OPTIMUM DESIGN OF GRID FLOOR
USING GENETIC ALGORITHM

nnnnnnnnnn

g

A PROJECT REPORT

Submitted by

B.UMADEVI
Reg. No: 71206413018

in partial fulfillment for the award of the degree

of
MASTER OF ENGINEERING

in

STRUCTURAL ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE

ANNA UNIVERSITY:: CHENNALI 600 025

TTTY VW NNV

ANNA UNIVERSITY: CHENNAI 600 025
BONAFIDE CERTIFICATE

I certify that this project report «QPTIMUM DESIGN OF GRID FLOOR
USING GENETIC ALGORITHM” is the bonafide work of “MISS. B.UMADEVI”

who carried out the project work under my supervision.

Z//\\‘ S\J auww;‘l“w’\ Y"_%\ ij% \VK%W/@’S

Dr. S. L. NARASIMHAN Ph.D. Dr.J. PREMALATHA Ph.D.
Head Of Department Professor

Department of Civil Engineering Department of Civil Engineering
Kumaraguru College Of Technology, Kumaraguru College Of Technology,
Coimbatore. Coimbatore.

The candidate with University Register No. 71206413018 was examined by us in the

project viva- voce examination held on 03 O 2008

-

%

Internal Examiner E erna xammer

ACKNOWLEDGEMENT

I submit our humble gratitude to feet of the divine spirit for having made this
project a tremendous success. 1 proudly thank our affectionate, and friendly internal
project guide Prof. Dr. J. PREMALATHA Ph.D., Department of civil
engineering for her invaluable guidance and suggestions. 1 thank our HOD
Dr. S. L. NARASIMHAN Ph.D., Department of civil Engineering for his
encouragement and support.

I am blessed to be the student of Kumaraguru College of Technology. |
am thankful to Principal Dr. JOSEPH V THANIKAL Ph.D., from his able leadership
1 was able to acquire good knowledge and experience from this great institution. 1
also thank our faculty members and non- teaching staffs for their Cooperation and
great help. Special thanks to all those who helped me to complete this project
successfully.

Last but not the least, I thank my parents for their blessings and their guidance

and support they gave me for making this project a successful one.

ABSTRACT

e reinforced construction of the private and the

most common form of th
nal method of design gives

¢. Even though the traditio

The

public building is the grid floo
ooses the

] results We can further improve the results if one ch

logical and economica
ike cost of steel ,

ffects of the yarious factors 1

timally and includes the €

dimensions Op
oject is 10 reduce the total

ective function of this pr

concrete and formwork .The obj
d floor by considering cost of concrete, steel and formwork.

cost involved In the gri

The Genetic Algorithm, a search technique based on natural evolution, 18 best
s an approach

problems of discrete nature Thus this paper present

suited for handling
thm (GA). A computer

ost optimuim design of grid floors using Genetic Algori

rmulate the optimization p

for the ¢
roblem and few examples are

program is developed o fo
model. It 18

ared with the results obtained from the present

solved and comp
ed in this paper Jeads to minimum cost design of

concluded that the formulation present

grid floors.

CHAPTER

TABLE OF CONTENTS

NO TITLE
ABSTRACT

TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES

INTRODUCTION

1.1 General
1.2 Objective Function
1.3 Simple Definitions

LITERATURE REVIEW

ANALYSIS OF GRID FLOOR
34 Introduction
3.2 Basic assumptions
33 Analysis of grid floor by Plate theory
3.4 T-Beams
3.4.] Introduction

3.4.2. Basis of design for T-Beam

3.5 Modes of design of T-beam

GENETIC ALGORITHM

4 1 Tntroduction

PAGE NO
iii
iv
vii

viii

wh

12

4.2 History

43 Comparison of patural and GA
4.4 Working principle of GA

4.5 Genetic Algorithm in Engineering
4.6 Fitness function

4.7 Genetic Operator

4.8 Benefits of GA

4.9 Differences and similarities in GA

OPTIMIZATION USING GENETIC ALGORITHM
5.1 Formulation of optimization problem
5.20bjective function
5.3Design variables
5.4Constraints
5 5Penalized objective function
5 6 Genetic algorithm

5.7 Convergence criteria

EXAMPLE PROBLEM
6.1 Formulation of problem
6.2 Variable bound
6.3 Genetic parameters
6.4User defined constraints
6.5Grid floor problem

6.6 Results

12

12

13

13

13

14

14

17

20

20

21

21

22

24

26

26

27

31

6.7 Cost comparison

6.8 Convergence history for the problem

CONCLUSION

REFERENCE

42

43

48

49

LIST OF TABLES

TABLE NO TITLE PAGE NO
1 Variable bounds 26
42

2 Cost Comparison

FIG NO

10.

1.

LIST OF FIGURES

TITLE

Model of Grid Floor
Three possible positions of Neutral axis.
Flowchart of Computer program for GA based
Optimization of Grid Floor.
Beam position for Grid Floor of span 12m
Beam position for Grid Floor of span 14m
Beam position for Grid Floor of span 16m
Cost vs. Generation for span 12m-runl
Cost vs. Generation for span 12m-r1_m7
Cost vs. Generation for span 14m |
Cost vs. Generation for span 16m-runli

Cost vs. Generation for span 16m-run2

PAGE NO

10

45

46

47

CHAPTER-1

INTRODUCTION

1.1 General:

The design optimization of reinforced concrete structures is more challenging
than the steel structures because of the complexity associated with the design because
in the optimization of the steel structures only one material is considered .But in the
concrete structures three different cost components due to steel concrete and formwork
are to be considered and slight variations in quantity of one item may affect the total
cost to a greater extent. Hence problem becomes the sclection of combination of

variables in appropriate quantities so that total cost is kept minimum.

Even though conventional methods gives good results mathematical
programming techniques in conjunction with the high digital computers have changed

the formulation of the design problem it self and they are found to give better results.

Optimization problems are solved by techniques called operation research.
Optimization problem cannot be solved by a single method. Though many methods are
available the problems that are discrete in nature are solved only by genetic algorithm
process. In this project the optimization problem is solved by using genetic algorithm

process.

1.2 Steps to solve optimization problem :
1. Choose the design variables

To formulate the constraint

Formulation of objective function

To choose optimization algorithm

TR

To obtain the solution

Statement of optimization problem:

An optimization Of mathematical programming problem can be stated as

follows:

X = x1
x2

Xn

which minimizes function f(x) subject to the constraint

gi(x) < 0,j=12,3,....m

li(x)=0,]= 1,2,00eeeee P

where x is an n-dimensional vector called the design vector,

f(x) termed as objective function

gi(x), li(x) = inequality and equality constraints.

The above problem stated above is called as the constrained optimization problem.

some optimization problem do not involve constraints they are.

X = x1
x2

xn
Such problems are called as unconstrained optimization problem.
1.3 Objectives of present Investigation :
In this project attempt is made to optimize the orid floors using the genetic

algorithm process. The total cost involved in the construction is reduced by considering

the cost of concrete, steel and formwork.

CHAPTER -2

LITERATURE REVIEW

Many researchers have investigated the cost — optimum design of reinforced
concrete structures like beam column But very few literature is available for the cost
optimization of the grid floor ‘Mathematical programming technique called as SUMT
technique waé used by S.R.Adidam1 ,N.G.R.Iyengar1 , and G.V.Narayanan1 for the

cost optimum design of the grid floor .

In their paper a computer program was developed to find the cost optimum
design of the grid floor and the comparison of cost is made for floor of different spans.
Cost 18 optimized by the variation of the design variables .Iyengar2 gives the

optimization of the different structures like shells, plates and the grid floors.

