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Abstract




ABSTRACT

Tolerancing plays a major role in the performance and reliability of the assembly.
Tolerance is used to control size, location, and geometry of dimensions of
components to ensure that the components assemble and assembly meets the
functional requirements. It is very important to know how to allocate tolerances
economically for parts in a CAD/CAM system because this directly affects the
machining cost of the parts. However tolerances are assigned out of intuition to
satisfy design constraints and this approach is relying on the experience of the
designers and the results may not be optimum. Based on the analysis results,
modifications are made manually by a “trial and error” method. This method

relies on the experience of the designers and the results may not be optimal.

This work explores an important aspect of tolerance charting; one of the main
objectives in tolerance charting is to determine the working dimensions and
tolerances at the lowest cost without violating the blueprint specifications. Here a
new approach to tolerance charting is followed. Genetic algorithm techniques
have been used in this work to find the optimal tolerance value and the work has
been further extended by finding out the optimal tolerance value based on the cost
output from PSO technique. Then the cost comparisons for the obtained optimal
value based on genetic algorithm and PSO have also been presented in this work.
It has been found out that the optimal tolerance associated for the selected
machine component under specified conditions is achieved by PSO algorithm,

than that of Genetic algorithm.
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CHAPTER 1

INTRODUCTION

1.1 DESIGN TOLERANCE

Tolerance can be defined, fundamentally, as limits or boundaries. In realm of
mechanical engineering and product manufacturing, tolerance is defined as “The
total amount by which a given dimension may vary, or the difference between the

limits.”

Tolerance technique has evolved over the years and has reached their current state
through an ever increasing quest for efficiency in producing products that satisfy
customer requirements. As society has progressed to the current standard of
living, manufacturing technology has had a lot to do with the expectations that
have developed; conversely the ever increasing demand for higher quality
products and services has stimulated remarkable changes in manufacturing

process and in the upstream product development and design processes.

Trying to fit a manufacturing process to the design tolerance just prior to
production is a suboptimal approach in developing design and manufacturing
process capability. Tolerances have a leading role in engineering, as it effects on
the manufacturing process through deviations. Furthermore defined tolerances
guarantee the interchangeability of parts. Technical systems are getting more
complex in the development of engineering systems. Therefore one can find the
tendency to decrease tolerance zones as a consequence, by keeping the correct
function, which would mean making the design robust due to deviations of
process chains. Coupling tolerances (clearance, deviation) and the calculation of
stiffness (elastic deformation, subsuming thermal) of a product will give a

correlation of both as a multi-criterion influence. Therefore, the tolerance



contCouplingled constraints will give the designer a calculation model closer to

reality.

1.2 NEED FOR OPTIMAL TOLERANCE

As design and functionality concern, tolerances should be as close to zero, which
is not possible due to the manufacturing constraints. Thus the tolerance should
respect the limited capability of required manufacturing processes as well as the
functionality and assembly constraints as discussed by [1]. Mechanical tolerance

specification is one of the most important of these potential meeting places.

Determining the optimal assignment of tolerances, especially for complex
mechanisms, can be crucial to distinguish a product, that is cost-effective and on
schedule from a product that is burdened by scrap, rework and delay. Designers
often specify tight tolerances in order to maximize product performance.
Manufacturers often prefer loose tolerances in order to maximize yield and lower
production costs. Tolerance optimization provides development teams with a way
to balance the competing requirements of product performance and total

manufacturing costs.

Therefore tolerance can be highly desired to achieve customer’s requirements and
also produce the high quality product with optimal cost. Optimal tolerance can
have the multiple objectives required by the customer requirements, including
higher quality and low manufacturing cost. Optimal tolerance can be achieved by
a procedure, which is executed iteratively by comparing various achieved
solutions. The optimization algorithm begins with the initial design solutions and
the iteratively check new design solutions in order to achieve the global optimal

solutions.
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CHAPTER 2

LITERATURE REVIEW

The various tolerance synthesis methods are based on conventional optimization
methods, quality engineering methods and methods based on genetic algorithm,
simulated annealing are near fuzzy learning. The majority of the published articles
on tolerance synthesis are based on optimization, most of which use the cost-

tolerance models.

Ngoi et al. [1999] this paper describes a new approach for optimum tolerance
allocation in assembly. The method allows all blueprint tolerances to be
determined while ensuring that all the assembly requirements are satisfied. The
algorithm is simple and hence it is suitable for all users. It reduces the amount of
work and “guessing” required in the allocation of blueprint tolerances. Moreover,
it is assured that the result obtained is an optimum and none of the assembly
requirements are violated. Further work is being carried out to integrate tolerance
charting with the above approach to determine the blueprint tolerances, working

dimensions and tolerances concurrently.

Bryan Ngoi Kok Ann et al. [1996] this paper presents a simple dimensional
chains identification method. After establishing all necessary equations and
constraints, a nonlinear objective function is formulated. Subsequently, all these
relationships are submitted to an optimization software, OPTIVAR written in

FORTRAN for the determination of the unknown variables.

Meifa Huang et al. [2006] this paper deals with a concurrent optimal tolerance
design methodology for allocating assembly functional DGTs to the pertinent
process DGTs has been presented. This method first converts the pertinent
geometric tolerances into equivalent bilateral dimensional tolerances or additional

tolerance Counterparts. The DGTs are then considered in the same integrated

Los



techniques for the tolerance transfer is the tolerance charting method, but it is

basically restricted to the one dimensional case.

3.2.7 Tolerance Evaluation

It deals with how to assess the geometric deviations of a part using the data

obtained from the coordinate measuring machines.

3.3 TOLERANCE AND COST RELATIONSHIP

The general characteristics of a manufacturing cost tolerance data curve, several
general cost-tolerance relation models, including the exponential, reciprocal
squared and the reciprocal powers models, were introduced. In addition, it fails to
consider the valid range of a cost-tolerance curve to avoid infeasible solutions,

and requires manual formulation.

Cost based optimal tolerance analysis techniques are very helpful in promoting
economic design for functionality. They require 2 good deal of insight into
developing a proper math model that relates cost and functional quality; once such
a model is properly defined, the power of this optimal design tolerance become
quite evident. In this work has concentrated on minimizing manufacturing cots

and minimize the quality loss value.

Tolerance must be linked to more than the variability that originates in the
manufacturing environment; it must have some costs that are incurred to make the
product. These costs are primarily represented by the term unit manufacturing cost
(UMC). Tolerances must further be developed in context of two more costs.

The life cycle cost (LCC) of the design will account for the broader that is repair
and replacement cost associated with the use of the product. This metric is
particularly important in industries that must repair and service the products they
sell to satisfy customer expectations. Quality loss function (QLF) means when
customers requirement could not reached by design parameter or it is deviated for
the target point due to some manufacturing constrains, for this the manufacturer
have to pay for it. The following Figure 3.1 gives the relationship between these

three costs.



