INTRUCTION DETECTION SYSTEM

A PROJECT REPORT
P- 2162

Submitted by

NAVEENKUMAR.S 71204205023
RAJAKUMAR.S 71204205032

DEEPAKPRASANTH.C 71204205301

In partial fulfillment for the award of the degree
of
BACHELOR OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

KUMARAGURU COLLESE OF TECHNOLOGY,
COIMBATORE

ANNA UNIVERSITY: CHENNAI 600 025

APRIL 2008

ANNA UNIVERSITY: CHENNALI 600 025

APRIL 2008
ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “Intruction Detection System” is the
-—

bonafide work of “S.Naveenkumar(71204205023), S.Rajakumar

(71204205032) and C.Deepakprasanth (71204205301)” who carried out the

project work under my supervision.

= Ao Clofosn

(Signature) (Signature)
Dr. S.Thangasamy Mr. K.R Baskaran
HEAD OF THE DEPARTMENT SUPERVISOR
Dept of Information Technology, Dept of Intormation Technology,

Kumaraguru College of Technology, ~Kumaraguru College of Technology,

Coimbatore- 641 006. Coimbatore - 641 006.

NLeSl)

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

We express our sincere thanks to our chairman
Padmabhushan Arutselvar Dr. N. Mahalingam B.S¢, F.LE and vice-
chairman Prof. K. Arumugam B.E., M.S., M.LE., for all their support and
ray of strengthening hope extended. We are immensely grateful to our
principal Dr. Joseph V. Thanikal M.E., Ph.D., PDF., CEPIT., for his
invaluable support to the outcome of this project.

We thank to our project guide Prof.K.R.Baskaran, Asst
Professor, Department of Information Technology for his support given to us
through this project.

We thank the teaching and non-teaching staffs of our
department for providing us the technical support for the duration of our
project.

We express our humble gratitude and thanks to our beloved
parents and family members who have supported and helped us to complete
the project and our friends, for lending us valuable tips, support and

co-operation throughout the project work.

DECLARATION

DECLARATION

We hereby declare that the project entitled “Intruction Detection
System” is done by us and to the best of our knowledge a similar work has
not been submitted to the Anna University or any other Institution, for

fulfillment of the requirement of the course study.

This report is submitted on the partial fulfillment of the requirement
for all awards of the Degree of Bachelor of Information Technology of

Anna University, Chennai.

Place: Coimbatore

Date: 2 3.0l + 0%

IO

S.NaveenKumar

<.

S.RajaKumar

(N Tt

Mr. K.R Baskaran C.DeepakPrasanth

ABSTRACT

ABSTRACT

Intrusion detection system is the process of monitoring the events
occurring in a computer system or network and analyzing them for signs of
intrusions, defined as attempts to compromise the confidentiality, integrity,

availability or to bypass the security mechanisms of a computer or network.

Intrusion detection systems are also classified based on the types of
systems they monitor. The two main systems monitored for intrusions are

host-based systems and network based systems.

Host-based intrusion detection attempts to detect against attacks on a
particular machine. This is typically done through analysis of a computers

log files.

Host based IDS typically monitor system, event, and security logs on
Windows NT and syslog in Unix environments. When any of these files
change, the IDS compare the new log entry with attack signatures to see if
there is a match. If so, the system responds with administrator alerts and
other calls to action.

Host-based IDS have grown to include other technologies. One
popular method for detecting intrusions checks key system files and
executables via checksums at regular intervals for unexpected changes. The
timeliness of the response is in direct relation to the frequency of the polling
interval. Finally, some products listen to port activity and alert
administrators when specific ports are accessed. This type of detection
brings an elementary level of network-based intrusion detection into the

host-based environment.

Host-based IDS monitor user and file access activity, including file
accesses, changes to file permissions, attempts to install new executables

and/or attempts to access privileged services.

The project modules include Password attack, Scanning attack,
Sniffing attack and Spoofing attack. The project is developed using C and

Shell scripting in Linux environment.

CONTENTS

TABLE OF CONTENTS

CHAP.NO. TITLE PAGE NO.
ACKNOWLEDGEMENT ii
ABSTRACT v

LIST OF FIGURES ix

1. INTRODUCTION
1.1 GENERAL 1
1.2 PROBLEM DEFINITION ‘ 9

2. LITERATURE REVIEW
2.1 FEASIBLITY STUDY

2.1.1 EXISTING SYSTEM 10

2.1.2 PROPOSED SYSTEM 11
2.2 HARDWARE REQUIREMENTS 12
2.3 SOFTWARE REQUIREMENTS 12
2.4 SOFTWARE OVERVIEW 13

3. DETA\LS OF THE METHODOLOGY EMPLOYED

3.1 HOST BASED INTRUCTION DECTION 19
3.2 ABOUT THE MODULE

3.2.1 SCANNING ATTACK 22

3.2.2 PASSWORD ATTACK 23

3.2.3 SNIFFING ATTACK 24

3.2.4 SPOOFING ATTACK 25

4. SYSTEM DEVELOPMENT

4.1 STAGES OF DEVELOPMENT OF SYSTEM

4.2 TESTING AND IMPLEMENTATION

4.2.1 SYSTEM TESTING

4.2.2 TESTING STRATIGES

4.2.3 SYSTEM IMPLEMENTATION

S. CONCLUSION

6. FUTURE ENHANCEMENTS

7. REFERENCES

APPENDIX 1 - SOURCE CODE

APPENDIX 2 — SCREEN - SHOTS

27
28

30

30

32

335

36

37

38

68

LIST OF FIGURES

LIST OF FIGURES

FIG NO. FIGURE NAME PAGE NO.
3.1 SCANNING ATTACK 22
3.2 PASSWORD ATTACK 23
3.3 SNIFFING ATTACK 24
3.4 SPOOFING ATTACK 25
3.5 FEATURES OF HOST BASED IDS 26

4.1 SOFTWARE DEVELOPMENT 27

INTRODUCTION

1. INTRODUCTION

1.1 GENERAL.:

An Intrusion Detection System {(or IDS) generally detects unwanted
manipulations to systems. There are a lot of different types of IDS, some of them are
described here. The manipulations may take the form of attacks by skilled malicious

hackers, or Script kiddies using automated tools.

An IDS is required to detect all types of malicious network traffic and computer
usage that can't be detected by a conventional firewall. This includes network attacks
against vulnerable services, data driven attacks on applications, host based attacks such as
privilege escalation, unauthorized logins and access to sensitive files, and malware

(viruses, trojan horses, and worms).

An IDS is composed of several components: ‘Sensors which generate security
events, a Console to monitor events and alerts and control the sensors, and a central
Engine that records events logged by the sensors in a database and uses a system of rules
to generate alerts from security events veceived. There are several ways to categorise an
IDS depending on the type and location of the sensors and the methodology used by the
engine to generate alerts. In many simple IDS implementations all three components are

combined in a single device or appliance.

An Intrusion Detection System (IDS) is designed to monitor all inbound and
outbound network activity and identify any suspicious patterns that may indicate a
network or system attack from someone attempting to break into or compromise a
system. IDS is considered to be a passive-monitoring system, since the main function of
an IDS product is to warn you of suspicious activity taking place — not prevent them. An
. IDS essentially reviews your network traffic and data and will identify probes, attacks,

exploits and other vulnerabilities. IDSs can respond to the suspicious event in one of

several ways. which includes displaying an alert, logging the event or even paging an
administrator. In some cases the IDS may be prompted to reconfigure the network to

reduce the effects of the suspicious intrusion.

An IDS specifically looks for suspicious activity and events that might be the
result of a virus, worm or hacker. This is done by looking for known intrusion signatures
or attack signatures that characterize different worms or viruses and by tracking general
variances which differ from regular system activity. The IDS is able to provide

notification of only known attacks.

The term IDS actually covers a large variety of products, for which ail produce
the end result of detecting intrusions. An IDS solution can come in the form of cheaper
shareware or freely distributed open source programs, to a much more expensive and
secure vendor software solution. Additionally, some IDSs consist of both software
applications and hardware appliances and sensor devices which are installed at different

points along your network.

Network-based vs. Host-based Systems:

Intrusion detection systems are network or host based solutions. Network-based
IDS systems (NIDS) are often standalone hardware appliances that include network
intrusion detection capabilities. It will usually consist of hardware sensors located at
various points along the network or software that is installed to system computers
connected to your network, which analyzes data packets entering and leaving the
network. Host-based IDS systems (HIDS) do not offer true real-time detection, but if

configured correctly are close to true real-time.

Host-based IDS systems consist of software agents installed on individual
computers within the system. HIDS analyze the traffic to and from the specific computer
on which the intrusion detection software is installed on. HIDS systems often provide
features you can't get with network-based IDS. For example, HIDS are able to monitor
activities that only an administrator should be able to implement. It is also able to monitor

changes to key system files and any attempt to overwrite these files. Attempts to install

Trojans or backdoors can also be monitored by a HIDS and stopped. These specific

intrusion events are not always seen by a NIDS.

While it depends on the size of your network and the number of individual
computers which require intrusion detection system, NIDS are usually a cheaper solution
to implement and it requires less administration and training — but it is not as versatile as
a HID. Both systems will require Internet access (bandwidth) to ensure they system is

kept up-to-date with the latest virus and worm signatures.

In a network-based system, or NIDS, the sensors are located at choke points in the
network to be monitored, often in the DMZ or at network borders. The sensor captures all
network traffic flows and analyzes the content of individual packets for malicious traffic.
In a host-based system, the sensor usually consists of a software agent which monitors all
activity of the host on which it is installed. Hybrids of these two types of system also

exist.

* A Network Intrusion Detection System is an independent platform which
identifies intrusions by examining network traffic and monitors multiple hosts.
Network Intrusion Detection Systems gain access to network traffic by connecting
to a hub, network switch configured for port mirroring, or network tap. An

example of a NIDS is Snort.

» A Host-based Intrusion Detection System consists of an agent on a host which
identifies intrusions by analyzing system calls, application logs, file-system
modifications (binaries, password files, capability/acl databases) and other host

activities and state.

* A Hybrid Intrusion Detection System combines both approaches. Host agent data
is combined with network information to form a comprehensive view of the

network. An example of a Hybrid IDS is Prelude.

Network intrusion detection system:

A network intrusion detection system (NIDS) is a system that tries to detect
malicious activity such as denial of service attacks, port-scans or even attempts to crack

into computers by monitoring network traffic.

The NIDS does this by reading all the incoming packets and trying to find
suspicious patterns. If, for example, a large number of TCP connection requests to a very
large number of different ports is observed, one could assume that there is someone
committing a "portscan” at some of the computer(s) in the network. It also (mostly) tries
to detect incoming shellcodes in the same manner that an ordinary intrusion detection

systems does.

A NIDS is not limited to inspecting incoming network traffic only. Oftentimes
valuable information about an ongoing intrusion can be learned from outgoing or local
traffic as well. Some attacks might even be staged from the inside of the monitored

network or network segment, and are therefore not regarded as incoming traffic at all.

Often, network intrusion detection systems work with other systems as weli. They can for
example update some firewalls' blacklist with the IP addresses of computers used by

(suspected) crackers.

Host-based intrusion-detection is the art of detecting malicious activity within a single

computer.

A host-based intrusion detection system (HIDS) uses host log information, system
activity, and scanners such as virus scanners to determine whether a computer host is
being used for illegitimate purposes. HIDS may be local to the protected host, remote (via

syslogd, etc), or part of a distributed intrusion detection system.