Tnspired by the Darwin’s theory of the survival of the fittest, the genetic
Algorithm(GA)is a global search procedure for improving the solution In the
succeeding populations using the genetic operators such as reproduction, crossover and
mutation .(Goldberg3 1989, S. Rajasekaran4 and G.A Vijayalakhmi Pai* 2003). Much
work has been carried for the design optimization of the steel structures by Rajeev > and
Krishnamoorthy5 GA technique was used to the optimization of the steel structure

because of the feasible, practical and optimal results.

Reinforced concrete rectangular rectangular column was optimized
considering the costs of the concrete, steel and the formwork. The cost optimal and time
efficient design Wwas made by incorporafing the codal provisions and practical
considerations using the GA technique (V.Govindaraj(’ and J .V.Ramasamy“ 2006)
Reinforced beam was optimized using the GA technige.In this paper cost optimized
design 18 carried out by reducing the size of the members 11 addition to it reinforcement
templates Were created to model the reinforcement and the best bar diameter

combinations are obtained from it. and the total cost reduction 18 obtained.(V.Govindraj

Optimum design of RC Plane Frames was carried using the simple GA where
the reinforcement detailing is modeled by constructing the sets of reinforcement bars
for both columns and beams and the total cost reduction of the frame is done
.(V.Govindraj7 and J.V.Ramasamy in 2007). Optimization of the plane frames was
carried out and the optimum design is done according to the ACI codes. Minimization
of the material and the construction costs were made subjecting to serviceability and
strength requirements. (Charks. V. Champg, Shahram Pzeshk $and Hakan Hansson® :
2003)

Shear capacity of the slender beams are optimized and the optimum results were
presented without considering the stirrups in the beams.(M. Nehdi ‘and T.
Greeenoughg 2007). Slab formwork design is optimized and the results were produced

by AP. Alex'® and R. Janes'® 1978.

Though many projects are available for different structures using GA, grid floor
optimization using GA is not available .In this project attempt is made to optimize the
grid floor using the Genetic Algorithm by varying the quantities of the concrete , steel

and formwork.

(8]

CHAPTER -3

ANALYSIS OF GRID FLOOR

3.1 INTRODUCTION

Grid floor systems consist of becomes spaced at regular intervals in perpendicular
directions. Monolithic with a slab are generally employed for architectural reasons fro
large rooms such as auditoriums. Vestibules, theatre halls, show rooms of shops where
column free space is often main requirement. The size of the beams running 1
perpendicular directions 18 generally kept the same. The different types of grid floor

used are.

e Square grid
e Rectangular grid
o Diagrids.
Among these rectangular and square grids are used commonly. In this project

square grid is used. the analysis method adopted for this project is plate theory.

3.2 BASIC ASSUMPTIONS

The orthogonal plate theory is based on following assumptions.
1. Plate is freely supported along all four edges.
2. Plateis subjected t0 udl only .

3.3 ANALYSIS OF GRID FLOOR BY PLATE THEORY

A reinforced concrete grid floor with ribs at close intervals i two mutually
perpendicular directions connected by slab in between the ribs can be considered as an
orthotropic plate freely supported on four sides. Timoshenko’s analysis may be used to

evaluate the moments and shear of the grid which depend upon deflection surface.

P I PYﬂYGSSed as,

a=16 sin| TT* gin [T
I ax y
Dx + 20 +Dy
ax4 ax2by2 by4

where, q = total uniformly distributed load per unit area
ax, by = length of plate in x and y directions respectively
Dx Dy = flexural rigidity per unit length of plate along X and y direction
Cx, Cy = Torsional rigidity per unit Jength of plate along X and y direction.
al bl = the spacings of the ribsin x and y directions respectively
Dx = (Ell/bl) Cx = (C1/bl)
Dy = (EI2/al) Cy = (c2/al)
where E1, E2, Ci and C2 are the flexural and the torsional rigidities of the effective
section in x and y directions. The moments and shears are computed using following

expressions.

Mx=-Dx(d%a/dx?)

My=-Dy(d*a/ dy?)

Txy=-(C1/bl)(d?a/dxdy)

Tyx=-(C2/al)(d® a/dxdy)

Qx=-d/dx(Dx(d*a/ dx?)+(C2/al)(d*a/dxdy))
Qy=-d/dy(Dy(d?a/dy*)*+(C 1/b1)(d*a/dxdy))

Where Mx1 My = The moments at the point along x and y direction

Txyl Tyx The torsional forces at the point on the grid along x and y

directions.

3.4 DESIGN OF T- BEAMS
3.4.1Introduction
The there 1s a reinforced slab over a reinforced concrete beam, the slab and

4

o3 eonstructed in such a way that they act together. The concrete in

side of the beam can be made to resist the

the slabs which is on the compression
compression forcer and the tension carried by the steel in the cension side of the beam.

These co

mbined beam and slab unit are called flanged beams.

3.4.2Basis of design for T — Beams
The basic assumptions used for desi e used for

_Beams also. The assumption that

gn of rectangular beams can b
bending

plane section remains plane after
d for T-

design of T
te strain reaches 0.035 holds goo

and that failure takes place when the concre

beam also.
Three different cases (1S456 : Annexure G)
ith which T-Beams arc designed are,

with respect to the position of the neutral axis W

this case the beam can be treated as a

Case 1: Neutral axis is within the flange. In

normal rectangular beam of width bf and depth d.

he thickness of flange is small enough

Case 2 : the neutral axis is below the flange, and t

s block 0.45 fek. Assumimg that Fe4l5 steel yields at a strain of 0.004,

o that the stres

quation can be obtained
= 0.0035 - 0.002

Dt

the following €

0.004 + 0.0035
d
Df =0.2

mm——

d
e the neutral axis is below the flan

ge but the strain in the bottom of

Case 3 : In this cas
so that the stress In the flange 18

the slab is less than 0.002 this occurs when Df7d >0.2,

also non — linear.

for T — Beam:

3.5 Mode of Design
re for the design of a flanged be

The procedu
e value of AS. The various cases that

am consists in determining the

value of x/d and th arises are shown in.

Case 1: Neutral axis within the flange
ith the desig

s act common case met wt 1 of the buildings. The formula

Mu = 0.36Fck x/d (1-0.416x/d) bfd2
from this (x/d) and (ast) are derived as,

Jd = 12+ ({.2)2 - 6.68Mu
N fek bf d2
Ast = x.0.36fckbf
— 087ty

If (x/d) < (DY/d), than neutral axis, lies inside the flange (x/d) must be restricted to the

limiting value in the code.

where Mu = Moment in the slab in Nmm
fck = compressive strength of concrete in N/mm?2
d = depth of the beam in mm
X = depth of the neutral axis
bf = breadth of the flange
Ast = Area of steel
Df = Depth of the flange

Case 2 : Neutral Axis below the flange and Df/d <0.2

When (x/d >(df/d) the neutral axis lies outside the flange. when the value of
Df/d <0.2 the stress in the slab can be assumed to be uniform and equal to 0.446fck. As

given in Annex G of 18456, the moment of forces about tension steel is
Mu = (0.36fck bw x (d-0.416x)

+ 0.446fck (bf-bw)DIi(d-Df/2)

Solving for (x/d) and Ast, from the above formulae we get,

x/d = 1.2 - 1.44 -k

o seswu (BF us[bl ngj@\\

Ast = 0.36fck bwx + 0.45fck (bf - bw)DE

0.87fy

Case 3: Neutral Axis below the flange and Df/d>0.2

0.2d and the neutral axis 18 below

When the flange thickness is greater than
d. Hence Df should be

the flange, one cannot assume flange 1s uniformly stresse
replaced by yi,
yf = (0.15x + 0.65D1)

Qubstituting for Df as in case 2 and taking bf as the breadth of the flange, the

value of k1, 18

k1 ~6.68Mu ([bf 1.5 bf-1) (2-Yf Yf
fck bf d2| bw bw \d d
L

WJd =12- (A5 k1
N

The area of steel is found to be

0.36fck bw (x) + 0.446fck (bf-bw) yt

e

Ast =
0.87fy

10

Fig.1 MODEL OF GRID FLOOR

20 < P/30 PU°

aBunyy 3PISINO SIXD JouinaN ¢ 1 3SVD

»H23G6y0

20 > /30 pU°

s6unyy 9pISINO SIXD Jou3naN 2 3SVD

#2480 4—1

A=

aBuoys WYyim SIXO YOUATNAN

#2360 ——1

1 3Svd

s

12

CHAPTER —4

GENETIC ALGORITHM

4.1 INTRODUCTION

‘What is genetic algorithm?
Problems solved by an evolutionary process resulting in a best (fittest) solution
(survivor). Genetic Algorithms (GAs) are computer programs, which create an

environment where populations of data can compete and only the fittest survive.

