DATA HIDING IN AUDIO FILES

P‘ 9] Q5 9
//55:::'_"‘"\.
By +;l\\
R.Dharani ¥ - '%\:i
Registration Number: 71205621014 T 3 g/
N
a"'a bot® o
Oof
KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE
A PRCJECT REPORT

Submitted to the

FACULTY OF INFORMATION AND COMMUNICATION
ENGINEERING

In partial fulfillment of the requirements
For the award of the degree

of
MASTER OF COMPUTER APPLICATION

ANNA UNIVERSITY
CHENNAI 600 025

July 2008

BONAFIDE CERTIFICATE

Certified that this project report titled Data Hiding in Audio Files is the
bonafide work of Ms. R Dharani. (Registration Number: 71205621010)
who carried out the research under my supervision. Certified further, that
to the best of my knowledge the work reported herein does not form part of
any other project report or dissertation on the basis of which a degree or

award was conferred on an earlier occasion on this or any other candidate.

ervisor d of the Department

Submitted to Project and Viva Examination heldon |- 7- Q008

N

ST 5] 94~

Internal Examiner External E¥aminer

CORPORATE OFFICE:

[
’ bb ,2 No. 78, 3RD FLOOR, USMAN ROAD, T.NAGAR,

CHENNAI - 600 017,
FH: 044-6536 0606

E-MAIL: ENQUIRY{@BCPROJECTS.COM
BLUE cHIP T?Oﬁl%?’reu}:l&g?;aﬁs WEB:WwwW,.BCPROJECTS.COM

June 2™, 2008

To Whomsoever It May Concern

This is to certify that Miss. DHARANLR (71205621010), Student of
Kumaragura College of Technology, Coimbatore doing her Final Year, M.C.A
(Computer Application) has successfully completed her project entitled as “DATA
HIDING IN AUDIO FILES” under the guidance of Mr.Raghuram.J, Senior
Software Engineer, from 04™ Jan 2008 to 2" June 2008.

During her Project duration her conduct and contribution has been

excellent.

We wish her all the best for her future Endeavors.

For Blue Chip Technologies

No.78, 3rd Floor,
Usman Road, T.Nagar, :
Chennai-600 017.)

(Pr? ct Co-0 dmator)

ABSTRACT

Our project, Data Hiding in Audio files is the software developed for
hiding information which uses the technology called as Steganography —derived
from the Greek words meaning, “Covered writing”, is the art of hiding information

in ways that prevent its detection.

It is a method akin to covert channels, and invisible links, which add

another step in security. A message in cipher text may arouse suspicion while an

invisible message is not.

Digital stenography uses a host data or message known as a “Container” or
“Cover” to hide another data or message in it. The conventional way of protecting
information was to use a standard symmetric or asymmetric key system in
encryption. Steganography can also be used to place a hidden “trademark™ in

images, music, and software, a technique referred to as watermarking.

Steganography, if however used along with cryptography ,for example, if a
message is encrypted using triple DES which requires a 112 bit key then the
message has become quite secure as far as cryptanalytic attack are concerned.
Now, if this cipher text is embedded in an image, video, voice, etc., it 1$ even more
secure. If an encrypted message is intercepted, the interceptor knows the text is

an encrypted message. With Steganography, the interceptor may know the object

contains a message.

In order to ensure the privacy of the communication between two parties,
here we implement a technique for data hiding in audio images, known as Audio

file Steganography. We will also be incorporating encryption of data to be hidden.

ACKNOWLEDGEMENT

I wish to express my sincere thanks to Dr.JOSEPH V., THANIKAL
Ph.D., Principal, Kumaraguru College of Technology,Coimbatore,for giving me

the consent to undertake this project.

My deepest acknowledgement to Dr.M.GURURAJAN Ph.D., Head
of the Department, Computer Applications, Kumaraguru College of Technology,
Coimbatore, for his timely help and guidance throughout this project.

I am greatly indebited to Mr. AMUTHUKUMAR MCA., MPhil.,
Project Coordinator, my Guide, Assistant Professor, Department of computer
Applications and my sincere thanks to him for guiding and encouraging me at

every stage of this project.

I express my sincere thanks to MR RAGHURAM.J, Senior Project
Leader, BLUE CHIP TECHNOLOGIES, Chennai for his support and assistance at

various levels of my project work.

Finally, I owe my great deal of gratitude to my parents for helping me
to overwhelm in all my proceedings. I bow my heart and head with heartfelt
thanks to my department staffs and all those who taught me their warm service to

succeed and achieve my work.

CHAPTER NO

TABLE OF CONTENTS

TITLE
ABSTRACT
LIST OF FIGURES
LIST OF ABBREVIATIONS
CHAPTERS
INTRODUCTION
1.10rganization Profile
1.2 Abstract
1.3 Problem Definition
SYSTEM ANALYSIS
2.1 Existing System
2.2 Proposed System

2.3 User Interface Requirements

DEVELOPMENT ENVIRONMENT

3.1 H/W Environment
3.2 S/W Environment

3.2.1 Java Language

vi

PAGE NO

v

x

3.2.2 Java Platform
3.2.3 Java Swing
3.2.3.1 Javax.swing Package
3.2.4 ApplicationProgramminglnterfaces
3.2.5 Basic Foundation Classes
SYSTEM DESIGN
4.1 Context Diagram
4.2 Data Flow Diagram
SYSTEM IMPLEMENTATION
5.1 General Steganagraphy
5.2 Steganography in Audio
5.3 Methods Of Encoding Message in Audio
5.3.1Low bit Encoding
5.3.2 Phase Encoding
5.4 Audio File Format
5.5 Encryption Method Used
5.6 MD5 Algorithm
5.7 DES Algorithm
TESTING
6.1 Testing Objective

6.2 Types of Testing

vii

13

14

14

15

16

16

17

17

17

19

20

22

30

31

33

33

33

6.3 Different Levels of Testing
6.3.1 Unit Testing

6.3.2 Integration Testing

6.3.3 System Testing

6.3.4 Acceptance Testing
PERFORMANCE AND LIMITATIONS
7.1 Merits of the system
7.2 Limitations of the System
7.3 Future Enhancements
APPENDICES
8.1Sample Screens