A common technique is to make checksums of important system files that should

not be altered under normal circumstances. Intruders are likely to replace system

components with so-called roof kits that enable them to remain hidden in the system

while performing further probing such as sniffing
Overview:

A HIDS will monitor all or part of the dynamic behavior and of the state of a
computer system. Much as a NIDS will dynamically inspect network packets, a HIDS
might detect which program accesses what resources and assure that (say) a word-
processor hasn't suddenly and inexplicably started modifying the system password-
database. Similarly a HIDS might look at the state of a system, its stored information,
whether in RAM, in the file-system, or elsewhere; and check that the contents of these

appear as expected.

One can think of a HIDS as an agent that monitors whether anything/anyone -
internal or external - has circumvented the security policy that the operating system tries

to enforce.

Monitoring dynamic behavior;

Many computer users have encountered tools that monitor dynamic system
behavior in the form of anti-virus (AV) packages. While AV programs often also monitor
system state, they do spend a lot of their time looking at who is doing what inside a
computer - and whether a given program should or should not access one or another
system resource. The lines become very blurred here, as many of the tools overlap in

functionality.

Monitoring state:

The principle of operation of a HIDS depends on the fact that successful intruders
(crackers) will generally leave a trace of their activities. (In fact, such intruders often
want to own the computer they have attacked, and will establish their "ownership" by

installing software that will grant the intruders future access to carry out whatever

activity (keyboard logging, identity theft, spamming, botnet activity, spyware-usage etc.)

they envisage.)

in theory, a computer user has the ability to detect any such modifications. and the

HIDS attempts to do just that and reports its findings.

Ideaily a HIDS works in conjunction with a NIDS, such that a HIDS finds
anything that slips past the NIDS.

Ironically, most successful intruders, on entering a target machine, immediately
apply best-practice security techniques to secure the system which they have infiltrated,
leaving only their own backdoor open, so that other intruders can not take over their
computers. (Crackers are a competitive bunch...) Again, one can detect (and learn from)

such changes.

Technique:

In general a HIDS uses a database (object-database) of system objects it should
monitor - usually (but not necessarily) file-system objects. A HIDS could also check that
appropriate regions of memory have not been modified, for example - the system-call

table comes to mind for Linux, and various vtable structures in Microsoft Windows.

For each object in question a HIDS will usually remember its attributes
(permissions, size, modifications dates) and perhaps create a checksum of some kind (an
MD)5 hash or similar) for the contents, if any. This information gets stored in a database
for later comparison (checksum-database). Note that a matching MD5 hash does not
provide a complete guarantee that an intruder or other unauthorised user has not tampered
with the target file. Recent (2004) research has resulted in claims (still under debate) that

the probability of such tampering may exceed what one might hope.

Operation;

At installation time - and whenever any of the monitored objects change

legitimately - a HIDS must initialise its checksum-database by scanning the relevant

objects. Persons in charge of computer security need to control this process tightly in
order to prevent intruders making un-authorized changes to the database(s). Such
initialisation thus generally takes a long time and involves cryptographically locking each
monitored object and the checksum databases or worse. Because of this, manufacturers of
HIDS usually construct the object-database in such a way that makes frequent updates to

the checksum database unnecessary.

Computer systems generally have many dynamic (frequently changing) objects
which intruders want to modify - and which a HIDS thus should monitor - but their
dynamic nature makes them unsuitable for the checksum technique. To overcome this
problem, HIDS employ various other detection techniques: monitoring changing file-
attributes, log-files that decreased in size since last checked, and a raft of other means to

detect unusual events.

Once a system administrator has constructed a suitable object-database - ideally
with help and advice from the HIDS installation tools - and initialized the checksum-
database, the HIDS has all it requires to scan the monitored objects regularly and to
report on anything that may appear to have gone wrong. Reports can take the form of

logs, e-mails or similar.

Protecting the HIDS:

A HIDS will usually go to great lengths to prevent the object-database, checksum-
database and its reports from any form of tampering. After all, if intruders succeed in
modifying any of the objects the HIDS monitors, nothing can stop such intruders from
modifying the HIDS itself - unless security administrators take appropriate precautions.
Many worms and viruses will try to disable anti-virus tools, for example. Sadly, a lot of

them succeed in doing so.

Apart from crypto-techniques, HIDS might allow administrators to store the
databases on a CD-ROM or on other read-only memory devices (another factor militating
for infrequent updates...) or storing them in some off-system memory. Similarly, a HIDS

will often send its logs off-system immediately - in some instances via one-way

communications channels, such as a serial port which only has "Transmit" connected, for

example.

One could argue that the trusted platform module comprises a type of HIDS.
Although its scope differs in many ways from that of a HIDS, fundamentally it provides a
means to identify whether anything/anyone has tampered with a portion of a computer.
Architecturally this provides the ultimate (at least at this point in time) host-based
intrusion detection, as depends on hardware external to the CPU itself, thus making it that

much harder for an intruder to corrupt its object and checksum databases.

Intrusion-prevention system:

An intrusion prevention system is any device which exercises access control to
protect computers from exploitation. "Intrusion prevention” technology is considered by
some to be an extension of intrusion detection (IDS) technology, but it is actually another

form of access control, like an application layer firewall.

Intrusion prevention systems were invented independently by Jed Haile and Vern
Paxon to resolve ambiguities in passive network monitoring by placing detection systems
in-line. A considerable improvement upon firewall technologies, IPS make access control
decisions based on application content, rather than IP address or ports as traditional
firewalls had done. As IPS systems were originally a literal extension or intrusion

detection systems, they continue to be related.

Intrusion prevention systems may also act at the host level to deny potentially
malicious activity. There are advantages and disadvantages to host-based IPS c.mpared
with network-based I[PS. In many cases, the technologies are thought to be

complementary.

An Intrusion Prevention system must also be a very good Intrusion Detection
system to enable a low rate of false positives. Some IPS systems can also prevent yet to

be discovered attacks, such as those caused by a Buffer overflow.

1.2. PROBLEM DEFINITION:

When a user of an information system takes an action that the user was not legally
allowed to take, it is called intrusion. The intruder may come from outside, or the
intruder may be an insider who exceeds his limited authority to take action. Whether or
not the action is detrimental, it is of concern because it might be detrimental to the health
of the system or to the service provided by the system.

A system that tries to identify attempts to hack or break into a computer system or
to misuse it. IDSs may monitor packets passing over the network, monitor system files,
monitor log files, or set up deception systems that attempt to trap hackers.

Intrusion detection involves determining that some entity, an intruder, has
attempted to gain, or worse, has gained unauthorized access to the system. Casual
observation shows that none of the automated detection approaches seek to identify an
intruder before that intruder initiates interaction with the system. Of course, system
administrators routinely take actions to prevens intrusion. These can include requiring
passwords to be submitted before a user can gain any access to the system, fixing known
vulnerabilities that an intruder might try to exploit in order to gain unauthorized access,
blocking some or all network access, as well as restriction of physical access. Intrusion
detection systems are used in addition to such preventative measures. Some system
errors may appear to the intrusion detection system to be intrusions. But, the detection of
these errors increases theoverall survivability of the system, so unintentional detection
will be considered desirable and not precluded.

Intruders are classified into two groups. External intruders do not have any
authorized access to the system they attack. Infernal intruders have some authority, but
seek to gain additional ability to take action without legitimate authorization. Internal
intruders may act either within or outside their bounds of authorization.

Intrusion detection has traditionally been performed at the operating system (0S)
level by comparing expected and observed system resource usage. OS intrusion
detection systems can only detect intruders, internal or external, who perform specific
system actions in a specific sequence or those intruders whose behavior pattern

statistically varies from a norm.

LITERATURE REVIEW

2. LITERATURE REVIEW

2.1 FEASIBILITY STUDY:

System analysis will be performed to determine if it is flexible to design
information based on policies and plans of the organization and on user requirements and

to eliminate the weakness of the present system.

2.1.1 Existing System:

The majority of commercial IDS are network based. These IDSs detect attacks by
capturing and analyzing network packets. Listening on a network segment or switch, one
network based IDS can monitor the network traffic affecting multiple hosts that are
connected to the network segment, thereby protecting those hosts. Network based IDSs
often consists of a set of single purpose sensors or hosts placed at various pointsin a
network. As the sensors are limited to running the IDS, they can be more easily secured

against attack.

Drawbacks of Existing System

» Network based IDS’s may have difficulty processing all packets in a large or busy
network and, therefore may fail to recognize an attack launched during period of
high traffic. The need to analyze packets quickly also forces vendors to both
detect fewer attacks and also detect attacks with as little computing resource as
possible which can reduce detection effectiveness.

» Network based IDS’s cannot analyze encrypted information. This problem is
increasing as more organization are virtual private networks.

> Most network based 1IDSs cannot tell whether or not in attack was successful, they
can only discern that an attack was initiated. This means that after network-based
IDS detects an attack, administrators must manually investigate each attacked

host to determine whether it was indeed penetrated.

2.1.2 Proposed System:

Host based IDS operate on information collected from within an individual
computer system. This vantage point allows host based IDS’s to analyze activities with
great reliability and precision, determining exactly which processes and users are
involved in a particular attack on the operating system. Furthermore, unlike network
based 1DSs, host based IDSs can see the outcome of an attempted attack, as they can
directly access and monitor the data files and system processes usually targeted by

attacks.

Advantages of Proposed System

» Host based IDS are easier to manage, as information must be configured and
managed for every host monitored.

» Host based IDSs, with their ability to monitor events local to a host, can detect
attacks that cannot be seen by network based IDS.

» Host based IDSs can often operate in an environment in which network traffic is
encrypted, when the host-based information sources are generated before data is
encrypted and/or after the data is decrypted at the destination host.

» Host based IDSs are unaffected by switched network.

Processor

Processor speed

Memory (RAM)

Hard disk

Floppy drive

Monitor

Keyboard

Mouse

2.3 Software Requirements:

Operating System -
Language -

Kernel -

2.2 Hardware Requirements:

: Pentium 1]

: 1.5 GHZ

: 256MB

: 40GB

: 31/2” 1.44MB drive

: 15" color monitor

: Samsung 107 keys

: Samsung scroll mouse

Linux 9.0

C & Shell Scripting

2.4.20-8

2.4 SOFTWARE OVERVIEW:

The project entitled “INTRUSION DETECTION SYSTEM™ is developed with

theplatform LINUX and the scripting language used is C and shell scripting.

ABOUT LINUX:

LINUX was born of a humble beginning. This brings as to university of Finland
student LinusTorvalds, circa 1991. Torvalds began working on an operating system of
him own. His first prototype, Version 0.01, was born in August of 1991. The first official
version of LINUX, Version 0.02, was released on October 6™, 1991. Today, LINUX has
evaluated into a full-blown operating system that, in many ways, rivals commercial
systems with the amount of interest it has garnered, LINUX has now become an actively
developing and improving system. While many people do contribute to the development

of LINUX, Kernel features has still controlled by Linus Torvalds.

LINUX FEATURES:
There are many reasons to use LINUX.
FREE:

LINUX is licensed under the free software foundations GNU General Public
License (GPL). According to the terms of the License, anything using it must take
available the source code used to build the software, and anything using source code from
the software must be licensed under the GPL. This perpetuates the availability of the

source code.