4.2 HISTORY

In 1960s 1. Rechenberg first proposed in his work "Evolution strategies”.
Later on Genetic Algorithm (GAs) were given shape by John Holland and his students
and colleagues. This Jead to Holland’s book named "Adaption in Natural and
Artificial Systems” published in 1975. In 1989 Goldberg introduced a modified GAs
based on natural genetics. In 1992 John Koza has used genetic algorithm to evolve
programs 10 perform certain tasks. He called his method "Genetic programming"

(GP).

4.3 COMPARISON OF NATURAL &

GA:

Natural Genetic Algorithm

Chromosome string (such as "01 1 ")

Gene feature, character, or detector (one of the bits)
Allele feature value (such as: isita 1l ora07?)

Locus string position

Genotype structure

Phenotype parameter type, alternative solution, a

decoded solution

13

4.4 WORKING PRINCIPLE OF GENETIC ALGORITHM

1. Formation of the obj ective function.

2. Encoding consisting of bit strings

3. Fitness function for transferring minimized problem into maximized
problem.

4. Applying genetic operators like reproduction, Crossover ,mutation etc.

5. Applying convergence criteria of genetic algorithm

4.5 GENETIC ALGORITHM IN ENGINEERING

1. Randomness
2. Population
3. Genetic Operators
Randomness:
First, it relies in part on random sampling , which makes it a non-deterministic
method, which may yield somewhat different solutions on different runs even if we

haven’t changed the model.

Population:

It is the no of points chosen for the solution of the problem.Only one of the best
Jbut the other members of the population are”’sample points” in other regions of the
search space,where a better solution may later be found.The use of a population of
solutions help the evolutionary algorithm avoid becoming "trapped” at a local

optimum, when an even better optimum may be found outside the vicinity of the

current solution. Population points are chosen randomly.

ENCODING

Binary encoding

oo with a limiting capacity ,such that things

14

e

Chromosome A 101101100011
Chromosome B 010011001100

e

In order to use GA to solve the maximization or minimization problem,
unknown variables X, are first coded in some string structures. Binary coded string
having 1s and Os are mostly used. The length of the string is usually determined
according to the desired solution accuracy. To convert any integer to a binary string, go

on dividing the integer by 2 . We get equivalent integer for the binary code decoding.

4.6 FITNESS FUNCTION

Genetic Algorithm's mimic the Darwinian theory of survival of the fittest and
the principle of nature to make a search process. Therefore, GAs are usually suitable for
solving maximization problems. Minimization problems are usually transformed into

maximization problems by some suitable transformation.

Fitness function F(x) is derived from the objective function and used in

successive genetic operations.

F(x) =f(x) for maximization problem.
F(x) =1/f(x) for minimization problem, if fix)0
F(x)=1/(1+{(x)), if £f(x)=0;

The fitness function value of the string is known as string fitness.

4.7 GENETIC OPERATOR
Reproduction:

Reproduction 1s a process in which individual strings (chromosomes) are
copied according to their fitness. Copying strings can be done according to their fitness
or goodness, strings with a higher value having a higher probability of contributing one
or more offspring in the next generation. This operator 1s an artificial version of
natural selection, a Darwinian survival of the fittest among string creatures.

nnnnn e eta new anes According to

15

Darwin's evolution theory of survival of the fittest, the best ones should survive anc
create new offspring. There exist many methods for selecting chromosomes for parents
to cross over namely
1. Roulette-wheel selection-it is a proportionate reproductive operator where
a string is selected from the matting pool with a probability proportional to
the fitness.
2. Boltzmann selection-itis a simulated annealing method of functional
minimization of maximization.
3. Tournament selection - the best individual from the tournament selection
strategy provides selective pressure by holding a tournament competition

among individuals.

4. Rank selection - it first ranks the population according to the fitness value. The

worst will be give fitness 1,the next 2,... and the best N.

CROSSOVER

After the reproduction phase is over, the population 18 enriched with better
individuals. Crossover operator is applied to matting pool with a hope that it would
create a better string. The aim of cross over operator s to search the parameter space.
In addition search is to be made in a way that the information stored in the present
string 1s maximally preserved because these parent strings are instances of good
strings selected during reproduction. Cross over is undergoes by three steps, first the
reproduction operator selects at random a pair of two individual strings for mating, then
a cross site is selected at random along the string length and the position values are
swapped between two strings following the cross site. Typically for a population size

of 30 to 200, cross over rates are ranged from 0.5t 1.

TYPES OF CROSS COVER

SINGLE POINT CROSS OVER

Chromosome 1 1010010101

16

0111011010

Offspring 1 1011011010

Offspring 2 0110010101

TWO POINT CROSS OVER

Chromosome 2 0111011010

1010010101

1011010101

0110011010

Offspring 2

MUTATION

It involves flipping each bit by changing 0 to 1 and vice versa with a small
mutation probability. A number between 0 and 1 are chosen at random. If the random
is smaller than probability then the outcome of flipping is true, otherwise the outcome
is false. If at any bit, the outcome is true the bit is altered, otherwise the bit is kept
unchanged. Mutation acts as secondary operator with the role of restoring lost genetic
materials. It is also used to maintain diversity in the population. The simple genetic
algorithm uses the population size of 30 to 200 with the mutation rates varying trom

0.001 to 0.5.

‘ Original offspring 1 \ 1101111000011110 \

17

Original offspring 1. | 1101100100110110

Mutationoffspring | 1100111000011110

Mutationoffspring 2- 1101101100110110

R B

CONVERGENCE OF GENETIC ALGORITHM

Genetic Algorithm as preceded with more generations, there may not be much
improvement in the pepulation fitness and the best individual may not change for
subsequent populations. Ac generaton progresses, the population gets filled with more
fit individuals with only chight deviation from the fitness of the best individuals so far
found, and the average fitness comes very close to the fitness of the best individuals.
Thus some fixed nsmber of cenerations after getting the optimum point to

confirm that is no change in the cptimam in the subsequent generations.

4.8 BENEFITS OF GA:

The concept of genetic algorithm is
1. Easy to understand.
Modular, separate {rom application.
Supports rmulti-objective optimization.
Good for noisy envivonment.
We always get an angwer and the answer gets better with time,

Inherently parallel and _asily distributed.

~ o o > B DN

Many nethods are available to speed up and improve a GA's basic

applications, as ko ledge about the problem domain is general.

®

Easy te ex ploit for pyevious or alternate solutions.

Flexitle 1w formiry bulding blocks for hybrid applications.

- 1 TR |

it and rance of use.

4.9DIFFERENCES AND SIMILARITIES BETWEEN GA AND TRADITIONAL

METHODS
DIFFERENCES

1. GA's are radically different from most of the traditional
optimization methods. GA works with a string coding of variables
that discretizes the search space even though the function may
be confinuous.

2. GA requires only function values at discrete points, a discrete or
discontinuous function can be handled with no extra care.