BIBLIOGRAPHY

viii

34

34

34

34

34

35

35

34

36

37

37

53

FIGURE NO

3.2.1.1

3212

3221

4.1.1

42.1

53.1.1

5.5.1

552

5.6

5.7

LIST OF FIGURES

NAME

Execution of java program

Java Platform

Insulation of the Java program from hardware dependencies
Context Diagram

Data Flow Diagram

Encoding char ‘A’ in a stream of Audio Samples

Key Derivation Function

Encoding and decoding modules

MDS5 Algorithm

Data Encryption Standard Algorithm

PAGE
NO

14

15

18

27

27

30

31

DES

JVM

AWT

HAS

DFT

PCM

PBE

MD3

KDF

PBKDF1

PBKDF2

DK

EDE

LIST OF ABBREVATIONS

Data Encryption Standard

Java Virtual Machine

Application Programming Interface

Applet Windows Toolkit

Human Auditory System

Discrete Fourier Transform

Pulse Code Modulation

Password Based Encryption

Message Digest Algorithm

Key Derivation Function

Password Based Key Derivation Function 1
Password Based Key Derivation Function 2
Derived Key

Encryption Decryption Encryption

CHAPTER-1

INTRODUCTION
1.10RGANIZATION PROFILE:

Blue chip technologies’ is a leading monopoly technical organization in Chennai
exclusively for project training, working with the sole mission of bringing the corporate and
education worlds together. BCT is promoted by Iwiz Technologies (p) Ltd, which has been
emerged as a reputed software consultant in last decade. So far Iwiz technologies provide
software solutions for wide range of industries from retail to top-notch technologies. Moreover
we are one of the major technology and management-training providers with more than
3,00,000 trained candidates in various streams through our technology-training arm, T-Jun.
Furthermore, through our Iwiz Jobs Consultant, we resource lakhs of candidates to wide range

of industries.

Blue chip facilitate real time working environment with cutting edge tocls and eminent
trainers. It offers Cost effective intelligent IT solutions to clients in the areas of Financial
Services, Communication,Retail, Manufacturing, High-Technology, Travel and Transport
Public sector industries. They offer IT services in the areas of Application Development,
Application Management, Enterprise Business Solution, and Software Testing through a

global delivery model that provides good quality.

The main Objective is to provide a global delivery model that ensures security, cost
effectiveness and Quality for clients. To create real time working environment with cutting
edge tools .To minimize the industry-institute gap. To make aware of different kinds of
Software Life Cycle models like SDLC, Water fall, Spiral, User experience etc. Our research
projects had participated in various National and International Conferences. Most of our

projects were identified by the industries as suitable for their needs.

1.2 ABSTRACT

Our project, Data Hiding in Audio files is the software developed for hiding
mformation which uses the technology called as Steganography —derived from the Greek words
meaning, “Covered writing”, is the art of hiding information in ways that prevent its detection.
It is a method akin to covert channels, and invisible links, which add another step in security. A

message in cipher text may arouse suspicion while an invisible message is not.

Digital stenography uses a host data or message known as a “Container” or “Cover” to
hide another data or message in it. The conventional way of protecting information was to use
a standard symmetric or asymmetric key system in encryption. Steganography can also be
used to place a hidden “trademark” in images, music, and software, a technique referred to as

watermarking.

Steganography, if however used along with cryptography .for example, if a message is
encrypted using triple DES which requires a 112 bit key then the message has become quite
secure as far as cryptanalytic attack are concerned. Now, if this cipher text is embedded in an
image, video, voice, etc., it is even more secure. If an encrypted message is intercepted, the
interceptor knows the text is an encrypted message. With Steganography, the interceptor may
know the object contains a message. When performing data hiding on audio, one must exploit
the weakness of the Human Auditory System (HAS), while at the same time being aware of

the extreme sensitivity of the human auditory system.

In order to ensure the privacy of the communication between two parties, here we
implement a technique for data hiding in audio images, known as Audio file Steganography.
However, Steganography alone is not able to provide a sufficiently high enough level of
security. In order to improve the security of our technique, we will also be incorporating

encryption of data to be hidden.

1.3PROBLEM DEFINITION

We are of the belief that the easiest way to keep something from prying eyes is to place
it right in front of the person looking for it and make it look as innocuous as possible.Everyone
has a taste for a certain kind of music. Hence, it is more than likely that the person will have
that kind of music on the storage device of his computer. Also, it is quite common case where
people share and transfer different music files to one another. If one were able to hide the
message can be. Also, transfer of this message can be done quite conveniently without raising

any eyebrows.

Our aim is to come up with a technique of hiding the message in the audio file in such
a way, that there would be no perceivable changes in the andio file after the message insertion.
At the same time, if the message that is to be hidden were encrypted, the level of security
would be raised to quite a satisfactory level. Now, even if the hidden message were to be
discovered the person trying to get the message would only be able to lay his hands on the
encrypted message with no way of being able to decrypt it. When performing data hiding on
audio, one must exploit the weakness of the Human Auditory System (HAS), while at the

same time being aware of the extreme sensitivity of the human auditory system.

Communication holds the key to business, personal life, etc. As people tend to rely on
these new means of communication, more and more important information is being conveyed

along these new lines.

CHAPTER 2

SYSTEM ANALYSIS

2.1 Existing System
Nowadays, several methods are used for communicating secret messages for defense

purposes or in order to ensure the privacy of communication between two parties. So we go
for hiding information in ways that prevent its detection. Some of methods used for privacy
communication are the use of

» invisible inks

» covert channels

» digital signatures

The above are some of existing systems that are used to convey the messages.

2.2 PROPOSED SYSTEM

The proposed system uses Audio file as a carrier medium which add another step in
security. The objective of the newly proposed system is to create a system that makes it very
difficult for an opponent to detect the existence of a secret message by encoding it in the
carrier medium as a function of some secret key and that remains as the advantage of this

System.

In order to ensure the privacy of the communication between two parties, various new
methods are being developed. Cryptography being the mother to all those projects. However,

cryptography is like a tool, it can do as well as it is programmed to do.

Also, there are various different techniques that can be implemented to attain a certain

level of security.This System can be used to:

» Covert communication of sensitive data

» Facilitate ‘theft of data’

> Embedding hidden ‘trademarks’ in images, music, etc.,
Common Elements that are used in this system are

» Carrier medium : Audio file

» Embedded message : Text file

» Key: Password

2.3USER INTERFACE REQUIREMENTS

1 Module I (Media Reading & Analyzing) :
¢ Java language
2 Module IT (Message encryption and embedding into audio)
¢ Java language
3 Module III (Extracting of Message from Audio and encryption)

e Javalanguage

CHAPTER 3

DEVELOPMENT ENVIRONMENT

3.1 HARDWARE ENVIRONMENT

Monitors : 800x600 minimum resolutions at 256 colors minimum
Memory : Approximately 64 MB of on board memory

'O : two or three button mouse and standard 101-key kejrboard
MHZ . At least 166 MHZ processor

3.2 SOFTWARE ENVIRONMENT

3.2.1 THE JAVA LANGUAGE

What Is Java?