OPEN SOURCE:

This implies that the source code used to create the application is made available
at no change to the General Public. Users con figuration to the source code, which may
be, in tern, merged into the distributed binary form of the application, are generally

welcome. This is the way LINUX has come to thrive in,
NETWORK:

A network is a group of computers and devices connected together in order to
communicate and work with each other. LINUX was built with networking in mind and

all distributions include the necessary programs and utilities to attached to and function

on a network.
POWER:

LINUX has the ability to transform your legacy hardware into a powerful, well
turned machine. Take that old 486 or Pentium and turn it into a fully multitasking crash

free system.

INTERACTIVE:

LINUX allows user to interact with the system, entering commands that are
executed immediately (rather than the mainframe method of queuing commands to be run

in a batch).

MULTIUSER:

Linux allows multiple people to access the same computer at the same time,

differentiate between them, and understand which process belong to whom.

MULTITASKING:

Linux is capable of carrying out more than one task at the same time.

MULTIPROCESSING SYSTEM:

Linux also supports multiple CPUs on the same computer. System with multiple
processors performs faster than single CPU system because the processors can combine
forces to work on one task between multiple processors via a technique called

multithreading.

LOG FILES IN LINUX:

Linux keeps detailed records of events within the system. Many programs create
these records, known as log files. The system administrator can refer to the log files to
determine the status of the system, watch for intruders, or look for data about a particular

program or event.

THE PURPOSE OF LINUX LOG FILES:

On any Linux system, many events go on in the background as users log in and do
their work. Daemons are special purpose background processors design to watch for
network activity, run other programs, and monitor user actions. The status information
collected by daemons is not displayed on the screen. Instead, it is written to log files,

which we can then review. Among other things, log files allow a system administrator to:
» Check for potential security problems, such as repeated login failures or a
program that is stopped and restarted without the knowledge of the system

administrator.

» Review what was happening on the system in the movements before a major
problem occurred.

» Manage the system load by computer statistics based on the log file information.

ABOUT C:
The programming language C was developed in 1972 by Dennis Ritchie at AT &
T Bell Laboratory, Murray Hill, New Jersy.

C proved to be an excellent programming language for writing system programs.

The UNIX operating system, C compiler and all UNIX applications software are

written in C,

The C compiler combines the capability of an assembly language with the
features of a high level language, and therefore it is well suited for writing both system

software and business packages.

Programs written in C are efficient and fast. This is due to its variety of data type
and powerful operators. C is highly portable. This means that C programs written for one

computer can be run on another with little or no modifications.

C language is well suited for structured programming, thus requiring the user to
think of a problem in terms of function modules or blocks. A proper collection of these
modules would make the computer programs. This modular structure makes program

debugging, testing and maintenance easier.

ABOUT SHELL SCRIPT:

The shell is the command interpreter, or command-line environment, for Linux. A
command interpreter is a program that accepts from the keyboard and uses that input to
launch commands or otherwise control the computer system. There are hundreds of smail

utility programs designed to run from the command line.

A shell program is a sequence of one or more commands stored in a file. This file
is executable, and can be called a shell procedure, the shell script. The shell program has
some special build in commands that can be used in a shell script for iteration.

conditional execution and defining local variables.

A particularly important feature of a Linux shell is that it gives users the ability to
write scripts that the shell can execute. In general terms, a script is a text file that can be

interpreted or executed by another program.

DETAILS OF THE METHODOLOGY
EMPLOYED

3. DETAILS OF THE METHODOLOGY EMPLOYED

When a user of an information system takes an action that the user was not legally
allowed to take, it is called intrusion. The intruder may come from outside, or the intruder
may be an insider who exceeds his limited authority to take action. Whether or not the
action is detrimental, it is of concern because it might be detrimental to the health of the
system or to the service provided by the system.

A system that tries to identify attempts to hack or break into a computer system or
to misuse it. IDSs may monitor packets passing over the network, monitor system files,
monitor log files, or set up deception systems that attempt to trap hackers.

Intrusion detection involves determining that some entity, an intruder, has
attempted to gain, or worse, has gained unauthorized access to the system. Casual
observation shows that none of the automated detection approaches seek to identify an
intruder before that intruder initiates interaction with the system. Of course, system
administrators routinely take actions to prevent intrusion. These can include requiring
passwords to be submitted before a user can gain any access to the system, fixing known
vulnerabilities that an intruder might try to exploit in order to gain unauthorized access,
blocking some or all network access, as well as restriction of physical access. Intrusion
detection systems are used in addition to such preventative measures. Some system
errors may appear to the intrusion detection system to be intrusions. But, the detection of
these errors increases the overall survivability of the system, so unintentional detection
will be considered desirable and not precluded.

Intrusion detection systems are usually based on the premise that the operating
system, as well as the intrusion detection software, continues to function for at least some
period of time after an intrusion so that it can alert administrators and support subsequent

remedial action.

Intruders are classified into two groups. External intruders do not have any
authorized access to the system they attack. Internal intruders have some authority, but
seek to gain additional ability to take action without legitimate authorization. Internal

intruders may act either within or outside their bounds of authorization. .

Intrusion detection has traditionally been performed at the Operating system (OS)
level by comparing expected and observed system resource usage. OS intrusion
detection systems can only detect intruders, internal or external, who perform specific
system actions in a specific sequence or those intruders whose behavior pattern

statistically varies from g nornt,

3.1 Host Based Intrusion Detection:

Host-based intrusion detection started in the early 1980s before networks were as
prevalent, complex and interconnected as they are today. In this simpler environment, jt
Was common practice to review audit logs for suspicious activity. Intrusions were
sufficiently rare that after the fact analysis proved adequate to prevent future attacks,

2

understanding previous attacks and determining proper methods to defeat their future
application. Host-based IDS still use audit logs, but they are much more automated,
having evolved sophisticated and responsive detection techniques. Host based IDS
typically monitor system, event, and security logs on Windows NT and syslog in Unix
environments. When any of these files change, the IDS compare the new log entry with
attack signatures to see if there is a match. If S0, the system responds with administrator

alerts and other calls to action.

intervals for unexpected changes. The timeliness of the response is in direct relation to
the frequency of the polling interval. Finally, some products listen to port activitv and
alert administrators when specific ports are accessed. This type of detection brings an

zlementary level of network-based intrusion detection into the host-based environment.

FEATURES OF HOST BASED IDS:

1. Verifies success or failure of an attack — Since host-based IDS use logs
containing events that have actually occurred, they can measure whether an attack
was successful or not with greater accuracy and fewer false positives can
network-based systems. In this respect, host based IDS make an excellent
complement to network-based intrusion detection, with the network component
providing early warning and the host component providing verification of whether
an attack was successful or not.

2. Monitors specific system activities — host-based IDS monitor user and file access
activity, including file accesses, changes to file permissions, attempts to install
new executables and/or attempts to access priviteged services. For example, a
host-based IDS can monitor all user logon and logoff activity, as well as what
each user does while connected to the network. It is very difficult for a network-
based system to provide this level of event detail.

Host-based technology can also monitor activities that are normally
executed only by an administrator. Operating systems log any event where user
accounts are added, deleted, or modified. The host-based IDS can detect an
improper change as soon as it is executed. Host-based IDS can also audit policy
changes that affect what systems track in their logs. Finally, host-based systems
can monitor changes to key system files and executables. Attempts to overwrite
vital system files, or to install Trojan horses or backdoors, can be detected and

stopped. Network-based systems sometimes miss this kind of activity.

3. Detects attacks that network-based systen.= miss - Host-based systems can detect
attacks that cannot be seen by network-based products. For example, attacks from
the keyboard of a critical server do not cross the network, and so cannot be seen
by a network-based intrusion detection system.

4. Well-suited for encrypted and switched environments — Since host-based
systems reside on various hosts throughout an enterprise, they can overcome some

-of the deployment challenges faced by network-based intrusion detection in

switched and encrypted environments. Switches allow large networks to be

managed as many smaller network segments. As a result, it can be difficult to
identify the best locations for deploying network-based IDS to achieve sufficient
network coverage. Traffic mirroring and administrative ports on switches can
help, but these techniques are not always appropriate. Host-based intrusion
detection provides greater visibility in a switched environment by residing on as
many critical host as needed. Certain types of encryption also present challenges
to network-based intrusion detection. Depending where the encryption resides
within the protocol stack, it may leave a networkbased system blind to certain
attacks. Host-based IDS do not have this limitation. By the time an operating
system, and therefore the host-based system, sees incoming traffic, the data
stream has already been de-encrypted.

Near-real-time detection and response - Although host-based intrusion detection
does not offer true real-time response, it can come extremely close if implemented
correctly. Unlike older systems, which use a process to check the status and
content of log files at predefined intervals, many current host-based systems
receive an interrupt from the operating system when there is a new log file entry.
This new entry can be processed immediately, significantly reducing the time
between attack recognition and response. There remains a delay between when
the operating system records the event and the host-based system recognizes it,
but in many cases an intruder can be detected and stopped before damage is done.
Requires no additional hardware - Host-based intrusion detection resides on
existing network infrastructure, including file servers, Web servers, and other
shared resources. This efficiency can make host-based systems very cost effective
because they do not require another box on the network that requires addressing,
maintenance, and management.

. Lower cost of entry - While network-based intrusion detection systems can offer
wide coverage for little effort, they are often expensive. Deploying a single
intrusion detection system can cost more than $10,000. Host-based intrusion
detection systems, on the other hand, are often priced in the hundreds of dollars
for a single agent and can be deployed by a customer with limited initial capital

outlay.

3.2 ABOUT THE MODULES:
3.2.1 Scanning attacks:

A Scanning attack occurs when an attacker probes a target network or system by
sending different kinds of packets. Using the responses received from the target, the

attacker can learn many of the system’s characteristics and vulnerabilities. Some of them

are,

The topology of a target network.
The active hosts on the network.

The server software they are running.

O O o O

The software version numbers for all detected software.

3.1 Scanning Attack

e :
Haockar @ | Validzte 12 Yalidatad S:in the \;
Addrass 4 Addrass /

service

Nl

Admmisater

Hazker

3.2.2 Password Attack:

Password attacks involves Authorized User attack and Public User attack. The
authorized user attacks are those that start with a legitimate user account on the target

system. Most authorized user attacks involve some sort of privilege escalatjon.

Public user attacks are those launched without any user account or privileged access
to the target system. Public user attacks are launched remotely through a network
connection using only the public access granted by the target. One typical attack
strategy calls for an attacker to use a public user attack to gain initial access to a
system. Then once on the system, the attacker uses authorized user attacks to take
complete control of the target. It also involves the checking for weak password,

shadow password and empty password.

3.2 Password Attack

Admmistrator

e

Werrning Pesy:

\ Invalidatad Usemame

% Tanen
-~i2352g2

sssord j\ Processmg

By
b
%

Wi Moy !

Weming Massags

Vetk Passveors

)

Wammp Massage

Vielzon

3.2.3 Sniffing Attack:

Sniffing means reading the contents of the Network Interface card in the promisc
mode of the Linux environment. This attack is done in the promisc mode only. If any
hackers tried to view the contents of the Network Interface Card the software will
identify the hackers by giving a warning message to the hackers. Our software
identifies the hacker and gives a warning message when the hacker tries to enter the
promisc mode and all the hacker details will be appended into the recorded file

present in the software.