Unit manufacturing cost

Life cycle cost Quality loss function

Figure 3.1 Relationship between costs

Tighter the tolerance, the more expensive it is to manufacture a part. This trend
provides fundamental rule in selecting tolerances by the designers at the design
phase; that is, tolerances should be chosen as large as possible as long as they
meet the functional and assembly requirements of the part. It may be worth while
to change designs to relax tolerance requirement for the cost purposes. Larger
tolerances result in using less skilled machines, lower inspection costs and

reduced scrapping of matenal.

3.4 QUALITY LOSS FUNCTION

Companies that are practieing on target engineering use an alternative approach to
the limitations the step function exhibits as a measure of quality. The quality loss
function was developed by Taguchi to provide a better estimate of the monetary
loss incurred by manufacturers and consumers as product performance deviates

from its target value. The quality loss function can be shown as equation (3.1).

Ly =ky-m® (3.1

Where, L(y) is the loss in dollars due to a deviation away from targeted
performance as a function of measured response y of product; m is the target value
of the product’s response; and k i1s an economic constant called quality loss
coefficient. Figure 3.2 illustrates the quality loss function. At y = m, the loss is
zero, and it increases the further y deviates from m. the quality loss curve typically
represents the quality loss for an average group of customers. The quality loss for
a speciftc customer would vary depending on customer’s tolerance and usage
environment. However, it is not necessary to derive an exact loss function for all
situations. That would be too difficult and not generally applicable. The quality

loss function can be viewed on several levels:



* As a unifying concept of quality and cost that allows one to practice the

underlying philosophy driving on target engineering

* As a function that allows one to relate economic and engineering terms in one

mode].

* As an equations that allows one to do detailed optimization of all cost, explicit
and implicit, incurred by the firm, customers and society through the

production and use of a product.

L(y

SWAY 1 31 BFAVY

Figure 3.2 The Quality Loss Function
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CHAPTER 4

4.1 INTRODUCTION

Tolerance allocation is a design function. It is performed carly in the product
development cycle, before any parts have been produced or tooling ordered. It
involves first, deciding what tolerance limits to place on the critical clearances and
fits for an assembly, based on performance requirements; second, creating an
assembly model to identify which dimensions contribute to the final assembly
dimensions; third, deciding how much of the assembly tolerance to assign to each

of the contributing components in the assembly.

A defective assembly is one for which the component variations accumulate and
exceed the specified assembly tolerance limits. The yield of an assembly process
1s the percent of assemblies which are not defective. In tolerance analysis,
component variations are analyzed to predict how many assemblies will be in
spec. If the yield is too low. rework, shimming, or parts replacement may be

required.

In tolerance allocation, an acceptable yield of the process is first specified and
component tolerances are then selected to assure that the specified yield will be
met. Often, tolerance design is performed by repeated application of tolerance
analysis, using trial values of the component tolerances. However, a number of
algorithms have been proposed for assigning tolerances on a rational basis,

without resorting to trial and error.

4.2 PROPORTIONAL SCALING METHOD

The designer begins by assigning reasonable component tolerances based on

process design guide lines. Then he sums the component tolerances by a constant



proportionality factor. In this the relative magnitude of the component tolerances

are preserved.

This method is demonstrated graphicaily in Figure. 4.1 for an assembly tolerance
Tasm, which is the sum of two component tolerances, T} and T2. The straight line
labeled as the Worst Case Limit is the locus of all possible combinations of T1
and T2 which, added hnearly, equal Tasm. The ellipse labeled Statistical Limit is
the locus of root sum squares of T1 and T2 which equal Tasm. The following

equations figure out these two cases.

Worst Case Limit
Tasm= T1+T2+T3+............ +Tn  aeee- 4.1

Statistical Limit

2 2 2 2
+ + Frereinean -+
Ta_sm = \/Tl Tz T3 Tn _____ (42)
Worst Case Limit
1.0 Taem™= Ty + Ty _ ‘
Statistical Limit
Tasm = V11 + T22
T2 =
Tasm Allaea ted
Tokerances by
0.5 Froportional
[T 2 i
Criginal Seafing
Tolaranoes
[ : ;
' H
4 ’
H »
b L]
F
0 1 1 HE| '
[ T1 1.9
Tazm

Figure 4.1 Graphical interpretation of tolerance allocation by proportional Scaling

4.3 ALLOCATION BY WEIGHT FACTORS

A more versatile method of assigning tolerances is by means of weight factors W.
Using this algorithm, the designer assigns weight factors to each tolerance in the

chain and the system distributes a corresponding fraction of the tolerance pool to



each component. A larger weight factor W for a given component means a larger

fraction of the tolerance pool will be allocated to it.

In this way, more tolerance can be given to those dimensions which are the more
costly or difficult to hold, thus improving the producibility of the design. Figure
4.2 illustrates this algorithm graphically for a two component assembly. The
original values for component tolerances T1 and T2 are selected from process
considerations and are represented as a point in the figure, as before. The
tolerances are scaled, similar to proportional scaling; only the scale factor 1s
weighted for each component tolerance so the greater scale factors yield the least

reduction in tolerance.

Worst Case Limit
Tasm=WITI +W2T2+W3T3+............ +WnTn  -—-- (4.3)

Statistical Limit

JWIT? +W3T3 + WaT3 =+ W, T

Tasm = ----(4.4)
Worst Case Limit Statistical L|2m1t ;
Tasm =T + Ty Tasm = ¥ T2+ Ty
10 Criginal
B Tolerances
Proportional

Scaling ; ;

______________ N e o N A T T
\‘N'1 ‘l’:‘ H ‘f‘f? T? E
H Al .
i 1 :
_ Scaled H E

03 |- Tolerances :
H H
T2 | e et A ST T R
Tasrn | i
P,
H
D i 1 1 i
0.5 T 1.0
Tasm

Figure 4.2 Graphical interpretation of tolerance allocation by weight factors.

4.4 CONSTANT PRECISION FACTOR METHOD

Parts machined to a similar precision will have equal tolerances only if they are of
same size. As part size increases, tolerance generally increases approximately with

the cube root of size.



Tolerance Ti=P(D1)1/3 - (4.5)
Where,
Di = basic size of the part

P = Precision factor

Based on this rule, the tolerance can be distributed accordingly to the part size.
Precision factor method is similar to the proportional scaling method, except there
is no initial allocation required by the designer. Instead the tolerances are initially
allocated according to the nominal size of each component dimension and the

scaled to meet the specified assembly tolerance.