Java is two things: a programming language and a platform.

The Java Programming Language

Java is a high-level programming language that is all of the following:

—

Simple
Object-oriented
Distributed
Interpreted

Robust

Secure
Architecture-neutral

Portable

O o ~N oo AW N

High-performance

10 Multithreaded
11 Dynamic

Java is also unusual in that each Java program is both compiled and interpreted. With a
compiler, you translate a Java program into an intermediate language called Java byte codes-
the platform-independent codes interpreted by the Java interpreter. With an interpreter, each
Java byte code instruction is parsed and run on the computer. Compilation happens just once;

interpretation occurs each time the program is executed. This figure illustrates how this works.

Fig 3.2.1.1

Java byte codes can be considered as the machine code instructions for the Java Virtual
Machine (Java VM). Every Java interpreter, whether it's a Java development tool or a Web
browser that can run Java applets, is an implementation of the Java VM. The Java VM can

also be implemented in hardware.

Java byte codes help make "write once, run anywhere" possible. The Java program can
be compiled into byte codes on any platform that has a Java compiler. The byte codes can then
be run on any implementation of the Java VM. For example, the same Java program can run

on Windows NT, Solaris, and Macintosh.

Java Program

i MyProgram.java - Compiler

BORIITIEC: Pk

R e errase e \

Interpreter | Interpreter Interpreter §

|

PC-Compatible R Power Macintash
Windows NT Sun Ultra Solaris Systern §

Fig 3.2.1.2

3.2.2 THE JAVA PLATFORM

A platform is the hardware or software environment in which a program runs. The Java
platform differs from most other platforms in that it's a software-only platform that runs on top
of other, hardware-based platforms. Most other platforms are described as a combination of

hardware and operating system.
The Java platform has two components:
» The Java Virtual Machine {(Java VM)

» The Java Application Programming Interface (Java API)

The Java API is a large collection of ready-made software components that provide many
useful capabilities, such as graphical user interface (GUI) widgets. The Java API is grouped

into libraries (packages) of related components.

The following figure depicts a Java program, such as an application or applet, that's
running on the Java platform. As the figure shows, the Java API and Virtual Machine insulates

the Java program from hardware dependencies.

Java Program

Java AF | Java
Java Virtual Machine Platform

Hardware-Based Platform

Fig 3.2.2.1

As a platform-independent environment, Java can be a bit slower than native code. However,
smart compilers, well-tuned interpreters, and just-in-time byte code compilers can bring Java's

performance close to that of native code without threatening portability.

323 JAVA SWING

The swing is a set of classes that provides more powerful and flexible components than
are possible with the AWT. Unlike AWT components Swing components are not implemented
by platform specific code. They are written entirely in java and, therefore, are platform-
independent. The term lightweight is used to describe such elements. The number of classes
and interfaces in the swing packages is substantial. Swing is area that you will want to explore

further on your own

3.2.3.1 JAVAX.SWING PACKAGE

The Swing API has been included in the Java 2 platform. JFC is short for Java
Foundation Classes, which encompass a group of features for building graphical user
interfaces GULUse Swing components in building a user interface. First we examine the
simplest Swing application you can write. Then we present several progressively complicated
examples of creating user interfaces using components in the javax.swing package. We cover

several Swing components, such as buttons, labels, and text areas.

10

Provides a set of "lightweight" (all-Java language)
javax.swing components that, to the maximum degree possible, work the

same on all platforms.

Provides classes and interface for drawing specialized
javax.swing.border ,
borders around a Swing component.

Contains classes and interfaces used by the JColorChooser
{javax.swing.colorchooser
component.

javax.swing.event Provides for events fired by Swing components.

Contains classes and interfaces used by the JileChooser
javax.swing.filechooser
component.

3.2.4 APPLICATION PROGRAMMING INTERFACES

Listeners are created by implementing one or more of the interfaces defined by the
java.awt.event package. When an event occurs, the event source invokes the approprate

method defined by the listener.
Action Listener interface

This interface defines the actionPerformed () method that is Invoked when an action

event occurs. Its general form is shown
Void actionPerformed (ActionEvent ae)
The mouselistener interface

This interface defines five methods. If the mouse is pressed and released at the same
point,mouseClicked() is invoked. Whenthe mouse enters a component, the mouseEntered()
method is called. When it leaves, mouseExited() is called. The mousePressed and

mouseRealeased() methods are invoked when the mouse is pressed and released, respectively.

11

The general forms of these methods are shown here:
Void mouseClicked(MouseEvent me)

Void mouseEntered(MouseEvent me)

Void mouseExited(MouseEvent me)

Void mousePressed(MouseEvent me)

Void mouseRealeased(MouseEvent me)
The MouseMotionListener interface

This interface defines two methods. The mouseDragged() method is called multiple
times as the mouse is dragged. The mouseMoved() method muitiple times as the mouse is

moved. Their general forms are shown here:
Void mouseDraged(MouseEvent me)
Void mouseMoved(MouseEvent me)
The TextListener interface

This interface defines the textChanged() method that is invoked when a change occurs

in a text area or text field. Its general form is shown here:
Void textChanged(TextEvent te)
The WindowListener interface

This interface defines seven methods. The windowActivated()
andwindowDeactivated() methods are invoked when a window is activated ordeactivated,
respectively. If a window is iconified, the windowIconifed()method is called. When a

window is deiconified, the windowDeiconified()method is called. When a window is opened

12

or closed, the windowOpened(Jor windowClosed{) methods are called, respectively. The
windowClosing()method is called when a window is being closed. The general forms of

thesemethods are

Void windowActivated(WindowEvent we)
Void windowClosed(WindowEvent we)
Void windowClosing(WindowEvent we)
Void windowDeactivated(WindowEvent we)
Void windowDeiconified(WindowEvent we)
Void windowlIconified(WindowEvent we)
Void windowQOpened(WindowEvent we)

Using the delegation event model

Now that you have learned the theory behind the delegation event model and have had an
over view of its various components, it is time to see it in practice.appletprogramming using

the delegation event model is actually quite easy. Just follow these two steps:

1. Implement the appropriate interface in the listener so that it will receive the type of

event desired.