3.3 Sniffing Attack

S1EmisR

Neds

Hacler

NIC Cad

BAussige

3.2.4 Spoofing Attack:

Spoofing means the Internet packet with the local address. When the hackers tried

to hack the Internet packet that has the local address the software will identify the hackers
by giving a warning message to the hackers and also the hacker details wil| be appended

into the recorded file in the software.

3.4 Spoofing Attack

I \ -
Admniswator Vlidate Vilidtsd [Slockmg
TP Addrais i D Addrass 1 P rlackmes ;
: /
e
-
‘F—W_-r

. P Address

2 P Addrass Crbledking L

= —s & hlachmes Loop Bk

= Address

y

Blocking
Broadezst iIP
Addrsss

IP Address

3.5 Features Of Host Based IDS

Password Attack

-

Check su voilation

Check for weak

password

Check for Empty

password

Check for shadow

password

AN

Scanning Attack

Sniffing Attack

S

-\

Telnet Communication

A

Log messages

Scanning services from
the telnet

T

Log messages

Spoofing Attack

/

Enabling NIC in promisc
mode

Log Messages

/]

[/

y

Blocking IP Address

Blocking Loopback
address

Unblock TP address

Unblock Loopback

addrace

SYSTEM DEVELOPMENT

system. It also deals with how data are to be structured, how the function is to be
implemented within a software architecture, how procedural details are to be
implemented, how interfaces are characterized, how the design will be translated into a
programming, and how testing will be performed. The methods applied during the

development phase will vary but three specific technical tasks should always occur.

4. SYSTEM DEVELOPMENT

The development phase focuses on how the engineer attempts to develop the

% The software design

%* Code generation

% Software testing

The classical life cycle model is the linear sequential mode! is a systematic and

sequential approach to software development. It progress through analysis, design,

coding, testing and support.

4.1 Software Development

Analysis

Design

SYSTEM SCOPE:

meet the requirements and design and development of a new information system. The

source of these study facts is variety of users at all level through out organization.

The system group has changed with the responsibility to develop a new system to

h 4

Code

Test

4.1 STAGES OF DEVELOPMENT OF SYSTEM:

Feasibility assessment
Requirement analysis
External design
Architectural design
Detailed design
Coding

Debugging

AN N N U N O N

Maintenance

FEASIBILITY ASSESSMENT:
In this stage problem was defined. Criteria for choosing solutions were developed,
proposed, possible solutions, estimated costs and benefits of the system and

recommended the course of action to be taken.

REQUIREMENT ANALYSIS:

During requirement analysis high-level requirements like the capabilities of the
system must provide in order to solve a problem. Function requirements, performance
requirements for the hardware specified during the initial planning were elaborated
and made more specific in order to characterize features and the proposed system will

incorporate.

EXTERNAL DESIGN:

External design of any software development involves conceiving, plai. ning out

and specifying the externally observable characteristic of the software product. These
characteristics include user displays and report formats external data source and data

sinks and the functional characteristics.

INTERNAL DESIGN ARCHITECTURAL AND DETAILED DESIGN:

Internal design involved conceiving, planning out and specifying the internal

structure and processing details in order to record the design decisions and to be able to
indicate why certain alternations were chosen in preference to others. This phase also
includes elaboration of the test plans and provides blue prints of implementation, testing
and maintenance activities, The product of internal design is architectural structure

specification.

The work products of internal design are architectural structure specification, the
details of algorithm and data structure and test plan. In architectural design the conceptual
view is refined.

DETAILED DESIGN:

Detailed design involved specifying the algorithmic details concern data

representations interconnections among data structures and packaging of the software
product. This phase emphasizes more on semantic issues and less synthetic details.
CODING:

This phase involves actual programming, ie, transacting detailed design into
source code using appropriate programming language.
DEBUGGING:

This stage was related with removing errors from programs and making them

completely error free.

MAINTENANCE:

During this stage the systems were loaded and went put to use. They also get

modified accordingly to the requirements of the user. These modifications included

making enhancements to system and removing problems

4.2 TESTING AND IMPLEMENTATION

4.2.1 SYSTEM TESTING:
TESTING PHASE:

The philosophy behind testing is to find errors. The common view of testing is
that it is performed to whom that there are no errors in a program. However it is virtually
impossible to true that no program will be free and clear of errors. Therefore the most
useful approach and practical approach is aid the understanding that testing is the process

of executing a program explicit indention of finding errors that is making the program
fail.

4.2.2 TESTING STRATEGIES:
CODE TESTING:

This examines the logic of the program. To follow this test cases are developed

such that every path of the program is tested.

SPECIFICATION TESTING:

Specification testing examines the specification starting what the program should

do and how it should perform under various conditions. Then test cases are developed

for each conditions and combination of conditions and to be submitted for processing.

UNIT TESTING:

Unit testing focuses verification effort on the smallest unit of software desi gn the
module. Using the detail design description as a guide, important control paths are tested
to uncover errors within the boundary of the module. The relative complexity of the tests
and the errors detected as a result is limited by the constrained scope established for unit
testing. The unit test is always white box oriented and the step can be conducted in

parallel for multiple modules. According to unit testing the router system is error free.

INTEGRATION TESTING:

SYSTEM TESTING:
= eVl IBSTING:

ystem. System testing is the stage of implementation which aims at ensuring that the

ystem accurately and efficiently before the actual operation comments,

No program or system design is perfect communication between the user and the
designer is not always complete or clear and time is usually start. The result is errors and
more errors. The number and nature of errors in a design depends on several factors.

Communication between user and the designer.

» The programmer’s ability to generate a code that reflects exactly the system
specifications.

The time frame for the design.

Testing is vital to the success of the system. System testing makes a logical
assumption that if all the parts of the system are correct the goal will be successfully
achieved. Inadequate testing or non-testing its leads to the error. This creates two

problems.

» The time lag between the cause and the appearance of the problem.

» The effect of the system on file is records with in the system.

A small system error can conceivably explode into a much larger problem.
Effective testing early in the process translates directly into long term cost savings from a

reduced number of errors.

Another reason for system testing is its utility as a user oriented vehicle before
implementation. The best program is worthless if it does not meet user needs. The system

should be tested properly to see whether it needs user requirements.

4.2.3 SYSTEM IMPLEMENTATION:

System implementation is the stage of the project when the theoretical design is
tuned into a working system. If the implementation system stage is not carefully
controlled and planned, It can cause chaos. Thus it can be considered to be the most
critical stage in achieving a successful new system and in giving the users a confidence

that the system will work and be effective.

» The implementation stage in a system project in its own right involves Careful-
planning investigation of the current system and the constraints and the
implementation.

> Training of staff in the newly developed system.

DOCUMENTATION:

Before implementing the system, two important documents should be prepared.
» User manual

» System manual

USER MANUAL:

If explain in detail, to the user about the guidelines and procedures to use various

functions such as

HOW TO ENTER THE DDS APPLICATION:

» This system is for the user who works on the Linux operating system.

» User wants to enter DDS application; the user should have the root privileges.

HOW TO RETURN FROM APPLICATION :

In application, after entering the different jobs gjve stop command to finish giving
the number of jobs. After finishing the application control and Java keys are pressed

successfully.

SYSTEM MANUAL:

It explains all the aspects on design, which is used to mainly for the further

maintenance of the system.

USER TRAINING AND DEMONSTRATION:

After the successful completion of acceptance testing, the system is ready to use.

In order to put the system into use, the following activities should be taken care of.
> Preparation of user and system documentation
» User training kit

» Conducting user training with demonstration and hands on.

General testing is given to the user. The main aim of the training would be to
furnish the user with a working knowledge of the newly developed system. The users

are trained to newly developed system. The user manuals are circulated to the users.

CONCLUSION

5. CONCLUSION

Unauthenticated access denial tool helps to detect and prevent hacking and to
achieve availability, high and better performance to the traditional data center model.
Formalized service levels within corporate and between businesses will become standard
practice. Availability, performance and reliability are chief among the metrics measured.
Continuous availability on a technical level tends to reduce business-planning costs.

These issues lead to cost avoidance.

The tool prevents the hacking throughout the network and maintains the traffic
cfficiently among network servers. This vendor-neutral guide to the concepts and
terminology of hacking offers practical guidance to planning and ‘implementing the
technology in most environments. This benefit includes extreme availability,
redundancy/resiliency/replication, and security throughout the network and prevents the

hacking.

FUTURE ENHANCEMENT

6. FUTURE ENHANCEMENT

» Network- and host-based intrusion detection integrated into a single system

",I‘

YV V. V V¥V VvV v

Shared management console with a consistent interface for product configuration,
policy management and single-event display for notifications from both host and
network components

Integrated event database

Integrated reporting

Event correlation capabilities

Integrated on-line help for incident response

Unified and consistent installation procedures

Wireless networks are forecasted to expand rapidly

- REFERENCES

7. REFERENCES

BOOKS:

1. David Nash,“Linux in easy step”, Dream Tech Publications.

2.Michael K.ohnson and Erik W.Troan, “Linux Application
Development”,Red Hat Publications.

3. Yashwan Kanitkar, “Shell Programming”.

4. T.F.Lunt.,”Detecting Intruders in Computer Systems”.

5. D.Denning, “An Intrusion Detection Model”.

- APPENDIX 1-SOURCE CODE

8. APPENDIX

8.1 APPENDIX1-SOURCE CODE
8.1.1 C—-PROGRAM

CODING FOR BLOCK ACCOUNT:

#include<stdio.h>
main()
{
char userName[255];
char *cmdString, timeString[10];

char reply[] = "y";

int time;

int len;

while (strcmp(reply, "y") == o0y
printf("Enter user Name: ")

scanf ("%s", userName);
pPrintf("Fcr how many minustes the account should ke locked:
").
’

scanf ("#d", &time):

len = sizeof("sh BlockAccount.sh ") + sizeof (userName} + 1;

cmdString = {char *Imalioc(len);

strepy (emdString, "echo \"User Y

strcat (cmdString, userName) ;

strcat {cmdString, "' has been blocked successfully!iyrry,
system(cmdString);

strcepy{cmdString, ""):

strepy{cmdString, "./BlockAccount.sh "y
strcat(cmdstring, userName) ;

sprintf (timeString, =~ #d", time*60};
strcat {cmdString, timeString);

strcat (cmdString, " &> /dev/null &™) ;
system(cmdString);

printf("Centinue Blocking another user (y/n): "y ;
scanf ("zs", reply);
Y /7 end while
Y 4/ end main

CODING FOR GETSERVICE DETAILS:

finclude<netdh . e

printChar {zhar ¢, int count) |

int i;
for{i=0; i<count; i++)
printf{("sc"™, c);

printf ("\n™);
!

main{) {
struct servent *sv;

while({sv = getservent ()} != NULL) {
printChar('-', 79);
printf("0fficial Name: %s\n", Sv->5 name) ;
while(*sv->s aliases)
printf(":s ", *sv->s aliases++);

printf ("Port Number: =d\n", sv->s port);
printf{"Proteocol To be used: wshn", Sv->5 _proto);
printChar('-*, 79);

}

CODING FOR IFSTATUS:

#include<sys/param.h>
#include<ctype.h>
#include<stdio.h>
#ifndef MAXHOSTNAMELEN
#define MAXHOSTNAMELEN 64
#endif
#include<sys/ioctl.h>
#include<net/if.h>
#include<sys/socket.h>

char *hostName = NULL;
char *programName = NULL;
int wverbose = 0;

main{int argec,char **argv)
{
char *p;
char hostNameBuf[MAXHOSTNAMELEN+1];
programName=*argv;
hostName=hostNameBuf;
while{--argc)
{
if {(**++argv != '-')
usagel(});
switch(*++*argv)
{
case 'v':
verbose++;

brealk;
default:
usaqge (),
broak;
}
}
if(gethostname(hostNameBuf,sizeof(hostNameBuf))<O)
printf{"\n Hostname no Cound™y

for (prhogstName; *p!="%0" ;p++)