3. GA operators exploit the similarities in string structure to make an
effective search.

4. GA works with a population of points instead of a single point.

GA previously found good information is emphasized using

reproduction operator and propagated adaptively through cross over and

mutation operators.
5. GA is a population based search algorithm and multiple optimal

solutions can be possible.

SIMILARITIES

1. In traditional search methods, where a search direction is used to find
a new point, at least two points are either implicitly or explicitly used to
define the search direction.

2. Inthe cross over operator, two points are used to create new points.
Thus, cross over operator is similar to a directional search method with
an exception that the search direction is not fixed for all points in the
population and that ho effort is made to find the optimal point in any

particular direction.

19

3. Since two points used in cross over operator are chosen at random,
many search directions are possible. Among them, some may lead to
global basin and some may not.

4. The reproduction operator has an indirect effect of filtering the good
search direction and helps to guide the search. The search in the
mutation operator is similar to a local search method such as

exploratory search used in Hooke-Jeeves method.

20

CHAPTER -5

OPTIMIZATION USING GENETIC ALGORITHM

5.1 FORMULATION OF OPTIMIZATION PROBLEM

Formulation of optimum design problem consists of identification of design
variables, statement of objective function and constraints to be satisfied. In
general, the structural optimization problem may be stated mathematically as,

Minimize F (x)
Subject to gi(x) <0;1= ,2,....Dp
And hj(x) = 0;;=12,....m
Whenx' <x<X'
where
F(x) = objective function,
gi(x) = set of inequality constraints,
(x)=setof equality constraints,
x = {Xk}, k= 1,2,...nisthe vector of design variables,

X = {Xkl} Jk=12...nis the lower bounds of design

variables, .

= (XL k=120 n is the upper bounds of design
variables.

5.2 OBJECTIVE FUNCTION

The objective function is the total cost consisting of individual cost
components due 10 concrete, steel and formwork. The cost of any component is
inclusive of material, fabrication, and labour. The objective function 1S expressed
mathematically as

F=VcCc+ WsCs+ A;Cy

where Cc, Cs and Cf are the unit cost of concrete, steel and formwork

emectivelv. Ve, Ws and Af are the volume of concrete, weight of longitudinal plus

21

DESIGN VARIABLES

The cross-sectional dimensions of the beam are considered as design variables
namely,

1 . Breadth of section along X-direction (Bx)
7. Breadth of section along Ydirection (By)
3. Depth of section along X-direction(Dx)
4. Depth of section along Y-direction(Dy)

5 Thickness of the slab (t)

5.4 CONSTRAINTS

Constraints are taken based on strength, serviceability, ductility and other side
constraints. The constraints regarding bar spacing and other bar detailing requirements
are considered in the optimum detailing stage itself. All constraints are represented in the

normalized form.

| The ratio of depth to width of beam section in any span should not be

greater than the maximum allowed (D/B) value as desired by the designer
gl=(dxbx)-1, Ifgl >=0,P1=0, otherwise P1 = abs(gl)
@=(dyby)-1,1fg2>= 0,P2=0, otherwise P2 = abs(gl)

2.In order to avoid difficulties in placing and compacting concrete in
formwork, the percentages reinforcement is limited to 4% as per IS code.
g3=1-(Pt4) ,23=1-(ast/(bdx0.04))
ifg3>=0,P3=0, otherwise P3 = abs(g2)
gd=1- (Pc/4),g4=1-(ast/(bdx0.04)) | ifgd>=0,P4=0, otherwise P4= abs(g3)

where Pt, Pc are percentages of tension and compression reinforcement respectively.

3. The serviceability requirements for deflections are imposed in many codes of
practice in the form of effective span to effective depth ratios.The actual ratio

e fractive span to effective depth for cach span should be less than the

22

g5=1- [(Lc/d)act/(Lc/d)max] ,if g5>=0,P5=0, otherwise P5 =
abs(gd)

4. The reinforcement in the slab is limited to 0.12 % of the cross sectional area
it is imposed by using the following constraints.

g6 = (Asslabx/(l.Z*t))—l Jif g6>= 0, P6=0, otherwise P6 = abs(g6)

g7= (Asslaby/(1.2*t))-1 , if g7>= 0, P7=0, otherwise P7= abs(g7)

5. The thickness of the slab is limited to about 120mm by using the following
constraints

g8= ((120/9)-1) , If g8>=0, P8=0 otherwise P8=abs (g8)

5.5 PENALIZED OBJECTIVE FUNCTION

The search strategy adopted in GA considers the fitness of a solution and is
unaffected by any violation of problem constraints. In order to introduce feasibility into
fitness of a solution, exterior penalty functions are used to account for violated
constraints. As GA is best suited for unconstrained optimization problem, penalty
functions are used to transform constrained optimization problem into an unconstrained

optimization problem.

Hence, the modified objective function is

W=F(1+C)* (6.10)
where C = absolute sum of normalized violated constraints

C= Pi=abs (g1) _ (6.11)
Pi = abs=(g1) (6.12)

m = total number of normalized constraints, Pi = penalty

Coefficient of i® constraint.

5.6 GENETIC ALGORITHM

Genetic Algorithms belong to the class of evolutionary algorithms that use the

Darwinian principles of natural selection, or "Qurvival of the fittest". In SGA three

1

23

Binary coding system where design variables are represented using 0s and 1s were used
because of its simplicity in carrying out genetic operations. Each design variable
represents a potential solution known as a string (or) chromosome. Each string 1s

made up of a series of sub string representing each discrete design variables.

REPRODUCTION

The reproduction operator were used to fill up the mating pool consisting of
relatively better chromosomes that will further undergo crossover and mutation process.
The reproduction operator chooses the best individuals (or) chromosomes with
high fitness values. Thus by reproduction operator the information stored in strings
with high fitness values were stored. Tournament selection scheme were adopted, the

modified objective function were re-scaled as

F= Wug-W where W< Wjye
0 where W>=Wjyy

where W and W,y is the modified fitness of each individual and average fitness of all
strings in the current gener ation respec‘uvely In tournament selection, two members of
the population were chosen randomly at a tlme and the member having the higher
fitness (F,) were inserted into the mating pool. This process is repeated until the mating
pool for generating new offspring is filled. Hence the mating pool comprises of the
tournament winners having a higher average fitness than the average population

fitness.

CROSSOVER

Amongst many Crossover schemes available, two point crossover were
implemented. Two parent chromosomes were selected randomly from the mating pool.
One point cross-sites (bit position) randomly selected along the length of the
parent strings. The binary strings contained between the cross- sites of the

parents were exchanged and thus resulted in two new offspring

24

MUTATION

This operation is carried out with a view to search unexplored areas and to avoid
premature convergence at local optimum solution. At the same time, the higher
frequency of applying this operator may also destroy the important information
contained in the offspring. Hence, the probability of mutation is kept low (usually
0.001-0.005). This operation is carried out by randomly selecting a binary bit from the

entire population and flipping the values from 0 to 1 or vice-versa.

5.7 CONVERGENCE CRITERIA

The convergence is assumed to be attained by satisfying any one of the
following conditions:
1. Average fitness of the last six generations remains unchanged.

