P- 2165

DETECTION AND REMOVAL OF CRACKS IN

DIGITIZED PAINTING
A PROJECT REPORT
Submitted by
BHARATHI KANNAN.K 71204205004
SELVA KUMAR.K.R 71204205047
RAMALINGAM.S - 71204205305

in partial fulfillment for the award of the degree
of
BACHELOR OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE
ANNA UNIVERSITY: CHENNAI 600025

APRIL 2008 s

BONAFIDE CERTIFICATE

ANNA UNIVERSITY: CHENNAI 600025

BONAFIDE CERTIFICATE

Certified that this report “DETECTION AND REMOVAL OF CRACKS
IN DIGITIZED PAINTING” is the bonafide work of “Mr.BHARATHI
KANNAN.K (71204205004), Mr. SELVA KUMAR.K.R (71204205047),
Mr.RAMALINGAM.S (71204205305)”who carried out the project work

under my supervision.

SIGNATURE SIGNATURE
Dr. S. Thangasamy Mr.E.A.Vimal
HEAD OF THE DEPARTMENT SUPERVISOR, Lecturer
Computer science and Engineering Information Technology
Department of Computer Science Department of Information Technology,
& Engineering, Kumaraguru College of Technology,
Kumaraguri. College of Technology, Coimbatore - 641006

Coimbatore - 641006

Submitted for viva-voice examination heldon 22. 0 & .0&

L~ Qe

Internal Examiner External Examiner

DECLARATION

DECLARATION

We hereby declare that the project entitled “DETECTION AND
REMOVAL OF CRACKS IN DIGITIZED PAINTING” is done by us
and to the best of our knowledge a similar work has not been submitted to
the Anna University or any other Institution, for fulfillment of the requirement

of the course study.

This report is submitted on the partial fulfillment of the requirement

for all awards of the Degree of Bachelor of Information Technology of Anna

University, Chennai.

Place: Coimbatore

Date: W

Bhara'thi Ka;nan.K

Gl rwal

Selva Kumar. K.R

o

Mr.E.A.Vimal KR _Q -~

Ramalinganit

il

ACKNOWLEDGEMENT

ACKNOWLEDGEMENTS

We are extremely grateful to the Principal, Dr. Joseph V. Thanikkal
M.E., Ph.D., PDF. CEPIT. For having given us a golden opportunity to

embark on this project.

We would like to thank our project coordinator, Mr. K. R. Baskaran,
Asst Professor, Department of Information Technology for his support

during the course of our project.

We have immense pleasure in expressing our heartfelt thanks to our
guide, Mr.E.A.Vimal, Lecturer, Department of Information Technology for

his constant advice and support throughout this project.

We would like to express our sincere thanks to all the members of the

faculty of Department of Information Technology for their support.

We thank many of our patient fellow students for listening about the
problems were tackling and helping us understand them more clearly by

asking the right questions.

We thank all those who have been involved directly or indirectly in

our project.

ABSTRACT

ABSTRACT

An integrated methodology for the detection and removal of cracks on
digitized paintings is implemented in this project. The cracks are detected by
threshold the output of the morphological top-hat transformation. Afterwards
the thin dark brush strokes which have been misidentified as cracks are
removed using either a median radial basis function neural network on hue
and saturation data or a semi-automatic procedure based on region growing.
Finally, crack filling using order statistics filters or controlled anisotropic
diffusion is performed. The methodology has been shown to perform very

well on digitized paintings suffering from cracks.

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER NO TITLE PAGE NO
ACKNOWLEDGEMENT iii
ABSTRACT iv

1. INTRODUCTION
1.1 GENERAL 1
1.2 PROBLEM DEFINITION 4

2. LITERATURE REVIEW
2.1 FEASIBLITY STUDY 5
2.1.1 EXISTING SYSTEM 5
2.1.2 PROPOSED SYSTEM 5
2.2 HARDWARE REQUIREMENTS 7
2.3 SOFTWARE REQUIREMENTS 7
2.4 SOFTWARE OVERVIEW 8

3. DETAILS OF THE METHODOLOGY EMPLOYED

3.1 DETECTION OF CRACKS 10
3.2 SEPARATION OF THE BRUSH STROKES
FROM THE CRACKS 13

3.3 CRACK FILLING METHODS 16

4.

PERFORMANCE EVALUATION
4.1 Software Testing

4.2 Functional Testing

4.3 System Testing

CONCLUSION

FUTURE ENHANCEMENTS

APPENDIX

7.1 SOURCE CODE

7.2 SCREEN SHOTS

REFERENCES

17

18

18

19

21

22

36

44

INTRODUCTION

1. INTRODUCTION

GENERAL

Many paintings especially old ones suffer from breaks in
the substrate, the paint or the varnish. These patterns are usually called
cracks or craquelure and can be caused by aging, drying, and mechanical
factors. Age cracks can result from non uniform contraction in the canvas or
wood-panel support of the painting which stresses the layers of the painting.
Drying cracks are usually caused by the evaporation of volatile paint
components and the consequent shrinkage of the paint. Finally, mechanical
cracks result from painting deformations due to external causes, e.g.,
vibrations and impacts.

The appearance of cracks on paintings deteriorates the
perceived image quality. However, one can use digital image processing
techniques to detect and eliminate the cracks on digitized paintings. Such a
“virtual” restoration can provide clues to art historians, museum curators and
the general public on how the painting would look like in its initial state, i.e.,
without the cracks. Furthermore, it can be used as a nondestructive tool for
the planning of the actual restoration. A system that is capable of tracking
and interpolating cracks. The user should manually select a point on each
crack to be restored. A method for the detection of cracks using

multioriented Gabor filters. Crack detection and removal bears certain

similarities with methods proposed for the detection and removal of
scratches and other artifacts from motion picture films. However, such
methods rely on information obtained over several adjacent frames for both
artifact detection and filling. Thus they are not directly applicable in the case
of painting cracks. Other research areas that are closely related to crack
removal include image in painting which deals with the reconstruction of
missing or damaged image areas by filling in information from the
neighboring areas and disclosing, i.e., recovery of object parts that are
hidden behind other objects within an image.

Methods developed in these areas assume that the regions
where information has to be filled in are known. Different approaches for
interpolating information in structured and textured image areas have been
developed. The former are usually based on partial differential equations
(PDEs) and on the calculus of variations whereas the latter rely on texture
synthesis principles. A technique that decomposes the image to textured and
structured areas and uses appropriate interpolation techniques depending on
the area where the missing information. The results obtained by these
techniques are very good. A methodology for the restoration of cracks on
digitized paintings which adapts and integrates a number of image

processing and analysis tool is proposed in this paper.

