bmmxmmmz]

TRANSACTIONS ON IMAGE PROCESSING
By
N.SARAVANAKUMAR
Register Number: 71205621038
of
KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE

A PROJECT REPORT

Submitted to the

FACULTY OF INFORMATION AND COMMUNICATION ENGINEERING

In partial fulfillment of the requirements

Jor the award of the degree
of
MASTER OF COMPUTER APPLICATION

ANNA UNIVERSITY
CHENNATI 600 025

June 2008

BONAFIDE CERTIFICATE

Certified that this project report titled “TRANSACTIONS ON IMAGE
PROCESSING” is the bonafide work of Mr. N.SARAVANAKUMAR (Register
Number: 71205621038) who carried out the research under my supervision. Certified
further, that to the best of my knowledge the work reported herein does not form part of
any other project report or dissertation on the basis of which a degree or award was

conferred on an earlier occasion on this or any other candidate

p Gt

SUPERVISOR HEAD OF THE DEPARTMENT

Submitted to Project and Viva Examination held on [+F- 00

~N
W\Y Q%Sa%_jwm
INTERNAL EXAMINER EXTERNAL EXAMINE

11

ACKNOWLEDGEMENT

First and foremost I thank God for his good will and blessings showered on me
throughout the project. The success of this project needs cooperation and encouragement
from different quarters. Words are inadequate to express my profound and deep sense of

gratitude to those who helped me in bringing out this project successfully.

I wish to express my deep unfathomable feeling of gratitude and indebtedness to
Dr. Joseph V. Thanikal, B.E., M.E., Ph.D., PDF., CEPIT., Principal, Kumaraguru

College of Technology, Coimbatore for the successful completion of the project work.

I am very gladly taking this opportunity to express a special word of thanks to
Dr. M. Gururajan M.Sc., Ph.D, Head of the Department, Department of Computer
Applications, Kumaraguru College of Technology, Coimbatore for encouraging me to do

this work.

I am very much indebted to Mrs. V.Geetha, M.C.A., M.Phil, Assistant
Professor, Department of Computer Applications, Kumaraguru College of Technology,
Coimbatore for her complete assistance, guidance and support given to me throughout

my project.

I would express heartfelt thanks to Ms. C.Geethamani, M.C.A., M.Phil,
Lecturer, Department of Computer Applications, Kumaraguru College of Technology,
Coimbatore as with out his best guidance it would not have been possible for me to
successfully complete this project who also gave his innovative ideas at crucial times and

tremendous encouragement.

I also dedicate equal and grateful acknowledgements to all the respectable
members of the faculty and lab in-charges of the Department of Computer
Applications, Kumaraguru College of Technology, Coimbatore and student friends

for their motivation, encouragement and continuous support.

NO

TABLE OF CONTENTS
TITLE

Abstract
List of Figures

Intreduction
1.1 Organization profile

1.2 Problem definition

System Analysis

2.1 Existing System Architecture
2.2 Problem in Existing System
2.3 Proposed System Architecture

2.4 Advantages of Proposed System

Development Environment
3.1 Hardware Environment
3.2 Software Environment

3.3 Software Description

Analysis of Requirements

4.1 Assumptions

4.2 System architecture

4.3 Architectural goals and constraints

4.4 Layering architecture

System Design
5.1 Use case Diagram

5.2 Activity Diagram

PAGE NO

1l

vi

(VI . - N

15
15
15
17

20
22

5.3 Data flow Diagram

System Testing
6.1 Testing methodology
6.1.1 Unit testing
6.1.2 Integration testing
6.1.3 Verification & Validation Testing
6.1.4 System testing
6.2 Test plan
6.2.1 Test environment

6.2.2 Features to be tested

Conclusion

Appendices

8.1 Screen shots

References

24

27
27
28
28
29
30
30
30

31

33

47

YOUTH SOFT

30" May 2008

PROJECT COMPLETION CERTIFICATE

This is certify to that Mr.N.Saravanakumar (Reg.No: 71205621038)
doing final year M.C.A in Kumaraguru College of Technology has completed
his project entitled “ TRANSACTIONS ON IMAGE PROCESSING” Under
the guidance of Mr. B. Pradeep Kumar, Senior Software Engineer, in our

concern during the period of December 2007 to May 2008.

