SCHEMA SQL
By

SJEYAKANNAN
Registration Number: 71205621014

of

KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE

A PROJECT REPORT

Submitted to the

FACULTY OF INFORMATION AND COMMUNICATION ENGINEERING

In partial fulfillment of the requirements
for the award of the degree

of
MASTER OF COMPUTER APPLICATION

ANNA UNIVERSITY
CHENNALI 600 025

June 2008

ii

KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE-641006

BONAFIDE CERTIFICATE

Certified that this project report titled “SCHEMA SQL” is the bonafide work
of “Mr.S.JEYAKANNAN” (Registration Number: 71205621014) who carried out the
research under my supervision. Certified further, that to the best of my knowledge the
work reported herein does ;not form pﬁrt of any other project report or dissertation on the
basis of which a degree or award was conferred on an earlier occasion on this or any other

candidate.

Lg?:)erwsor Head of the Department

Submitted to Project and Viva Examination heldon &!. 0 7. 0%

ey s erar

Internal Examiner External Examiner

NAs”
21N\

)
)
)

Project Completion Certificate

This is to certify that Mr. S. Jeyakannan (Register No: 71205621014) of Kumaragu
College of Technology, had done his project at Comprehensive Business Solutions, Chennai with t
project title "Schema SQL", under the guidance of Mr. Christopher Theo Samuel. B from D
2007 to Jun 2008. During the project, he has successfully covered all the areas required for |

project.

We wish him all success in his career.

For Comprehensive Business Solutions

7

Christopher Theo Samuel. B
HR - Manager

No 5F Lakshmi Bhawan, 609 Anna Salai, Chennai - 600 006, Ph: +91 044 4207 1112, +91 044 4204 8660, +91 044 4204 8661,

Fomail: chenhitiane@indiatimec rom chenhitinneMeifs ram

iii

ABSTRACT

The project “SQL SCHEMA” is developed for the company
COMPREHENSIVE BUSINESS SOLUTIONS, Chennai. The integration of data,
especially from heterogeneous sources, is a hard and widely studied problem. One
particularly challenging issue is the integration of sources that are semantically equivalent
but schematically heterogeneous. While two such data sources may represent the same
information, one may store the ‘jnfonnation inside tuples (data) while the other may store it
in attﬁbute or relation names (schema). The Schema SQL query language is a recent
solution to this problem powerful enough to restructure such sources into each other
without the loss of information.

In this project we develop an application which implements the well
recent Schema SQL .The Schema SQL could get the input from the user as the SQL
language and could even manage any type of databases such as Access or Oracle or even

MS-SQL. All the data bases could be handled with a single query which is in SQL.

iv

ACKNOWLEDGEMENT

First and foremost I thank God for his good will and blessings showered on me
throughout the project. The success of this project needs cooperation and encouragement
from different quarters. Words are inadequate to express my profound and deep sense of

gratitude to those who helped me in bringing out this project successfully.

I wish to express my deep unfathomable feeling of gratitude and indebtedness to
Dr. Joseph V. Thanikal, Ph.D, Principal — Kumaraguru College of Technology,

Coimbatore for the successful completion of the project work.

I am very gladly taking this opportunity to express a special word of thanks to
Dr. M. Gururajan M.Sc., Ph.D, Head of the Department, Kumaraguru College of

Technology, Coimbatore for encouraging me to do this work.

I am very much indebted to Mr. A. Muthukumar M.Sc., M.C.A., Assistant
professor Kumaraguru College of Technology, Coimbatore for his complete assistance,

guidance and support given to me throughout my project.

It’s always a pleasure and privileges to be associated with a prestigious outstanding
esteemed organization “Comprehensive Business Solution”, Chennai. I am very happy

and grateful to be a part of this Company.

TABLE OF CONTENTS

CHAPTER NO TITLE
ABSTRACT
LIST OF FIGURES
LIST OF ABBREVIATIONS
1 INTRODUCTION

1.1 About the project.

1.2 About the Company.
2 SYSTEM ANALYSIS

2.1 Existing System

2.1 Proposed System

2.3 Feasibility Study

3 DEVELOPMENT ENVIRONMENT
3.1 Hardware Requirements

3.2 Software Requirements
3.3 Software Description
4 SYSTEM DESIGN
4.1 Functional Requirements
4.2 Non-Functional Requirements
4.3 Architectural Design
4.4 System Flow Diagram
4.5 Block Diagram
4.6 Data Flow Diagram
5 SYSTEM DEVELOPMENT
5.1 Introduction
5.2 Module Description
5.2.1 Database Selection Module
5.2.2 Connection Module
5.2.3 Query builder Module.
5.3 System Security

PAGE NO
il
vil

viii

13
13
15
18
19
20

21

22
22
22
24

CHAPTERNO

6

TITLE

SYSTEM TESTING

6.1 Verification and Validation

6.2 Unit Testing

6.3 Integration Testing
IMPLEMENTATION AND FURTHER
ENHANCEMENTS
CONCLUSION
APPENDIX 1 SAMPLE CODE
APPENDIX 2 SCREEN SHOTS
REFERENCES

PAGE NO

25
27
28
29

31
32
41
58

vi

FIGURE NO

4.1
4.2
4.3
4.4
A21
A22
A23
A2.4
A25
A26
A27

A28
A29

A 210
A211
A212
A213

A2.14
A215

A2.16

A2.17

LIST OF FIGURES

TITLE

Architecture of Schema SQL.

System Flow Diagram for Query Optimization
Block Diagram for Schema SQL.

Data Flow Diagram for Schema SQL.

Login Form

Home Screen

Database Selection.

. Connection Wizard.

Connection Wizard - Access database Selection.

Connection Wizard - Database Selection
Connection Wizard - Access database Test
Connection

Connection Wizard - SQL database Selection
Connection Wizard - SQL database Test
Connection

Connection Wizard - Accepting

Query Builder Wizard

Query Builder Wizard - Display Table Values
Query Builder Wizard - Display SQL Table
Values.

Query Builder Wizard - Create Access Table
Query Builder Wizard - Insert Access Table.
Query Builder Wizard - Selecting New Table
Values

Query Builder Wizard - Selecting Values From

Different database sources.

PAGE NO

17
18
19
20
41
42
43
44
45
46
47

48
49

50
51
52
53

54

55

56

57

vii

SQL
CBS
NET
VIT
Ul
FST

LIST OF ABBREVIATIONS

Structure Query language
Comprehensive Business Solutions
Visual Basic .net

Variable Instantiation Table

User Interface

Federation System Table

World Wide Web.

viii

CHAPTER1
INTRODUCTION
1.1 About the Project
Introduction to Schema SQL

A single organization contains large number of database designed, created and
maintained by number of users on different location; these databases can be on different
operating system, different platform and’ different data models. There should be some
mechanism for int:eroperability among databases, for this we provide a principled extension of
SQL, called "Schema SQL”, that offers the capability of uniform manipulation of data and
meta-data in relational multi-database systems. We develop a precise syntax and semantics of

Schema SQL in a manner that extends traditional SQL syntax and semantics.