2 Maximum number of generations reached.

25

7 Start pom e e e
- ‘_T,,__,/// . | External design forces |
! [‘ el | atall critical sections “

| B -1 i e s

B \ “Generate Inmal i } :

| Random Population| : </
N < !
o T T = ' Calculate area ofthe remforccment of\
| ‘ all the sections ‘
777777 T - ——————— — - — e
|

| 'Compute quantity of formwork and
q Y
N | concrete and total cost |

| " i i
| Evaluate Fitness for \ —_— e e
| Constrained Optimization, i
[Evaluate 1
o | _Constraints |

Eva]uate modlfled fnness\ - ‘
‘ w1th Pcnalty U ‘

N
M odify population with P No " Are constraints \
genetic operators 1 B & satisfied
; \ /

N
Store best solution oo o s = [' Yes
-

%

N

Is convergence ~\
criteria satisfied 7

g Get opum al
_solution

N

i
\
!
i

.3 FLOW CHART CF COMPUTER PROGRAM FOR GA BASED

OPTIMIZATION OF GRID FLOORS

26

CHAPTER -6

EXAMPLE PROBLEM

6.1 FORMULATION OF THE PROBLEM

The design variable for these problems are breadth, depth and thickness of the
grid floor. These three dates are given as input along with the lower and the upper
bound values of these three variables.

The objective of this design is to mimimize the cost pex unit length of the orid
floor. In this present stredy the cost of concrete, steel and formwork are considered, (the
cost of shear reinforcements are negated). The cost of concrete, reinforcing steel and
formwork is taken as Rs. 3500, Rs. 45 and Rs. 300 respectively. The unit weight of
concrete and steel is taken as 25KNm-3 and 78 5KNM-3 respectively. Table shows the

lower and upper bonds, binary bits required to represent the typical candidate solution.

6.2 VARIABLE BOUNDS

Design

Variables

Table.1

6.3GENETIC PARAMETERS

The following genetic parameters are used namely the

String length = 25

Population size = 30,

Cross over rate = 90%
Mutation rate = 0.003

Maximum number of the generation used = 50
6.4 USER DEFINED CONSTRAINTS

The following constraints are adopted by the user in this study,
Minimum width = 200mm

Minimum Thickness=100mm

Maximum Thickness = 120mm

Minimum D/b ratio = 3
6.5 GRID FLOOR PROBLEM

Grid floor of 12m,14m,16m are considered with the live load of 4 KN/m?2 and
floor finish of 0.6KN/m2 are used. Concrete and steel grades used are for M20 concrete
and Fea15 steel.. The breadth along the X, Y direction, depth along the x, y direction and
the the thickness are considered as the variables. By the variation of these parameters
the cost is reduced. The cost is found for the floors of span 12m, 14m, 16m and the cost

comparison is shown

28

l
- - 12 -
- 2 -~ 1 BEAMY
\ ! I i ' ~
i | “ | 3
i | |
= ‘
- \ | |
2 ! ! i ‘
r ! B ; ; . BEAMY
| ' .
| .
| !
t | ‘
| I i ; ' ~ .
L. ; } : BEAMY
| ; i .~ B ‘ 2
! ‘ \
} é o | ; ‘ BEAMY
! | A 3 ‘ :
' | i
| \ | |
| e P ; 1 ‘ BEAMY
| | C ? ‘ 3
|- : , % , ‘ BEAMY
\ E | ‘ 3
i | 3 !
‘ L ‘ ‘ ‘ BEAMY
| | | | 3
| i !
\ l i ' ‘\
| ! | ! |
| | | | | |
1 | | | : \
BEAMX BEAMX BEAMX BEAMX BEAMX BEAMX BEAMX
5 5 3 1 2 4 5

Fig-4 BEAMS FOR GRID FLOOR OF SPAN 12m

| i
|
i
‘ i
i !
g i
| | :
‘ B
|
]
|
A
|
|
C i
|
|
t |
| :' =
i | 14 -
1 ; i
| ‘ |
; | !
BEAMX BEAMX BEAMX BEAMX BEAMX BEAMX
3 1 2 4 4 4

Fig-5 BEAMS FOR GRID FLOOR OF SPAN 14m

29

BEAMX
4

BEAMX
4

BEAMX

BEAMX
2

BEAMX
1

BEAMX
3

BEAMX
'§

BEAMX

30

rETTT T SR
! | ” i |
R S
| i ' : |
' i L 1 |
i ! | | ,
,, | “ | |
N T et EEE
| i ! , i
| | | | |
1 1 1]
| | _, ! 4
, A. * A
; W., | i !
R A lwxﬂif‘\}x%\lkw\\ {Lfl —
| A, f | ﬁ, ,
| | # , I
,, #, , # i |
! i I ! ! !
#, d, | B i

[e e -

T ,4 T ! ! W
| m ,, | _j |
,ﬂ | | , !
! i | ! I
|] | | ;
ﬂ # , |
1
IS T
,ﬂ | ” !
| ﬂ, | #

1 1
, , | /

1 |

- [P D EE
|

Fig-6 BEAMS FOR GRID FLOOR OF SPAN 16m

6.6 RESULTS
FOR GRID FLOOR OF SPAN 16M

1. 306.45161 229.03226 661.29032 516.12903 118.70968| 1.15789 1.25352
0.00000 0.21951 0.00000 3.08104 4.28351 3.79981 520411 3.79981 5.20411
19.00000 19.00000 19.00000 19.00000 0.00000 697428.47181 (0 0) O
String=01101—01100-00101—01000-10111
2. 306.45161 248.38710 612.90323 629.03226 118.70968] 1.00000 1.53247
0.00000 0.15789 0.17949 373471 3.63008 4.56565 4.43962 4.56565 4.43962
19.00000 19.00000 19.00000 19.00000 0.00000 716485.98635(0 0) 0
String=01101—01010—01110—00001-10111
3. 296.77419 219.35484 709.67742 733.87097 111.61290} 1.39130 2.34559
0.00000 0.27273 0.29670 4.59668 4.43459 5.57502 538057 5.57502 5.38057
19.00000 19.00000 19.00000 19.00000 0.00000 748981.93086 (0 0) 0
String=00101—00100-01011—10111—01001
4. 200.00000 340.32258 637.09677 709.67742 119.35484| 2.18548 1.08531
0.00000 0.18987 0.27273 478079 4.13616 5.78510 5.03803 5.78510 5.03803
19.00000 19.00000 19.00000 19.00000 0.00000 736469.99636 (0 0) 0
String=00000—10111-10001—01011-01111

5. 282.25806 272.58065 556.45161 604.83871 105.80645] 0.97143 1.21893
0.00000 0.07246 0.14667 3.55602 3.18722 4.35486 3.92217 4.35486 3.92217
19.00000 19.00000 19.00000 19.00000 0.00000 678014.66080 (0 0) O
String = 10001—11110-11100—10110-10010
6. 301.61290 204.83871 629.03226 516.12903 112.25806} 1.08556 1.51969
0.00000 0.17949 0.00000 2.82836 3.72027 3.50348 4.54274 3.50348 4.54274
19.00000 19.00000 19.00000 19.00000 0.00000 672251.91691 (0 0) O
String = 10101-10000—00001-01000—11001
7. 243.54839 296.77419 717.74194 548.38710 102.58065| 1.94702 0.84783
0.00000 0.28090 0.05882 332365 4.66622 4.08030 5.65650 4.08030 5.65650
19.00000 19.00000 19.00000 19.00000 0.00000 697890.37745(0 0) 0
String = 10010—00101-11011—01100-00100

8. 306.45161301.61290 500.00000 661.29032 118.06452| 0.63158 1.19251
0.00000 -0.03226 0.21951 4.66839 3.26244 5.65961 4.01205 5.65961 4.01205
19.00000 19.00000 19.00000 19.00000 0.03226 704342.15062(0 0) O
String=01101-10101—00000—00101—00111

9. 316.12903 306.45161 516.12903 629.03226 118.06452| 0.63265 1.05263
0.00000 0.00000 0.17949 429478 3.32865 5.22244 4.08990 5.22244 4.03990
19.00000 19.00000 19.00000 19.00000 0.00000 706186.89675 (0 0) O
String = 00011-01 101-01000-00001-001 11
10. 340.32258 253.22581 540.32258 500.00000 118.06452| 0.58768 0.97452
0.00000 0.04478 -0.03226 2.87458 3.22571 3.56000 3.96611 3.56000 3.96611
19.00000 19.00000 19.00000 19.00000 0.03226 673762.36916 (0 0) O
String = 10111—11010—10100—00()00—00111