2. Implement code to register and unregister (if necessary) the listener as a recipient

for the event notifications.

Remember that a source may generate several types of events.each event must be registered
separately.also,an object may register to receive several types of events,but it must implement

all of the interfaces that are required to receive these events.

To see how the delegation model works in practice,we will look at examples that handle the

two most commonly used event generators:the mouse and keyboard.

13

3.2.5 BASIC FOUNDATION CLASSES
APPLET

Applet provides all necessary support for execution, such as starting and stoping.it also
provides methods that load and display images and methods that load and play audio clips.
Applet extends the AWT class panel. In turn panel extends container, which extends
component. These classes provide support java's window based, graphical interface. Thus

applet provides all of the necessary support for window-based activities.

IMAGE

This class provides support foe imaging. Images are objects of thelmage class, which
is a part of the java.awt package. There are a large number of imaging classes and interfaces

defined by java.awt.image and its not possible to examine them all.

EVENT

The classes that represent events are at the core of java’s events handling mechanisms.
They provide a consistent, easy-to-use means of encapsulating events. At the root of the java
event class hierarchy is EventObject, which is in java.util. it is the super class for all events. Its

one constructor is shown

EventObject(Object src)

4. 1CONTEXT DIAGRAM

CHAPTER 4

SYSTEM DESIGN

14

A System Context Diagram (SCD)} is the highest level view of a system, similar to

Block Diagram, showing a (normally software-based) system as a whole and its inputs and

outputs from/to external factors. Context Diagrams show the interactions between a system

and other actors with which the system is designed to face. SCD is very helpful in

understanding the context in which the system.

Here the password is entered and validation is done.The message is then encrypted,and

the encrypted data is embedded using the techniques in stegonagraphy.

Password Encrypted X
PASSWORD * STEGANOGRAPHY
Details information
Validation
Based on Security
Password U Encrypted Data

Fig 4.1.1

42 DATA FLOW DIAGRAM

15

A data flow diagram (DFD) is a graphical representation of the "flow" of data through

an information system. A data flow diagram can also be used for the visualization of data

processing. There are 4 key elements in a Data Flow diagram, Processes, Data Flows, Data

Stores & External entities.

Audio File > Encoding Stegano- »| Decoding
-graphed
¥
Audio file
Data (Text . ¥ y
»| Encryption
File) Decryption Audio
Cipher Text v
Carrier Media Data (Text
File)

Fig4.2.1

16

CHAPTER 5

SYSTEM IMPLEMENTATION

5.1GENERAL STEGANOGRAPHY

There are several data hiding techniques available today. In each technique,
the host data type is fixed, but the embedded data type can be varied as per requirement. Data
hiding technique should be capable of embedding data in a host signal with the following

restrictions and features:

1 The host signal should be nonobjectionally degraded and the embedded data should be
minimally perceptible. What that means is that the observer should not be able to

notice the presence of the data even if it were perceptible.

2 The embedded data should be directly encoded into the media rather than into a

header or a wrapper so that the data remain intact across varying data file formats.

3 The embedded data should be immune to modifications ranging from intentional and
intelligent attempts at removal to anticipated manipulations e.g. channel noise, re-

sampling, cropping, etc.

4 Asymmetrical coding of the embedded data is desirable since the purpose of data
hiding is to keep the data in the host signal but not necessarily to make the data

difficult to access.

5 The embedded data should be self clocking or arbitrarily re-entrant. This ensures that
the embedded data can be recovered even when only fragments of information are

available.

17

5.2 STEGANOGRAPHY IN AUDIO

Data hiding in audio signals is especially challenging, because the Human Auditory
System (HAS) operates over a wide dynamic range. The HAS perceives over a range of power
greater than one billion to one and a range of frequencies greater than thousand to one.

Sensitivity to additive random noise 1s also acute.

The perturbations in a sound file can be detected as low as one part in ten million
which is 80dB below ambient level. However there are some ‘holes” available. While the HAS
has a large dynamic range, it has a fairly small differential range. As a result, loud sounds tend

to mask out the quieter sounds.

Additionally, the HAS is unable to perceive absolute phase, only relative phase.
Finally there are some environmental distortions so common as to be ignored by the listener in

most cases.

We have tried to exploit these traits to our advantage in the methods discussed further

while being careful to bear in mind the extreme sensitivities of the HAS.
5.3 METHODS OF ENCODING A MESSAGE IN AUDIO
5.3.1 LOW-BIT ENCODING
Low-bit encoding is the one of the simplest way to embed data into other data
structures. By replacing the least significant bit of each sampling point by a coded binary

string, we can encode a large amount of data in an audio signal.

Ideally, the channel capacity is 1 kb per second (kbps) per 1 kilohertz(kHz), e.g., In a

noiseless channel, the bit rate will be 8 kbps in an 8 kHz sampled sequence and 44 kbps in a

18

44kHz sampled sequence. In return for this large channel capacity, audible noise is introduced.
The impact of this noise is a direct function of the content of the host signal, e.g., crowd noise
during a live sports event would mask low-bit encoding noise that would be audible in a string
quartet performance.

Adaptive data attenuation has been used to compensate this vaniation. The major
advantage of this method is its poor immunity to manipulation. Encoded information can be
destroyed by channel noise, re-sampling, etc., unless it is encoded using redundancy
techniques.

In order to be robust, these techniques reduce the data rate which could result in the
requirement of a host of higher magnitude, often by one to two orders of magnitude. In
practice, this method is useful only in closed, digital-to-digital environments.