—~—

if{islower {*p)}
*p=toupper{*p;};
}
checkinterfaces();
exit {0} ;
}

checklInterfaces()
{
int n,s;
char cbuf[1024]:;
struct ifconf ifc:
struct ifreq ifr, *ifrp:;
if((s:socket(AF_INET,SOCKﬁDGRAM,O)J<O)
printf{"\nSocket Error"™);
ifc.ifc buf=cbuf;
ifc.ifc_len=sizeof(cbuf);
if{ioctl (s, SIOCGIFCONF, (char *)&ifc)<0)
printf ("\nioctl error™);
close(s);
ifrp=ifc.ifc_regqg;
for(n=ifc.ifc len/sizeof{struct ifreq);n>0;n--, ifrp++)
{
if((S=socket(AFﬁINET,SOCKkDGRAM,O))<O)
printf("\nSocket Error");
strepy(ifr.ifr name,ifrp->ifr name);
if(ioctl (s, SIOCGIFFLAGS, (char *)&ifr) <)
printf{"\nioctl error");
if {verbose)
{
printf ("Interfaces
%s:falgs=0x%x\n",ifr.ifr_name,ifr.ifr_flags);
}
if({ifr.ifr_flags & IFF _PROMISC)
{
printf ("WARNING:4%s INTERFACES %s IS IN
PRCMISCUOUS MODE.\n",hostName,ifr.ifr_name);
}
if(ifr.ifr_flags & IFF DEBUG)
{
printf ("WARNING:%s INTERFACES %s IS IN GEBUG
MODE.\n", hostName, ifr.ifr name);
}
}
close(s);

}

usage ()

{
forintf(stderr, "Usage: s ~viAn", programName) ;
exit{1l);

'

CODING FOR MAIN:

ftinclude<stdic.h>
#include<string.h>
#include "put.h"
maini()

{
int chl,ch2,ch3,ch4,ch5,i,ch21,ch31,choice,ch41,ch42;

char cl,¢2,c3,c4;
system("clear");

system{"sh loading.sh"):
gystem("sh setting.sh");
loop:

system("clear™);

putChar{'*");
putline(1};
printf{"\n\n\t\t\t INTRUSION DETECTION SYSTEN\n ™):
printf ("\n\tl.Password Attacki\n\t2.Scanning Attackinye™)
printf{"2.8Sniffing Attacki\n\t4.Spoofing
Attack\n\t5.Exit\n");

putChar{'*");
putline (1) ;
printf("\n\n Enter Your Choice : "y
scanf ("2d", &chl);
switch{chl)
{
case 1:
system("clear");
for(i=0;i<=78;i++)
{
printf{"=");
}
printf ("\n\t\t\tOptions for password
attack\n\n"};
printf("\tl.Check SU Viclation\n\tZ.Check Login
Failures\n\t");
Printf{"3.Check BLANK Password\n\t4.Check
SHADQW Password\n\t");
printf("5.Check Weak Password\n\t6.View Recorded
Attack");
pPrintf {"\n\t7.GRUB password\n\t§.Blocked
Users\n\t9.Goto The Main Menu\n") ;
for(i=0;1i<=78;i++)
{
printf (="} ;
}
Printf{"\n\n Please Enter Your Choice : "y;
scanf ("sd", &ch?) ;

swltcoh{ch?2)

{

case 1:

putChar{('=");
putLine (1) ;

Yiolation\n\n");
Command: \n") ;
Violation\n™);
Daemonin") ;

putChar('="'};
putLine (1} ;

system("cisar'™);

printf ("\nA\rhvtAENE Check S0
printf ("\t \nauthorised Uss: For &

printf ("\tStart Checking 85U

rintf ("Nt \tl. Check It Now \n\s\t2.
1%

printf ("\t\tEnter The Opticn : "):
scanf ("%d"™, &ch2l);
switch(ch2l)

A

system("sh

{
case 1:

printf ("\n\nProcess
Started............. "y

printf ("Press CTRLAC To
AbortAn");

system("sh CheckSu.sh");

break;

case 2:

printf{"\nService Started
Successfully\n"};
CheckSu.sh &");

break;

}
break;
case 2:

putChar{'=");

putlLine (1) ;
Failures\n"):
Daemoni\n") ;

putChar{'="};
putLine (1) ;

Started............. ")

Abort");

system("clear");

printf ("\t\nCheck Login Failures\n");

printf {"\tStart Checking Login

printf ("\t\tl. Check It Now\n\t\t?.As A

printf ("\t\tEnter The Option : "};
scanf ("%d", &ach3l);
switch{ch3l)
{
case 1:
printf ("Process

printf ("Press CTRL+C To

system("sh checklLogin.sh");

break;

case 2:
printf ("\nService Starned
system("sh

’

printf ("Press CTRLAT o

Abort™y

break;
}

breal:
case 3:

printf ("in\t Checking For BLANK

Password fisld™y;

system("sh passw.sh");

break;
case 4:

printf ("\n\t Checking For BLANK
Passwerd fields");
system("sh passw.sh");
printf ("‘\n\tChecking For Shadowed
Password fields™);
system{"sh isShadowed.sh");
printf ("\n\tChecking Shadowed File
Permission..... "y system("sh
checkPerm.sh") ;
break;
case b: .
printf("Checking For Weak Password”):
system("sh weak.sh");
system("sh weakl.sh");
break;
case 6:
printf ("\n\n\t\t\t Recorded Details");
system("sh catfile.sh
PasswordAttack.log");
break;
case 7:
printf ("\t\t\t GRUB PASSWORD\n\n\n");
system("sh grub.sh™);
break:;

case §8:
system("clear"™):

putChaxr("*"});
putlLine (1) ;
printf ("\tA\n\n\t\t BLOCKED ACCOUNTS
DETAILS\n");
printf ("\t\t 1.BLOCKED ACCOUNTS
Name\n\t\t 2.UNBlocking ACCOUNTS\n");
putChar({'*");
putlLine (1);
printf ("\t\t Enter The option : "):
scanf {"zd", &ch4l);
switch{ch41)
{

case 1:

printf{"Blocked Users
Detalls™);

printf ("Press CTRL4C 7o
Aoty

system (Y. at feto asariny

hrealk;

case 2
printf("\nUnlocking Usersin™) ;
system{"sh unlock.sh ");
printf("Press CTRLHIC o

Abort") ;
break;
}
break;

case 9:

goto lcop;
}
break;
case 2:

system{"clear");
for(i=0;1i<=78;i++)
{
printf("=");
}
printf{"\n\t\t\tOpticns for Scanning
attacki\n\n");
pPrintf("\tl.Check It Now\n\tZ2.Run It As
Dacmoni\n\t™) ;
Printf(”"3.view The Service Detzails\n\td.View
Recorded Attack™); Printf{"\n\t5.Goto The Main
Menuin"} ;
for(i=0;i<=78;i++)

{
printf (=" ;
}
Fravs - scanlect DAL
stemi"kiilall scanlect &> - 1

system{"adduser scanlogd &> r");
system("rm -f r");
7/ osysten (" /scanbecrt "y
for(i=0;1i<=78;i++)

{

printf("~");

}

printf ("\n\n Please Enter Your Choice : ™);

scanf ("%d", &ch3) ;

switch({ch3)

{

case 1:
printf ("Process Started............. ")
system('"sh checkScan.sh");
printf("Press CTRL+C To Abort"™);
break;

case 2: o
printf("\nService Started
Successfully\n");

pPrintf{"CTRLLc Lo ey,

system("sh checkScan., sh AT
break;

case 3
Printf ("yn\pyevs oy ihe Servige
Details\n\n");
Printf ("Srich\eyr Probing Servica
Details\n:vy;
system("goo GeiServiceDetzils. . e
servicedetailgy);
system("./servicedetails! lesary;
brealk;
Case 4:
printf("VIEW THE RECORDED ATTACK ") ;
system("sh catfile.sh
ScanningAttack.log“);
break;
}
break;
case 3:
system("clearn);
PutChar("47);
PutLine(1);
Printf("\tl,cCheck It Now\n\t2 . Run 71t Asg
Daemoni\n\t")
Printf{"3. viey The Recorded Attack\n\t4.Gotc
The Main Menu\n"} ;
putChar('4r;;
putLine(1};
Printf ("\n\n Please Enteyr Your Choice - ")
scanf(“%d",&ch4);
switch (ch4)
{
case 1:
printf "AnAn\ENtAE\t SNT FFING ATTACK™) :
system{"sh Sniff.shmy;
break;
case 2:
printf("\n\n\t\t SNIFFING ATTACK RUN IT AS
DAEMON")
break;
case 3:
printf(“\n\t\t\t RECORDED ATTACK™) ;
system{"sh catfile.sh SniffingAttack.log“};

break;
case 4:
goto loop;
break;
i
break;
case 4:

System{"clearm™);
system("sh ip.sh"};
PutChar('4v);
pPutline(1);

Printf {("\n'\t i \tOptiong roy Seooling
atTack\nin\t"y;

printf ("1.8lack 1o Addrass\niLr Blaek Laon saoir

printf ("3, Broadeast Trattic Addressiayed) sek
Particuiar™y;
printf ("servisein\t SoUnBLookinalatr 6L oot
Main Menu");
putChar ("#'};
putline(1);
printf{"\n\n Pleass Enter Your cChoice ")
scanf ("=d", &ch5) ;
switch({chb)
{

r

case 1:
system("sh BlockparIP.sh");
break;
case 2:
system{"sh LoopBTE.sh");
break;
case 3:

system(™sh BroadCast.sh"};
break;

case 4:;
system({"sh BlockParser.sh") ;
break;

case 5:
system{"sh UnSpoof.sh");
break;

case 6:

goto loop:
break;

}

break;

case 5:
exit {0, :
break;

printf ("\n\n\n\n\t");
default:printf ("Please Enter The Vaild Option");
}
printf ("\n\n\n\n");
for(i=0;i<78;i++)
{
printf("-"y;
}

printf ("\n\n\tIf u want to continue press 1 slse pres

tn

scanf ("3d", schoice) ;
if (choice)
{
system("clear"):;
goto loop;
}
else
exit;

CODING FOR PUT:

tinclude<stdio.hs

vold putChar (char <) |
int 1=0;
printf("\na");
for (i=0;1i<=79;1i++)
printf(":c",¢);
!

veld putline (int 1) ¢
int i=0;
for(i=0;i<l;i++)
printf ("\n");

CODING FOR SCANDECT:

#include <stdic.h>
#include <unistd.h>
#include <signal.h>
#inciude <string.h>
#include <ctype.h>
#include <errnc.h>
#include <pwd.h>»

#include <grp.h>

#include <time.n>»
#include <syslog.h>
#include <sys/times.h>
#include <sys/types.h>
#define _ BSD SOURCE
#define _ FAVOR BSD
#finclude <netinet/in systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#define _SCANLOGD NETINET
#include <arpa/inet.h>

tinclude "params.h"
#include "in.nh"
#include "in linux.h"®

#ifdef USE RLOG
#include "rlog.n"