31

11. 335.48387 200.00000 637.09677 725.80645 111.61290| 0.89904 2.62903
0.00000 0.18987 0.28889 4.49782 3.85726 5.46147 470298 5.46147 470298
19.00000 19.00000 19.00000 19.00000 0.00000 731785.09554 (0 0) 0

String = 0011 1-00000-10001-001 11-01001

12. 248.38710 204.83871 556.45161 540.32258 116.77419) 1.24026 1.63780
0.00000 0.07246 0.04478 2.23899 235282 2.80977 2.94052 2.80977 2.94052
19.00000 19.00000 19.00000 19.00000 0.00000 643882.21585(0 0) 0

String = 01010—10000-11100—10100-01011

13. 325.80645 325.80645 508.06452 532.25806 114.83871} 0.55941 0.63366
0.00000 -0.01587 0.03030 3.45791 3.25027 4.24251 3.99925 4.24251 3.99925
19.00000 19.00000 19.00000 19.00000 0.01587 6%2504.52045 (O 0) 0

String = 0101 1-0101 1-10000-00100-11 101

14. 330.64516 243.54839 677.41935 548.38710 110.96774| 1.04878 1.25166
0.00000 0.23810 0.05882 3.65655 4.80721 4.47553 5.81859 4.47553 5.8185¢
19.00000 19.00000 19.00000 19.00000 0.00000 715607.08195 (0 0) 0

String = 11011-10010-01101—01100—10001

15. 214.51613 316.12903 645.16129 629.03226 10451613 2.00752 0.98980
0.00000 0.20000 0.17949 3.75304 3.84288 4.58171 4.69297 4.58171 4.69297
19.00000 19.00000 19.00000 19.00000 0.00000 697109.45963 (O 0) 0

String = 1 1000-0001 1-01001-00001-11 100

16. 34032258 224.19355 685.48387 524.19355 111.61290] 1.01422 1.33813
0.00000_().24706 0.01538 3.60411

32

Generation Number
0 643882.215851 70
1 636026.534499 69308
7 636026.534499 67831
3 615742.275063 667729.3

Best Fitness Average Fitness
7312.910687 784670.044435
0.171530 734572.228736
0.976017 732030.889593
46182 710911.995066

4 612698.870405 654998.885055 724445.611904

5 614873.881794 64406
6 602351.764995 63419
7 600170.667732 62475
8 590446.414551 61847
9 595568.278207 61409

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Generation Number
0 644379.429824 717792.
1 644379.429824 702924.

596301.952899
594077.575418
597036.722080
596301.952899
596301.952899
596301.952899
596301.952899
596301.952899
596301.952899
594823.316322
592401.458906
594823.316322
594823.316322
593965.309739
593965.309739
592526.647064
592526.647064
592526.647064
592526.647064
592526.647064
588696.545343
592526.647064
592526.647064
592526.647064
592526.647064
592526.647064
592526.647064
592526.647064
592526.647064
592526.647064
592526.647064

2 645817.678308

I e T a T I A L T 1O LY

609299.029810
603840.654645
602384.967275
600214.090390
599670.621603
598930.611244
598748.262767
597751.314565
599083.007802
596870.542308
596547.799833
596750.896900
596154.127482
595583.322277
596948.402000
595184.381914
595068.590747
594459.400323
594181.295294
594073.859664
593626.807820
593696.319172
594096.053243
592551.195028
592526.647064
592526.647064
593333.182789
592627.937257
592918.362453
592747.942057
592932.754404

4.128665 679572.110557
0.784587 671519.779432
6.911858 654295.313637
9.719225 641538.047333
1.353235 640032.769037

628211.850826
634645.377346
631855.694288
613501.584749
612211.162086
602351.764995
608927.641565
601768.479223
638823.011967
606345.040915
602581.839137
608138.981610
602217.646446
596301.952899
619314.373353
600065.873482
607255.982093
597036.722080
598429.057917
602817.040779
607764.700305
604709.867259
622719.190259
593263.086003
592526.647064
592526.647064
607764.700305
594415.562612
601625.877597
598429.057917
604709.867259

688600.671897 757533.613 160

700109 717674.616105

Worst Fitness

Best Fitness Average Fitness Worst Fitness
816102 778058.759539
156812 749501.347101

33

5 628998.173105 657086

285400 699365.664811

6 617679.200798 648469.406264 703130.893969

7 615969.924370 6
8 604138.032846 63

40105.934446 673686.741196
5868.422498 663705.263928

9 604138.032846 628207.498679 651208.891296
10 604138.032846 621979.237985

11

12 602820.285915

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
33
36
37
38
39
40

Generation Number Best Fitness Average Fitness Worst Fitness
7064.435838 782604.084124
15.724822 747021.696171

0 608421.267719 70
1 651756.690513 6977

599402.355554 616199.406455

601202.239023 607218.526976
599734.369161 605238.273654
599734.369161 606314.633508
598497.983956 603420.757847
598497.983956 601863.056294
598497.983956 6011 19.799680
593470.175994 600061.290516
596708.000498 599619.638608
598497.983956 600082.736364
598497.983956 599148.916513
591987.280604 508991.016046
505542.275666 598706.716300
595542.2756606 599778.117050
597768.410383 598643.108502
505542.275666 598271.989335
504805.665280 597985.800761
597768.410383 508234.268043
597768.410383 597792.729502
597768.410383 601416.960646
507768.410383 600226.203628
590098.629867 597503.320153
597768.410383 600404.068009
597768.410383 598611.765805
597768.410383 597768.410383
597768.410383 598184.800080
597768.410383 598251.391956
590098.629867 599149.159959
5097768.410383 509282.346833

648281.588743
638202.656992

611062.796434 622032.861121

614552.119631
612250.683004
633726.599748
631753.533915
609212.071422
607763.868663
602820.285915
601365.472732
612437.829705
604425.723393
618785.065601
604974.591886
625714.223252
607958.735350
601461.816570
508497.983956
601461.816570
508497.983956
649247.165607
627143.470503
603684.739728
636043.051102
623069.073042
597768.410383
610260.101292
610660.079411
628197.557385
623069.073042

2 632313.950641 684694.193274 774380.997413

3 629876.557772 66
4 629876.557772 651
5 617218.481999 641

0921.098093 731146.583587
263.889448 699944.792053
963.039986 673697.811074

<100 I ant 710072 6004900.531820

34

8 611797.217396 623418.178061 638559.193214
9 610136.752495 619870.949559 635352.045570
10 610136.752495 616646.346862 627872.919807
11 605157.817821 615112.234903 643955.362657
12 603679.069127 612295.258554 624160.223586
13 602936.987449 610225.603069 616747.752105
14 602936.987449 608268.574674 618927.753033
15 601452.838749 606795.481809 615785.735429
16 601452.838749 605113.328496 612588.220267
17 601452.838749 604155.278930 608121.658959
18 601452.838749 603882.446277 615071.451503
19 601452.838749 603077.612877 612570.309026
20 601452.838749 603105.857535 625427.343086
21 601452.838749 602473.790326 625897.431382

22 598461.451439 602203.564607 625427.343086
23 598461.451439 602084.986681 617093.936878
24 598461.451439 601302.412030 607425.915916
25 598461.451439 601961.673290 622588.638837

