivered To this Node: 33
Node: 2, Layer: Radiokcenoize, Collisions: O
;}Iode: 2, Layer: Radindccnoise, Energy consumprtion (in nihr): 150005
MNode: Z, Layer: NetworkIp, Number of Packets Deliwered To this Node: 23
?ﬂnde: 3, Layer: RadipAccnonize, Collisions: 5
?ﬂode: 3, Layer: Radiodceoneize, Energy consumption (in aWhr): 150,005
fllede: 3, Layer: HetwoxkIp, Mumber of Packets Delivered To this MNode: 24
Hode: 4, Layer: Radiodcoenoise, Collisions: 7
Node: 4, Layer: Radiofccnoise, Eneroy consumption (in wbhrj: 150,000
Node: 4, Layer: NerworkIp, Muwber of Packets Delivered To this Hode: 0
:}Icade: 5, Layer: Radiodccnoisze, Collisions: 1

| 1% Networkip :J'IDdE: 5, Laver: Radioscenoi=e, Energy consumption (in wWhrl: 150.000
MNode: 5, Layer: NetworkIp, Numher of Packets Delivered To this Mode: 0
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Figure 7.2: MACA Statistics



Glomosim Statistics File for PAMAS Protocol:

' EE;} GloMoSim Statistics File: glomo.stat

Hode:;
?ade:
mnde:
Node:
lode:
v, RadioAccnoise Node:
hode:
| ode:
Node:
ﬁnde:
Mode:
Wode:
MNode:
: ode:
Jode:
Node:
Vi Networklp Node:
Mode:

0, Layer: Radicdcenoise, Collisions: 0

G, Layer: Fadichccnoise, Energy consumption (in mihr): 134, 3%2

G, Layer: NetworkIp, Muwber of Packetsz Delivered To this Node:
1, Layer: Radiciccnoise, Collisiens: O

1, Layer: Radicicennise, Energy consumption (in mWhr): 134,985

1, Layer: BetworkIp, Mumber of Packets Delivered To thiz Node:
Z, Layer: Radiokcenoise, Collisions: O

2, Layer: Radindccnoizse, Energy consumption (in wlfhr): 134,385

2, Layer: NetworkIp, Number of Packets Delivered To this Node:
3, Layer: Radiodceonoise, Collisions: 0

3, Layer: RadioAconcize, Energy consumption (in mWhr): 134,984

3, lLawer: HetworkIp, Number of Packets Delivered To this Mode:
4, Laver: Radickconoise, Collisions: 0

4, Laver: Radioldccnoise, Energy consunprion (in xbhri: 134,954

4, Layer: WetworklIp, Wumber of Packets Delivered To this Hode:
5, Layer: Radiocaccnoise, Collisions: O

5, Lavyer: Radiolccnoise, Energy consumprtion {(in mWhr):

5, Layer: HetworkIp, Mumber of Packers Delivered To this Wode:
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Figure 7.3: PAMAS Statistics
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