Sampled Aundio Stream 8 bit)

Chiractor A"
AT rivies P e S
ot v a0 o [0] o [t [o e {1 (o [5]
I EREREE o] oft [t o]] ofi o
ACEEEREIERERE [0] olo [t |1 [ot 1 o
o | 1| 1] 1| e[o | o [1] (] 1] 1|0 |u
TINERNEREEE o] TRERRREREE
) 1| o of11{ afo o | of ol 1] o] o llo
L o] sfo i n o | of o] of 1fo [0 Jo
R RERERAD 0 | » (el DileliTafelo
L[] o] of af of 1a o] e [al ol sl e
nqn fl gl af o] afl l_ LU Re) O 9 oo op o ufl
MEERERORD o | o el e] efs
0 D] aln ¥} (’J_ Lo L L L il
tlofo] 1fe] ol ofo s oo 1]o alln
ol 1{o | 1] of of affn o] ol 1o [1] @ al[v
tf o] 1] 1| oo [a [0 o 1| o] 1| 1] el [o [
L o] 1w [] o] ofle]] ol e T o] o]l

LSB I.SB —= Characiter " 4°

Fig 5.3.1.1

19

5.3.2 PHASE ENCODING

The phase coding method works by substituting the phase of an initial audio segment
with a reference phase that represents the data. The phase of subsequent segments is adjusted
in order to preserve the relative phase between segments. Phase coding, is one of the most
effective coding methods in terms of the signal to perceived noise ratio. When the phase
relation between each frequency component is dramatically changed, a noticeable phase
dispersion will occur. However, as long as the modification of the phase is sufficiently small
an inaudible coding can be achieved. The phase coding method works by substituting the
phase of an initial audio segment with a reference phase that represents the data. The

procedure for phase coding is as follows:

The original sound sequence is broken into a series of N short segments.

N

A Discrete Fourier Transform is applied to each segment, to break create a matrix of
the phase magnitude.

The phase difference between each adjacent segment is calculated.

For segment S0, the first segment, an artificial absolute phase p0 is created.

For all other segments, new phase frames are created.

The new phase and original magnitude are combined to get a new segment Sn.

-~ O O B W

Finally, the new segments are concatenated to create the encoded output.

For the decoding process, the synchronization of the sequence is done before the
decoding. The length of the segment, the DFT points, and the data interval must be known at
the receiver. The value of the underlying phase of the first segment is detected as 0 or 1, which

represents the coded binary string.

This is interesting from our point of view for several reasons. First, a watermark that 1s

embedded in the phase of the DFT would be quite robust to tampering. The core information

20

contained in watermarks is almost always encoded with a high degree of redundancy.
Therefore background clutter and phase distortions deliberately introduced by an ‘enemy’ to

impede transmission of the watermark would have to be noticeably large in order to be
successful. This would cause unacceptable damage to the quality of the image. Second, from
communications theory, it is well known that angle modulation possesses superior noise
immunity when compared to amplitude modulation. We also find that phase is relatively

robust to changes in image contrast.

5.4 AUDIO FILE FORMAT

In order to demonstrate the use of Steganography techniques combined with encryption,
the AU format used on Sun and NeXT machines was chosen as the host audio file. Sun AU
format is well documented elsewhere and Java Sound API provides convenient ways to handle

formatted audio data.

Formatted audio data refers to sound in any of a number of standard formats. The Java
Sound API distinguishes between data formats and file formats. A data format tells you how to
interpret a series of bytes of “raw” sampled audio data, such as samples that have been
captured from the microphone input. You might need to know, for example how many bits
constitute one sample (the representation of the shortest instant of sound), and similarly you
might need to know the sound’s sample rate (hoe fast the samples are supposed to follow one
another). When setting up for playback or capture, you specify the data format of the sound
you are capturing or playing.

In the Java Sound API a data format is represented by an AudioFormat object, which

mcludes the following attributes:
1 Encoding technique, usually pulse code modulation (PCM)
2 Number of channels (1 for mono, 2 for stereo, etc.)

3 Sample rate (number of samples per second, per channel)

21

4 Number of bits per sample (per channel)
5 Frame rate

6 Frame size in bytes

7 Byte order (big-endian or little-endian)

PCM is one kind of encoding of the sound waveform. Compact disks, for example, use
linear PCM-encoded sound. Mu-law encoding and a-law encoding are common nonlinear

encodings that provide a more compressed version of the audio data.

A frame contains the data for all channels at a particular time. For PCM-encoded data, the
frame is simply the set of simultaneous samples in all channels, for a given instant 1n time,
without any additional information. In this case, the frame rate is equal to the sample rate, and
the frame size in bytes is the number of channels multiplied by the sample size in bits, divided

by the no of bits in a byte.

A file format specifies the structure of a sound file, including not only the format of the
raw audio data in the file, but also other information that can be stored in the file. Sound files
come in various standard varieties, such as WAVE (also known as WAV, and often associated
with PCs), AIFF (often associated with Macintosh OS), and AU (often associated with UNIX
systems). The different types of sound files have different structures. For example, they might
have a different arrangement of data in the file’s ‘header’. A header contains descriptive
information that typically precedes the file’s actual audio samples, although some file formats
allow successive “chunks” of descriptive and audio data. The header includes a specification
of the data format that was used for storing the audio in the second file. Any of these types of
sound file can contain various data formats (although usually there is only one data format
within a given file), and the same data format can be used in files that have different file

formats.

22

In the Java Sound API, a file format is represented by an AudioFileFormat object, which

contains:
1 The file type (WAVE, AIFF, AU, etc.)
2 The files length in bytes
3 The length, in frames, of the audio data contained in the file

4 An AudioFormat object that specifies the data format of the audio data contained in the

file.In our implementation, we treat the AU file as 8-bit Mu-law encoded.
5.5 ENCRYPTION METHOD USED

We chose a password Based Encryption scheme with MD5 and DES algorithms.The
recommendations are intended for general application within computer and communications
systems, and as such include a fair amount of flexibility. They are particularly intended for the
protection of sensitive information such as private keys. It is expected that application

standards based on these specifications may include additional constraints.

Other cryptographic techniques based on passwords, such as password-based key entity
authentication and key establishment protocols are outside the scope of this document.

Guidelines for the selection of passwords are also outside the scope.

Salt and iteration count

In as much as salt and iteration count are central to the techniques defined in this document,
some further discussion is warranted.
Salt

A salt in password-based cryptography has traditionally served the purpose of producing a

large set of keys corresponding to a given password, among which one is selected at random

23

according to the salt. An individual key in the set is selected by applying a key derivation
function KDF, as

DK = KDF (P, S)
where DX is the derived key, P is the password, and S is the salt. This has two benefits:

1) It is difficult for an opponent to precompute all the keys corresponding to a dictionary
of passwords, or even the most likely keys. If the salt is 64 bits long, for instance, there
will be as many as 2% keys for each password. An opponent is thus limited to
searching for passwords after a password-based operation has been performed and the

salt is known.

2) It is unlikely that the same key will be selected twice. Again, if the salt is 64 bits long,
the chance of “collision” between keys does not become significant until about 2%
keys have been produced, according to the Birthday Paradox. This addresses concerns
about interactions between multiple uses of the same key, which may apply for some

encryption and authentication techniques.