26 598461.451439 602359.552330 625427.343086
27 598461.451439 600356.889145 620934.030544
28 598461.451439 600008.767128 628501.665808
- 29 598461.451439 600124.248954 628501.665808
30 594636.597424 598533.382126 601452.838749
31 598461.451439 599263.271556 622516.054928
32 598461.451439 598499.602868 599605.994293
33 598461.451439 599101.759428 617670.691093
34 598461.451439 599510.487597 628501.665808
35 594636.597424 598528.087382 604285.383726
36 598461.451439 599481.739168 617670.691093
37 598461.451439 599177.849541 610528.112043
38 598461.451439 598823.323199 607886.733884
39 598461.451439 601084.110582 628501.665808
40 594636.597424 599316.846767 617670.691093

Generation Number Best Fitness Average Fitness Worst Fitness

0 658326.525952 709292.720029 785109.165747
1 658326.525952 691846.997826 735926.369949
2 649667.827668 682619.930724 735926.369949
3 624822.323758 672757.578598 711614.234386
4 625541.935747 664465.475449 690706.645176

5 620958.349269 656601.927658 693231.817058
6 620958.349269 649098.305064 687456.987834

35

36

Variable Boundaries :

Population size 30

Total no. of generations : 40

Cross over probability : 0.9000

Mutation probability (binary): 0.0030

Total String length 125

Number of binary-coded variables: 5

Total Runs to be performed : 10

Lower and Upper bounds :
200.0000 <= x bin[l] <= 350.0000, string length =5
200.0000 <= x_bin[2] <= 350.0000, string length =5
500.0000 <= x bin[3] <= 750.0000, string length =35
500.0000 <= x bin[4] <= 750.0000, string length =5
100.0000 <= x_bin[5] <= 120.0000, string length =5

Max = 604709.86726 Min = 592526.64706 Avg= 592932.75440

Mutations (real)=0; Mutations (binary) = 94 ; Crossovers = 536

Best ever fitness: 592526.647064 (from generation : 25)

Variable vector: Binary | Real > 200.000000 200.000000 516.129032 516.129032
100.000000]

Best_ever String = 00000-00000-01000-01000-00000

Constraint value: 1.580645 1.580645 0.000000 0.000000 0.000000 1.748480 1.748480
2232167 2.232167 2.232167 2232167 18.172058 18.172058 18.172058 18.172058|
Overall penalty: 0.000000

Max = 623069.07304 Min = 597768.41038 Avg= 599282.34683

Mutations (real)= 0 ; Mutations (binary) = 98 ; Crossovers = 534

Best ever fitness: 597768.410383 (from generation : 23)

Variable vector: Binary | Real -> 200.000000 200.000000 532.258065 524.193548
100.000000}

Best_ever String = 00000-00000-00100-11000-00000

Constraint value: 1.661290 1.620968
2.1685195024058074800000000000000000000006+67 0.030303 0.015385 1.828344
1.872893 2.325736 2.377929 2325736 2.377929 18.717653 19.000000 18.7176353

37

Max = 617670.69109 Min = 594636.59742 Avg= 599316.84677

Mutations (real)=0; Mutations (binary) = 82 ; Crossovers = 535

Best ever fitness: 598461.451439 (from generation : 22)

Variable vector: Binary | Real -> 200.000000 200.000000 5 16.129032 516.129032
105.161290|

Best_ever String = 00000-00000-01000-01000-00010

Constraint value: 1.580645 1.580645
265726216710699473000OOOOOOOOOOOOOOOOO0.0 0.000000 0.000000 1.718965
1.718965 2.197587 2.197587 2.197587 2.197587 17.970430 17.970430 17.970430
17.970430| Overall penalty: 0.000000

Max = 592526.64706 Min = 592526.64706 Avg= 592526.64706
Mutations (real)= 0 ; Mutations (binary) = 87 ; Crossovers = 534
Best ever fitness: 502526.647064 (from generation : 25)

Variable vector: Binary | Real -> 200.000000 200.000000 516.129032 516.129032
100.000000]|

Best_ever String = 00000-00000-01000-01000-00000

Constraint value: 1.580645 1.580645 0.000000 0.000000 0.000000 1.748480 1.748480
2232167 2.232167 2.232167 2.232167 18.172058 18.172058 18.172058 18.172058|
Overall penalty: 0.000000

38

FOR 14m SPAN GRID FLOOR:

INITIAL REPORT
Variable Boundaries :
Population size : 30

Total no. of generations : 50

Cross over probability : 0.9000

Mutation probability (binary): 0.0030

Total String length 125

Number of binary-coded variables: 5

Total Runs to be performed : 9

Lower and Upper bounds :
200.0000 <= x_bin[l] <= 350.0000, string length =5
200.0000 <= x_bin[2] <= 350.0000, string length =5
500.0000 <= x_bin[3] <= 750.0000, string length =5
500.0000 <= x_bin[4] <= 750.0000, string length =5
100.0000 <= x_bin[S] <= 120.0000, string length =5

Il

Max = 523370.71682 Min = 500215.71630 Avg= 522598.88346

Mutations (real)= 0 ; Mutations (binary) = 108 ; Crossovers = 668

Best ever fitness: 523370.716815 (from generation : 24)

Variable vector: Binary | Real -> 200.000000 200.000000 709.677419 709.677419
100.000000]

Best_ever String = 00000-00000-01011-0101 1-00000

Constraint value: 2.548387 7.548387 0.000000 0.363636 0.363636 5.205918 5.205918
5198653 5.198653 8.681313 3.681313 8.525821 8.525821 19.000000 19.000000
0.013825 0.013825] Overall penalty: 0.000000

Max = 521947.54510 Min = 520475.81084 Avg= 521653.19825

Mutations (real)= 0 ; Mutations (binary) = 128 ; Crossovers = 671

Best ever fitness: 520475.810841 (from generation : 47)

Variable vector: Binary | Real -> 200.000000 200.000000 701 612903 701.612903
100.000000]

Best_ever String = 00000-00000-10011-1001 1-00000

Constraint value: 2.508065 2.508065
6.97999777424552888000OO00000000000000000e+64 0.356322 0.356322 5.097363
5.097363 5.090224 5.090224 8.512665 8.512665 8.3598063 8.359863 19.000000
Anan(0 000304 0.002304] Overall penalty: 0.000000

Max = 523370.71682 Min= 520533.49868 Avg= 523276.14288

Mutations (real)=0; Mutations (binary) = 111; Crossovers = 677

Best ever fitness: 523370.716815 (from generation : 30)

Variable vector: Binary | Real -> 200.000000 200.000000 709.677419 709.677419
100.000000j

Best_ever String = 00000-00000-01011-0101 1-00000

Constraint value: 2.548387 2.548387 924634782063354531000000000.000000
0.363636 0.363636 5.205918 5205918 5.198653 5.198653 8.681313 8.681313
8.525821 8.525821 19.000000 19.000000 0.013825 0.013825] Overall penalty:
0.000000

Max = 627596.45670 Min = 559623.08240 Avg= 594982.73573
Mutations (real)= 0 ; Mutations (binary) = 1153 Crossovers = 676No feasible solution
found!