#endif

fdefine HF DADDR CHANGING 0x01
#define HF_SPORT CHANGING 0x02
#define HF_TOS CHANGING 0x04
#define HF TTL_ CHANGING 0x08

struct host {
struct host *next;

clock t timestamp;
time t start;
struct in addr saddr, daddr;
unsigned short sport;
int count;
int weight;
igned short ports[SCAN_MAX_COUNT - 1i;
vnsigned char tos;
i char ttl;
char flags or;
Ny char flags and;
unsigned char flags;

static struct {
struct host list[LIST SIZET;
struct host *hash[HASH | STZE];
int index;

} state;

static int hashfunc{strucr in_addr addr}
{

unsigned int value;

int hash;

value = addr.s _addr;
hash = 0;
do {
hash "= value;
} while ((value >>= HASH LOG)};

return hash & {HASH_SIZE - 1;;

static void do log(struct host *info)
{

int limit;

char s saddr{32];

char s daddr(64 + g SCAN MAX _COUNT] ;

char s flags(le]:

char 5_tos[l6];

char s_tti[16];

char s time[32];

int index, size;

unsigned char mask:

limit = info->count;
prepare:

snprintf (s_saddr, sizeof (s _saddr),

{info->flags & HF SPORT _CHANGING) 2 "gg" : wag.o

inet ntoa(info- >saddr)
{unsigned 1nt)ntohs(1nfo—>sport));

snprintf (s _daddr, sizeof(s _daddr), "$s%s ports ",
inet _ntoa{info- >daddr)

U

"

(info—>flags & HF_DADDR_CHANGING) T

llll);

for (index = 0; index < limit;
size = strlen(s daddr);
filfder LOG_MAXﬁLENGTH
if (size »= LOG_MAX_LENGTHJ {
limit = index;
break;

index++) |

#endif

snprintf(s_daddr + size, sizeof(s_daddr) - size,

"ru, ", {unsigned int)ntohs{info-
>ports£index]))

}

v

for (index = 0; index < 3: index++) |
mask = 1 <« index;

if ((info—)flags_or & mask)

= (info—>flags_and &
mask))} {

s_flags[index] = "fsrpauxy"[index]
if (info—>flags_or & mask)

5_flags[index] = toupper(s_flags[index]);

12

} else

s_flags[index] = '
}
s_flags(index] = 0;

snprintf(s%tos, sizeof(s_tos),
(info—>flags & HF TOS_CHANGING) FOAE L

- « TOS 202x",
(unsigned int)info->tog);

snprintf(sﬁttl, sizeof(s_ttl),
(info—>flag5 & HF_TTL¥CHANGING) AL " TTL ugn

(unsigned int)info—>ttl};

strftime(sktime,

sizeof (s time), "EXT,
>start}};

localtime (&info-

#ifder LOG_MAX_LENGTH
if (strlen{s saddr) + Strlen(s_daddr) +
strlen(s_tos) + strlen(sﬁttl) + strien|
(4 +5+28+2) > LOG_MAX_ LENGTH) 1
if (—-limit > 0) goto Prepare;

5_time) +

}
fendirf

syslog (SYSLOG_LEVEL,

5 Lo %s5..., %sisas @ssm,
8_saddr, s daddr, s_flags, s tos, S_ttl, s time);
#ifdef USE RLOG

) rlog(

"¥s to ¥s5..., %s%sts Bzs",
$_saddr, s_daddr, s flags,

5_tos, s _ttl, 5_time);
#endif

}

static void safe log({struct host *info)
{

static clock t last = 0Q;

statlc int count = 0;

clock t now;

now = info->timestamp;

1f (now - last > LOG_DELAY THRESHOLD || now < last) count =
0;
1T {++count <= LOG_COUNT THRESHOLD + 1) last = now;
if (count <= LOG_COUNT THRESHOLD) {
de_log(info);
} else if (count == LOG_COUNT_THRESHOLD + 1) {
s5yslog{SYSLOG_LEVEL, "More possible port scans
follow™);

#1fdef USE RLOG
ﬁ}log(”More possible port scans folliow");
#endif
i
}

static void process packet {struct header *packet, int size)
{

struct 1ip *ip;

struct tcphdr *tcp:;

struct in_addr addr;

unsigned short port:

unsigned char flags;

struct tms buf;

clock_t now;

struct host *current, *last, **head;

int hash, index, count;

ip = spacket->ip;
tzp = {(struct tcphdr *) ({char *)packet + ({int)ip~»ip hl <<
2));

if (ip—>ip_p = IPPROTO_TCP | (ip—>ip_off &
htons (IP OFFMASK)) | |
{char *)tcp + sizeof(struct tcephdr) > (char *)packet +
size)
return;

addr = ip->ip src;
port tcp->th_dport;
flags = tcp->th flags;

if ('addr.s_addr} return;
now = times(&buf);

count = 0Q;

last = NULL;

if (({current = *{(head = dstate.hash{hash =
hashfunc(addr)]))}

it (current—>saddr.skaddr == addr.sqaddr) break;
count++;
1L (current—>next) last = current;

Fowhile {{current = current->nexty) .

LT {Current)

it {now - current->timestamp <= SCAN_DELAY THRESHOLD gg
now >»>= current->timestamp) |
for (index = p; index < current->count ; index++)

if (Current—>ports[index] == port} {
current—)flags_or |= flags;
current~>flags_and &= flags;
return;

}
if (flags & {(TH_ACK | TH_RST)} return;

current->timestamp = now;

if (current->weight »= SCAN_WEIGHT¥THRESHOLD) return;

current->flags or [= flags;
current—>flags_and &= flags;

if (current~>daddr.s_addr I= ip—>ip_dst.s_addr)
current->flags |= HE_DADDR_CHANGING;

if (current—>sport I= tCp->th sport)
current->flags |= HEF_SPORT_CHANGING;

if (current->tps 1= ip->ip tos)
current->flags |= HF_TOS_CHANGING:

if (current->tt] = ip—>ip_ttl)

Current->flags |= HE_TTL_CHANGING;

current->weight += (ntohs(port) < 1024) =
PORTkWEIGHT_PRIV : PORT_WEIGHT_HIGH;

if (current—>weight >= SCANﬁWEIGHT_THRESHOLD) {
safe log(current);
return;

}

if {current->count < SCAN_MAXﬁCOUNT)
current—>ports[current—>count++] = port;

return;

}

if (current) |
current->saddr.s_addr = 0;

if {last)
last->next = last—>next—>next;
else if {*head)
*head = (*head)~>next;
last = NULL;

if (flags & TH ACK} return;
LE (count »>= HASH MAX && last) last->next = NULL;

if (state.list[state.index].Saddr.s_addr)
head =
&state.hash[hashfunc(state.list[state.index]‘saddr)];
else
head = glast;
last = NULL;
if {{current = *head))
do |
if (current == &state.list[state.index]) break;
last = current;
} while {({current = current->next});

if (current} {
if {last}
last->next = last->next->next;
else if (*head)
*head = (*head) ->next:;

current = &state.list[state.index++];
1f (state.index »>= LIST_SIZE) state.index — 0;

head = &state.hash[hash];
current->next = *head;
*head = current;

current->timestamp = now;
current->start = time (NULL);
current->saddr = addr;
current->daddr ip->ip dst;
current->sport tcp->th sport;

1

current->count = 1;

current->weight = (ntohs{port) < 1024) °
PORT_WEIGHT PRIV : PORT_WEIGHT HIGH;

current->ports{0] = port;

current->tos = ip~>iphtos:
current->ttl = ip=>ip ttl;
current->flags or = current->flags_and = flags;
current->flags = 0;
}

void pexit{char *name)
{
perror (name) ;
exit{l);
}

#ifdef SCANLOGD USER
static void drop root (veid)
{
struct passwd *pw;
gid t groups[Z2]:

errno = (;

if (pw = getpwnam(SCANLOGD_USER))J {
fprintf(stderr,
et punam (L SCANLOGDGUSER ATy
errno ? Strerror{errno} : "l M1
exit(l);
}
groups([0] = groups (1] = PW=>pw gid;

if (setgroups (1, groups)) pexit(“setgroups");
if (Setgid(pw—>pw_gid)) Pexit ("setgid");
if (setuid(pw—>pwkuid)) pexit ("setuid");
}
#else
static void cleanup(int signum)
{
exit (0);
}
#endif

int main(void)

{

#ifndef SCANLOGD_USER
signal (SIGTERM, cleanup) ;
gignal (SIGINT, cleanup) ;
signal {SIGHUP, cleanup) ;

#endirf

i1f {in_init(}) return 1;

chdir{"/"y;
setsid();

#ifdef USE RLOG
errno = 0;
if (openrlog(RLOG%ID)) {

fprintf(stderr,
"cpenrlog(\"" RLOG ID "\"): Ss\n",
errno °? strerror(errnc) : "Failed");
return 1;

}
#endif

#ifdef SCANLOGD_USER
drop _root (};
fendit

switch (fork()) {
case -1:
pexit("fork™);

case (:
break;

default:
_exit(0);

setsid();
memset(&state, 0, sjzwof{state}J;
openlog(SYSLOG‘IDENT, 0, SYSLOG_FACILITY);
in_run(processﬁpacket);

return 1;

CODING FOR SCANNER:

#include<stdio.h>
#include<unistd.h>

#define MAXSERVICES 100

void printChar(char c, int count)
int i;
for(i=Q; i<count I4+)
printf("ean, <)

printf("\n");
}

int main(} ¢
FILE *fp, “fpl, *fp2.:
Char line[SII, serviceName[MAXSERVICES][30];
Char portData[MAXSERVICES][20], runStatus[MAXSERVICESI{ZO];
Char serviceNumbers{8l], allowOrRestrict[ZO];
char hostToBeScanned£50], cmdStr[SOOJ;

int totallines = 0, count =0, ServNumber;
int number;

/fsystem(”gieaf”};

printf(”\n\n\n\n");

printChar('#', 79y ;

printf ("pPort Scarner Started., ... \nin"y .
printf("Enter the machine Name/IP to SCanned:).
scanf ("sg", hostToBeScanned):

fp2z = fopen("ip“,"w”);

fprintf(pr, hostToBeScanned);

fclose(fp2);

sprintf(cmdStr, "nmap s > nmapdata”, hostToBeScanned);
system(cmdStr);

fp = fopen("nmapdata", "'y

fpl = fopen("serviceDetails", ")

printf(”\nScanned Results are..... . . . \n");

While(fgets(line, 80, fp) I=NULL; {

totallLines += 1;
if(totalLines <= 3)
continue;
if(strcmp(line, A"y == ()
biresk;
count += 1;
sscanf{line, " s g 3", portData[count], runStatus[count},
serviceName[count]);
fprintf(stdout, TRNENE o Tl count, serviceNameIcount]);
}

printf("\nThe above services were ranning on izt | A\pne
hostToBeScanned) ;

printChar('#', 79);

unlink("serviceDetails");

unlink("nmapdata");

system ({"sh log.sh");

} /7 end main

I

CODING FOR SERVICE MANAGER:

#include<stdio. h>

main{int argc, char *argv][]) |
char *cmdString;
char action[7];

int len:
if(strcmp(argv[l], "start") == o) ¢
strcpy(action, start");

} else if(strcmp(argv[l], "stop") == () {
strcpy(action, ™ stop");

} else if(strcmp(argv{l], "status"y == 0) 1
strepy(action, * status");