4.5 TAGUCHI METHOD

The Taguchi method not only determines tolerance but also determines the ideal
nominal values for the dimensions. This is referred to as dimension. The method
finds the nominal dimensions that allow the largest, lowest-cost tolerances to be
assigned. It selects dimensions and tolerance with regards to their effect on a
single design function. The method uses fractional factorial experiments to find
the nominal dimensions and tolerance that maximize the so-called signal to noise
ratio. The signal is a measure of how close the design function is to its desired
nominal value. The noise is a measure of the variability of the design function
caused by tolerances. The main disadvantage of the Taguchi method is its inability
to handle more than one design function. Finding one design function for a

product for a product may not be at all practical.

4.6 TOLERANCE ALLOCATION USING LEAST COST
OPTIMIZATION

A promising method of tolerance allocation uses optimization techniques to assign
component tolerances such that the cost of production of an assembly is
minimized. This is accomplished by defining a cost-vs.-tolerance curve for each
component part in the assembly. The optimization algorithm varies the tolerance
for each component and searches systematically for the combination of tolerances

which minimizes the cost.

14



Cost J

Tolerance

Total Cost-
[worst Case]

[Statistical]

Figure 4.3 Optimal tolerance allocations for minimum cost

Figure 4.3 illustrates the concept simply for a three component assembly. Three
cost-vs.-tolerance curves are shown. Three tolerances (T1, T2, T3 ) are mmitially
selected. The corresponding cost of production is C1 + C2 + C3. The optimization
algorithm tries to increase the tolerances to reduce cost; however, the specified
assembly tolerance limiis the tolerance size. If tolerance T1 is increased, then
tolerance T2 or T3 must decrease to keep from violating the assembly tolerance
constraint. It is difficult to tell by inspection which combination will be optimum,
but you can see from the figure that a decrease in T2 results in a significant
decrease in cost, while a corresponding decrease in T3 results in smaller increase
in cost. In this manner, one could manually adjust tolerances until no further cost
reduction is achieved. The optimization algorithm is designed to find it with a
minimum of iteration. Note that the values of the set of optimum tolerances will
be different when the tolerances are summed statistically than when they are

summed by worst case.

4.7 TOLERANCE ANALYSIS Vs. TOLERANCE
ALLOCATION

The analytical modeling of assemblies provides a quantitative basis for the
evaluation of design variations and specification of tolerances. An important
distinction in tolerance specification is that engineers are more commonly faced

with the problem of tolerance allocation rather than tolerance analysis.

The difference between these two problems is illustrated in Figure 4.4. In

tolerance analysis the component tolerances are all known or specified and the



resulting assembly variation is calculated. In tolerance allocation, on the other
hand, the assembly tolerance is known from design requirements, whereas the
magnitudes of the component tolerances to meet these requirements are unknown.
The available assembly tolerance must be distributed or allocated among the
cornponents in some rational way. The influence of the tolerance accumulation
model and the allocation rule chosen by the designer on the resulting tolerance

allocation will be demonstrated.

Tolerance Analysi|s Tolerance Allocatioh

Component Component
Tolerances Tolerances

Assembly

Assembly Tolerance

Toierance

Allocatior]
Scheme

3944

Assembly
Function

Acce;ance Acceptance
Fraction Fraction

Y
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Another difference in the two problems is the yield or acceptance fraction of the

Figure 4.4 Tolerance Analysis Vs Tolerance AHocation

assembly process. The assembly yield is the quality level. It is the percent of
assemblies which meet the engineering tolerance requirements. It may be
expressed as the percent of acceptable assemblies or the percent rejects. For high
quality levels, the rejects may be expressed in parts-per-million (ppm), that is, the

number of rejects per million assemblies.

In tolerance analysis the assembly yield is unknown. It is calculated by summing
the component tolerances to determine the assembly variation, then applying the
upper and lower spec limits to the calculated assembly distribution. In tolerance
allocation, on the other hand, the assembly yield is spectfied as a design
requirement. The component tolerances must then be set to assure that the
resulting assembly yield meets the specifications. The rational allocation of
component tolerances requires the establishment of a rule for distributing the

assembly tolerance among the components.
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CHAPTER S

OPTIMIZATION TECHNIQUES

5.1 OPTIMIZATION

Optimization is the act of obtaining the best result under given circumstances. In
design, constructing and maintenance of any engineering system,
engineers/managers have to take many technological and managerial decisions at
several stages, figure 5.1 shows the steps involved in the optimization process.
The ultimate goal of all such decisions is to either minimize the effort required or

maximize the desired benefit.

Mechanical engineers design mechanical equipments like pumps, turbines and
heat transfer equipment for maximum efficiency and mechanical components like
linkages, cams, and gears, machine tools for the purpose of achicving either a
minimum manufacturing cost or a maximum component life. Production
engineers are interested in designing optimum schedules of various machining
operations to minimize the idle time of machines and the overall job completion

time.

5.2 TYPES OF OPTIMIZATION TECHNIQUE

The following are the types of optimization. They are

1. Traditional optimization technique and

2. Non- Traditional optimization technique 7

5.2.1 Traditional and Non-traditional Techniques

Traditional techniques for optimization include linear programming, random
search method, geometric programming. dynamic programming and integer

programming.
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Figure 5.1 Optimization Process-Steps

5.2.1.1 Linear Programming

Linear programming is an optimization method applicable for the solution of
problems in which the objective function and the constraints appear as linear
functions of the decision variables. The constraint equations in a linear
programming problem may be in the form of equalities or inequalities. The linear
programming type of optimization problem was first recognized in the 1930’s by

economist while developing methods for the optimal allocation of resources.

Linear programming is considered a revolutionary development that permits us to
make optimal decisions in complex situations. At least four Noble Prizes were

awarded for contributions related to linear programming.



Although several other methods have been developed over the years for solving
LP problems, the simplex method continues to be the most efficient and popular

method for solving general LP problems.

5.2.1.2 Random Search Method

The random search method described for unconstrained minimization can be used,
with minor modifications, to solve a constrained optimization problem. The basic

procedure can be described by the following steps:

a. Generate a trial design vector using one random number for each design
variable.

b. Verify whether the constraints are satisfied at the trial design vector. Usually,
the equality constraints are considered satisfied whenever their magnitudes lie
within a specified tolerance. If any constraint is violated, continue generating
new trial vectors until a trial vector that satisfies all the constraints is found.

¢. If all the constraints are satisfied, retain the current trial vector as the best
design if it gives a reduced objective function value compared to the previous
best available design. Otherwise, discard the current feasible trial vector and
proceed to step 1 to generate a new trial design vector.

d. The best design available at the end of generating a specified maximum
number of trial design vectors is taken as the solution of the constrained

optimization problem.