Schema SQL retains the flavor of SQL while supporting querying both data and meta-
data. It can be used to define and create "restructuring views", views that represent data in a
database in a structure substantially different from original database, in which data and meta-
data may be interchanged. Schema SQL provides a great facility for interoperability and

data/meta-data management in relational multi-database systems.

Introduction to Project

In recent years, there has been a tremendous propagation of databases in the work
place, dominated by relational database systems. An emerging need for sharing data and
programs across the different databases has motivated the need for "Schema SQL",
sometimes also referred to as heterogeneous database systems. Systems capable of operating
over a distributed network and encompassing a heterogeneous mix of computers, operating
systems, communication links, and local database systems have become highly desirable, and

commercial products are slowly appearing on the market.

One of the fundamental requirements in a multi-database system is interoperability,
which is the ability to uniformly share, interpret, and manipulate information in component
databases. Almost all factors of heterogeneity in a Schema SQL pose challenges for
interoperability. These factors can be classified into semantics issues (e.g., interpreting and
cross-relating information in different local databases), syntactic issues (e.g., heterogeneity in
database schemas, data models, and in query processing, etc.), and systems issues (e.g.
operating systems, communication protocols, consistency management, security management,
etc). We consider the problem of interoperability among a number of component relational

databases storing semantically similar information in structurally dissimilar ways.

1.2 About the company’

Comprehensive Business Solutions Technologies has been in forefront of developing and
delivering enterprise asset management, parts & catalog management, inventory & materials
management, work- order scheduling and work force management, fleets management,
facilities and various business solutions. Comprehensive Business Solution’s strengths are
based upon industry centric management expertise, consulting services, software &
technology products development, and process automations by listening to their clients,
identifying their challenges from day to day operational issues to strategic management goals,

and implementation of business solutions to solve their challenges.

Comprehensive Business Solutions has been providing information technology and
database management consulting services for more than a decade. They have successful
database management consulting and execution experience with fortune 2000 clients all over
the world. Comprehensive Business Solutions has also been developing industry solutions
based on Oracle and Microsoft database platforms with customers all over the world. Their
expertise includes database architecture, data modeling, security & privacy, migration,

database administration and maintenance services.

Comprehensive Business Solutions, based at Chennai, is a part of a group involved in
IT development, IT services, Plant Maintenance Consulting & Software, Materials consulting
& Software, Payroll and HR Solution , Biometric based IT solutions, Data preparation etc.,
They have good experience in successfully executing very large projects for Government of

India Organizations, Private Organizations for both National and International customers.

Comprehensive Business Solutions has implemented its existing software solutions (
ERP, plant , equipment maintenance, Spare parts and materials management , Material
Cataloging, Biometric based IT solutions etc.), at multiple customer locations, providing

interfaces to SAP, Oracle financial etc.

CBS is a technology oriented company promoted by professionals with rich experience
and expertise in the industry. The company is focusing on providing technical consultancy and
solutions in the automation industry for various applications. CBS also looks at providing the
necessary business computing systems for optimizing the total systems integration, with the

help of its vast product range.

CBS offers total solutions on Automatic Identification Systems for Transaction
Automation through the much sought after Barcode / Radio Frequency and Biometrics

Technology. In general all the IT products and solutions brought to you by one trusted source.

We are located at Chennai and is well equipped with the necessary infrastructure,
employing experienced professionals who have put in years in this field offering consultations
and solutions in any application area. Our support personnel are fully trained to meet any
requirements — Technical / Software and are able to clarify doubts instantly. They increase
their clients’ competitiveness by rolling out industry solutions leveraging our proven software

products, information technology solutions and business Process optimization services.

APPLICATIONS

Attendance / access control.
Work-in-process tracking
Inventory management — raw materials / finished goods.
Warehousing / distribution logistics.
Asset management.

Library management.

Product identification / labelling.
Baggage tracking / ticketing
Vehicle parking.

Event management.

Compliance labelling — exports.
Blood banks. ‘
Document management.

Patient / medical records tracking.
Retail sales — pos activity

Vehicle parking.

Event management.

Compliance labelling — exports.
Blood banks.

Document management.

Patient / medical records tracking.
Retail sales — pos activity

CHAPTER 2

SYSTEM ANALYSIS

2.1 Existing System

Today every organization contains a large number of database designed, created at
different places and these databases can be of different format. This database can be on
different systems over the network. It is not possible to query data from different database
using Ordinary SQL Query. Sql queries are used only to extract data from single database
having same data model and same format. A general problem that is common to all of the
above approaches is the resolution of heterogeneities caused by the autonomous, distributed,
heterogeneous data sources. Heterogeneities occur at several levels - Semantic level and
schema level heterogeneity: This occurs with the same real-world objects and concepts being
represented in different databases using multitude of data models and user perspectives;

Database, platform and network level heterogeneity

2.2 Proposed system

Today every single organization has database spread over in different places and these
database can be of different format. The user wants data from this different database, in order
to generate reports. This mechanism can be implemented by a language called Schema SQL

which is the extension of SQL.

We use interoperability among databases, which has the ability to uniformly share,
interpret, and manipulate information in component databases in a Schema SQL. In this
system we design queries to combine the data from different tables which are distributed in
different location and this database can be of different format and different data models, the

user can write queries to retrieve the data and to combine the tables into single table.

2.3 FEASIBILITY STUDY
2.3.1 Technical Feasibility

Technical Feasibility focuses on technology related issues, Practicality of available
technical solution, risks involved and resources available. The man power required is a single
person. It also accesses that whether the available technology is mature enough to meet the

system needs.
2.3.2 Operational Feasibility

Operational Feasibility is people oriented and focuses on evaluating whether a system
will work properly in the organization as well as the feedback of the end users about the
problem. All the issues like performance, efficiency, providing information and services to the

users, security etc. of the system are covered by operational feasibility.
2.3.3 Economic feasibility

Economic feasibility of the system is the measure of cost effectiveness of the system
and includes cost benefit analysis, cost involved, income generated etc. while doing cost
benefit analysis, fixed costs (cost of developing system) and cost for operating the system are

also taken into account.

CHAPTER 3

DEVELOPMENT ENVIRONMENT

3.1 Hardware requirements

Operating System : Windows XP

Processor : Intel Pentium IV, 2.6 GHz
RAM . : 256 GB

Hard disk capacity : 40 GB

3.2 Software requirements

Front End : Visual Basic.Net

Back End : SQL Server, MS-Access, Oracle

3.3 Software Description

Visual Basic.NET

e Working With Forms and Controls

Forms allow us to work visually with controls and other items from the tool
box. In VB.NET forms are based on the System.Windows.Forms namespace and the

form class is System.Windows.Forms.Form.