The methodology is an extension of the crack removal

framework. The technique consists of the following stages:

» crack detection;

» Separation of the thin dark brush strokes, which have been

misidentified as cracks;

» crack filling (interpolation).
A certain degree of user interaction most notably in the crack-detection stage
is required for optimal results. User interaction is rather unavoidable since
the large variations observed in the typology of cracks would lead any fully
automatic algorithm to failure. However, all processing steps can be
executed in real time and thus the user can instantly observe the effect of
parameter tuning on the image under study and select in an intuitive way the
values that achieve the optimal visual result. Needless to say, only subjective
optimality criteria can be used in this case since no ground truth data are
available. The opinion of restoration experts that inspected the virtually
restored images were very positive. Two methods for the separation of the
brush strokes which have been falsely identified as cracks. Methods for

filling the cracks with image content from neighboring pixels.

PROBLEM DEFINITION

Many paintings especially old ones suffer from breaks in
the substrate, the paint or the varnish. These patterns are usually called
cracks or craquelure and can be caused by aging, drying, and mechanical
factors. Age cracks can result from non uniform contraction in the canvas or
wood-panel support of the painting which stresses the layers of the painting.
Drying cracks are usually caused by the evaporation of volatile paint
components and the consequent shrinkage of the paint. Finally, mechanical
cracks result from painting deformations due to external causes, e.g.,
vibrations and impacts. The appearance of cracks on paintings deteriorates

the perceived image quality.

> Problem for segmenting the lines and strokes of the under
drawing.

» Cracks not only disturb the appearance of a painting.

> One major goal of the project is to identify the drawing tools
used by the painter to create the under drawing from the

appearance of the strokes in the infrared reflectogram.

- LITERATURE REVIEW

2. LITERATURE REVIEW

2.1 FEASIBILITY STUDY
2.1.1 CURRENT STATUS OF THE PROBLEM
The existing methods for processing digital images are
there which actually deal with enhancing the image picture quality,
brightness, color etc. These factors can be degraded due to aging process.
Such an image processing technique algorithm concentrates on improving
those factor alone. There are not designed to analysis and improve in the
cracks region. The cracks removal has to be rectified in the different manner.
The principle applied to improve image color, brightness and other
characteristic can not be used for crack detection and removal. This project
concentrates on the digital image processing algorithm that deals only with
crack detection and removal.
2.1.2 PROPOSED SYSTEM AND ADVANTAGES
The proposed system deals with digital image
processing technique that detects and removes the cracks in the images. A
system that is capable of tracking and interpolating cracks. The user should
manually select a point on each crack to be restored. A method for the
detection of cracks using multioriented Gabor filters. Crack detection and
removal bears certain similarities with methods proposed for the detection

and removal of scratches and other artifacts from motion picture films.

frames for both artifact detection and filling. Other research areas that are
closely related to crack removal include image in painting which deals with
the reconstruction of missing or damaged image areas by filling in
information from the neighboring areas and disclosing. Methods developed
in these areas assume that the regions where information has to be filled in
are known. Different approaches for interpolating information in structured
and textured image areas have been developed. The former are usually based
on partial differential equations (PDEs) and on the calculus of variations
whereas the latter rely on texture synthesis principles. A technique that
decomposes the image to textured and structured areas and uses appropriate
interpolation techniques depending on the area where the missing
information. A methodology for the restoration of cracks on digitized
paintings which adapts and integrates a number of image processing and
analysis tool is proposed in this paper. The technique consists of the
following stages:

* There should be some method through which crack area in the

digital image can be detection;

« Separation of the thin dark brush strokes which have been

misidentified as cracks;

» Crack filling (interpolation).

A certain degree of user interaction most notably in the

.

2.2 HARDWARE REQUIREMENTS :(Minimum Requirements)

Processor
RAM

Hard disk
CD drive
Floppy drive
Monitor
Keyboard

Mouse

2.3 SOFTWARE REQUIREMENTS:
Operating System — Windows XP/2000

Language used — VB .Net

Intel Processor IV

256 MB

40 GB

40 x Samsung

1.44 MB

15" Samtron color
108 mercury keyboard

Logitech mouse

2.4 SOFTWARE OVERVIEW

Microsoft Visual Basic .Net used as front end tool.

The reason for selecting Visual Basic dot Net as front end tool as follows:

¢ Visual Basic .Net has flexibility, allowing one or more language
to interoperate to provide the solution. This Cross Language
Compatibility allows to do project at faster rate.

e Visual Basic .Net has Common Language Runtime, that allows
the entire component to converge into one intermediate format
and then can interact.

e Visual Basic .Net has provided excellent security when your
application is executed in the system.

¢ Visual Basic .Net has flexibility, allowing us to configure the
working environment to best suit our individual style. We can
choose between a single and multiple document interfaces, and
we can adjust the size and positioning of the various IDE
elements.

¢ Visual Basic .Net has Intelligence feature that make the coding
easy and also dynamic help provides very less coding time.

» The working environment in Visual Basic .Net is often referred
to as IDE because it integrates many different functions such as

design, editing, compiling and debugging within a common

environment. In most traditional development tools each of
separate programs with its own interface.

The Visual Basic .Net language is quite powerful — if we can
imagine a programming task and accomplished using Visual
Basic .Net.

After creating a Visual Basic .Net application, if we want to
distribute it to others we can freely distribute any application to
anyone who uses windows. We can distribute our applications
on disk, CDs, across networks, over an intranet or the internet.
Toolbars provide quick access to commonly used commands in
the programming environment. We click a button on the toolbar
once to carry out the action represented by that button.
Additional toolbars for editing, form design and debugging can
be toggled on or off from the toolbars command on view menu.
Many parts of Visual Basic are context sensitive. Context
sensitive means we can get help on these parts directly without
having to go through the help menu.

Visual Basic interprets our code as we enter it, catching and
highlighting most syntax or spelling errors on the fly. It’s almost
like having an expert watching over our shoulder as we enter our

code.