In password-based encryption, the party encrypting a message can gain assurance that
these benefits are realized simply by selecting a large and sufficiently random salt when
deriving a encryption key from a password. A party generating a message authentication code

can gain such assurance in a similar fashion.

The party decrypting a message or verifying a message authentication code, however,
cannot be sure that a salt supplied by another part has actually been generated at random. It is
possible, for instance, that an opponent may have copied the salt from another password-based
operation, in an attempt to exploit interactions between multiple uses of the same key. For
instance, the opponent may take the salt for an encryption operation with a 80-bit key and
provide it to a party as though it were for a 40-bit key. If the party performs a decryption with

24

the resulting key, the opponent may be able to determine the 40-bit key from the result of the
decryption operation, and thereby solve for half of the 80-bit. Similar attacks are possible in

the case of message authentication.

To defend against such attacks, either the interactions between multiple uses of the
same key should be carefully analyzed, or the salt should contain data that explicitly
distinguishes between different operations. For instance, the salt might have an additional,
non-random octet that specifies whether the derived key is for encryption, for message
authentication, or for some other operation.Based on this, the following is recommended for

salt selection:

1. If there is no concern about interactions between multiple uses of the same key with the
password-based encryption and authentication techniques supported for a given
password, then the salt may be generated at random. It should be at least eight octets (64

bits) long.

2. Otherwise, the salt should contain data that explicitly distinguishes between different
operations, in addition to a random part that is at least eight octets long. For instance, the
salt could have an additional non-random octet that specifies the purpose of the derived
key. Alternatively, it could be the encoding of a structure that specifies detailed
information about the derived key, such as the encryption or authentication technique and
a sequence number among the different keys derived from the password. The particular

format of the additional data is left to the application.

Note. If a random number generator or pseudorandom generator is not available, a
deterministic alternative for generating the salt (or the random part of it) is to apply a
password-based key derivation function to the password and the message M to be processed.
For instance, the salt could be computed with a key derivation function as S = KDF (P, M).

This approach is not recommended if the message M is known to belong to a small message

25

space (e.g., “Yes” or “No”), however, since then there will only be a small number of possible

salts.

Iteration count

An iteration count bas traditionally served the purpose of increasing the cost of
producing keys from a password, thereby also increasing the difficulty of attack. For the
methods in this document, a minimum of 1000 iterations is recommended. This will increase
the cost of exhaustive search for passwords significantly, without a noticeable impact in the

cost of deriving individual keys.

Key derivation functions

A key derivation function produces a derived key from a base key and other
parameters. In a password-based key derivation function, the base key is a password and the

other parameters are a salt value and an iteration count.

The primary application of the password-based key derivation functions defined here is
in the encryption schemes in Section 6 and the message authentication scheme in Section 7.

Other applications are certainly possible, hence the independent definition of these functions.

Two functions are specified: PBKDF1 and PBKDF2. PBKDF2 is recommended for
new applications; PBKDF1 is included only for compatibility with existing applications, and

is not recommended for new applications.

A typical application of the key derivation functions defined here might include the following
steps:

i. Select a salt S and an iteration count c.

2. Select a length in octets for the derived key, dkLen.

26

3. Apply the key derivation function to the password, the salt, the iteration count and the key
length to produce a derived key.

4. OQutput the derived key.

Since a password is not directly applicable as a key to any conventional cryptosystem,
however, some processing of the password is required to perform cryptographic operations
with it. Moreover, as passwords are often chosen from a relatively small space, special care is
required in that processing to defend against search attacks. A general approach to password
based cryptography, for the protection of password tables, is to combine a password with a salt
to produce a key. The salt can be viewed as an index into a large set of keys derived from the
password, and need not be kept secret. Although it may be possible for an opponent to
construct a table of possible passwords (a so-called “dictionary attack™), constructing a table
of possible keys will be difficult, since there will be many possible keys for each password.

An opponent will thus be limited to searching through passwords separately for each salt.

Another approach to password-based cryptography is to construct key derivation
techniques that are relatively expensive, thereby increase the cost of exhaustive search. One
way to do this is to include an iteration count in the key derivation technique, indicating how
many times to iterate some underlying function by which keys are derived. A modest number
of iterations, say 1000, is not likely to be a burden for legitimate parties when computing a

key, but wiil be a significant burden of opponents.

27

Passworgd ——
Salt ———a= PBE e KCEY (112 baty
_ (MD5) (DES-EDE)
[teration -
Count
Fig 5.5.1

Salt and iteration count formed the basis for password-based encryption in PKCS . The
PBE schemes here are based on an underlying, conventional encryption schemes (for an
example, in this implementation, triple DES-EDE with two keys in CBC mode), where the key

for the conventional scheme is derived from the password.

A salt in password-based cryptography has traditionally served the purpose of
producing a large set of keys corresponding to a given password, among which one is selected
at random according to the salt. An individual key in the set is selected by applying a key

derivation function KDF, as
DK =KDF (P, S)
where DK is the derived key, P is the password and S is the salt.

With this scheme, it is difficult for an opponent to precompute all the keys corresponding to a
dictionary of passwords, or even the most likely keys. If the salt is 64 bits long, for instance,
there will be as many as 264 keys for each password. It is unlikely that the same key will be
selected twice. Again, if the salt is 64 bits long, the chance of “collision” between keys does

not become significant until about 232 keys have been produced.

28

An iteration count has traditionally served the purpose of increasing the cost of
producing keys from a password, thereby also increasing the difficulty of attack. Of the two
functions defined, we chose PBKDF1, which employs a hash function, in this case, MD5.

PBKDF1 Algorithm

PBKDF! (P, S, ¢, dkLen)

Options: Hash underlying hash function
Input: p password, an octet string
S salt, an eight-octet string
C iteration count, a positive integer
dkLen intended length in octets of derived key, a positive integer, at

most16 for MD2 or MDS5 and 20 for SHA-1
Output: DK derived key, a dkLen-octet string
Steps:

1. If dkLLen > 16 for MD2 and MDS35, or dkLen >20 for SHA-1, output “derived key

too long” and stop.

2. Apply the underlying hash function for c iterations to the concatenation of the
password P and the salt S, then extract the first dkLen octets to produce a derived
key DK:

T1 = Hash(P||S),

T2 = Hash(T1),...

Tc = Hash(Tc-1),
DK = Tc <0..dkLen-1>.