A control is an object that can be drawn on to the form to enable or enhance

user interaction with the application.

e Working With Menus

In this project, we used to control for three main menus namely Database Selection,

Connection, and Query builder.

Database Selection menu has the operation of selecting the database through the check
box. Connection Wizard performs the operations of selecting the provider, giving the
provider with Id, password and Data Source. Then finally testing the connection between
two databases. Likewise all other menus are tied up with their corresponding forms through

sub menus.

Many people have looked at VB.NET and grumbled about the changes. There are
significant changes to the language: a new optional error handling structure, namespaces,
true inheritance, free threading, and many others. If you took a Visual Basic 1.0 developer
and showed him an n-tier application with an ASP front end, a VB COM component middle
tier, and a SQL Server back end full of stored procedures, it would look quite alien to him.
Yet, over the past few years, the vast majority of developers have been using Visual Basic to
create COM components, and they have become quite versed in ADO as well. The needs for
reusability and centralization (a way to avoid distributing components to the desktop) have

driven this move to the n-tier model. The move to the Web revealed some problems.

Scalability was an issue, but more complex applications had other requirements, such
as transactions that spanned multiple Components, multiple databases, or both. To address
these issues, Microsoft created Microsoft Transaction Services (MTS) and COM+ Component
Services. MTS (in Windows NT 4) and Component Services (an updated MTS in Windows
2000) acted as an object-hosting environment, allowing you to gain scalability and distributed

transactions with relative ease.

However, VB components could not take full advantage of all that Component
Services had to offer, such as object pooling, because VB did not support free threading. In the
ASP/VB6 model, Microsoft had developers building a component and then calling it via an

ASP. Microsoft realized that it would be a good idea to make the component directly callable
over HTTP, so that an application anywhere in the world could use that component. Microsoft
threw their support behind SOAP, Simple Object Access Protocol, which allows developers to
call a component over HTTP using an XML string, with the data returning via HTTP in an
XML string.

Components sport URLs, making them as easy to access as any other Web item.
SOAP has the advantage of having been a cross-industry standard, and not just a Microsoft
creation. At this point, you might be tempted to think that SOAP is all you need, and that you
can just stick with VB6. Therefore it is important to understand what VB.NET gives you, and

why it makes sense for you, and many other developers, to upgrade to .NET.

For example, you create components and want them to be callable via SOAP, but how
do you let people know that those components exist? .NET includes a discovery mechanism
that allows you to find components that are available to you. “Building Web Services with
VB.NET.” .NET also provides many other features, such as garbage collection for freeing up
resources, true inheritance for the first time ,debugging that works across languages and
against running applications, and the ability to create Windows services and console

applications.

Before proceeding, it’s important to understand a little bit more about what is meant by
“ NET”. There are many “.NETs” here. There is VB.NET, which is the new version of Visual
Basic. There is Visual Studio.NET, an Integrated Development Environment that hosts
VB.NET, C#, and C++NET. Underlying all this is the .NET Framework and its core
execution engine, the Common Language Runtime. In the .NET model, you write applications

that target the NET Framework.

10

SQL Server
Internet Integration

The SQL Server database engine includes integrated XML support. It also has the
scalability, availability, and security features required to operate as the data storage component
of the largest Web sites. The SQL Server programming model is integrated with the Windows
DNA architecture for developing Web applications, and SQL Server supports features such as
English Query and the Microsoft Search Service to incorporate user-friendly queries and

powerful search capabilities in Web applications.

Scalability and Availability

The same database engine can be used across platforms ranging from laptop computers
running Microsoft Windows 98 through large, multiprocessor servers running Microsoft
Windows 2000 Data Center Edition. SQL Server 2000 Enterprise Edition supports features
such as federated servers, indexed views, and large memory support that allow it to scale to

the performance levels required by the largest Web sites.

Enterprise-Level Database Features

The SQL Server relational database engine supports the features required to support
demanding data processing environments. The database engine protects data integrity while
minimizing the overhead of managing thousands of users concurrently modifying the
database. SQL Server distributed queries allow you to reference data from multiple sources as
if it were a part of a SQL Server 2000 database, while at the same time, the distributed
transaction support protects the integrity of any updates of the distributed data. Replication
allows you to also maintain multiple copies of data, while ensuring that the separate copies
remain synchronized. You can replicate a set of data to multiple, mobile, disconnected users,

have them work autonomously, and then merge their modifications back to the publisher

Ease of Installation, deployment and use

SQL Server includes a set of administrative and development tools that improve upon
the process of installing, deploying, managing, and using SQL Server across several sites.
SQL Server also supports a standards-based programming model integrated with the Windows
DNA, making the use of SQL Server databases and data warchouses a seamless part of
building powerful and scalable systems. These features allow you to rapidly deliver SQL
Server applications that customers can implement with a minimum of installation and

administrative overhead.

Data Warehousing

SQL Server includes tools for extracting and analyzing summary data for online
analytical processing. SQL Server also includes tools for visually designing databases and

analyzing data using English-based questions.

Oracle

Portability

Oracle is ported to more platforms than any of its competition, running on more than
100 hardware platforms and 20 networking protocols. This makes writing an Oracle
application fairly safe from changes of direction in hardware and operating system. One
caveat, however, is that applications using some constructs may have to be reworked when
porting them to a block mode environment. You can also develop a fairly fully featured

application with little knowledge of the underlying OS.

12

Market Presence

Oracle is by far the largest RDBMS Vendor, and spends more on R&D than most of its
competitors earn in total revenue. Oracle has the largest independent RDBMS market share in
VMS, UNIX and OS/2 Server fields. This market clout means that you are unlikely to be left
in the lurch by Oracle and there are always lots of third party interfaces supported and also,

proficient staffs are relatively easy to get.
Backup and Recovery

Oracle provides industrial strength support for on-line backup and recovery and good
software fault tolerance to disk failure. You can also do point-in-time recovery. Of course,
you need the archive mechanisms and storage space to do this, but Oracle supports continuous

archiving to tape devices spanning multiple volumes.
Performance

. Speed of a tuned Oracle database and application is quite good, even with large
databases. The performance is not only “raw”, but includes consideration of performance with

locking and transaction control.
SQL Dialect

The dialect of SQL offered by Oracle is in my opinion superior to the others in the
extensions it offers over ANSI-2, which is very much a lowest common denominator.
Constructs such as the absolute function and decode keyword are very powerful Oracle

additions to the standard SQL.