5.2.1.3 Geometric Programming

Geometric Programming is a relatively new method of solving a class of non
linear programming problems. It was developed by Duffin, Peterson and Zener. It
is used to minimize functions that are in the form of polynomials subject to
constraints of the same type. It differs from other optimization techniques in the
emphasis it places on the relative magnitudes of the terms of the objective
function rather than the variable. Instead of finding optimal values of the design
variables first, geometric programming first finds the optimal value of the
objective function. This feature is especially advantageous in situations where the

optimal value of the objective function may be all that is of interest. In such cases.



calculation of the optimum design vectors can be omitted. Another advantage of
geometric programming is that it often reduces a complicated optimization
problem to one involving a set of simultaneous linear algebraic equations. The
major disadvantage of the method is that it requires the objective function and the

constraints in the form of polynomials.

5.2.1..4 Dynamic Programming

Dynamic programming is a mathematical technique well suited for the
optimization of multistage decision problems. This technique was developed by

Richards Bellman in the early 1950s.

The dynamic programming technique, when applicable, represents of decomposes
a multistage decision problem as a sequence of single-stage decision problems.
Thus an N-variable problem is represented as a sequence of N single-variable
preblems that are solved successively. In most cases, these N sub-problems are
easier to solve than the original problem. The decomposition to N sub-problems is
done in such a manner that the optimal solution of the original N-variable problem
can be obtained from the optimal solutions of the N one-dimensional problems. It
is important to note that the particular optimization technique used for the
optimization of the N single- variable problems is irrelevant. It may range from a
simple enumeration process to a differential calculus or a nonlinear programming

technique.

The dynamic programming technique suffers from a major drawback, known as
the curse of dimensionality. However, despite this disadvantage, it is very suitable
for the solution of a wide range of complex problems in several areas of decision

making.

5.2.1.5 Integer Programming

When all the variables are constrained to take only integer values in an
optimization problem, it is called an integer programming problem. When the
variables are restricted to take only discrete values, the problem is called a discrete

programming problem. When some variables only are restricted to take integer



values, the optimization problem is called a mixed-integer programming problem.
When all the design variables of an optimization problem are allowed to take on

values of either zero or one, the problem is called zero-one programming problem.

Non-traditional techniques for optimization include fuzzy logic, search technique,

genetic algorithm, Taguchi technique and response surface methodology.

5.2.1.6 Fuzzy Logic

Fuzzy logic has great capability to capture human commonsense reasoning,
decision-making and other aspects of human cognition. It overcomes the
limitation of classical logical systems, which impose inherent restrictions on
representation of imprecise concepts. Vagueness in the coefficients and
constraints may be naturally modeled by fuzzy logic. Modelling by fuzzy logic

opens up a new way to optimize cutting conditions and also tool selection.

5.2.1.7 Genetic Algorithm

These are the algorithms based on mechanics of natural seleciion and natural
genetics, which are more robust and more likely to locate global optimum. It is
because of this feature that GA goes through solution space starting from a group
of points and not from a single point. The cutting conditions are encoded as genes
by binary encoding to apply GA in optimization of machining parameters. A set of
genes is combined together to form chromosomes, used to perform the basic

mechanisms in GA, such as crossover and mutation.

Crossover is the operation to exchange some part of two chromosomes to generate
new offspring, which is important when exploring the whole search space rapidly.
Mutation is applied after crossover to provide a small randomness to the new
chromosomes. To evaluate each individual or chromosome, the encoded cutting
conditions are decoded from the chromosomes and are used to predict machining
performance measures. Fitness or objective function is a function needed in the
optimization process and selection of next generation in genetic algorithm.
Optimum results of cutting conditions are obtained by comparison of values of
objective functions among all individuals after a number of iterations. Besides

weighting factors and constraints, suitable parameters of GA are required to

2t



operate efficiently. GA optimization methodology is based on machining
performance predictions models developed from a comprehensive system of
theoretical analysis, experimental database and numerical methods. The GA
parameters along with relevant objective functions and set of machining
performance constraints are imposed on GA optimization methodology to provide

optimum cutting conditions.

5.2.1.8 Scatter Search Technique (SS)

This technique originates from strategies for combining rules and surrogate
constraints. SS is completely generalized and problem-independent since it has no
restrictive assumptions about objective function, parameter set and constraints set.
It can be easily modified to optimize machining operation under various economic
criteria and numerous practical constraints. It can be extended as an on-line
quality control strategy for optimizing machining parameters based on signals

from sensors.

5.2.1.9 Taguchi Technique

Genichi Taguchi is a Japanese engineer who has been active in the improvement
of Japan’s industrial products and processes since the late 1940°s. He has
developed both the philosophy and methodology for process of products quality
improvement that depends heavily on statistical concepts and tools, especially
statistically designed experiments. Many Japancse firms have achieved great
success by applying his methods. Wu (1982) has reported that thousands of
engineers have performed tens of thousands of experiments based on his
teachings. Sullivan (1987) reports that Taguchi has received some of Japan’s most
prestigious awards for quality achievement, including the Deming prize. In 1986,
Taguchi received the most prestigious prize from the International Technology
major contribution has involved combining engineering and statistical methods to
achieve rapid improvements in cost and quality by optimizing product design and

manufacturing processes.

2
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5.2.1.10 Response Surface Methodology

Experimentation and making inferences are the twin features of general scientific
methodology. Statistics as a scientific disciplines is mainly designed to achieve
these objectives. Planning of experiments is particularly very useful in deriving
clear and accurate conclusions from the experimental observations, on the basis of
which inferences can be made in the best possible manner. The methodology for
making inferences has three main aspects. First, it establishes methods for
drawing inferences from observations when these are not exact but subject to
variation, because inferences are not exact but probabilistic in nature. Second, it
specifies methods for collection of data appropriately, so that assumptions for the
application of appropriate statistical methods to them are satisfied. Lastly,

techniques for proper interpretation of results are devised.

5.3 Advantages of Non-traditional Techniques

The advantages of Non-traditional techniques are

1. A population of points is used for starting the procedure instead of a single
design point.

2. GAs use only the values of the objective function. The derivatives are not used
in the search procedure.

3. Search method is naturally applicable for solving discrete and integer
programming problems. For continuous design variables, the string length can
be varied to achieve any desired resolution.

4. The objective function value corresponding to a design vector plays the role
of fitness in natural genetics.

5. In every new generation, a new set of strings is produced by using randomized

parents selection and crossover from the old generation.

J
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CHAPTER 6

PROBLEM DEFINITION

6.1 OPTIMUM TOLERANCES FOR BALL SCREW
ASSEMBLY

6.1.1 About Ball Screws

Ball screws are used in the conversion of rotary movement to linear movement,
which translates torque into thrust. Ball screw assemblies consist of a screw and a
nut. A steel ball is encased within the round nut in order to produce a coupling
ling friction between the nut and screw. The nut itself can be made of either
plastic or metal. The ball screw assembly is powered by a motor. As the motor
generates torque, the rotating screw pushes the nut along the screw shaft,

producing linear thrust.