He has successfully completed the project as per the requirements.

podt’

R.SANTHOSHKUMAR
Project Manager

No: 26 G, North Crescent road Off GN Chetty Road T.Nagar Chennai ~ 600 017

ABSTRACT

The primary objective of the project, ‘TRANSACTIONS ON IMAGE
PROCESSING?’ is restoration of cracks on digitized paintings. Crack detection and
restoration can provide clues to art historians, museum curators and the general public on

how the painting would look like in its initial state, i.e., without the cracks.

Digital Image Processing is a rapidly evolving field with growing applications in
science and engineering. Image processing holds the possibility of developing the
ultimate machine that could perform the visual functions of all living beings. Many
theoretical and technological breakthroughs are required before we could build such a
machine that is there is an abundance of image processing applications that can serve
mankind with the available and anticipated technology in the near future. Imaging began
in the 19th century with photography and continued with x-rays, television and electronic
scanning in the 20th century. Image processing as a field of study began in the 1950s
with pictures of the earth from high flying spy airplanes and then with pictures of the

earth’s surface taken from orbiting satellites.

An integrated methodology for the detection and removal of cracks on digitized
paintings is presented in this project. The cracks are detected by thresholding the output
of the morphological top-hat transform. Afterward, the thin dark brush strokes which
have been misidentified as cracks are removed using either a median radial basis function
neural network on hue and saturation data or a semi-automatic procedure based on region
growing. Finally, crack filling using order statistics filters or controlled anisotropic
diffusion is performed. The methodology has been shown to perform very well on

digitized paintings suffering from cracks.

FIGURE NO

3.1
3.2
5.1
5.2
53
53
53

LIST OF FIGURES

TITLE

Image co-ordinates
Display of a Pixel Value
Use Case Diagram
Activity Diagram
Level-0 DFD

Level-1 DFD

Level-2 DFD

PAGE NO

12
14

21

23
24
25
26

vi

CHAPTER 1

INTRODUCTION
1.1 ORGANIZATION PROFILE

Established in the year 2001 Youth Soft having its operation in Chennai - India,
has experienced to serve global and local industrial outfits that belong to many functional
Domains. Youth Soft acts as an independent application development division (Youth
Soft - Software Development Group), which contributes a few list of application

software to the Domestic and Foreign Business community.

Apart from domestic software development and support, Youth Soft has a
principle tie up with M/s Valiant Ship Management Limited Hong Kong a multinational
business entity involved in the Ship Management products, for IT support and
specializing in Marine Asset Management, As Youth Soft - Marine Asset Management

Information System Division).

With the wide spread knowledge of the principle Youth Soft has acclaimed global
recognition in implementing systems for various ship management companies across

South East Asia

With the continuous effort in understanding various functional and technical titles,
Youth Soft is rigorously working towards improvising knowledge in the functional and
technical areas. Youth Soft’s Functional expertise extends to managing and developing

Management Information Systems belonging to

e Materials Management

¢ Production and Maintenance Planning
e Educational Institution Management
* Portfolio Management

e Safety Management procedures

* Protocols and middle level

e POS (Point of Sale) sector Management etc.

Excluding the above, any functional area could be addressed with proper system and
application through proper individual or group outsourcing depending upon the

requirement of the market. The technology areas related to development of systems

Microsoft Development Environment

Visual Studio .NET

VB

ASP

MS SQL Server 2000

Crystal reports 9 + V , Crystal Decisions XI

Data Mining, *Web Intelligence and Business Intelligence using MS Data warehousing
Tools (Informatica - ETL Tool). Testing Tools which includes Win Runner, Load
Runner, Rational Rose and Silk. Apart from the same development of Custom made
API’s, Independent Components and Supporting Patches and plugin’s are also done

periodically to attain user satisfaction and requirement filling process.

Youth Soft also does frequent and periodical review of technical and functional
expertise, and improvises to any latest trends and technology available in the market
through perennial knowledge management programs. By which Youth Soft confers to a
standard development promise that it can keep up to the requirement of the client even if

falling out of boundaries than the existing expertise

1.2 PROBLEM DEFINITION

Many paintings, especially old ones, suffer from breaks in the substrate, the paint,
or the varnish, called Cracks. Appearance of cracks on paints deteriorates the perceived
image quality. Digital image processing (DIP) remains a challenging domain of
programming for several reasons. Also, several image processing techniques require the
most careful optimizations and especially for real time applications. Digital paintings are
of great historical importance. Study and implement the proposed methodology for the
restoration of cracks on digitized paintings. Crack detection and restoration can provide
clues to art historians, museum curators and the general public on how the painting would

look like in its initial state, i.e., without the cracks.