13

CHAPTER 4
SYSTEM DESIGN
4.1 FUNCTIONAL REQUIREMENTS

The Functional Specification was verified that the product requirements are being met
and to help plan resource requirements. Therefore, it includes visual aspects, behavioral
characteristics, and other UI matters. The Functional Specification also contains details about
all menu items, keyboard shortcuts, and/or command buttons that are used to implement the
desired functionality, as well 'és gestures anﬂ combinations of gestures that perform simple and
complex operations. It also contains illustrations of any windows produced (including dialog

boxes) and the wording of prompts and other messages that users may see.

4.2 NON-FUNCTIONAL REQUIREMENTS:

4.2.1 Usability

In order to make Schema SQL more usable, developing an easy-to-use User Interface
(UT) is very high-priority. However, there are many factors, such as the access experience and
technical expertise, to consider while making sure that the UT layout is intuitive and well-
executed. The greatest challenge of designing an easy-to-use Ul then, is to figure out how to

accommodate both beginning and advanced users.]

Schema SQL will overcome this challenge by limiting the number of features available
initially, and allowing advanced users to make use of them when they feel ready. Schema SQL
will also follow typical Ul standards for naming menus, buttons, and dialog boxes whenever

possible in order to make the environment more familiar to users.

14

4.2.2 Reliability

Because Schema SQL is a network-based, a lot of the reliability falls under the issue of
performance. In addition, much of it falls under security as well (such as the compromising of
user accounts). However, the following attributes of reliability which do not relate directly to

performance and security deserve mention:

e User account data should not be corrupted as a result of a server crash.

e Neither the client nor the server should crash due to receipt of invalid data.

4.2.3 Security

Security measures will be implemented to allow some level of security within the

system. These security measures include:

Access will be controlled with usernames and passwords only; no personal
information will be collected from users. This has the side-effect of disabling simple password

recovery, since users will have to contact system administrators in order to have their accounts

unlocked.

Because the passwords are stored on the server, the client should send an encrypted
form of the password so that the server administrator should not be able to easily see the
password simply by reading incoming packets. This precaution exists because many users

have the tendency to use the same password on multiple service accounts.

15

4.2.4 Performance

Because Schema SQL is a multi-database system used over a network, the
performance of Schema SQL will largely be determined by network performance. Therefore,
an efficient use of bandwidth will be paramount to the success of this project. Another factor
to consider is server scalability; since it is intended to have no hard cap on the number of users
that can be connected to any individual server, it is vital that server continues to behave

reliably as the number of users increases.
4.2.5 Maintainability and Upgradeability

We will concentrate on following good design methods and maintain good
documentation to allow anyone who is interested to work on this project without having to sift

through code in order to determine what is going on with the project.

4.3 Architectural Design

In this section we describe the architecture of a system for implementing a multi-
database querying and restructuring facility based on SCHEMA SQL. The architecture
consists of a SCHEMA SQL server that communicates with the local databases in the

federation.

We assume that the meta-information comprising of component database names,
names of the relations in each database, names of the attributes in each relation, and possibly
other useful information (such as statistical information on the component databases useful for
query optimization) are stored in the SCHEMA SQL server in the form of a relation called
Federation System Table (FST).

16

In this architecture, global SCHEMA SQL queries are submitted to the SCHEMA SQL
server, which determines a series of local SQL queries and submits them to the local
databases. The SCHEMA SQL server then collects the answers from local databases, and,
using its own resident SQL engine, executes a final series of SQL queries to produce the

answer to the global query.

Query processing in a SCHEMA SQL environment consists of two major phases. In
the first phase, tables called VIT’s (Variable Instantiation Table) corresponding to the variable
declaration in the FROM clause of a SCHEMA SQL statement are generated. The schema of a
VIT consists of all the variables in one or more variable declarations in i.e. from clause and its
contents: correspond tc; instantiations of these variables. VIT’s are materialized by executing

appropriate SQL queries on the FST and/or component databases.

In the second phase, the SCHEMA SQL query is rewritten into an equivalent SQL

query on the VIT’s and the generated answer is appropriately presented to the users.

Schema SQL
Schema . Schema Schema
Transformatiom Transformatiom Transformatiom
N
o 4

Database 1 Database 2 Database 3

17

SQL Engine
4 Final series of SQL Query
Answers to queries [[[
collected (Q1....Qn) e
Schema SQL Query Final answer
» SCHEMA SQL Server >

sql query (n) sql query(1)

Figure 4.1 Architecture of Schema SQL

System Flow Diagram

Enter Machine ID

A

Choose Database Server

If Machine
ID = Null

A4

Just select the znachine name
If you don’t select the machine it
Will automatically take the
Local server

SQL Server Oracle

Access

!

Choose the database file

.

Build the query

I
Submit

A 4

Result displayed and
updation done

Go

Figure 4.2 System Flow Diagram for Query Optimization

19

Block Diagram

Machine
Selection

Domain
Selection

Input

Network
Selection

Set Database

Set Table Userid,

Pwd

Set Database with User id
& Pwd

Query

Temp Database
P as Planner

Report

Figure 4.3 Block Diagram For Schema Sql

Data Flow diagram

/AN

User < f
Reject Invalid Verification

) User OfID

Request for Machine ID
Y

Machine ID
Selection

Database Request

”

Database
Selection

20

A4
m—dm . Database
Acknowledge to User _/

Figure 4.4 Data Flow Diagram for Schema SQL

21

CHAPTER 5

SYSTEM DEVELOPMENT

5.1 Introduction

System development is a series of operations performed to manipulate data to produce
output from computer system. This aim at translating the design of the system produced
during the design phase into code in user programming language. A modular approach is used

for the development of the software.

The development phase for the project was created from the specifications created
during the design phase. A principal activity of the development phase is coding and testing
the computer program that make up the computer program component of the overall system.
Other important activities include implementation, planning, equipment acquisition and

system testing. The development phase concludes with the report and review.

5.2 MODULES

This project has three modules, they are

> Database selection Module.
> Connection Module.

» Query Builder Module.

22

5.2.1 Database Selection Module

This module is used to select various database servers. Here we use three database
management systems MS-Access, Oracle and SQL Server. In this module the user have to
select the database for access and SQL server and also have to select the table for oracle.

Moreover the user has to select the provider for the various database systems.

5.2.2 Connection Module

Domain Selection

In this form, the user has to choose the domain like main, workgroup. This combo box

list out all domain names and the user may choose any one domain form it.

5.2.3 Query Builder Module

This module is used to build the query using create, update, delete, select, insert
commands. This form has buttons to create all these types of queries and also to execute

queries. It also contains list boxes to display the Views and Tables from the selected databases

The last button named “mixed” is used to combine two tables from various databases
and to display the result. This creates a new table and stored the combined results in to a

temporary table. All the results are displayed in the Data grid.