DETAILS OF THE METHODOLOGY
EMPLOYED

3. DETAILS OF THE METHODOLOGY EMPLOYED

3.1 DETECTION OF CRACKS

Cracks usually have low luminance and can be
considered as local intensity minima with rather elongated structural
characteristics. Therefore, a crack detector can be applied on the luminance
component of an image and should be able to identify such minima. A
crack-detection procedure top-hat transform is proposed in this paper. The
top-hat transform is a grayscale morphological filter defined as follows:

Y(x) = f(x) — fap(X) (1)
Where f,(x) is the opening of the function f{(x) with the structuring set,
defined as

nB=BO®B®.......... ® B (n times) (2)
In the previous equation, ® denotes the dilation operation. A square or a
circle can be used as structuring element B. The final structuring set nB is
evaluated only once using in the opening operation of (1). The opening f s
of a function is a low-pass nonlinear filters that erases all peaks (local
maxima) in which the structuring element nB cannot fit. Thus, the image f—
f 5 contains only those peaks and no background at all. Since cracks are
local minima rather than local maxima, the top-hat transform should be
applied on the negated luminance image. Alternatively, one can detect

cracks by performing closing on the original image f(x) with the structuring

P 1 .1 4 , aT

P PR . . T « |+ VR

Y(x)=fPx) - flx) e (3)

It can be easily shown that the result of (3) is identical to
that of applying (1) on the negated image. Use of (3) does not require
negation of f(x) which grands it a small but not negligible computational
advantage over (1).

In situations where the crack-like artifacts are of high
luminance, as in the case of scratches on photographs, negation of the
luminance component prior to the crack detection is not required, i.e., the
crack detection procedure can be applied directly on the luminance image.
The user can control the result of the crack-detection procedure by choosing
appropriate values for the following parameters:

o The type of the structuring element B,
o The size of the structuring element B and the number n of
dilations.

These parameters affect the size of the “final” structuring
element nB and must be chosen according to the thickness of the cracks to
be detected. It should be noted that these parameters are not very critical for
the algorithm performance due to the threshold operation and also due to the
existence of the brush-stroke/crack separation procedure, which is able to
remove crack-like brush strokes that have been erroneously identified as

cracks. The fact that all the results presented in this paper have been

o~

indication that the above statement is indeed true. These parameters were the
following:

o Structuring element type: square;

o Structuring element size: 3 X 3;

o Number n of dilations in (2) : 2.

The top-hat transform generates a grayscale output image

t (k, 1) where pixels with a large grey value are potential crack or crack-like
elements. Therefore, a threshold operation on t (k, 1) is required to separate
cracks from the rest of the image. The threshold can be chosen by a trial and
error procedure, i.e., by inspecting its effect on the resulting crack map. The
low computational complexity of the threshold operation enables the user to
view the crack-detection results in real time while changing the threshold
value, e.g., by moving a slider. This fact makes interactive threshold
selection very effective and intuitive. Alternatively, threshold selection can
be done by inspecting the histogram of for a lobe close to the maximum
intensity value and assigning it a value that separates this lobe from the rest
of the intensities. The result of the threshold is a binary unage marking the
possible crack locations. Instead of this global thersholding technique more
complex threshold schemes, which use a spatially varying threshold can be
used. Obviously, as the threshold value increases the number of image pixels

that are identified as cracks decreases. Thus, certain cracks, especially in

. w 1 LY o |

can remain undetected. In principle, it is more preferable to select the
threshold so that some cracks remain undetected than to choose a threshold
that would result in the detection of all cracks but will also falsely identify as
cracks and subsequently modify other image structures. The threshold
(binary) output of the top-hat transform on the luminance component of an
image containing cracks.

3.2 SEPARATION OF THE BRUSH STROKES FROM THE

CRACKS

In some paintings, certain areas exist where brush strokes
have almost the same thickness and luminance features as cracks. The hair
of a person in a portrait could be such an area. Therefore, the top-hat
transform might misclassify these dark brush strokes as cracks. Thus, in
order to avoid any undesirable alterations to the original image, it 15 very
important to separate these brush strokes from the actual cracks, before the
implementation of the crack filling procedure. Two methods to achieve this
goal are described in the following subsections.

A simple interactive approach for the separation of
cracks from brush strokes is to apply a region growing algorithm on the
threshold output of the top-hat transform, starting from pixels (seeds) on the
actual cracks. The pixels are chosen by the user in an interactive mode. At

least one seed per connected crack element should be chosen. Alternatively,

S

more convenient. The growth mechanism that was used implements the
well-known grassfire algorithm that checks recursively for unclassified
pixels with value 1 in the 8-neighborhood of each crack pixel. At the end of
this procedure, the pixels in the binary image, which correspond to brush
strokes that are not 8-connected to cracks will be removed. The above
procedure can be used either in a stand-alone mode or applied on the output
of the MRBF separation procedure described in the next section to eliminate
any remaining brush strokes.

In our implementation, a MRBF network with two
outputs was used. The first output represents the class of cracks while the
second one the class of brush strokes. Input vectors were two-dimensional
and consisted of the hue and saturation values of pixels identified as cracks
by the top-hat transform. The number of clusters (hidden units) chosen for
each class depends on the overlap between the populations of cracks and
brush strokes. If there is a substantial overlap, the number should be
increased, in order to reduce the classification error. In our implementation
three hidden units have been incorporated. Training was carried out by
presenting the network with hue and saturation values for pixels
corresponding to cracks and crack-like brushstrokes. Data from 24 digitized
portable religious icons from the Byzantine era were used for this purpose.

The system trained using this specific training set can be considered to be

. o~ - a - e . - 4 9w, - L. ral 3 " 41

might result in somewhat suboptimal results. However, appropriately
selected training sets can be used to train the system to separate cracks from
brush strokes on paintings of different artistic styles or content. In order to
select pixels corresponding to cracks and crack-like brush strokes the crack
detection algorithm presented was applied on these images. Results were
subsequently post processed by an expert using the semi-automatic
approach.

The aim of this post processing step was twofold: to
remove pixels that are neither cracks nor crack-like brush strokes and to
separate cracks and crack-like brush strokes for the supervised step of the
training procedure. In this supervised training step, the network was
presented with these labeled inputs, i.e., pairs of hue-saturation values that
corresponded to image pixels that have been identified as belonging to
cracks and crack-like brush strokes. After the training session, the MRBF
neural network was able to classify pixels identified as cracks by the top-hat
transform to cracks or brush strokes. The trained network has been tested on
12 images from the training set and 15 images (of the same artistic style and
era) that did not belong to the training set. Naturally, the performance of the
cracks/brush-stroke separation procedure was judged only in a subjective
manrer (i.e., by visual inspection of the results), as ground truth data (i.e.,

brush stroke-free crack images) are not available. For this reason, two

- - - I Y o e |

after the application of the separation system and concluded that in the
processed crack images the great majority of the brush sirokes have been
removed. A threshold top-hat transforms output containing many brush
strokes. A great part of these brush strokes is separated by the MRFB

3.3 CRACK-FILLING METHODS

After identifying cracks and separating misclassified
brush strokes, the final task is to restore the image using local image
information to fill (interpolate) the cracks. Two classes of techmiques,
utilizing order statistics filtering and anisotropic diffusion are proposed for
this purpose. Both are implemented on each RGB channel independently and
affect only those pixels which belong to cracks. Therefore, provided that the
identified crack pixels are indeed crack pixels, the filling procedure does not
affect the “useful” content of the image. Image in painting techniques can
also be used for crack filling.