There are a few variations of ball screws available for use in industrial settings.
Ball screw manufacturers commonly produce ACME, Lead (pronounced leed) and
Ground ball screws. They each differ in size and efficiency output on application.
Lead screws do not actually use coupling lers to create movement but are placed
in the same category as ball screws because of their similar function and
capacities. ACME screws most widely used power screw and are a type of lead

screw which creates friction between ball and nut.

Nurnerous industries, including aerospace, computer. electronic. automotive, and
medical industries, utilize ball screws in product applications. Ball screw
manufacturers can create ball screws that are used in medical equipment, material
handling equipment, conveyors, and machine tools, among many other product
applications. The most common use for ball screws is in aspects where linear
motion is needed. They are often used alongside linear slides and linear actuators

1o create movement necessary to move parts and devices along a single axis.

Ball screws remain beneficial for a variety of reasons. Ball screw assemblies

maintain high levels of efficiency, measuring approximately 90%. and maintain






low energy consumption levels. In addition, ball screws can be manufactured
using a variety of techniques. Common techniques include conventional coupling
ling, milling, and grinding. These advantages remain important considerations
when choosing a screw assembly. Length of the screw is the most crucial
cornponent in choosing a ball screw for your application. They are classified
however by diameter, either in English or metric and often manufacturers have
both labels available. When replacing a ball screw assemblies, consider ball screw
repair. Many ball screw manufacturers offer repair services as an alternative to the

purchase of new ball screw systems.

6.1.2 Types of Ball Screws

s ACME screws are lead screws that create a sliding friction between screw and
nut. ACME screws maintain a lower efficiency than ball screws, measuring
about 30 %, but are often cost effective. Acme screws are often utilized in

applications requiring high levels of accuracy at low speeds.

» Ground ball screws are produced using a grinding wheel instead of the
conventional coupling ling technique. Ground ball screws offer close

tolerances, but may be expensive to produce.
« Jack screws are frequently used in car jacks.

» Lead screws consist of a threaded shaft and nut, and create friction through
sliding rather than through the coupling ling friction characteristic of ball
screws. The efficiency of lead screws increases with increased lead. Lead

screws are advantageous in managing high shock loads.

» Metric ball screws are designed according to metric system measurements, as

opposed to the English system of measurements.

+ Miniature ball screws , which consist of ball screws measuring as little as
three millimeters in diameter, are used in applications in which minute
products components are needed, such as industrial applications in the
computer, electronic, fiber optics, and semiconductor industries. Miniature

ball screws maintain high efficiency levels in spite of their size.

25



e Screw jacks are used in lifting jacks.

This model was proposed by Ngoi [1999], the ball screw assembly given in Figure

6.1 consist of four components; screw, nut, coupling, bearing.

Peuring 3

PN S

N

Bemring 2

Bearing 1

'y

NN

4

7

- ST

Figure 6.1 Ball Screw Assembly

6.2 INITIAL TOLERANCE ALLOCATION

7

s

In an assembly, some tolerances may not be constrained by the assembly

requirements. Thus, it is necessary to set an upper limit to each tolerance. The

limit should be chosen such that it can be easily attained and it should not violate

any other requirements. The initial tolerance allocated based on Table 6.1

The purpose of this step is to first allocate the “loosest™ tolerance possible to all

dirnensions and subsequently, it tightens all the necessary tolerances to meet the

assembly requirements.

Table 6.1 Maximum Allowable Tolerance for Dimensions

Dimension Maximum allowable tolerance
L=<4 +0.05
4<L.<16 0.1
16<L.<63 =0.2
63<1.<250 +0.3
250<L +0.4




6.2.1 Tolerance chart

The main tasks of tolerance charting include the identification of dimensional
chains, the calculation of mean working dimensions, and the atlocation of proper

tolerances to the working dimensions for all machining cuts.

A tolerance chart is a visual graphic tool used by process engineers to determine
the mean working dimensions and to assign the corresponding tolerances to the
working dimensions for a new manufacturing process. The kemel of tolerance
charting is the theory of tolerance chains. Once the tolerance chart is constructed,
the first task is to identify tolerance chains among the working dimensions.
Traditionally, a tracing method is used to identify tolerance chains in a tolerance
chart. If the component consists of square-shouldered features only, the
identification of the tolerance chains is not very difficult and a one-dimensional
(1D) tolerance chart is good encugh to deal with all problems that may be
encountered. However, when an angular feature is involved, a two-dimensional
(2D) tolerance chart must be constructed and the identification of the tolerance

chains becomes much more difficult.

The tolerance chart diagrams are shown in the below:

b AT EEATE

Figure 6.2 Tolerance Chart Diagram for part A
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6.3 Formulating Objective Function and Constraint Equations:

The aim of the tolerance chart procedure is to loosen the process tolerance
efficiently while ensuring that the blueprint specifications are not violated. The
aim may be interpreted as maximizing the total additional tolerances to the
existing process tolerance. It can, therefore, be formulated into an objective

function and mathematically represented as:

Maximize >= (*D1+*D2+*D3+........... *Dn)
Maximize 3= (*T1+*T2+*T3+........... *Tn)
Where

n = number of unknown working dimension or tolerance in the respective part.
Therefore the objective function of the working dimension and tolerances are

Maximize (AD1+AD2+AD3+BD1+BD2+BD3+BD4+BD5+BD6+
CD1+CD2+CD3+CD4+DD1+DD2+DD3) -—-- (6.1}

And

Maximize (ATI+AT2+AT3+BT1+BT2+BT3+BT4+BT5+BTo+
CTi+CT2+CT3+CT4+DT1+DT2+DT3) - (6.2)

Having represented the objective function mathematically, the next step is to
formulate the constraints. The constraints are governed by the relationship

between the resultant tolerance and the tolerance specification the blueprint.
Equating the working dimension to the blueprint dimensions.

Example:  -AD3+AD2=7 e (6.3)
Equating the working tolerance to the blueprint tolerance.

Example: AT3+AT2<01 e (6.4)
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CHAPTER 7

GENETIC ALGORITHM

7.1 GENETIC ALGORITHM

Genetic algorithms are a set of computer procedures of search and optimization
based of the concept of the mechanics of natural selection and genetics. Holland
made the first presentation of the GA techniques in the beginning of the 60°s and

further development can be credited to Goldberg.

Genetic algorithms implement Optimization strategies based on simulating the
evolutionary law of natural selection, to obtain the “fittest individual™, that is, the
optimal solution. Genetic algorithms work as follows. First, the variable involved
1s coded into a suitable representation. Next, a population of chromosomes,
usually randomly seclected from the whole function domain, is created. This
population is dynamic: at each iteration, some elements of it are chosen to
reproduce, via suitable operators, according to their capability of adaptation to the
environment. Key parameters of GA involve crossover probability, mutation

prebability, and population size.
7.2 GA PARAMETERS CONTROL

7.2.1 Crossover Probability

It denotes how often crossover will be performed. If crossover probability is
100%, then all offspring are made by crossover. If it is 0%. a next generation is
made from exact copies of chromosomes from the old population. Typically,

crossover probability should be high (larger than 50%).