3. Output the derived key DK.

29

The Java™ Cryptography Extension (JCE) [4] provides a framework and

implementations for encryption, key generation and key agreement, and Message

Authentication Code (MAC) algorithms. Support for encryption includes symmetric,

asymmetric, block, and stream ciphers. The software also supports secure streams and sealed

objects. JCE was previously an optional package (extension) to the Java™ 2 SDK, Standard
Edition (J2SDK), versions 1.2.x and 1.3.x. JCE has now been integrated into the J2SDK, v

1.4. JCE provides an implementation of the MD5 with DES-CBC password-based encryption
(PBE) algorithm defined in PKCS #5 together with “Secret-key factories” for bi-directional

conversions between opaque DES, Triple DES and PBE key objects and transparent

representations of their underlying key material. Thus the implementation is shown in 5.5.2

Audio file g
(AU

Message— o=

Passwordg——s-

Ercoding

Audio file

Password———=

Audio
(AU

L
A

™ imodified)

fle o

Decoding

-——w Message

Ciphertextiength

Fig 5.5.2

Audio fils JANA . Steganagraph
A | sound API Embeding —e= a|) file,
i J
JAVA JCE \
Message—s- Ey Ciphertext
F’ass\'«iﬂrd_j‘W

Cipshertaxt
- 15

30

5.6 MD5 ALGORITHM

MD5 digests have been widely used in the software world to provide some assurance
that a transferred file has arrived intact.

The main MD35 algorithm operates on a 128-bit state, divided into four 32-bit words,
denoted 4, B, C and D. These are initialized to certain fixed constants. The main algorithm
then operates on each 512-bit message block in turn, each block modifying the state. The
processing of a message block consists of four similar stages, termed rounds; each round is
composed of 16 similar operations based on a non-linear function £, modular addition, and left

rotation.

A8]c oD
Feh—
3 Ce—
M-
v
Ki

Fig.5.6

Here One MD5 operation-MD35 consists of 64 of these operations, grouped in four rounds of
16 operations. F is a nonlinear function; one function is used in each round. M; denotes a 32-

bit block of the message input, and K; denotes a 32-bit constant, different for each operation.

31

&, denotes a left bit rotation by s places; s varies for each operation. Hdenotes addition

modulo 22,

5.7 DES ALGORITHM

Key (64 blx)

Round 2 , Peiaa : Sub-key #2 (48 bits) ; :
R H 1

Sub-key #16 {48 bits) -

Round 16

32

The Data Encryption Standard (DES) is a cipher (a method for encrypting
information).DES is the archetypal block cipher — an algorithm that takes a fixed-length
string of plaintext bits and transforms it through a series of complicated operations into

another cipher text bit string of the same length. In the case of DES, the block size is 64 bits.

DES also uses a key to customize the transformation, so that decryption can
supposedly only be performed by those who know the particular key used to encrypt. The key
ostensibly consists of 64 bits; however, only 56 of these are actually used by the algorithm.
Eight bits are used solely for checking parity, and are thereafter discarded. Hence the effective
key length is 56 bits, and it is usually quoted as such.

There are 16 identical stages of processing, termed rounds. There is also an initial and final
permutation, termed IP and FP, which are inverses (IP "undoes” the action of FP, and vice
versa). IP and FP have almost no cryptographic significance. Before the main rounds, the
block is divided into two 32-bit halves and processed alternately; this criss-crossing is known
as the Feistel scheme. The Feistel structure ensures that decryption and encryption are very
similar processes — the only difference is that the subkeys are applied in the reverse order
when decrypting. The rest of the algorithm is identical. This greatly simplifies
implementation, particularly in hardware, as there is no need for separate encryption and

decryption algorithms.

33

CHAPTER 6

TESTING

Testing is the process of executing the program with the intent of finding errors.
During testing, the program to be tested is executed with a set of test cases and the output of
the program for the test cases is evaluated to determine the program is performing as it is
expected. Error is the testing fundamental and is defined as the difference between the actual
output of a software and a correct output i.e., difference between the actual and ideal testing is
usually relied upon to detect these faults in the coding phase for this, different levels of testing

are used which performs different tasks and aim to the test different aspects of the system.
6.1 TESTING OBJECTIVES

> Testing is a process of executing a program with the intent of finding an error.
» A good test case is one that has high probability of finding an as yet undiscovered

erTor.
6.2 TYPES OF TESTING

1. Functional Testing

Here the structure of the program is not considered. Only the test cases are decided
solely on the basis of the requirements or specification of the program or module and the
internal details of the module or the program is not considered for the selection of test cases.

This is also called “Black Box Testing”.

34

2. Structural Testing

It is considered with testing the implementation of the program. The intention of the
structural testing is not to exercise all the different input and output conditions but to exercise
the different programming and data files used in the program. This testing is also called

“White Box Testing”.
6.3DIFFERENT LEVEL OF TESTING
6.3.1 UNIT TESTING

In it different modules are tested against the specifications produced during design for
the modules. It is essential for verification of the code produced during the code phase and the

goal is to test the internal logic of the module.
6.3.2 INTEGRATION TESTING

The goal here is to see if the modules can be integrated properly, the emphasis being
on testing interfaces between modules. After structural testing and functional testing we get

error free modules these modules are to be integrated to get the required results of the system.

6.3.3 SYSTEM TESTING

Here the entire software is tested. The reference document for this process is the
requirement document and the goal is to see whether the software needs its requirements.The

system was tested for various test cases with various inputs,
6.3.4 ACCEPTANCE TESTING

It 1s some times performed with realistic data of the client to demonstrate that the
software 1s working satisfactorily. Testing here focus on the external behavior of the system,
the internal logic of the program is not emphasized. In acceptance test the system is tested for

various inputs. Thus various tests have been performed.

35

CHAPTER 7

PERFORMANCE AND LIMITATIONS

7.1 MERITS OF THE SYSTEM:
The aim of providing a secure communication is achieved by hiding the data in a audio
file and transferring it across the system. It has merits such as
+ It ensure the privacy of communication
+ Hiding information such that even its presence can’t be detected

« There would be no perceivable changes in audio file after message insertion

The encryption adds another level of security to the conventional stegosystem.It is necessary
to maintain the same salt and iteration count to generate the same key in both encryption and
decryption process. This reduces the key space in a brute force attack. But the salt which is
compiled with the source code itself makes it harder to guess. Also the Triple DES (EDE),

used here, is regarded as a better alternative to conventional DES.