The performance of the crack filling methods prssented
below was judged by visual inspection of the results. Obviously, measuring
the performance of these methods in an objective way is infeasible since
ground truth data are not available. For the evaluation of the results, two
restoration experts were asked to inspect several images restored using the
various methods and comment based on their experience and quality of the

filling results, whether the color used for filling was the correct one, whether

e

PERFORMANCE EVALUATION

4, PERFORMANCE EVALUATION

Testing is a critical element of software quality and
assurance and represents the ultimate review of specification design and
coding. It is a vital activity that has to be enforced in the development of any
system. This could be done in parallel during all the phases of system
development. The feedback received from these texts can be used for further
enhancement of the system under consideration. The testing phase conducts
test using the Software Requirement Speqiﬁcation as a reference and with
the goal to see whether system satisfies the specified requirements.

Standard procedures have been followed in testing our
system. Test cases are generated for each screen. These test cases will cover
every possibility which could result in both positive and negative results.
These test plans are maintained for any further testing done on the system.

» Software Testing

> Functional Testing

» System Testing
4.1 Software Testing:

Software Testing is the process of confirming the
functionality and correctness of software by running it. Software testing is
usually performed for one of two reasons:

1) Defect detection

The problem of applying software testing to defect detection is that software
can only suggest the presence of flaws, not their absence (unless the testing
is exhaustive). The problem of applying software testing to reliability
estimation is that the input distribution used for selecting test cases may be
flawed. It is common place to attempt to test as many of the syntactic
features of the code as possible (within some set of resource constraints) are
called white box software testing technique. Techniques that do not consider
the code’s structure when test cases are selected are called black box
technique.

4.2 Functional Testing:

Functional testing is a testing process that is black box in
nature. It is aimed at examine the overall functionality of the product. It
usually includes testing of all the interfaces and should therefore involve the
clients in the process.

4.3 System Testing:

System Testing should be the final stage of the testing
process. This type of test involves examination of the whole computer
system, all the software components, all the hard ware components and any
interfaces.

The whole computer based system is checked not only

for validity but also to meet the objectives.

CONCLUSION

5. CONCLUSION

In this paper, we have presented an integrated strategy
for crack detection and filling in digitized paintings. Cracks are detected by
using top-hat transform, whereas the thin dark brush strokes, which are
misidentified as cracks, are separated either by an automatic technique
(MRBF networks) or by a semi-automatic approach. Crack interpolation is
performed by appropriately modified order statistics filters or controlled
anisotropic diffusion. The methodology has been applied for the virtual
restoration of images and was found very effective by restoration experts.

However, there are certain aspects of the proposed
methodology that can be further improved. For example, the crack-detection
stage is not very efficient in detecting cracks located on very dark image
areas, since in these areas the intensity of crack pixels is very close to the
intensity of the surrounding region. A possible solution to this shortcoming
wouid be to apply the crack-detection algorithm locally on this area and
select a low threshold value.

Another situation where the system (more particularly,
the crack filling stage) does not perform as efficiently as expected is in the
case of cracks that cross the border between regions of different color. In
such situations, it might be the case that part of the crack in one area is filled

with color from the other area, resulting in small spurs of color in the border

between the two regions. However, this phenomenon is rather seldom and
furthermore, the extent of these erroneously filled areas is very small (2-3
pixels maximum). A possible solution would be to perform edge detection or
segmentation on the image and confine the filling of cracks that cross edges

or region borders to pixels from the corresponding region.

FUTURE ENHANCEMENT

6. FUTURE ENHANCEMENT

This project can be enhanced by

» Applying these algorithms to colored paintings.

» Instead of PGM format files, it can be implemented in other
files like JPEG, BMP, etc.,

» Perfect crack detection can be performed automatically

without selecting a particular area.

APPENDIX 1-SOURCE CODE

7. APPENDIX

7.1 SAMPLE CODE:

Public Class frmMDIMain
Inherits System.Windows.Forms.Form
Dim InputFilePath As String = ""

Private Sub mnulmageCpenInputlmage Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
mnulmageOpenInputImage.Click
openDialogl.Filter = "PGM Images (*.pgm)|*.pgm"”
openDialogl.FileName = Application.StartupPath +
"\images\in.pgm"
If openDialogl.ShowDialog() =
Windows.Forms.DialcgResult.0OK Then
InputFilePath = openDialcgl.FileName
StatusBarl.Panels{(0).Text = "InputFilePath: " +
Y InputFilePath
AddImage (openDialogl.FileName)
End If
End Sub

Private Sub mnulmageOpenImage Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
mnulmageCpenlImage.Click
openDialogl.Filter = "PCM Images {*.pgm)|{*.pgm"
cpenDialogl.FileName = Application.StartupPath +
"\images\in.pgm"
If copenbialegl.ShowlDialog() =
Windows.Forms.DialogResult .CK Then
AddImage {openDialogl.FileName)
End If
End Sub

Private Sub mnuCrackDetectionTophatTransform Click(ByVval
sender As System.Object, ByVal e As System.EventArgs)
Handles mnuCrackDetectionTophatTransform.Click
If InputFilePath <> "" Then
Dim tCrackDetection As New CrackDetection
tCrackDetection.setInFilePath (InputFilePath)
tCrackDetection.setOQutFilePath("out 3 tophat.pgm™)
tCrackDetection.TopHatTransform()
TophatFinished = True

Call MsgBox("Tophat Transform, Finished.",
MsgBoxStyle.Information Or MsgBoxStyle.OkOnly, strTitle}
End If
End Sub

Private Sub mnuCrackDetectionThreshold Click(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
mnuCrackDetectionThreshold.Click
If TophatFinished = True Then
Dim tfrmThreshold As New frmThreshold
tfrmThreshold.MdiParent = tfrmMDIMain
tfrmThreshold.sShow ()
End If
End Sub

Private Sub mnuCrackRemovalOrderStatisticsFilter Click
(ByVal sender As System.Object, ByVal e As
System.EventaArgs) Handles
mnuCrackRemovalOrderStatisticsFilter.Click
ThresholdFinished = Truse
ITf ThresholdFinished = True Then
Dim tCrackRemoval As New CrackRemoval
tCrackRemoval.setInFilePath{InputFilePath)
tCrackRemoval.setOutFilePath{"t.pgm")
tCrackRemoval .ModifiedTrimmedMeanFilter (20)
tCrackRemoval.setInFilePath("t.pgm")
tCrackRemoval.setOutFilePath("out 6 removed.pgm"”)
tCrackRemoval.RecursiveMeanFilter (5)
Kill("t.pgm")