7.2.2 Mutation Probability

It denotes how often parts of chromosomes will be mutated. If mutation
probability is 100%, the whole chromosome is changed, if it is 0%, nothing is
changed. Mutation generally prevents the GA from falling into local extremes.
Mutation rate should be low generally (typically less than 5%). The Genetic
Algorithm flowchart is shown in Figure 7.1.

7.2.3 Population Size

It denotes how many chromosomes are in population. If there are too few
chromosomes, GAs has few possibilities to perform crossover and only a small
part of search space is explored. On the other hand, if there are too many
chromosomes, GA slows down. In the current example the population size was set

to eight members.

In an assembly, some tolerances may not be constrained by the assembly
requirements. Thus, it is necessary to set an upper limit to each tolerance. The
limit should be chosen such that it can be easily attained and it should not violate
any other requirements. When the GA tool is opened, M-file is created and
invoked in the GA tool of MATLAB 7.inside the simulation toolbox space, the

GAs chose, randomly the initial population and scores parameters.

Then, based in the previous information the algorithm chose another setup, which
was done and its data again fed into the algorithm. The process is continued until
the optimum was found. The parameters of GA computations are shown in the

Table 7.1.

In the GA, the population size, crossover rate and mutation rate are important
factors in the performance of the algorithms. A large population size or a higher
crossover rate allows exploration of the solution space and reduces the chances of
settling for poor solution. However, if they are too Jarge of high. it results in

wasted computation time exploring unpromising regions of the solution space
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Figure 7.1 Genetic Algorithm flow chart

. Table 7.1 Parameters of GA computation

Population type Double Vector
Population size 40
Fitness scaling function Rank
Selection function Roulette
Reproduction elite count 2
Crossover rate 100%
Crossover function Single
Mutation function Uniform
Mutation rate 1%
Number generations 63

L)
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7.3 OPTIMIZATION OF THE FUNCTION

Several numerical methods are available for optimization of non linear equation
with constraints. A Genetic Algorithm method is efficient and quickest one, and
this method was used to determine the optimum tolerance to match the assembly
limit. The above mentioned objective function is fed into the M-file and run using
the GA optimization tool box available in MATLAB 7 obtain the following results
shown in the Table 7.2

Following plots and graphs are obtained for the optimized process parameters are

shown in figure 7.2
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Table 7.2 Best Individual Value from MATLAB

TOLERANCE | MATLAB
AT] 0.010
AT2 0.0119
AT3 0.0155
BT1 0.0197
BT2 0.0137
BT3 0.0127
BT4 0.010
BT5 0.010
BT6 0.0127
CT1 0.016
CT2 0.0125
CT13 0.0235
CT4 0.0145
DTI 0.0118
DT2 0.010
DT3 0.0146
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CHAPTER 8

PARTICLES SWARM OPTIMIZATION

8.1 BACKGROUND OF ARTIFICIAL LIFE

The term "Artificial Life" (Alive) is used to describe research into human-made
systems that possess some of the essential properties of life. Alive includes two-

folded research topic:

Alive studies how computational techniques can help when studying
biological phenomena.
ALife studies how biological techniques can help out with computational

problems.

The focus of particles swarm optimization is on second Alife. Actually, there are
already lots of computational techniques inspired by biological systems. For
example, artificial neural network is a simplified model of human brain; genetic

algorithm is inspired by the human evolution.

Here we discuss another type of biological system - social system, more
specifically, the collective behaviors of simple individuals interacting with their
environment and each other. Someone called it as swarm intelligence. There are
two popular swarm inspired methods in computational intelligence areas: Ant
colony optimization (ACO) and particle swarm optimization (PSO). ACO was
inspired by the behaviors of ants and has many successful applications in discrete

optimization problems.

8.2 PARTICLES SWARM OPTIMIZATION TECHNIQUE

The particle swarm concept originated as a simulation of simplified social system.

The original intent was to graphically simulate the choreography of bird of a bird



block or fish school. However, it was found that particle swarm model can be used

as an optimizer.

As stated before, PSO simulates the behaviors of bird flocking. Suppose the
following scenario: a group of birds are randomly searching food in an area. There
is only one piece of food in the area being searched. All the birds do not know
where the food is. But they know how far the food is in each iteration. So what's
the best strategy to find the food? The effective one is to follow the bird which is

nearest to the food.

PSO leaned from the scenario and used it to solve the optimization problems. In
PSO, each single solution is a "bird" in the. search space. We call it "particle”. All
of particles have fitness values which are evaluated by the fitness function to be
optimized, and have velocities which direct the flying of the particles. The
particles fly through the problem space by following the current optimum

particles.

PSO is initialized with a group of random particles (solutions) and then searches
for optima by updating generations. In every iteration, each particle is updated by
following two "best" values. The first one is the best solution (fitness) it has
achieved so far. (The fitness value is also stored.) This value is called pbest.
Another "best" value that is tracked by the particle swarm optimizer is the best
value, obtained so far by any particle in the population. This best value is a global
best and called gbest. When a particle takes part of the population as its

topological neighbors, the best value is a local best and is called Ibest.

After finding the two best values, the particle updates its velocity and positions.
An inertia weight factor that dynamically adjusted the velocity over time,
gradually focusing the PSO into a local search, the particle updates its velocity

and positions with following equation { 8.1 )and ( 8.2 ).

v[]=wxvij+ o rand ( )x ( pbest[]- presenr[])
+ o, xrand { )x (gbest[]— present[]) (8.1

presenil} = present[]+V{] ----(8.2)



Where,
v[] = Particle velocity

Present [ ] = Current particle (solution)

pbest [ ] = Best solution among the each particle
gbest [ ] = Best among defined as stated before.
rand () = Random numbers between (0,1)

® = Inertia Weights. Usually 0.8 or 0.9

C1, C2 are learning factors. Usually C1 = C2 =2.

The nominal values of different component’s Ball Screw Assembly.

Screw X1 = 11.836 inches
Couplingl X2 = 1.0204 inches
Coupling? X3 = 0.6938 inches

Tolerance boundary values of different component’s Ball Screw Assembly

Screw X1 = 1 to 200 (in 107 inches)

Couplingl X2 = 1 to 60 (in 10™ inches)

Coupling2 X3 = 1 to 60 (in 107 inches)
8.3 OBJECTIVE FUNCTION

Combined objective function of minimizing the manufacturing cost and the cost

associated with the quality loss function are considered in this work.
Manufacturing cost for single side tolerance values for

0.1258

Screw M(f)=1+ Pz (8.2)
1
A1
Couplingl M (t;) =1+%—0]7§ ------- (8.3)
Coupling2 M(t,)=1+ %8—] ....... (8.4)
(0438

3

Total manufacturing cost M{(t)= M)+ M)+ M) (8.5)

Cost associated with quality loss function



LS A
olt)=Y o=

A (8.6)
where,

A is Quality loss coefficient.