We write the query on the text box. And this form is so flexible to create the
query, because the user no need to know syntax for the command used in query. The syntax

for all the commands is given in the help menu.

23

Sample Queries

Access and Oracle

select A::tablel.name, A::tablel.street,A::tablel.city, O::table3.desig from A::tablel, O::table3

where A::tablel.name=0::table3.name

Access and SQL Server

select A::tablel.name, A::tablel.street,A::tablel.city, S::table4.desig from A::tablel, S::table4
where A::tablel.name=S::table4.name

SQL Server and Oracle

select S::tabled.name, S::table4.street,S::table4.city, O::table3.desig from S::table4, O::table3

where S::table4.name=0::table3.name

select A::tablel.name, A::tablel.street,A::tablel.city, S::table4.desig from A::tablel, S::table4

where A::tablel.name=S::table4.name group by name

24

5.4 SYSTEM SECURITY
In the networking process, the authentication is a important one. It checks whether the

client as well as server are access by the authorized person are not. By using this process, we
can secure the file in the database and then also quit the unauthorized access of the database.
Following is a list of requirements for database security.
5.4.1 Physical Database Integrity

The data of a database are immune to physical problems, such as power failures, and
someone can reconstruct the database if it is destroyed through a catastrophe.
5.4.2 Logical Database Integrity

The structure of the database is preserved. With logical integrity of a database, a
modification to the value of one field does not affect other fields.

5.4.3 Access Control

A user is allowed to access only authorized data, and different users can be restricted to

different modes of access.

5.4.4 User Authentication

Every user is positively identified, both for the audit trail and for permission to access

certain data.

25

CHAPTER 6

SYSTEM TESTING

Testing is a process of executing a program with the intention of finding an error. A
good test case is one that has a high probability of finding an as-yet undiscovered error.
During the development of a project, errors of various types can occur at any stage. At each
phase, different techniques are used to detect the errors. However, some error such as those
occur while collecting requirements and some design errors have also to be removed and the

system tested for the successful working of any project

6.1 Verification and Validation

System Verification

System verification answers the question “Am I building the product right?” It includes
the review of interim work steps and interim deliverables during a project to ensure they are
acceptable. Verification also determines if the system is consistent, adheres to standards, uses
reliable techniques and prudent practices, and performs the selected functions in the correct
manner. In data access, it verifies whether the right data is being accessed, in terms of the right

place and in the right way.

For example, the stations names gather from database, so each station names should be
verified whether they are bound to the correct database field. It is done during development of
the key artifacts. Verification is a demonstration of consistency, completeness, and correctness
of the software at each stage and between each stage of the development life cycle. In result
analysis, verification is done during the development itself. Each database bindings are

verified after binding to test whether the control is bound to the right data field.

26

System Validation

Validation answers the question “Am I building the right product?” This checks
whether the developer is moving towards the right product, whether the development is
moving the actual intended product that was agreed upon in the beginning. Validation also
determines if the system compiles with the requirements and performs functions for which it is
intended and meets the organization’s goal and user needs. It is traditional and is performed at
the end of the project. In data access, it checks whether we are accessing the right data, in

terms of data required to satisfy the requirement.

Validation is performed after a work product is produced.against established criteria
ensuring that the product integrates correctly into the environment. It determines the
correctness of the final software product by a development project with respect to the user

needs and requirements.

Functional validation is done in the Railway Reservation checking System to check
whether each of the functions is done correctly as expected in every module.
The system is validated following cases:
¢ Check the authentication of users to prevent illegal access
e Number of validation
e Character validation
e Validations to check the special characters
e Validations to check the proper number entry of the text in the input field
e Validations to check for proper display of error messages when the input fields are

kept empty.

27

6.2 Unit Testing

Unit testing focuses verification effort on the smallest unit of software unit of software
design, the module. Using the procedural design description as a guide, important control

paths are tested to uncover errors within the boundary of the module.

Test 1:

Procedure
The mandatory fields have to be filled before proceeding to next process.
Solution

The alert message has to be displayed to fill the mandatory details.

Test 2:

Procedure

The reservation process involves adding airline detail, passenger detail and the
payment detail involving various operations.
Solution

This problem is solved by using session tracking.

Test 3:

Procedure

When a reservation is in progress and if a user tries to create a new reservation.
Solution

The prompt is made that the reservation is in progress and want to continue with the

current reservation or the previous one.

28

6.3 Integration Testing

Integration testing is a systematic technique for constructing the program structure
while conducting tests to uncover errors associated with interfacing. The objective is to take
unit tested modules and build a program structure that has been dictated by design. Modules
are integrated by moving download through the control hierarchy, beginning with the main
control module. Modules subordinate to the main control module. Modules subordinate to the
main control module are incorporated into the structure in either a depth first or breadth first

manner. As integration testing is conducted, the tester should identify critical modules.

User Acceptance testing

User acceptance of the system is a key factor for the success of any system. The
system under consideration is tested for user acceptance by constantly keeping in touch with

prospective system and user at the time of developing and making changes whenever required.

The acceptance testing will be covered as listed by the acceptance criteria mentioned below:

¢ Functionalities

e Interfaces

o Interfaces with other software

e Performance Criteria

e Development and testing criteria
e Testing automation

e Quality criteria

29

CHAPTER 7
IMPLEMENTATION AND FUTURE ENHANCEMENTS

IMPLEMENTATION

Implementation means the process of converting a new or a revised system
design into an operational one. It is the most crucial stage in achieving a new successful
system and in giving confidence on the new system for the users that it will work efficiently
and effectively. In this phase, we can build the components either from scratch or by
composition. Given the architecture document from the design phase and requirement

document from the analysis phase, we can build exactly what has been requested.

This phase deals with issues of quality, performance, baselines, libraries and

debugging. The end deliverable is the product itself. There are three types of implementation:

1. Implementation of a computer system to replace a manual system
2. Implementation of new computer system to replace an existing one.
3. Implementation of a modified application to replace an existing one, using the

same computer.

Implementation of “Schema SQL” comes under Third category. At the end of the
specific period, the system performance and the reliability are tested. Implementation is the

key stage in achieving a successful new system because it involves

30

FUTURE ENHANCEMENTS

It is necessary to keep up with changing user needs and the operational environment.
Normally software fails because of improper cumulative maintenance, wear and tear. The
system can be handled separately with out affecting other parts of the system. Thus, future
enhancements are very easy in this system. Since the system is developed using modularized

design, it can be upgraded without much modification.

In future, we will consider exploiting knowledge in the knowledge bases for
optimizing query optimization in a network database environment. Extending knowledge

bases to automate the process of managing semantic knowledge in network based systems.