Max = 520475.81084 Min = 509061.26529 Avg= 520095.32599
Mutations (real)= 0 ; Mutations (binary) = 115 ; Crossovers = 673
Best ever fitness: 520475.810841 (from generation : 27)

40

FOR 12m SPAN GRID FLOOR:

INITIAL REPORT

Variable Boundaries :

Population size 130

Total no. of generations : 50

Cross over probability — : 0.9000

Mutation probability (binary): 0.0030

Total String length 225

Number of binary-coded variables: 5

Total Runs to be performed : 9

Lower and Upper bounds
200.0000 <= x_bin[l] <= 350.0000, string length =5
200.0000 <= x bin[2] <= 350.0000, string length =5
500.0000 <= x_bin[3] <= 750.0000, string length =5
500.0000 <= x_bin[4] <=750.0000, string length = 5
100.0000 <= x bin[5] <= 120.0000, string length =5

Max = 361275.10059 Min = 343572.08438 Avg = 344162.18492

Mutations (real)= 0 ; Mutations (binary) = 108 ; Crossovers = 668

Best ever fitness: 343572.084379 (from generation : 24)

Variable vector: Binary | Real -> 200.000000 200.000000 612.903226 612.903226
100.000000|

Best_ever String = 00000-00000-01110-01110-00000

Constraint value: 2.064516 2.064516 0.000000 0.368421 0.368421 5.357027 5.357027
7.505695 7.505695 7.505695 7505695 19.000000 19.000000 19.000000 19.000000
0.021505 0.021505| Overall penalty: 0.000000

Max = 341287.09120 Min = 341287.09120 Avg =341287.09120

Mutations (real)= 0 ; Mutations (binary) = 128 ; Crossovers = 671

Best ever fitness: 341287.091197 (from generation : 23)

Variable vector: Binary | Real -> 200.000000 200.000000 604.838710 604.838710
100.000000]

Best_ever String = 00000-00000-10110-10110-00000

Constraint value: 2.024194 2.024194 0.000000 0.360000 0.360000 5.228119 5228119
7333808 7.333808 7.333808 7.333808 19.000000 19.000000 19.000000 19.000000

41

Run No. 3

Max = 420533.53792 Min = 372594.99041 Avg=393441.55078
Mutations (real)= 0 ; Mutations (binary) = 111 ; Crossovers = 677No feasible solution
found!

Run No. 4

Max = 425079.70054 Min = 368263.94747 Avg =391306.48949
Mutations (real)= 0 ; Mutations (binary) = 115 ; Crossovers = 676No feasible solution
found!

Run No. 5

Max = 35344435559 Min = 344609.80133 Avg = 344904.28647
Mutations (real)= 0 ; Mutations (binary) = 115 ; Crossovers = 673

Best ever fitness: 344609.801326 (from generation : 16)

Variable vector: Binary | Real -> 200.000000 200.000000 604.838710 629.032258
100.000000]

Best_ever String = 00000-00000-10110-00001-00000

Constraint value: 2.024194 2.145161 '
5.68238876888590678000OOOOOOOOOOOOOOOOOOOe+281 0.360000 0.384615 5.559170
5303594 7.775235 7.434447 7.775235 7.434447 19.000000 19.000000 19.000000
19.000000 0.008065 0.048387| Overall penalty: 0.000000

Max = 404340.39591 Min = 340522.73808 Avg=376182.93962

Best ever fitness: 417199.534434 (from generation : 16)

Variable vector: Binary | Real -> 206.774194 267.741935 685.483871 733.870968
113.548387|

Best_ever String = 00101-01110-11101-10111-10101

Constraint value: 1.309783 1.740964
6.57108359880815963000OOOOOOO000000000000e+89 0.435294 0.472527 9.483360
8.796204 13.021919 12.101422 13.021919 12.101422 19.000000 19.000000 16.000000
19.000000 0.142473 0.223118| Overall penalty: 0.000000

m

x1 sqgmm

y1 sgmm

X2 sqmm

y2 sgmm

hx3 sgmm

by3 sgmm

bx4 sgmm

sby4 sqgmm

sbx5 sgmm

sby5 sgmm

otal Cost Rs

42

6.7 COST COMPARISION

Table2.Cost comparison of grid floors with different spans

12m(Run 1) 12m(Run 7) 14m(Run 7) 16m(Run1) 16m(Run 2)
__

200 200 200

612 604 720 516

1198
l

1198

1003
1003

671 985

1198 668 994 633
633 639

1198 671 994
671 1191 714
" o -

343572 342395 497351 592526 597768

633 639

350000
345000

340000

335000
330000
325000
320000
315000
310000

6.8 CONVERGENCE HISTORY FOR THE PROBLEM

Fig.7 Cost Vs Generation for span 12m-run 7

11

43

44

Cost Vs Generation for span 12m-run 7

355000 : v e [T ——

350000

345000

340000 |

335000

330000 M«ng ,,, i

325000 P s L e e

320000 : SR

Fig.8

45

Cost Vs Generation for span 14M

560000 e -
550000 ’ '
540000
530000
520000
510000
500000
490000 | ———
480000 B e e e e
470000 B te G e e e ;
460000 - —

Fig.9

640000
630000

620000 |- o

610000
600000
590000
580000
570000
560000

Cost Vs Generation for span 16m-runl

1 2 3 4 5 6 7 8 9 10 1

Fig.10

46

650000
640000
630000
620000

610000 ¢

600000
590000
580000
570000
560000
550000

Cost Vs Generation for span 16m-run2

Fig.11

47

48

CHAPTER -8

CONCLUSION

ollowing conclusions are drawn from the present study.

2.
3.

. Optimization using genetic algorithm is been worked out using ‘¢’ programming

and the result obtained over generations are given. The cost variation is found for
spans of different length.

The cost reduction over successive generations was found

The designer have control over the result by specifying the design variable,
constraints and requirements

The method proposed is less mathematically complex and easier than traditional

optimization techniques.

49

REFERENCES

10.

_ §.R. Adidam, N.G.R. Iyengar and G.V. Narayanan, “Optimum design ofT-

Beam and grid floors”, Volume 6, October 1978, Pgno 113 -124

N.G.R. Iyengar, “Optimization in Structure design”

Goldberg, D.E, “Genetic Algorithm in search, optimization and machine
leaning”, Addison Wesley, Newyork, 1989.

S. Rajasekaran and G.A Vijayalakhmi Pai,” Neutral Networks, fuzzy Logic and
Genetic Algorithm synthesis and applications”, 2003

. S.Rajeevand C.S. Krishnamoorthy,” Discrete optimization of structural

engineering’ -

V. Govindaraj and J.V. Ramasamy, “Optimum design of reinforced concrete
rectangular columns using genetic algorithm,” J ournal of structure engineering,
V0133, No2, June —~ July 2006

V. Govindaraj and J.V. Ramasamy, “Optimum detailed design of reinforced
concrete frames using genetic algorithm,” Engineering optimization, volume 39,
June 2007, PgNo 471 — 494,

Charks. V. Champ, Shahram Pzeshk and Hakan Hansson,”Flexural design of
reibforced concrete frames using a genetic algorithm”, J ournal of structural
engineering, January 2003.

M. Nehdi and T. Greeenough, “ Modeling shear capacity of RC Slender beams
without stirrups using genetic algorithm”, Smart structures and systems, Volums
3, 2007.

A.P. Alex andR.J anes,”Slab formwork design using genetic algorithm,”
construction informatics Digital libraryS.R. Adidam, N.G.R. lyengar and G.V.
Narayanan, “Optimum design of T-Beam and grid floors”, Volume 6, October

1978, Pgno 113 — 124

50

11. Hai gong, Tsc- Yung P.Chang and Guo — Qiangli, “Multi-level optimization for
structural Design of Tall Buildings,”6th world congresses of structural and multi
ciplinary optimization, Rio de Janeiro, June 2005.

12. “Code of Practice for plain and reinforced Concrete 18:456 2000, IS New Delhi.

13. S.R. Karve and V.L. shah,” Limit state theory and design of reinforced
concrete,”1989.

14. Krishnaraju,” Advanced reinforced concrete design’.

15. P.C. Varghese,” Limit State design of reinforced concrete,” Prentice Hall of

India, 2004, New Delhi M.

:mE&mcu
B

. I
awy e A

3,58..5 ?ges?_m. mpafoy) 10 oy wo. UP“UZ M RIS GO g suaNany NI

ThoeNRIal, 30

TR RGN () 8 g\gémgs

. e, a

FERE AT

.ﬁm»hakﬂ,d

\ {0

.azEmszzm 1IN

€0G LE9) 3“ \
(e af Em>m_mnmm:vm>