Call MsgBox ("Crack Remcval, Finished.",
MsgBcoxStyle.Information Or MsgBoxStyle.OkOnly, strTitle)
End If
End Sub

Private Sub
mnuThinBrushStrokesRemovalRemoveThinBrushStrokes Click
(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles
mnuThinBrushStrokesRemovalRemoveThinBrushStrokes.Click
'stop roi
ROICaptureStarted = False
StatusBarl.Panels(l) .Text = ""
'call grassfire algorithm
If ThresholdFinished = True Then
Dim tCrackDetection As New CrackDetection
tCrackDetection.setInFilePath("out 4 threshold.pgm")
tCrackDetection.setOutFilePath ("out 5 cracks.pgm")
tCrackDetection.GrassFire()
RemoveThinBrushStrokesFinished = True
Call MsgBox ("RemoveThinBrushStrokes,
Finished.", MsgBeoxStyle.Information Or MsgBexStyle.OkCnly,
strTitle)
End If
End Sub

Module modCrackDetection

Module modCrackDetecticn
Public Class CrackDetection
Dim InFilePath As String, CutFilePath As String
COnEL LTy
Public Sub New()
InFilePath = ™"
OoutFilePath = ""

End Sub

Public Function EdgeDetection (ByVal tIntensityDifference As

Integer) As PGM

Dim imgIn As PGM = New PGM

Dim imgCut As PGM = New PGM

Dim r As Integer, ¢ As Integer, inval As Integer,
outval As Integer
"read input image
imgIn.setFilePath({InFilePath)
imgIn.readImage (}
'set output-image header
imgCut.setFilePath (OutFilePath)
imgQut.setMagicString ("P5")
imgQut.setComment ("#edge image™)
imgOut.setDimension (imgIn.getCols (),

imgIn.getRows{))

imgOut.setMaxGray (imgln.getMaxGray ())
'adgefinding aigorithmn

For r = 0 To imgQut.getRows() - 1
For ¢ = 0 Te imgOut.getCols() - 1
inval = imgIn.getPixel(r, <) 'get current plxel

Dim tinval{2} As Integer
Dim fwval As Boolean
Dim flagl As Boolean, flagZ As Boolean
tinval (0) = imgIn.getPixel(r, c + 1)’'get right pixel
tinval(l) = imgIn.getPixel(r + 1, c)'gelt down pixel
flagl = IIf(Math.Abs{inval - tinval(0))} >
tIntensityDifference, True, False)
flag?2 = IIf(Math.Abs({inval - tinval(l)) >
tIntensityDifference, True, False)
fval = flagl Or filag2
outval = IIf(fval = True, 0, 255)
imgQut.setPixel{r, c, outval)
Next
Next
'write output image
imgOut.writeImage ()
Return (imgOut)

Eilbon)

mean filter algorithm {(Iow-pa :
Public Functlon MeanFllter(ByVal tIterations As Integer) As
PGM
Dim imgIn As PGM = New PGM
Dim 1mgOut As PGM = New PGM
Dim r As Integer, ¢ As Integer
Dim inval As Integer, outval As Integer
'read input lmage
imgIn.setFilePath(InFilePath)
imgin.readImage ()
'set output-image header
imgOut.setFilePath{Out¥FilePath)
imgCut.setMagicString ("P5")
imgCut.setComment ("#smoothed image")
imgCut.setDimension(imgIn.getCols (),
imgIn.getRows ()})
imgCut.setMaxGray (imgIn.getMaxGray{)
'smoothing algorithm (mean)
Dim t As Integer
For t = 1 To tIterations

}

For r = 0 To imgOut.getRows() ~- 1
For ¢ = 0 Te imgQut.getColsi{} - 1
inval = imgIn.getPixel(r, c) 'get curreni pixel

"'get neilghbourhood pixel intensity values
Dim neighbour(8) As Integer

neighbour{0) = imgIn.getNeighbor{r, c,
Directions.NW)
neighbour{l) = imgIn.getNeighbori(r, c,
Directions.W)
neighbour{2) = imgln.getNeighbor(r, c,
Directions. SW)
neighbour({3) = imgIn.getNeighbor(r, c,
Directions.S)
neighbour{4) = imgIn.getNeighbor(r, <,
Directions.SE)
neighbour{5) = imgIn.getNeighbor(r, c,
Directions.E)
neighbour{6) = imgIn.getNeighbor(r, c,
Directions.NE)
neighbour{7) = imgln.getNeighbor(r, c,

Directions.N)
'calculate new intensity value
Dim tsum As Integer = inval
Dim k As Integer
For k = 0 To 7

tsum = tsum + neighbour (k) 'calc sum
Next .
outval = tsum / 9 'calc mean

imgOut.setPixel (r, ¢, outval)

Next

'set oulputimage as input ro next Tteraunion
iteration;

If t <> tIterations Then

Dim rl As Integer

For rl = 0 To imgln.getRews () - 1
For ¢ = 0 To imglIn.getCcls () - 1
imgIn.setPixel(rl, ¢, 1mgOut.getPixel(rl,
Next
Next
End If
Next

'write output image
imgQut.writelmage ()
Return (imgQut}

End Function

'thresholding

cl)

Public Function Thresholding(ByVal tlIntensityThreshold As

Integer) As PGM
Dim imgIn As PGM = New PGM
Dim imgOut As PGM = New PGM

Dim r As Integer, ¢ As Integer, inval As Integer,

outval As Integer
'read input image
imgIn.setFilePath (InFilePath)
imgIn.readImage ()
"set cutput-image header
imgOut.setFilePath (OutFilePath)
imgQut.setMagicString ("?5")
imgOut.setComment {"#thresholded image")

imgQut.setDimension{imgin.getCols (), imgIn.getRows())

imgOut.setMaxGray{imgIn.getMaxGray(})
'binary thresholding algorithnm

for r = 0 Tc imgOut.getRows{) - 1
For ¢ = 0 To imgQut.getlols() - 1
inval = imgIn.getPixel{r, c¢) 'get current pixel

outval = IIf(inval >= tintensityThreshold,
imgOut.setPixel (r, c, cutval)
Next
Next
'write output image
imgOut.writeImage ()
Return (imgCut)
End Functicn

- 'erosion
Public Function TopHatTransform() As PGM
Dim imgIn As PGM = New PGM

0,

255)