31

CHAPTER 8
CONCLUSION

We introduced "Schema SQL”, a principled extension of SQL for relational multi-
database systems. In Schema SQL data and meta-data, that is, database instance and its
schema, are treated uniformly, thus making it possible to query both the contents and the
structure of a database. In a multi-database environment, Schema SQL provides the means for
handling schematic (structural) heterogeneity, that is, similar information represented in

different structures.

View definition in Schema SQL makes it possible to define restructuring views,
namely, views that can change the structure of input data in a manner that exploits the
data/meta-data interplay, while preserving the information content. Data (i.e., attribute values)
in one representation can play the role of meta-data objects (database name, relation name, and
attribute name) in a restructured view. SCHEMA SQL also provides novel aggregation
capabilities. In addition to the usual SQL column aggregations, in Schema SQL it is possible
to aggregate on a set of columns, individually or collectively, whether the columns are in one

relation or in several. This can be done using a single query.

The latter case is basically aggregation is determined dynamically, at execution time,
and is dependent on the database instance. Horizontal (i.e., row) aggregation is also possible in
Schema SQL. After extracting data from all the heterogeneous databases and storing this data

in centralized server, OLAP reports can be generated

APPENDIX 1

SAMPLE CODE

Query Builder form Load procedure

32

Private Sub fclsquery Load(ByVal sender As System.Object, ByVal € As System.EventArgs)

Handles MyBase.Load
Try

'status bar values
Dim datetime As New DateTime
SBarPanel3.Text = datetime. Now
SBarPanel2. Text=""
LbV1ews.Items.Clear()
Lbviews.Enabled = True
Ibfields.Items.Clear()
Ibfields.Enabled = True
Ibtables.Items.Clear()
Ibtables.Enabled = True
Cbgroup.Items.Clear()
cborder.Items.Clear()
Cbgroup.Text = "none"
cborder.Text = "none"
txtbuilder. Text =""
rba.Checked = False
rbd.Checked = False
cboperator.SelectedItem = "none”
txtvalue. Text = "value"

If dbms.ckbaccess.Checked = True And dbms.ckbsql.Checked = True Then '

Ibdbengine.Items.Clear()
Ibdbengine.Items.Add("A:: Access")
Ibdbengine.Items.Add("S::SQL Server")
butaccess.Enabled = True
Butsqglserver.Enabled = True
butmixed.Enabled = True
o = New ADODB.Connection
rs = New ADODB.Recordset
0.ConnectionString = db.Labaccess.Text
0.0pen()

Call Show _tables(o, 1)

ol = New ADODB.Connection
+ral = Nevxr ADOINR Racrardeat

ol.ConnectionString = db.Labsqlserver.Text
01.0pen()

Call Show _tables(ol, 2)

33

Elself dbms.ckbaccess.Checked = True And dbms.ckboracle.Checked = True then

Ibdbengine.Items.Clear()
Ibdbengine.Items.Add("A::Access")
Ibdbengine.Items.Add("O::Oracle")
Elself dbms.ckbsql.Checked = True And
= True Then

Ibdbengine.Items.Clear()
Ibdbengine.Items.Add("S::SQL Server")
Ibdbengine.ltems.Add("O::Oracle")

Elself dbms.ckbaccess.Checked = True Then
Ibdbengine.Items.Clear()
Ibdbengine.Iltems.Add("A: Access")
butaccess.Enabled = True
o = New ADODB.Connection
rs = New ADODB.Recordset
o.ConnectionString = db.Labaccess. Text
0.0pen()

Call Show_tables(o, 1)
Elself dbms.ckbsql.Checked = True Then
Ibdbengine.Items.Clear()
Ibdbengine.Items.Add("S::SQL Server")
Butsqlserver.Enabled = True
ol = New ADODB.Connection
rs1 = New ADODB.Recordset
ol.ConnectionString = db.Labsqglserver. Text
01.0Open(db.str)
Call Show_tables(ol, 2)

Elself dbms.ckboracle.Checked = True Then
Ibdbengine.Items.Clear()
Ibdbengine.Items.Add("O::Oracle")

End If

Exit Sub
Catch el As Exception

dbms.ckboracle.Checked

MsgBox(Err.Description, vbCritical + vbOKOnly, "form load")

al =True
Catch €2 As DataException

MsgBox(Err.Description, vbCritical + vbOKOnly, "form load")

al =True
End Try

TL 1 e Macer v T e

34

MsgBox("Exception occured, cant open Query builder")
query.Close()
End If
End Sub

Show tables procedure

Public Sub Show_tables(ByVal a As ADODB.Connection, ByVal flag As Integer)
On Error GoTo handle Renamed

If Lbviews.Items.Contains("NO VIEWS ") = True Then
Lbviews.Items.Clear()
Lbviews.Enabled = True

Elself Ibtables.Items.Contains("NO TABLES ") True Then
Ibtables.Items.Clear()
Ibtables.Enabled = True

End If

If flag =1 Then
rs = a.0penSchema((ADODB.SchemaEnum.adSchemaTables), New Object()
{Nothing, Nothing, Nothing, "TABLE"})
Do Until rs.EOF
|btables.Items.Add("A::" & rs.Fields("TABLE_NAME").Value)
rs.MoveNext()
Loop
rs.Close()
'views
rs = a.0penSchema((ADODB.SchemaEnum.adSchemaTables), New Object()
{Nothing, Nothing, Nothing, "VIEW"})
Do Until rs.EOF
Lbviews.Items.Add("A::" & rs.Fields("TABLE NAME").Value)
rs.MoveNext()
Loop
rs.Close()
Elself flag = 2 Then ' for sql server connection
'tables

rs = a.0penSchema(ADODB.SchemaEnum.adSchemaTables, New Object() {Nothing,
Nothing, Nothing, "TABLE"})
Do Until rs.EOF
Ibtables.Items.Add("S::" & rs.Fields("TABLE NAME").Value)
rs.MoveNext()
Loop
1rs.Close()
'views

35

rs = a.0penSchema(ADODB.SchemaEnum.adSchemaTables, New Object() {Nothing,
Nothing, Nothing, "VIEW"})
Do Until rs.EOF
Lbviews.Items.Add("S::" & rs.Fields("TABLE NAME").Value)
rs.MoveNext()
Loop
rs.Close()
End If

If Lbviews.Items.Count = 0 Then ' no views
Lbviews.Items.Add("NO VIEWS ")
Lbviews.Items.Add("in this database")
Lbviews.Enabled = False

Elself Ibtables.Items.Count = 0 Then 'no tables
Ibtables.Items.Add("NO TABLES").
Ibtables.Items.Add("in this database™)
Ibtables.Enabled = False

End If

'to delete the temperory table

If Ibtables.Items.Contains("S::tempschemasql") Then
'MsgBox("entering")

Dim r1 As New ADODB.Recordset
Dim s As String = "drop table tempschemasql"
rl.Open(s, o1, ADODB.CursorTypeEnum.adOpenDynamic,
ADODB.LockTypeEnum.adLockOptimistic)
Ibtables.Items.Remove("S::tempschemasql")
End If