T, is the single side functional tolerance stackup limit

for dimensional chain k

Q¥ is standard deviation of dimensional chain k
K is total no of dimensional chain

k is dimensional chain index

From the above equations the combined objective function can be formulated

) Z[M )+ olz.)]

Minimize

Minimize Y )
0.1258  0.1181 _ 0.1181

0.4653 0.4383 + 0.4383
t t) 1

3+

+ A*(90.77029* 1] +362.811%¢; +90.77029*1})

8.4 ALGORITHM OF PARTICLES SWARM OPTIMIZATION

Most of evolutionary techniques have the following procedure:

i.  Random generation of an initial population
ii.  Reckoning of a fitness value for each subject. It will directly depend on the
distance to the optimum.
ili.  Reproduction of the population based on fitness values.

iv.  If requirements are met, then stop. Otherwise go back to 2.

From the procedure, we can learn that PSO shares many common points with GA.
Both algorithms start with a group of a randomly generated population, both have
fitness values to evaluate the population. Both update the population and search

for the optimum with random technigues. Both systems do not guarantee success.



However, PSO does not have genetic operators like crossover and mutation.
Particles update themselves with the internal velocity. They also have memory,

which is important to the algorithm.

8.5 PSO PARAMETERS CONTROL

From the previous pages case, we learned that there are two key steps when
applying PSO to optimization problems: the representation of the solution and the
fitness function. One of the advantages of PSO is that PSO take real numbers as
particles. It is not like GA, which needs to change to binary encoding, or special
genetic operators have to be used. Then we can use the standard procedure to find
the optimum. The searching is a repeat process, and the stop criteria are that the

maximum iteration number is reached or the minimum error condition is satisfied.

There are not many parameter need to be tuned in PSO. Here is a list of the
parameters and their typical values. The number of particles: the typical range is
20 - 40. Actually for most of the problems 10 particles is large enough to get good
results. For some difficult or special problems, one can try 100 or 200 particles as

well.

Dimension of particles: It is determined by the problem to be optimized,

Range of particles: It is also determined by the problem to be optimized, you can

specify different ranges for different dimension of particles.

Vmax: it determines the maximum change one particle can take during one

iteration. Usually we set the range of the particle as the Vmax.

Learning factors: c1 and ¢2 usually equal to 2. However, other settings were also

used in different papers. But usually ¢l equals to ¢2 and ranges from [0, 4]

The stop condition: the maximum number of iterations the PSO execute and the
minimum error requirement. For example. for ANN training in previous section,
we can set the minimum error requirement is one mis-classified pattern. The
maximum number of iterations is set to 2000. This stop condition depends on the

problem to be optimized.
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Global version vs. local version: we introduced two versions of PSO. Global and
local version. Global version is faster but might converge to local optimum for
some problems. Local version is a little bit slower but not easy 10 be trapped into
local optimum. One can use global version to get quick result and use local

version to refine the search.

8.6 CODING SYSTEM

In order to solve the problem, the program has been written by using the VC-++.
First step, by using the random function, the tolerance values for the each
components of the Ball Screw Assembly can be initialized. That can be called as
the initial population. Before that we have to define the number of particles and
number of iterations. These initial values are used to calculate the .optimal cost by
using the combined objective function. The ball screw assembly has three
components such as Screw, Coupling 1 and Coupling 2; hence three variables in
the objective function are tl, 12 and t3 respectively. These three variables are
initialized then calculate the objective function. . This can be done for all particles

used in the program.

After that we have to find the particles best (pBest) and global best (gBest), by
using these values present particles velocities are updated for the next iterations.
Like that each iteration will be updated the velocity of each particle. In final

iteration we get the optimal cost and its optimal tolerance.

Figure 8.1 gives the flow of the program in order to find the optimal tolerance and
optimal cost. Qutput of this program will be compared to the genetic algorithm
results; its differences are tabled. The graphs are plotted. By absorbing that
graphs, it gives the how the cost can be converging and meet optimal cost and

optimal tolerance for each components.

8.7 PARAMETERS USED

The number of particles = 10 to 20
The number of tterations = 100 to 500

Dimension of particles = 3
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Range of each particle
Tolerance of screw <=0.020
Tolerance of coupling 1 <= 0.0060
Tolerance of coupling 2 <= 0.0060

Velocity of each particle
Velocity of screw <=0.020
Velocity of coupling 1 <=0.0060
Velocity of coupling 2 <= 0.0060

Learning factors
cl=1.5, c2=15

Inertia weight factor (@ ) = 0.9



Enter the no of Particles P

v

Enter the no of iterations N

v

Enter the no of Quality loss value A

v

Generate the random tolerance T’ and
velocity ‘v’ for each particle, i=1

v

> Calcunlate the fitness value for each
particle Y(T), i=i+!

v

Select the pBest and gBest

v

Update the velocity to every particle
t=T+v

If 1<=t >= 200 If (t>200)

Optimal Solution

Figure 8.1 Flowcharts for Program




8.8 OPTIMUM SOLUTIONS FOR BALL SCREW ASSEMBLY
FOR DIFFERENT QUALITY LOSS COEFFICIENT VALUES

The results clearly show that the PSO algorithm yields the optimal tolerance value
for components of the ball screw assembly. The optimum tolerances are within the
specified limits. The particle swarm optimization algorithm was run with a larger
swarm size of 20, also used inertia weight factor of @ = 0.9 and learning factors c1
= 1.5 and ¢2 = 1.5. The resuits of PSO are compared with those obtained with GA
and are discussed in the succeeding section. Table10.1 display the optimal
tolerance of individual components of the ball screw assembly and its cost for six
different values of quality loss coefficient A (0, 1, 52, 100, 300 and 520). Also,

the convergence of the solution is clearly portrayed in the graphs.

Table 8.1 Optimal tolerance and optimal Manufacturing Cost in Dollar

Tolerance by PSO in 107 inc

A T1 T2 T3 Y(T)

0 200.0 60.00 60.0 9.501

1 200.0 60.00 60.0 9.553
52 77.2 39.4 60.0 11.789
100 59.2 30.1 532 11.923
300 37.9 16.2 33.9 12.567
520 30.3 15.3 27.1 13.189

The Figure 8.2 explains the cost convergence quality loss value of *0". In this
case, the optimal cost and optimal tolerance is obtained in the second iteration

itself. When the quality loss values 15 ‘0’

The optimal tolerance for Screw = 200.00x10™ inches
The optimal tolerance for Coupling 1= 60.00x10™ inches
The optimal tolerance for Coupling 2 = 60.00x10™ inches

The optimal manufacturing cost = 9.501 dollar
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Quality Loss =0
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Figure 8.2 Graph for Quality Loss Coefficient ‘0’

The Figure 8.3 explains the cost convergence quality loss value of 1°. In this
case, the optimal cost and optimal tolerance is obtained in the second iteration

itself, with an increased cost than the previous one.