Dim imgDilation As PGM
Dim imgTophat As PGM

Dim r As Integer,
Dim inval As Integer, outval As Integer

Yread dnm IBCEEE

Tl

New
New P

PGM
GM

¢ As Integer

1mg1n setFllePath(InFllePath)
imgIn. readImage()

imgErosion. setFllePath(‘out 1
imgErcsicn. setMagicString ("P3"

sel @roslon

AR 'i;.) i

s e [R

eragion.pgm™)
)

ingrosion‘setComment("#eroded image")
imgErosion.setDimensicn (imgIn.getCols (),
imgIn.getRows ())
ingrosion.setMaxGray(imgIn.getMaxGray())
set dilation-image headsry
ingilation.setFilePath("out_2_dilation.pgm")
imgDilation.setMagicString ("P5")
imgDilation.setComment ("#dilated image")
imgDilation.setDimension(imgIn.getCols (),
imgIn.getRows ())
imgDilation.setMaxGray (imgIn.getMaxGray ()}

set
imgTophat.
imgTophat.
imgTophat.
imgTecphat.

toph:

st-image
setFilePath {CutFilePath)
setMagicString ("P5")
setComment ("#tophat-transformed image")}
setDimension (imgIn.getCols (),

header

imgIn.getRows ())
imgTophat.setMaxGray (imgIn.getMaxGray ()}

erosion algorithm
For r = 0 To imgErosion.getRows() - 1
For ¢ = 0 To imgErosion.getCols() - 1
inval = imgIn. getPixel(r, c)
'get nelghborhcod pixel intensity values
Dim neighbkor (8) As Integer
neighbor (0) = imgIn.getNeighbor(¢, Directions.NW)
neighbor(l) = imgIn.getNeighbor{r, c, Directions.W)
neighbor (2) = imgIn.getNeighbor(r, c, Directions.SW)
neighbor (3) = imgIn.getNeighbor(r, c, Directions.S)
neighbor (4) = imgIn.getNeighbor(r, c, Directions.SE)
neighbor (5) = imgIn.getNeighbor(r, c, Directicns.E)
neighbor (6) = imgIn.getNeighbor{r, c, Directions.NE)
neighbor{7) = imgIn.getNeighbcr(r, c, Directions.N)
Dim flag As Boolean = True, t As Integer
For t = 0 To 7
If Math.Abs (neighbor{t) - inval) > 5 Then
flag = False
Exit For
End If
Next
outval = IIf{flag, inval, 255)

Next

Next

Yelilation aloocritnm lgravsoale Opening;

For r = 0 To imgErosion.getRows({) - 1

For ¢ = 0 To imgErosion.getCols () - 1

inval = imgErcsion.getPixel{(r, c)
imgDilaticn.setPixel{(r - 1, ¢ - 1, 1nval)
imgDilation.setPixel(r - 1, ¢, inval)
imgDhilation.setPixel(r - 1, ¢ + 1, inval}
imgDilation.setPixel(r, ¢ - 1, inval)

imgDilation.setPixel(r, c, inval]

{r
'
(r
(r
imgbilation.setPixel (
(
(
{

r, ¢ + 1, inval)
imgDilation.setPixel(r + 1, ¢ - 1, inval}
imgDilation.setPixel(r + 1, c, inval]
imgDilaticon.setPixel(r + 1, ¢ + 1, inval)

Next

Next
"tophat transform (crigina.image - grayscaleOpenedimags)
Dim invall As Integer
For r = 0 To imgIn.getRows () - 1

For ¢ = 0 To imgIn.getCols(}) - 1

inval = imgIn.getPixel{r, c¢) ‘pixel from criginallmage

invall = imgDilation.getPixel{r, c) 'pizel from

grayscalefpenedimage

outval = Math.abs{inval - invall)
imgTophat.setPixel (r, ¢, outval)
Next

Next

imgErosion.writelmage ()
imgbilaticon.writeImage{)
imgTophat.writelmage ()

Return {(imgErosion}

Return {imgDilation)

Return {imgTophat)

End Function

'grassfire algorithm (removal of thin brush strokss)
Public Function GrassFire({} As PGM
Dim imgIn As PGM = New PGM
Dim imgOut As PGM = New PGM
Dim r As Integer, ¢ As Integer
Dim inval As Integer
‘read input image
imgin.setFilePath(InFilePath)
imgIn.readImage ()
'set output-image header
imgOut.setFilePath (OutFilePath)
imgQut.setMagicString ("P3")
imgOut.setComment {"#cracks image")
imgQut.setDimension{imgin.getCols (), imgIn.getRows())

grass sl Qo LITnm

backaground as whnite

For r = ¢ To imgQut.getRows () - 1
For ¢ = 0 To imgQut.getCols() - 1
imgOut.setPixel(r, c, Z35)
Next
Next

Dim 1 As Integer
For 1 = ¢ To nROI - 1
Tarn rol pizel of
Dim t©X As Integer,
tX = ROIX (1)
tY = ROIY (i)
imglut.setPixel (LY,
‘verform the algorithm
Dim nIterations As Integer
Dim nPrevHits As Integer
While True
Dim nHits As Integer
nHits = 0
For r = 0 To imgOut.getRows({) - 1
For ¢ = 0 To imgOut.getCols{) - 1
'get rol pixel, 1f any
inval = imgQut.getPixel (r,
If inval = 0 Then
‘check imgin's 8 neighbors
Dim neighbor(8) As Integer
neighbor (0} = imgIn.getNeighbor
neighbor(= imgIn.getNeighbor
neighbor (= imgIn.getNeighbor
neighbor (imgIn.getNeighbor
neighbor{ imgIn.getNeighbor
!
{
{

c-lmadge inT

IR SIS

tY As Integer

tX, 0)

C)

i

neighbor imgIn.getNeighbor
neighbor = imgIn.getNeighbor
neighbor = imgln.getNeighbor (r,
Dim t As Integer,
tCount = 0
For t = 0 To 7
I1f neighbor(t) =
tCount += 1
End If
Next
'if all neighbors are black
If tCount = 8 Then
nHits += 1

(r,
(x,
(r,
(xr,
(r,
(r,
(r,

— e e e e

0 Then

'set all neighbors of current output pixel
inval)}

1,
1.
1r
c -

c - 1,
¢, inval)
c + 1,
1, inval)

setPixel(r -
setPixel (r -
setPixel (r -
setPixel (r,

imgQut.
imgQCut.
imgOut.
imgOut.

O bhlac

tCount As Integer

inval}

Directicns.
Directicns
Directions.
Directions
Directicns.
Directions.

. Directions.