Exit Sub
handle Renamed:

MsgBox(Err.Description, vbCritical + vbOKOnly, "Show tables")
End Sub

Show Fields Procedure

Public Sub show _fields(ByVal sql As String, ByVal a As Integer)
Dim n As Short
Dim e As ADODB.Connection
Ifa=1 Then
e=o0
Elself a=2 Then
e=ol
End If
1s.0Open(sql, e, ADODB.CursorTypeEnum.adOpenDynamic,
ADODB.LockTypeEnum. adLockOptlmlstlc)
"istbox------ fields.
Ibfields.Items.Clear()

For n =0 To rs.Fields.Count - 1
Ibfields.Items.Add(rs.Fields(n).Name)

Next

Cbgroup.Items.Clear()

Cbgroup.Items.Add("none")

For n = 0 To rs.Fields.Count - 1
Cbgroup.Items.Add(rs.Fields(n).Name)

Next

cborder.Items.Clear()

cborder.Items.Add("none")

For n = 0 To rs.Fields.Count - 1
cborder.Items.Add(rs.Fields(n).Name)

Next

rs.Close()

If Ibfields.Items.Count = 0 Then
Ibfields.Items.Add("NO FIELDS")
Ibfields.Items.Add("in this table")
Ibfields.Enabled = False

End If

End Sub

Access Connection Procedure

Public Sub access_only(ByVal st As String)
Dim str_renamed As String = ""
Dim tem As String =""
Dim tem1 As String =""
Dim t As String =""
Dim n, a As Integer
On Error GoTo handle_error

' for status bar display
Dim i As Integer
Dim g, gl As String
i = Trim(st).IndexOf(" ")
g = Trim(st).Substring(0, 1)
gl = Trim(st).Substring(i)
If UCase(g) = "CREATE" Then
Dim j As Integer
Dim f As String
j = Trim(gl).IndexOf(" ")
f= gl.Substring(0, j + 1)
g=g+f
Elself UCase(g) = "DROP" Then
Dim j As Integer
Dim f As String
j = Trim(gl).IndexOf(" ")
f= gl.Substring(0, j + 1)
g=gtf
Elself UCase(g) = "ALTER" Then
Dim j As Integer
Dim f As String
j = Trim(g1).IndexOf(" ")
f= gl.Substring(0, j + 1)
g=gtf
End If

While InStr(st, "A::")
a=1
n = InStr(st, "A::")
tem1 = tem1 + st.Substring(0, (n - 1))
tem = tem + st.Substring((n + 2))
st =teml + tem
str_renamed = tem1 + tem
teml =""

tem — nun
End While
' MsgBox("final " + str_renamed)
Ifa=1 Then
t =str_renamed
Else
t=st
End If
If t. Length >= 6 Then "TnStr(t, "select”) Then 'InStr(t, UCase("select")) O
If UCase(t.Substring(0, 6)) = "SELECT" Then
Call show_rows(t, 1)
GoTo e
End If
End If
rs = New ADODB.Recordset
rs.Open(t, o, ADODB.CursorTypeEnum.adOpenKeyset,
ADODB.LockTypeEnum.adLockOptimistic)

status_display(g) ‘calling status display functon
E:
Exit Sub

handle error:
m.mes(Err.Description)

End Sub

38

SQLServer Connection Procedure

Public Sub SQIServer only(ByVal st As String)
Dim str_renamed As String = ""
Dim tem As String =""
Dim tem1 As String =""
Dim t As String =""
Dim n, a As Integer
On Error GoTo handle_error
'MsgBox(st)
While InStr(st, "S::")
a=1
n = InStr(st, "S::")
tem1 = tem1 + st.Substring(0, (n - 1))
tem = tem + st.Substring((n + 2))
st =teml +tem
str_renamed = tem1 + tem
teml —_ "n
tem = mn
End While
"MsgBox("final " + str_renamed)
Ifa=1 Then
t = str_renamed
Else
t=st
End If
If t.Length >= 6 Then TnStr(t, "select") Then 'InStr(t, UCase("select")) O
If UCase(t.Substring(0, 6)) = "SELECT" Then
Call show_rows(t, 2)
GoTo e
End If
End If
rs = New ADODB.Recordset
rs.0Open(t, o1, ADODB.CursorTypeEnum.adOpenKeyset,
ADODB.LockTypeEnum.adLockOptimistic)
E:
Exit Sub

handle error:
m.mes(Err.Description)

End Sub

39

Show rows Procedure

Public Sub show_rows(ByVal sql As String, ByVal a As Integer)
On Error GoTo handle_error
Dim t As Integer ' status bar display - no of rows

Ifa=1 Then
dt8 = New DataTable
¢8.ConnectionString = db.Labaccess.Text
¢8.0pen()
d8 = New OleDb.OleDbDataAdapter(sql, c8)
d8.Fill(dt8)
dgquery.DataSource = dt8
dgquery.ColumnHeadersVisible = True
t = dt8.Rows.Count
Elself a=2 Then
dt8 = New DataTable
c8.ConnectionString = db.Labsqlserver.Text
¢8.0pen()
d8 = New OleDb.OleDbDataAdapter(sql, c8)
d8.Fili(dt])
dgquery.DataSource = dt8
dgquery.ColumnHeadersVisible = True
t = dt8.Rows.Count
End If
updatestring = sql
Ift <> 0 Then
SBarPanel2.Text = "Row(s) affected = " + t. ToString
Else
SBarPanel2.Text = "No Row(s) affected "
End If

Exit Sub

handle_error:
m.mes(Err.Description)

End Sub

40

41

APPENDIX 2

SCREEN SHOTS

Figure A 2.1 Login Form

42

Schema SQL

LIRALLE '

Figure A 2.2 Home Screen

43

Figure A 2.3 Database Selection

Schema $Q

T BOLOLEDRE

P—
—
Clgesan

Tewt Connecion f

~ MS Accrgy SOL Sarver
Proider © [MicrozoMtdet OLEDB. Provider
| p——————— Usar D
U i3 0
Pagswond :
Paggwiond | 3
Date Sowrce
Dista Sowrce © fadprojectinewtome.m . }
e KBS L Dint .
Test Connection l
LK

BACK

44

e

Prndder . |

Paysgueand o |

Do Benwon

Figure A 2.4 Connection Wizard

"™ Documents and Settings

" M8 Access

) I
Provider : JMicrosoft.Jet OLEDB.