} else {
printf ("Usage: <%s> =start | stop |

<servicez» ... <serviceN»\n", argv[01);

exit(-1);

}

STatus> <servicels

while (arge~-- > 2) {

£/ LOBIC for Starting multiple zers &3
len = strlen("service "y o+ strlen(argv[argc]) +

Strlen{action);
cmdString = (char *Jmallcoc(len + 1y
strepy{cmdString, "UYr o7/ cliear previous content ip ary.
strcat(cmdstring, "service "),
strcat(cmdstring, argvliargec]);
strcat(cmdString, action);
Printf("command is: "4s'\n", cmdString) ;
System{cmdString);

VA7 end while

VoSS end main

8.1.2 JAVA - PROGRAM

CODING FOR GETSERVICE DETAILS:

public olass GetServiceDetails {
Lnt printChar (char <, in* count)
int 1 = @;
for (i = 0;1i < count;i++) I

mL.out.print (¢,

! ds.out.println("vy);
return 0Q;

1

public static void main{sitrirgl] args) {
Servent * sv;

while ((sv = getservent()) 1= 0y |
prlntChar(=', 79);
s.out.println{"Official Name: " + SV.S_name) ;
whlle (* sv.s_aliases) {
Svitoem,out . print {{ * 5v.s aliases++} + " vy,

r

ccout.printin("Port Wumber: " 4+ Sv.s port);
sh.out.println("Protocsl To be used: " 4+

5V.$ _proto};
printChar{'-', 79);

}
}
}
CODING FOR IFSTATUS:
IMport Java.io. [Cfxcontion;

public class Ifstatus {
public final static int MAXHOSTNAMELEN = §4;
String hostName = nall;
Pint pregramName = new Pint();
programiame = 0;

int verbose = 9;
public static wvoid main(ﬂt*"; 1 args) {
string{] argv = new ov wlargs.length + 1];

argv(0] = "Ifstatus";
for (int 1 = 1;1 < args.length;i++) |
argv(i) = args[i - 1];

Ifstatus instance = new Ifstatus():;

Jystem.exit (instance. main{argv.length, argv)};

int maintint argc, Strinal] argv) |
String p = null;

© hostNameBuf = new - -)
broegramName = argv.charat (0);
hostName = hostNameBuf;

while {--argc 1= 0) {
(L (* *++(jinf) argv = '-'y ¢
usage () ;
}

switch ¢ *++argv.charAt(O)) {
case Ty':
verbose++;
break;
default
usage () ;
break;
}
}
if (hostNameBuf =
INetAddress.getLocalHost().getHostName() < 0) {
Svetern.out.print ("\n Hostname not found"y;
}
for (p = hostName;p.charAt(O} '= "\O';p++) |
if (Character.isLowerCase(p.charAt(O))) {
p = CStringUtils.setCharAt(p, o,
ﬁwara;me.toUpperCase(p.charAt(O)));
!
}
checkInterfaces();
return 0;

int checkInterfaces() {
int n = 0;
int s = 0;
Sriing cbuf = new String();
Ifconf ifc;
Ifreq ifr;
* ifrp;
§ = socket (AF_INET, SOCK DGRaM, 0);
if (s < 0) {
System.out.print ("\nSccket Error");

}
ifc.ifc_buf = chuf;
ifc.ife len sizeof ();
try {
ioctl (s, SIOCGIFCONF, (char) & ifc);

}
catch ({Exceptiocn e) {
S¥ystem.out.print ("\nioctl error");
}
try {

close(s);
ifrp = ifc.ifc req:
for (n = ifc.ifcﬁlen / sizeof ();n > Oin--, ifrp++)

$ = sociket(AF_INET, SOCK DGRAM, 0);
if {s < 0y {
Systam.out.print("\nSocket Error™);

}
tfr.ifr Lname = ifrp,ifyp _hame;
trv {
ioctl(s, SIOCGIFFLAGS, (char) & ifr);
}

catch (- ey |
! cout.print (v o'y
! .

if (verbose 1= 0y ¢
s “.out.println(”lnterfac@s "ot
ifr.ifr_name + "ifalgs=0x" + ifr.ifr_flags);

ir ((1fr 1fr _flags & IFF _PROMISC) 1= 0) {
Fvs -CUt.println({"WARNING: " + hostName + ©
INTERFACES " + ifr.ifr _Name + " T3 Ty PROMI SCUOUS MODE. ™) ;
h
if ((ifr. 1fr ~flags & IFF ~ DEBUG) 1= 0)
BYsten, out . -brintln("WARNING: " + hostName + *
INTERFACES " + ifr.ifr _name + " I3 IN GEBUG MODE, ") ;

close(s)

ention e) |
err.println("ic Exception:" + 2);

int usage () {

Svstem,err. prlntln("Usage:” * ProgramName + " [=v]");
return Svgr “m.exit (1) ;
}
}
CODING FOR MAIN:
import Java.io.ICEy i;
S main *7

Public class Main {
public static void main (st
Pint chl = ney Pint () ;
Pint ch?2 = new Pint () ;

int ch3 = g;

“ingll args) |

int ch4 = 0;
int ch5 = ¢;
int i = g;
int chz1 =

Or
int ch31 = 0;
int choice =
int ch4l = 0;
int ch42 = 0:
char cl = "\Nu000o”;
char ¢2 = "\udooo:;

char ¢3 = "\aloon;
char c4 = '"\aQoQo";
G e getRuntime () . exec
o irsogetRuntime () .
o getRuntime ().
.getRuntime ()

putChar('*');
putLlne(l)'
out.print {("\ni\nvthNtit

SYSTEM\n ");
Syelbemiout.print ("\n\ti.Password Artacki\n\tl. Scanning
Attack\n\t"™);
Bys:em.out.println(”B.Sniffing Attack\n\td,Spcofing
Attacki\n\t5.Exit™);

putChar{'*");
putLine (1) ;
Syeben.out.print ("\n\n Enter Your Choice : "y
try |

Scanner scanner?? = new

Scanner (CIOUtils.stdin.readline!)}:
chl = scannerZZ.readString();
switch (chl.value) |
case 1:

BT e, getRuntime(}.exec ("elaarty:
for (i = 0;4 <= 78;i++) {

vi.out.print ("=");

foout.println{"\n\tht\tOptions for

zn.out.print ("ytl.Check 30U
Failuresini\t™);

Svs -out.print ("3.Check BLANK
Password\n\t4.€heck SHADOW Password\n\t");
moout.print ("5.Check Weak
FPassword\n\t6.View Recoroed Attack™);

LUt println {"\n\t7.GRUR
passwordin\t8. Biocked Users\nit9.5oto The Main Menu®);
for (i = 0;i <= 78;i++) |

o sivcout.print ("=") ;

=N out.print ("\n\n Please Enter Your
Chc.ce @ ")

Scanner scanner?3 = new
Scanner(CIOUtils.stdin.readLine());

ch2 = scannerZ3.readString();

}
}
catch (caphion e) |
System.err.println("I0 Exception:™ + el;
}
switch (ch2) |
case 1:

Huntime.getRuntime().exec("clear");
putChar{'="):
putLine (1) ;

o eout.println ("Anhni VLN E Check
Violation\n")y;
; Fuoout.println{"\t\rAuthorised User Foy

Comrand: ™) ;
Ceeout.println{tNesatar o
-out.println("wtNEL . R

Daemon™) ;
putChar('="');
putLine(1l);
R wout.print ("“t\thnrer The Totion oo "y;
try |
Scanner scanner30 = new
Scanner {CIOUtils. stdin. readLine (});
chzl = scanner3).readString();
switch (ch2l) {
case 1:
Syﬁzmm.out.print("\n\n?rocess
Started......_...... ")
svslerm.out.println("Press CTRL+C To
Abort"};

-getRuntime () .exec("sh
CheckSu.sh") ;

wr.out.println("\nService Startec
Successfully"™);
Buntise. getRuntime () .exec!"sh Checksu. sh
&"):

P o getRuntlme() exec("clear™);

putChar(‘‘‘‘‘ ")s

putLlne(l)

out.println("\t\nCheck Login Faiiuzes™ ;
L.eut.println("\tStart Checking Login

Failures™):
M.out.printin("\t\tl. Checlk Tt
Nowh\n\t\t2.4As A Daemon")-
putChar('="y;
putLlne(l)
Pi.out.print ("\t\tEnter The Option :)
Scanner scanner3l = new
Scanner (CIOUtils. stdin.readLine());
ch3l = scanner3l.readString();
switch (ch31l)
case 1:

Lem.out.print ("Process

t.out.print {"Press CTRL+C To

Runtime.getRuntime().exec(“sh
checkLogin.sh");
break;
case 2:

'.out.println(”\nSwrviww ULl
Successfully");
'Iﬁw.getRuntime(J.exec("vh
checkLogin.sh &'y,
S eOUL L prIint ("pragy Ry
Afariy .
breal:

Hyﬁiaﬂ.out.priht("\ﬁ\t Checking mar BLANK
Passwordg field"y,;
kunf;me.getRuntime().exec("sh Passw,sh") ;

,tem.out.print("\n\t Checking For BLARNEK

.getRuntime().exec("sh Passw.sh"y ;

:IQucm.out.print("\n\tchecking For Shadowed
Password fields"y,
Runf*me.getRuntime().exec("sh isShadowed.sh”);
System.out.print("\n\tChecking Shadowsd File
Permission. . . ") ;

Ruﬂ;im@.getRuntime().exec("sh ch@ck?erm.sh");

break;

case 5:

: out.print("Checking For Weak Passwordg») ;
—.getRuntime().exec(”sh Weak,sh") ;
".getRuntime().exec(”sh weakl.sh");

“.out.print("\n\n\t\t\t Recorded Detailg»);
q.getRuntime().exec(”sh catfile.sh

I3
Passwordﬂttack.log"):
break;

.out.println(”\t\t\t GRUB PASSWORD\n\n");
:.getRuntime().exec("sh grub.sh"y,

3 _mme.getRuntime().exec("clear");
putChar('*');

butline(1);

Sy :am.out.println("\t\n\n\t\t BLOCKED ACCOUNTS

DETAILS") ;

N em.out.println("\t\t 1.BLOCKED ACCOUNTS
Name\n\t\t 2.UNBlocking ACCOUNTS") ;
putChar(r+ry,
bPutLine (1) ;
Sy @m.out.print("\t\t Enter The option ; ny,
Scanner Scanner3? = ney
Scanner(CIOUtils.stdin.readLine());

Elon e) |
“-err.printlin(vrg Exception:» + e);

ch4l = scanner32.read8trinq();

}
switch {(chdly |
case 1:
s TLout.print ("Rlackes
: ~Lout.print ("Press [
rrimiLgetRuntime () . expc(”aa Jeta/aserl"y;
B dBi.out.printlin("\ni inlocking Usera");
i e.getRuntime (). exec("sh unlock,.sh ") ;
Yelem.out.print ("Press CTRL+C To Abort™);
break;
}
break;
case 9:
goto loop;
}
break;
Cage 2:

Quntim@.getRuntime().exec("clear”);
for (i = null;i <= T8:i+4) |
System.out.print ("=");

".out-println("\n\t\t\tOptions for Scanning attac k\n'"y;
-out.print ("\tl.Check It Now\n\t2, Run Tt As Daemeninit")
wisETam.out.print ("3.View The Service Details\n\td.View <oLorqed
Attack"};
System.out.println ("\n\t5. Goto The Main Menu"j;
for (1 = null i <= 78;i+4) ¢

3 . out.print (=" ;

getRuntime (}.exec("adduser scanlegd &> r");
getRuntime () ,exec("rm -f r"y;
Iy m{". /fscanDect™y ;
for (i = null;i <= 78:i++) {
2

Yetai.out.print ("~") ;

172 el

ysterm.out.print ("\n\n Please Enter Your Choice : ");
try {
Scanner scanner33 = new Scanner(CIOUt;Ls.stdin.readLine()):

}

catch {I0ENception) {
Sygtem.err.println("I0 Exception:” + e);

}

ch3 = scanner33. readString();
switch (ch3) ¢
case 1:

s.getRuntime().exec("sh checkScan.sh") ;
-out.print{"Press CTRL+C To Abort");

e out -println(«: NSary] :
‘1~L.out.print("CTRLwC L aborom,
’7:.getRuntime().exec(”sh CheokSenn | gn AT

braglk

’

}
'
Case 3
System.out.println("\n&t\tView The
System.out.print("\t\t\t\t Procing
Runtime.getRuntime().exec("gcc GetSerys
Servicedetails");
Runtime.getRuntime().exec("./servicedetailsf less");
break;
Case 4;
System.out.print(”VIEW THE RECORDED ATTACK ")
Runtime.getRuntime().exec("sh catfile.sh
ScanningAttack.log"):
break;

}

oreak;

case 3:

Runtime.getRuntime().exec("clear”):

putChar(r4', .