A technique that decomposes the image to textured and structured areas and uses
appropriate interpolation techniques depending on the area where the missing information
lies has also been proposed. The results obtained by these techniques are very good. A
methodology for the restoration of cracks on digitized paintings, which adapts and
integrates a number of image processing and analysis tools is proposed in this paper. The

methodology is an extension of the crack removal framework presented.

CHAPTER 2
SYSTEM ANALYSIS

2.1 EXISTING SYSTEM ARCHITECTURE

e Multi-oriented Gabor filters
e Motion Detection Methods
e Image Inpainting

e Image Decomposition-based Missing Information Detection

2.2 PROBLEMS IN EXISTING SYSTEM

o Gabor filters require manual interaction.

e Motion-detection methods rely on information obtained over several adjacent

frames for filling.

e Inpainting assumes that the regions where information has to be filled in are
known.

e Decomposition-based techniques require more computational resources and hence

slow.

2.3 PROPOSED SYSTEM ARCHITECTURE

Proposed method combines several DIP techniques for:

Crack detection

Cracks usually have low luminance and, thus, can be considered as local intensity

minima with rather elongated structural characteristics. Therefore, a crack detector can be

applied on the luminance component of an image and should be able to identify such

minima.

Separation of brush strokes from the cracks

In some paintings, certain areas exist where brush strokes have almost the same
thickness and luminance features as cracks. The hair of a person in a portrait could be
such an area. Therefore, the top-hat transform might misclassify these dark brush strokes
as cracks. Thus, in order to avoid any undesirable alterations to the original image, 1t is
very important to separate these brush strokes from the actual cracks, before the

implementation of the crack filling procedure.

Crack filling (interpolation)

After identifying cracks and separating misclassified brush strokes, the final task
is to restore the image using local image information (i.e., information from neighboring
pixels) to fill (interpolate) the cracks. Two classes of techniques, utilizing order statistics
filtering and anisotropic diffusion are proposed for this purpose. Both are implemented
on each RGB channel independently and affect only those pixels which belong to cracks.
Therefore, provided that the identified crack pixels are indeed crack pixels, the filling

procedure does not affect the “useful” content of the image.

2.4 Advantages of Proposed Method

® All processing steps can be executed in real-time, and thus the user can instantly
observe the effect of parameter tuning on the image under study and select in an
intuitive way the values that achieve the optimal value result.

® Only little manual interaction is required but can achieve high optimal results

customized for domain experts.

CHAPTER 3
DEVELOPMENT ENVIRONMENT

3.1 YW ENVIRONMENT

Main Processor ~INTEL PENTIUM IV
RAM -512MB
Hard Disk Capacity —40 GB
Monitor - HP17”
Keyboard —HP 106 keys
Mouse — HP Optical Scroll Mouse

3.2 S/W ENVIRONMENT

1. Technologies

a. Java 2 Platform, Standard Edition 1.4.2 (J2SE)
b. Java Creator 350

3.3 SOFTWARE DESCRIPTION
WINDOWS XP PROFESSIONAL

Windows XP Professional integrates the strengths of Windows 2000, Windows
98 and Windows Millennium Edition such as standards-based security, manageability,

and reliability.

The Microsoft® Windows® XP Professional operating system includes a variety
of technologies that communicate with the Internet to provide increased ease of use and
functionality. Browser and e-mail technologies are obvious examples, but there are also
technologies such as Automatic Updates that help users obtain the latest software and
product information, including bug fixes and security patches. These technologies
provide many benefits, but they also involve communication with Internet sites, which

administrators might want to control.

Control of this communication can be achieved through a variety of options built
into individual components, into the operating system as a whole, and into server
components designed for managing configurations across your organization. For
example, as an administrator, you can use Group Policy to control the way some
components communicate. For some components, you can direct all communication to

the organization’s own internal Web site instead of to an external site on the Internet.

This white paper provides information about the communication that flows
between components in Windows XP Professional with either Service Pack 1 or Service
Pack 1a (both referred to as “SP1” in this white paper) and sites on the Internet, and
describes steps to take to limit, control, or prevent that communication in an organization
with many users. The white paper is designed to assist you, the administrator, in planning
strategies for deploying and maintaining Windows XP Professional with SP1 in a way
that helps to provide an appropriate level of security and privacy for your organization’s

networked assets.