My Documients

Pasgwnrd ;
Data Source : ;G:\proiect\new\ane.m

i,

My Network Fite name: gone Vj Open
Places)

. 9
Test Connection 1 Files of type: imdb fies (".mdb) = Cancel _j “"

OK 1 BACK i

Figure A 2.5 Connection Wizard - Access database Selection

45

| Lookin [WINDOWSXPC) Y emeE

- =5Documents and Settings
o Program Files
TC
MG Accass Ducuments. 1y winDows

Provider : {Microsoft.Jet OLEDB.
Usgarid W My Documents

Data Source : ;G;\pmjea\newlone.m

File name; ione :j Open l
Test Connection] Fies of type: §mdb files (*.mdb) vl i

Figure A 2.6 Connection Wizard - Database Selection

46

Schema S

i MEAccass 501 Sarver Chacie

Provider : %Microsoﬂ_Jet_OLEDB_ Provider : QSQLOLEDBJ Frovder §

Tk

47

ey - UserID : | vestto [T

Pasaword © f
Data Source : §c:\.m..mdb l

Test Connection Test Connection 1

Figure A 2.7 Connection Wizard - Access database Test Connection

43

- ME Access SOL Senver

Provider : {MicrosoftJet.OLEDB. Provider : [GGLOLEDB.1
UserilD : M UserlD : W
Password : W
Password I‘“ww

Data Source : W
Data Source : W
@ Source : {Cone.mdb ——-—j Database : [northwind .. ;

Test Connection l

oK BACK

Figure A 2.8 Connection Wizard - SQL database Selection

49

“MS Access SAL Senver

Provider : %Micro:oﬂ.JeQ.OLEDB. : Provider : {saloLEDB1 ’
Useri ; W (UserID : !sa

Fassyorn g ; ;
Data Source : %C:Ione.mdb !

Test Cannection l

Figure A 2.9 Connection Wizard - SQL database Test Connection

SAL Sener

~MS Access

Provider : MicrosoftJet OLEDB. Provider :
. R UserlD :
User il W

Data Source : ic;\ong,mdb

Test Connection I

Database

Password :
Data Source :

rv—
. inorthwind

Test Connection]

T ——
{SQLOLEDB.1

E(Incal)

50

]

Figure A 2.10 Connection Wizard - Accepting

Query Builder

DB Engine :
AcAccess

Tables :

S::SQL Server

~Command - Query

Dperator : Group by : Order by : .
Azdinesh inone le Enone ‘:‘é 3none - £ Ast
Acone ¢ DES
Az region : Value - .
A::Tablel Logical operators e
Ac:T able2 ;value
Actest . §
S:Categories

Command - Table

gelect * from A::region,S:region where
A::region.region =

.
.

51

571272008 8:01:27 Vijay

Figure A 2.11 Query Builder Wizard

52

DB Engine :

Views : Tables : Fields - DOperator : Group by : Order by - -
AcAccess | JAudinesh name {nane > inone wl jnone Rd ASC
S:SQL Server roline DES

marks Value -
- Logical operators
}value
Command - Query

Execute

select * from A::region.S::region where
A:region.region =

S:region.regiondescription

&;

| b nsaii:
L

. Status....

H Row(s] affected = B

571272008 7-58:53 Vijap

Figure A 2.12 Query Builder Wizard - Display Table Values

53

Query Bujlder

DB Engine : Views : Tables : Fields - Bperator : Group by - Dider by -
AcAccess S::Customer and Sug A 15::0rder Details il 3 §none vj lnone m:é 2none ”:j & ASC
S:SQL Server S:invoices R - ’ i : - & DES
S::0rder Details Exte Value - ’
S::Order Subtotals - ~Logical opetators
S::0rdess Qry ivalue
S::Product Sales for
S::Products Above
~Command - Quety S — Cornmand - Table - Execute

8::Suppliers.Phone { select * from Azregion.S:region where

A:region.region =
S::region.regiondescription

= ;
] ELL Status.... i Row(s) affected = 29 571272008 8:02:14 Vijay

i

Figure A 2.13 Query Builder Wizard - Display SQL Table Values

54

Query Builder

Sc}zlexna_v SQ%{

DB Engine : Views : Tables : Operator : Group by : Order by : o A
AcAccess Si:Customer and Supis; 15::0rder Details none v none wi inone 1 ¥ ASC
S:SAL Server S:lnvoices T ’ S:0rders "““j E = E ”’“‘g DES
S::0rder Details Ext Value - R
S::0rder Sublotals — Logical op:
S::Ordess Qry value :
S::Product Sales for
S::Products Above £ ¥

~Command - Query

- Command - Table Execute

CREATE TABLE newEmp(empld int. name text)

select * from A:region.S::region where
A:region.region =
S::region.regiondescription

4 Piease enter your query here.... 571272008 8:02-14 Vijay

Figure A 2.14 Query Builder Wizard - Create Access Table

35

DB Engine :

Tables : Fields : Operator - Group by : Order by - -~
ArAccess Azdinesh none ij Inone - 3none J,} AsC
SuSQL Server AznewEmp < DES
Acone Value -
Aregion Logical operatot
gvalue
Comand - Query Command - Table

Execute

INSERT into A:: E lues{1001.'k N

select ™ from A::region,8::region where
A::region.region =
9::region.regiondescription

H Please enter your query hese.... z 571272008 8:09:28 Vijay

Figure A 2.15 Query Builder Wizard - Insert Access Table

56

Guery Builder

DB Engine : Operator : Group by : Order by -
AcAccess inone w:j inone > anone :‘E asc
$:5QL Server ¢ DES
Value - Logical op
§va|ue i

Attt
SuAlphabetical list ol

:~Command - Query ~

Asm mp.name select * from A::region 8:-region where L

Azregion.region =
S:region.regiondescription

571272008 8:09:28 Vijay

Figure A 2.16 Query Builder Wizard - Selecting New Table Values

57

Schema Sl

DB Engine - Operator : Group by : Order by = ~
jAuAccess gnuna v§ fnnne - ;mne - AsC
S:SQL Server i . & DES

Value -
gvalue

Logi

-~ Command - Query

select * from Az:region,S::region whers A:r region = 8::ri

select * from Az:region,S:iregion where
A:region.region =
S:region.regiondescription

7 Rowls) affectsd = 4 : §/12/2008 8:11:06 Vijap

Figure A 2.17 Query Builder Wizard - Selecting Values From Different database sources

58

REFERENCES
Books

» Rama Ramachandran, ‘Professional VB.Net 2003’, Wrox Publications, Second
Edition, 2005.

> Hemlata, ‘Sql Server 2000 References’, Cyber-Tech Publications, First Edition, 2004.

> Herbert Schmidt, *View On Sql Query Analyser’, Tata McGraw-Hill publications,
Fourth Edition, 2000.

Websites

http://www.sourcecode.com/
http://www.dotnetcoding.com/
http://www.codeguru.com/

http://www.codeproject.com/

vV V V V V

http://www.vbtraining.com/