When the Quality loss value ‘1°

The optimal tolerance for Screw = 200.00x107 inches
The optimal tolerance for Coupling 1 = 60.00 10 inches
The optimal tolerance for Coupling 2 = 60.00x 10" inches

The optimal manufacturing cost = 9.553 dollar

Quality lL.oss =1

10
9.95 1
9.9 4
9.85
9.8 4
9.75 -
9.7 |
9.65 4
9.6
9.55 |
Q.5 o T M I T T e 7 PRV T T T T e I T T |
1 21 4 81 81 101 121 141 181 181 :

No. of Iteration

Optimal Cost{in$)

Figure 8.3 Graph for Quality Loss Coefficient ‘1 *

The Figure 8.4 explains the cost convergence quality loss value of *52°. In this

case, the optimal cost and optimal tolerance is obtained in the fourth iteration. The

45



optimal cost obtained in this case is more with reduced tolerance when compared

with past two cases.

When the Quality loss value “52°

The optimal tolerance for Screw =77.2 x10™ inches
The optimal tolerance for Coupling 1 = 39.4 x10" inches
The optimal tolerance for Coupling 2 = 60.0 x10™* inches

The optimal manufacturing cost = 11.789 dollar

Quality Loss =52

11.1 -
11.05 -
1 \
10.95 - L
10.9 -
10.85 |

1 2t 4 61 81 101 121 141 161 181 '

No. of Iteration

Optimal Cost (in $)

Figure 8.4 Graph for Quality Loss Coefficient ‘52’

The flowing Figure 8.5 shows optimal cost for the quality loss value of “100°. In
this case the optimal cost and optimal tolerance is obtained at the seventh
iteration. The tolerance is reduced and the cost is increased when compare the

above three cases.

When the Quality loss value *100°

The optimal tolerance for Screw = 59.2 x1 0 inches
The optimal tolerance for Coupling 1=30.10 x10™ inches
The optimal tolerance for Coupling 2 = 53.2 x10™ inches

The optimal manufacturing cost = 11.923 dollar
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Quality Loss =100
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Figure 8.5 Graph for Quality Loss Coefficient ‘100 *

The flowing Figure 8.6 shows the case for quality loss value “300°. In this case
also the optimal tolerance will be obtained at the 16" iteration with an increased
cost is increased when compared with the previous cases but tolerances for each

component reduced.

When the Quality loss value “300°

The optimal tolerance for Screw = 37.9x107 inches
The optimal tolerance for Coupling 1 =19.2 x10™ inches
The optimal tolerance for Coupling 2 = 33.9x10™ inches

The optimal manufacturing cost = 12.567 dollar

Quality Loss =300

1
12.59 J‘\

Optimal Cost(in$)

12.54 EN ML T T e T T T T T T S T T T T T T T T AT i e py e oeie == :
1 21 41 61 81 101 121 141 1861 181 '

No. of teration

Figure 8.6 Graph for Quality Loss Coefficient ‘300"
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The flowing Figure 8.7 shows the case for quality loss value *520°. In this case
also the optimal tolerance is obtained at the 27™ iteration with an increased cost

and an reduced tolerance value.

When the Quality loss value ‘5207

The optimal tolerance for Screw = 30.3 x 10" inches
The optimal tolerance for Coupling 1 = 15.3 x10™ inches
The optimal tolerance for Coupling 2 = 27.1 x107 inches

The optimal manufacturing cost = 13.189 dollar

Quality Loss =520

Optimal Cost(in §
o
5
S
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1 21 4 61 8 101 121 141 161 181

No. of lteration

Figure 8.7 Graph for Quality Loss Coefficient ‘520 ¢

8.9 COMPARE PARTICLE SWARM OPTIMIZATION
RESULTS WITH GENETIC ALGORITHM RESULTS

The results clearly show that the proposed PSO provides the optimal tolerance
value, for various components of the ball screw assembly chosen, than that
obtained with GA of previous work. The optimum tolerances obtained are within

the specified limits.
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Table 8.2 Comparison the PSO Results with GA Results

Tolerance by PSO in Cost in Dollars Difference w.r.to
10"*inches PSO
A
T1 T2 T3 Yoa Y pso GA
0 200.0 60.00 60.0 10.63 9.501 -1.129
1 200.0 60.00 60.0 10.731 9.553 -1.178
52 77.2 394 60.0 11.789 11.789 -0.887
100 59.2 30.1 53.2 11.923 11.923 -0.475
300 379 19.2 339 12.567 12.567 -0.018
520 30.3 15.3 27.1 13.189 13.189 0.000

The software is also run with a larger swarm size of 20, inertia weight factor of @
= 0.9 and learning factors ¢1 = 1.5 and ¢2 = 1.5 and the results are compared with
those results of GA as shown in the Table 8.2 and also shows the comparisons of
the results obtained by PSO (Ypso), Genetic algorithm results (Yga). This
comparison clearly concludes that PSO technique yields the optimal tolerance
value, for various components of the ball screw assembly, than that of Genetic
algorithm (GA). But with an A = 520, PSO result exactly matches the results
obtained with GA.

The Flowing Figure 8.8 illustrates the comparisons of the results obtained by PSO,
Genetic algorithm (GA) results. This comparison clearly concludes that PSO
technique yields the optimal tolerance value, for varidus Quality loss values .('),'1,
52, 100 and 300(A), than that of GA. But with an A = 520, PSO result exactly

maiches the results obtained with GA.
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Figure 8.8 Comparison graphs
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Chapter 9

Conclusion



CHAPTER9

CONCLUSIONS

The following are some of the conclusions made regarding the work that have

been carried out accordingly.

» Tolerance chart is a very useful tool for contCouplingling work piece
dimenston during manufacturing, and also allows all blueprint tolerance to be

determined while ensuring that all the assembly requirements are satisfied.

» The optimal tolerance allocation using Genetic Algorithm makes it possible to
achieve the global optimal tolerances, which matches the assembly limit and

reduces the number of rejects and cost of production.

» Affirmed that the number of parent’s combination is to be kept at the

maximum in Genetic Algorithm.

e The Particle Swarm Optimization provides less manufacturing cost when

compared to that of Genetic Algorithm.

¢ The optimal tolerance can be found out by means of manufacturing cost.
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