7.2 LIMITATIONS OF THE SYSTEM

The major disadvantage of low-bit encoding is, its poor immunity to manipulation.
Encoded information can be destroyed by channel noise, re-sampling etc., unless it is encoded
with redundancy techniques. In order to be robust, these techniques reduce the data rate, ofien
by one to two orders of magnitude. In practice this method is useful in closed, digital
environments. Other data hiding techniques such as Phase encoding, Spread spectrum and

Echo hiding have better immunity to manipulation.

36

Steganalysis focuses on two aspects: detection of embedded message, and destruction
of embedded message. In our implementation we noticed that the detection process is
extremely difficult since HAS has a fairly small differential range.

Examples of Steganography attacks are: Stego-only attack. Host-stego attack (known
host signal attack), and chosen message attack. Trivially, our implementation is strong against
those types of attacks since the attacker is unaware of the encryption algorithm and also the
parameters of the algorithm. There is no secure stegosystem if the attacker knows both host
medium, and stego medium. The difference reveals that Steganography was used. But the
encryption adds another level of security to the conventional stegosystem.

It is necessary to maintain the same salt and iteration count to generate the same key in
both encryption and decryption process. This reduces the key space in a brute force attack. But
the salt which is compiled with the source code itself, makes it harder to guess. Also the Triple

DES (EDE), used here, is regarded as a better alternative to conventional DES.

7.3 FUTURE ENHANCEMENTS

1 Public key cryptography system suggests a very secure and convenient way of
communicating. The audic containing the embedded text can be sent through the
network, and that can be extracted at the other end.

2 Support for other audio formats can easily be added since Java Sound API can handle
WAVE, AIFF, etc.. However support for MP3 (MPEG layer3) format which uses
different encoding scheme, needs additional sound encoding/decoding method to be
implemented. This can be simplified by the use of a freeware GPL (rather, LGPL)
encoder such as BladeEnc.

3 Choice of various encryption algorithms such as IDEA, AES, etc., can be implemented
with Java Cryptography Extension or using another provider.

4 Robustness (i.e. resistance to data manipulation) can be increased by using other

techniques of data hiding.

8.1 SAMPLE SCREEN

udio-5tego

CHAPTER-8

APPENDICES

Fig A.1 Front Screen

37

" Audic-Stego

Fig A.2 Embed Action

38

P2 Audio-Stego
Fie_filp

Audio Preview

tan mput aadie file

ooty

tlirar

H
|| Hext>

Fig A.3 Select an Input Audio File

39

&) Audio-Stego

Voutpnt
tate arnbed

Select the output divectory

Fig A.4 Select an OQutput Directory

40

Audio-Stego
File Help

{5 Select File;

nter the text to be embedded into the image

Fig A.S Selecting the Data to Embed

a1

B Audio-Stego
file Help

{ Select File (& Enter Text

nter the text to be embedded into the image

Fig A.6 Enter the Data to Embed

42

B Audio-Stego
Eile Help

'

[T TR R IR FRRE A FE SR NS H H

10 20 30 4-0 50

[RAIR RS S

70

8090 100

60

Fig A.7 Enter the password/Comment /Quality

n Audio-Stego

Property Qption Selected

Input File

CADocurnents and SettingsiDih...

Qutput Directary CiDocuments and Settings\Dih...

Textto be embedded This is a Demo

crnrne il - &0

[OUR S TR I MY

lick next to start the embedding process

44

Fig A.8 Verifying the data Entered

4 Audio-Stego
file _Help

Embedding Data In Image...

Reading Attributes Wait....
<Snurce - AudioFile> ChDocuments and SettingsiDharaniDeasktopl

<Output - AudiaFile» CiDocurments and Settings\DharanitDeskiopim

=Comment =
<Passward = dharani
Reading (A0 sound file ...

Reading the plaintext file . CADOCUME~11DharaniLOCALS~11Temp

Password Verffication: {C@4ac216
Encrypting the plaintext message ..
Hiding the ciphertext in AU file ...

Steganographed AU file is written as CiDocuments and Settings\Dhag
Completed . (EmbedProtess.java)]
Embedding Process Completed.

Fig A.9 Embedding data into Audio file

45

| & Audio-Stego

File : C:\Documents and Settings'\DharaniDesktop'music... ! |f

=N

1o be A ndig

) Play Qutput Audio ' Play Input Audio

Fig A.10 View output file after Embedding

46

% Audio-Stego

Fig A.11 Extract Action Screen

47

Audio-Stego -] X
fie Help

Extract Wizard
Steps Audio Preview

1. Select an mput audio file

gz rame

cata o s i nis
hpb = e

oo M A0

[<gock |[Mew> || conct ||

Fig A.12 Screen to select the input file for extracting the data

48

Audio-Stego
file Help

Steps

Enter the autput file name

3 and SettingsIDharanilDesktap‘tsecretTexthft

Fig A.13 Enter the output directory to save the secret text

49

E! Audio-Stego
Hile Help

Enter the password and click next to start the extraction

Passwordg [ssssess [

Fig A.14 Entering the password for Extraction

50

X Audio-Stego

Property Qption Selected

CADocuments and SettingsiDh...

CADocurnents and Setlingsi\Dh...

lick nexd to start the embedding process

Fig A.15 Screen that verifies options entered

51

Eﬁ Audio-Stego
hile Help

cting «Jata from the andia file

o Lo F e

Extracting data from the Audio

Exdracting....

Audio FileC\Doeuments and Settings\DharanitDesktonumusict .au
FileCADocuments and SettingsiDharaniiDeskiopisecretText bt
PiwDdharani

Reading (AU) sound file . '
Pwd [C@103kaa

Retrieving the ciphertext from AU file ...

Enter encrypticn password: Decrypling the cipherext .

Completed
Extraciion Completed.

Fig A.16 performing the extraction

riting the decrypted hidden message toC\Documents and Settings

52

2 Audio-Stego
File Help

QOutput File : C:Documents and Sefttings\Dharaniﬁesldon\secreﬂ... ;

Fig A.17 View the Secret data

53

S

54

CHAPTER-Y9

BIBLIOGRAPHY

Herbert Schildt, “Java 2 - The Complete Reference”, V™ Edition.

Java Sound API — http://java.sun.com/products/java-media/sound/

Java™ Cryptography Extension - http://java.sun.com/products/jce/
Bender W., Gruhul D., Morimoto N., “Techniques for data hiding”, IBM Systems
Journal, Vol 35, Nos 3&4, 1996.

Core Java —Cay S.Horstmann, Gary Cornell.