Directions.

te black

NW}

LW

SW)

. 3)

SE)
E)
NE)
N)

, ¢ + 1, inval)
+ 1, ¢ - 1, inval)
+ 1, ¢, inval)
+ 1, ¢+ 1, inval)

imgQut.setPixel (r
imgOut .setPixel (r
imgOut.setPixel (r
imgQut .setPixel (r
End If
End If
Next
Next
nlteraticns += 1
If nIterations = 1 Then
nPrevHits = nHits
Else
If nPrevHits
Exit While
End If
nPrevHits = nHits
End If
End While
Next
'write output image
imgQut.writelImage ()
Return (imgOut)
End Functicn
End Class
End Module

nHits Then

Module modCrackRemoval

Module modCrackRemoval
Public Class CrackRemoval
Dim InFilePath As String, OutFilePath As String
'constructor
Public Subk New ()
InFilePath = ""
QutFilePath = ""
End Sub
Public Function RecursiveMeanFilter{BvVal tIterations As
Integer) As PGM
Dim imgIn As PGM = New PGM
Dim imgOut As PGM = New PGM
"read input image
imgIn.setFilePath(InFileFath)
imgIn.readImage ()
'set cutput-image header
imgQut.setFilePath(OutFilePath)
imgQut.setMagicString ("P5")
imgOut.setComment ("#mean-filtered image™)
imgQut.setDimension{imgin.getCols{}, imgIn.getRows())
imgOut.setMaxGrav (imglIn.getMaxGray ())

"'mean filter al

Dim r As Integer,

qor

1t hm

c As Integer

Dim inval As Integer, outval As Integer

Dim t As Integer

For t = 1 To tlIterations
For r = 0 Te imgQut.getRows () - 1
For ¢ = 0 To imgQut.getCols{} - 1

inval = imglIn.

'get neighborh

getPixel{r, c¢) -

oot pilxel dnuven

Dim neighbor(8) As Integer

neighbor (0) =
neighbor(l) =
neighbeor(2) =
neighbor (3} =
neighbor (4} =
neighbor (5) =
neighbor{6) =
neighbor({7) =

imgIn.getNeighbor (r,
imgIn.getNeighbor (r,
imgIn.getNeighbor (r,
imgIn.getNeighbor (r,
imgIn.getNeighbor(r, c,
imgIn.getNeighbor (r,
imgIn.getNeighbor (r,
imgIn.getNeighbor {r,

Dim tsum As Integer = inwval
Dim k As Integer

For k = 0 To 7

tsum = tsum + neighbor (k) 'calc sunm

Next

outval = tsum / 9
imgQut.setPixel (r, c, outwval)

Next
Next

'set outputimage as inpub to next iteraticon

last iteration)

If t <> tlIterations Then

Dim rl As Integer

For rl = 0 To imgIn.getRows () - 1

For ¢ = 0 To imglIn.getCols() - 1
imgIn.setPixel (rl, ¢, imgOut.getPixel

Next
Next
End If

Next

'write output image
imglut.writeImage ()

Return (imgQut)
End Function
End Class
End Module

Directions

Directions
Pirections

Directions

(rl, cj)

NW)
Directions.
. SW}
.3
Directions.
.E)
Directions.
Directions.
compute new intensity value as mean of nelghborhood

W)

SE)

NE)
N)

Module modPGM

Module modPGM
Public Enum Directions
NW = 0
N
NE
E
SE
S
SW
W
End Enum

'pamimage
Public Class PGM
Dim tFilePath As String
"pagm imageheader
Dim MagicString As String
Dim Comment As String
Dim Cols As Integer, Rows As Integer, MaxGray As Integer
'pgm imagedata
Pim Pixels(,) As Integer
'constructor
Public Sub New()
tFilePath = ""
MagicString = ""
Comment = ""
Cols = Q
Rows = 0
MaxGray = 0
End Sub
Public Function getPixel (ByVal tr As Integer, ByvVal tc
As Integer}) As Integer
Dim tIntensity As Integer
If tr >= 0 And tr <= Rows - 1 And tc¢c >= 0 And tc <=
Cols - 1 Then
tIntensity = Pixels{tr, tc)
End If
Return {(tIntensity)
End Functicn
Public Function getNeighbor (ByVal tr As Integer, Byval
tc As Integer, ByVal direction As Integer) As Integer
Dim pval As Integer = 0
If direction = Directions.NW Then
pval = getPixel{tr - 1, tc - 1)
Elself direction = Directions.W Then
pval = getPixel (tr, tc - 1}
ElseIf direction = Directions.SW Then

Elself direction
pval
ElseIf direction
pval
Elself direction
pval getPixel (tr,
Elself direction
pval
ElselIf direction
pval
End If
Return (pval)
End Function
'methods
Public Function readImage ()
Try
Dim fin As I0.FileStream
I0.FileStream{tFilePath,
Dim tByte As Byte, tStr As
'read magicstring
tByte fin.ReadByte ()
MagicString Chr {tByte)
tByte fin.ReadByte ()
MagicString
'read comment
tByte fin.ReadByte ()}
tByte fin.ReadByte{)
If tByte 10 Then tByte
Do While Chr (tByte) i
tStr Chr (tByte)

Do While Chr {tByte)
tByte fin.ReadByte ()
tStr

Loop

tByte
Loop
ITf tStr <>
Comment
End If
'read cols
tByte
tStr =
fin.Seek (-1,
tByte fin.ReadByte{)
tStr Chr (tByte)
Do While Chr(tByte)

tc

fin.ReadByte ()

Then
Left {tStr,

1

"o

<>

tByte = fin.ReadByte()
tStr = tStr + Chr (tByte)
Loop

Cols = Int(tStr}

Directions
getPixel(tr + 1,
Directions
getPixel (tr + 1,
Directicns

Directions
getPixel (tr - 1,

Directions
getPixel (tr - 1,

"read
'read

're

Len{tStr)

.8 Then
tc)

.SE Then
1)

.E Then

tec +

+ 13

.NE Then
1)

.N Then

te +

tc)

New
IC.FileMode.Open)
String

MagicString + Chr (tByte)

vhCr
!#l
fin.ReadByte ()

'read comment

<> vbLf

tStzr + Chr (tByte)

Q)

IC.SeekOrigin.Current)

" and Chr(tByte)

<> vbLf

tByte = 1

tStr = ""
tByte = fin.ReadBytel()
Do While Chr(tByte) <> " ™ And Chr{tByte) <> vbLf

tStr = tStr + Chr(tByte)
tByte = fin.ReadByte()

Loop

Rows = Int{tStr)