Putline(1);

System.out.print("\tl.Check Tt Nowin\tz , run it As Daemoniryeny

System.out.println("3.View The Recorded Attack\n\t4.Goto The

Main Menu™)

PutChar(g+, .

Putline(1);

System.out.print("\n\n Please Enter Your Choice - "} ;

try {
Scanner scanner3dd = pey Scanner(CIOUtils.stdin.readLine(J);
ch4 = scanner34.read8tring();

Case 1:
System.out.print("\n\n\t\t\t\t SNIFFING ATTACK") ;
Runtime.getRuntime().exec("sh Sniff.shwy;
break;

Case 2:

System.out.print("\n\n\t\t SNIFFING ATTACK RUN IT as
DAEMON™) ;
break;

case 3.

System.out.print("\n\t\t\t RECORDED ATTACK") :
Runtime.getRuntime().exec("sh Catfile.sh
SniffingAttack.log");

break;
case 4:
7 goro loop;
break:
}
break;
Case 4:

Runtime.getRuntime().exec("clear”):
Runtime.getRuntime().exec("sh ip.sh"y;

PutChar (" ;

PutlLina(1y ;

System.out.print("\n\ﬁ\t\tﬂp?Ions for APQoling
attack\n\n\t");

SYStem.out.print(”T.ﬁ;uﬁk IE ﬁddreﬁa\n\ti.ﬁloct Desin B
Add:ess\n\t”);

System.out.print(”%.Rrﬁadn¢nz
Particuiar");

System.out.print(”servjve\n\t S.Unﬁioﬁking\n\? oot My iy
Menumy;

PutChar ("4,

Putline(1);

System.out.print(”\n\n Please Enrer Your Choice . "y

Scanner scanner3s = pey Scanner(CIOUtils.stdin.readLine()};
}
catch (ICException e) {

System.err.println(”lo Exception:» 4 e);

chs = scanner35.readstring();
switch (ch5) ¢
case 1:
Runtime.getRuntime(}.exec("sh BloekparIP.sh"J;
break;
case 2:
Runtime.getRuntime().exec(”sh LoopBTR.sh”);
break;
case 3:
Runtime.getRuntime().exec(”sh BroadCast.sh");
break;
Case 4:
Runtime.getRuntime(}.exec("sh BlockParser.sh”);
break;
case 5:
Runtime.getRuntime(J.exec(”sh UnSpoof.sh");
brealk;
Case §&:
s

STO e .
ML OO

W

break}
}
break:

case 5:
System.exit(O);

break;

System.out.print("\n\n\n\n\t");

default .

System.out.print("Please Enter The Vaild Option™);

7’ doto loop;

}System.out.println("\n\n\n");

for (i = null;i < TBii++y

System.out.print("—");

}System.out.prin {("\n\n\tIf Want to continye press 1 else
press 0 : mwy.

try {

Scanner Scanner3g = pay Scanner(CIOUtils.stdin.readLine());
tcatch (IOException e) {

System.err.println("IO Exception:» 4 e);

}choice = scannerEG.readString();
i1f (choice) ¢
Runtime.qetRuntime().exec(”clear");

teise {

exlt;

i

}
(IHHNGFORSCANNER:

import java.io.*;
public class Scanner {

public final static int MAXSERVICES = 100;

void printChar(char c, int count) {
int 1 = 0;
for (1 = 0;1i < count;i++) ¢
System.out.print () ;

}
Syﬁtem.out.println("");

}

public static void main{zoring (] args) |

DataObjectInputStreanm fp = null;
DataObjectOutputStream fpl = null;
DataObjectOutputStream fp2 = null;

5 ny line = new Srving();

[] serviceName = new ChaIIMAXSERVICES][EO];
[] portData = new char[MAXSERVICES][ZO];

[l runStatus = new char[MAXSERVICES][ZO];
serviceNumbers = pew =
allowQrRestrict = new
i hostToBeScanned = new =i
Tilng cmd8tr = new Srring ()

o

int totallines = 0;
int count = 0;
int servNumber = 0;

int number = 0; -
ﬁySiem.out.println("\n\n\n");

printChar ("4, 79);

3 -out.println("Port Scanner Started..... \n') g
P.out.print {"Enter the machine Name/TP to scanned:

"}
try {
hostTeBeScanned = CIOUtils.stdin.readLine();
try {
fp2 = new DataObjectOutputStream(new
JULPULET veam ("ip™))
'
catch (FLleNotFoundExc@*“ion e) {
g .em.err.println("FileNotFoundException:" +

ST R

} S e A
fp2.print
fp2.closet);

(hostToBeScannedJ;

}
Catich (70 ey e) |
: serr.printlin(" o Exception:” + e);
}
+ hostToBeScanned + " amapdat ah;

cmdStr = "nmag "

try {
fp =
,':eﬁm("nmapdata"));

catch (‘fl@HoLFoqn&Excep;ioﬂ
}
try {
fpl =
zﬁpuiStream(”serviceDetails")
}

catch (Eii@NotFoundExc@ption
Syﬁtem.err.println("FileNotFoundException:" +

ﬁyst@m.out.println("\nScanned Result

.............. "y
while
totallines += 1;
if {totallines <= 3)

continue;

}

if (line.eguals("\n"))
break;

}

count += 1;

new DataObjectOutputStream(

(line = fp.readLineAndNewline()

“.'“.getRuntime().exec(cmdStr};

new DataObjectInputStream(new

e} |

.err.println("FileNotFoundException:" + ey;

new

)i

e} {
e);

cE

0) {

{

Scanner scannerl182 = new Scanner(line);

PortData[count]
runStatus[count] =
serviceName[count]
Syﬁt%m.out.println(

(serviceName{count]));

}
Sygtem.out.println(
+ hostToBeScanned + "'
printChar ('#', 79);:
unlink(“serviceDetails");
unlink(”nmapdata"):
Runtim@.getRuntime().exec(

.")’.

= scanner182.readstring();
scannerlSZ.readString();

= scanner182.read8tring(J;
"hNEALT

+ count + " v 4

"\nThe above sarvices Were runnirng on

"sh log.sh");

CODING FOR SERVICE MANAGER:

public class ServiceManager |
public static voidg main{. . [] args) |
] argv = new - . largs.length + 1j;
argv[0] = "ServiceManusger;
Tor {(int 1 = 1;1 < args.length;i++) {
argv([i] = args[i - 115

}
ServiceManager instance = pew ServiceManager ()
E”aiww.exit(instance.main(argv.length, argv}j};

v

int main(int argc, Shring
String cmdString

string action = new o+

int len = 0;

if (argv[l].equals(”start”)) {
action = " gtare";

{

}

else if (argv[l].equals("stop")) {
action = " stop";

}

else 1if (argv[l].equals("status")} {
action " status";

VA7 end while

else {
System.out.println("Usage: <" o+ {argvi[0]) + s

status> <servicel> <serviceZ> ... <servicel»");

n.exit(- 1);

while {argc—- > 2) {

77 LOGIC for startin g omuaitinle se

len
action.length();

cmdString = new Srring();

cmdString = "";

cndString += "service " 4 argv[argcl + action;

Systém.out.println("command is: '™ 4+ cmdString +

"service ".length() + argv(arge)] .length() +

l'l!l'l);

Pnntimﬁ.getRuntime().exec(cmdString);

APPENDIX 2-SCREEN SHOTS

8.2 APPENDIX 2 — SCREEN-SHOT

Welcome screen ‘Displaying system details’

hd ot localhost/idps
Ele Edit View Teminal Go

Help

:######ﬁ###########################ﬁ#ﬁ####ﬁ######??######?#######?#3#############

Loading DETERENCED TOOLS FOR HACKING

é This may take few Secomds......................
; -~> Checking system details
; .
? —- Machine (hardware) type : i686
f -- Machine's network hostname ¢ localhost.localdomain i
| -- Operating system release P 2.4.21-4.ELsmp r;
: --Kernal Details ! Linux
i --Full Details : #1 SMP Fri Oct 3 17:52:56 EDT
;2003 f
: -~Process . 1686
j ————————— > CHECKING ROOT USER PRIVELAGE
5 Found Root User Previlage
L4

Main Window

INTRUSTON BETECTTON SYSTEM

1. Password Attack :
2.5canning Attack o
3.503ffing Attack

4.5poufing Attack

J.Exit

:*ﬁ*#%*ﬁ%&*#'&%*#f»@i#&%**ﬁ%i*ﬁ'ﬁ>1-ﬂ*#*“ﬁﬁ%Qﬁ&*#?*ﬁ*ﬂ:#&’*'ﬁ-éi?% T g ﬁ%‘*%O*&%’s}:&&&%é R

. Enter Your Choice :

Options For Password Attack

R 1017 locathost:-
' Ele Edt View

Jddps

1.Check su Violation
2.Check Login Failyres
3.Check BLANK Password
+.Check SHADOW Password
5.Check weak Password
8.View Recorded Artack
7.GRUB password
B.Blocked Users

%.Goto The Main Menu

Options For Scanning Attack

Mg 10012 [ocalhost:ilidp i *
“File Edit

1.Check Tt Now

Z.Run It As Daemon

3.View The Service Details
4.View Recorded Attack
5.Goto The Main Meny

| Please Enter Your Choice o |

Options For Sniffing Attack

Edit Go

;###?F##### ########f####################### '
i 1.Check It Now :
2.Run It As Daemon

3.View The.Recarded Attack

4.Goto The Main Menu

E#############################‘##########################-#########################f :
i P
|

{ Please Enter Your Choice : i |
f
f
H

Options For Spoofing Attack

i]ocalhost
le Edit view Terminal Go Help

b e e e S ek
options for Spoofing attack

1.Block IT Address
Z2.Block Loop Back Address
3.Broadcast Traffic Address
4.Block Particularservice
5.UnBlocking
; 6.Goto Main Menu
R R T e R R R R R R R SRR SRR RFHERERF R R

Please Enter Your Choice : 1f]