'read mangray

tByte = 1

TSty = "M

tByte = fin.ReadByte ()}

Do While Chr (tByte) <> " " And Chr (tByte) <> vbLf
tStr = tStr + Chr{tByte)
tByte = fin.ReadByte()

Loop
MaxGray = Int(tStr)

"read imagedata

ReDim Pixels (Rows, Cols)

Dim x As Integer, y As Integer
Fcr v = 0 To Rows - 1

For x = 0 To Cols - 1

tByte = fin.ReadByte()
Pixels{y, x) = tByte
Next
Next

fin.Close()
Catch err As Exception
ShowError (err)
End Try
End Function

Public Function writeImage ()

Try

Dim fout As IO.FileStream = New IQ.FileStream(tFilePath,
IC.FileMcde.Create)

Dim tByte As Byte,tStr As String,1 As Integer,j As Integer
'write image header
'write maglicstring
tStr = "P5" + vbCrLf
For i = 0 To Len{tStr) -
tByte = Asc(tStr.Chars(i
fout.WriteByte (tByte)
Next

'write comment
If Comment <> "" Then
tStr = Comment + vbCrLf
For i = 0 To Len(tStry -1
tByte = Asc(tStr.Chars(i))
fout.WriteByte (tByte)

1
)

End If
write ools
tStr = Trim(Str(Cols)) + " "
For 1 = 0 To Len{tStr} - 1
tByte = Asc(tStr.Chars{i))
fout.WriteByte (TByte)
Next
"writa rows
tStr = Trim{Str{Rows)) + wvbCrLf
For i = 0 To Len{tStr} - 1
tByte = Asc({tStr.Chars{i))
fout.WriteByte (tByte)
Next
'write maxgray
tStr = Trim({Str {MaxGray)) + vkCrLf
For 1 = 0 Te Len(tStr) - 1
tByte = Asc{tStr.Chars(i})
fout.WriteByte (tByte)
Next
For i = 0 To Rows - 1
For J = 0 To Cols - 1
tByte = Pixels(i, 7J)
fout.WriteByte (tByte)
Next
Next
fout.Close()
Catch err As Exception
ShowErrorierr)
End Try
End Function
End Class
End Module

APPENDIX 2-SCREEN SHOTS

7.2 OUTPUT SCREENS:

4 Detection and Removak of Cracks in Digitized Pai tl
[IECR Crack.Datection Thin Brusl okes Removal :ra:kﬂmwel

i Sereentunter_t3

Fies of bype: PGM Images [".pgm) j _.._...__J

Detection and Removal of Cracks in Digitized Paintings
Image CrackDatection Thin Brush-Strokes Remaval Crack Remaval

¥ C:WDocuments and Seitings\8 ianiDe

rputFieP ath ocuments and Setling\S Mani\Deskiop\BSRADRCDPAsrc\CrackDetection\binimages'\d. pgm

W Detection and Removal of Cracks in Dighized Paintings

\Documents and Seltings\SMani\Desklop\BESR\DRCDsrc\CrackDet

® Detectien and Removal of Cracks i Digitized Painlings

¥ Detection and Removal of Cracks in Digitized Paintings
image Crack Detaction [RINNIISRCT-Et LN Crack Removal
Start Region-Cf-Inkerast Sefection. ..
Stop Region-Of-Intersst Selection. ..

re\Crackdie..
- .

TrpalFieP s L ADocumants and Setings\s ManD sektop\ BSR\DALDPrc\LackDelectionbintimages\kpgm

Inage CrackDetection Thin Erush-Srokes Removal Crack Removal

bty

eeklop BSRORLDIMsre\CrackBe. .. X ;

IreasFiPathe CADociments ond Setings's MarADatklop\8 SRADRED P\ LrackDekec orbinimagei. pom

RemavaThinBrushStrokes, Finished.

* Detection apd Rermoval of Cracks in Digitirad Paintinps
Imags CrackDetection Thin Brush-Strokes Removal EEEIERTTE

Wﬂ’t ocumants and S etlings\S Mani\Deskiop'\BSRADRCDPAsie\CrackD etection\binlimages'

Detection and Removal of Cracks in Digitized Paintings [} -
.
\5’(Grack Remeval, Finlshed.

=]

RDRCE src\CrackDe

noutflePath: C:\Documents and Settings\S Mani\Daskiop\BSR\DRCDFsrc\CrackDetectionibin\images'.pgm

\Crack Detection\bin\images\4 pom

¥ Detection ard Removul of Cracks in Digitized Paintings
Image Crack Detection Thin Brush-Strokes Remaval Crack Removal

£ C:\Dotuments and Setlingsis MamiWeskio pSRDRCDMsrc\CrackDe. ..

“InputFiePeth C\Docvanents and Seltingshs MarhD esklop\ SEADFICDParcvCrackDetsctionbinkimagesid pgrn

Detection and Removai of Cr.
Image CrackDetection Thin Brush-Strokes Removal Crack Ramevsl

¥ CADocuments and Setlimyds Mam\Dockio pESIANRE DR reACrack

‘neutFasPath CAD beuronks snd Setingshs ManDewklop\BSRDRCDPAsrc\CrackD etecorbrimagetd b

REFERENCES

8. REFERENCES

[1] F. S. Abas and K. Martinez. Classification of painting cracks
For content-based analysis. In Proceedings of IS&T/SPIE's

15th Annual Symposium on Electronic Imaging: Machine Vision
Applications in Industrial Inspection XI, 2003.

[2]1J. V. A. de Boer. Infrared Reflectography. - A Contribution to
The Examination of Earlier European Paintings. PhD thesis,
Univ. Amsterdam, 1970.

[3] P. de Willigen. A mathematical study on craquelure and other
mechanical damage in paintings. Technical report, Delft University
of Technology, Faculty of Information Technology

and Systems, Department of Mathematics and Computer Science,
1999.

[4] I. Giakoumis and I. Pitas. Digital restoration of painting
cracks. In Proceedings of the IEEE Int. Symposium on Circuits
and Systems (ISCAS "98), 1998. .

[5] L. Joyeux, O. Buisson, B. Besserer, and S. Boukir. Detection
and removal of line scratches in motion picture films. In
Proceeding of the IEEE Conference on Computer Vision and
Pattern Recognition , 1999.

[6] F. Mairinger. Strahlenuntersuchung an Kunstwerken. E.A.
Seemann, Berlin, 2003.

[71]. Serra. Les treillis visqueux. Technical Report N-
51/99/MM, CMM, Ecole des Mines de Paris, 1999.

[8] P. Soille. Morphological Image Analysis: Principles and
Applications.Springer-Verlag, 1999.