JAVA

The Java programming language is a state-of-the-art, object-oriented language
that has syntax similar to that of C. The language designers strove to make the Java
language powerful, but, at the same time, they tried to avoid the overly complex features
that have bogged down other object-oriented languages like C++. By keeping the
language simple, the designers also made it easier for programmers to write robust, bug-
free code. As a result of its elegant design and next-generation features, the Java language
has proved popular with programmers, who typically find it a pleasure to work with Java

after struggling with more difficult, less powerful languages.

THE JAVA VIRTUAL MACHINE

The Java Virtual Machine, or Java interpreter, is the crucial piece of every Java
installation. By design, Java programs are portable, but they are only portable to
platforms to which a Java interpreter has been ported. Sun ships VM implementations for
its own Solaris operating system and for Microsoft Windows and Linux platforms. Many
other vendors, including Apple and various commercial UNIX vendors, provide Java
interpreters for their platforms. The Java VM is not only for desktop systems, however. It
has been ported to set-top boxes and handheld devices that run Windows CE and
PalmOS. 1.1.3. The Java platform is just as important as the Java programming language
and the Java Virtual Machine. All programs written in the Java language rely on the set
of predefined classes that comprise the Java platform. Java classes are organized into
related groups known as packages. The Java platform defines packages for functionality

such as input/output, network

JAVA IS OBJECT-ORIENTED

To some, object-oriented programming (OOP) technique is merely a way of

organizing. Programs and it can be accomplished using any language. Working with a

real object-oriented language and programming environment, however, enables you to
take full advantage of object-oriented methodology and its capabilities of creating
flexible, modular programs and reusing code. Many of Java’s object-oriented concepts
are inherited from C++, the language on which it is based, but it borrows many concepts
from other object-oriented languages as well. Like most object-oriented programming
languages, Java includes a set of class libraries that provide basic data types, system input
and output capabilities, and other utility functions. These basic classes are part of the Java
development kit, which also has classes to support networking, common Internet

protocols, and user interface toolkit functions.
JAVA IS PLATFORM-INDEPENDENT

Platform independence is one of the most significant advantages that Java has
over other programming languages, particularly for systems that need to work on many
different platforms. Java is platform-independent at both the source and the binary
level. Normally, when you compile a program written in C or in most other languages,
the compiler translates your program into machine codes or processor instructions. Those
instructions are specific to the processor your computer is running—so, for example, if
you compile your code on a Pentium system, the resulting program will run only on other
Pentium systems. If you want to use the same program on another system, you have to go
back to your original source, get a compiler for that system, and recompile your code.
Things are different when you write code in Java. The Java development environment has
two parts: a Java compiler and a Java interpreter. The Java compiler takes your Java
program and instead of generating machine codes from your source files, it generates

byte codes.
WRITE ONCE, RUN ANYWHERE
Sun identifies "Write once, run anywhere" as the core value proposition of the

Java platform. Translated from business jargon, this means that the most important

promise of Java technoiogy is that you have to write your application only once for the

10

Java platform and then you'll be able to run it anywhere. King, graphics, user-interface

creation, security, and much more.

SECURITY

Another key benefit of Java is its security features. Both the language and the
platform were designed from the ground up with security in mind. The Java platform
allows users to download untrusted code over a network and run it in a secure
environment in which it cannot do any harm: untrusted code cannot infect the host system
with a virus, cannot read or write files from the hard drive, and so forth. This capability

alone makes the Java platform unique

NETWORK-CENTRIC PROGRAMMING

Sun's corporate motto has always been "The network is the computer.”" The
designers of the Java platform believed in the importance of networking and designed the
Java platform to be network-centric. From a programmer's point of view, Java makes it
easy to work with resources across a network and to create network-based applications

using client/server or multitier architectures.

DYNAMIC, EXTENSIBLE PROGRAMS

Java is both dynamic and extensible. Java code is organized in modular object-
oriented units called classes. Classes are stored in separate files and are loaded into the
Java interpreter only when needed. This means that an application can decide as it is
running what classes it needs and can load them when it needs them. It also means that a
program can dynamically extend itself by loading the classes it needs to expand its
functionality. The network-centric design of the Java platform means that a Java
application can dynamically extend itself by loading new classes over a network. An

application that takes advantage of these features ceases to be a monolithic block of code.

11

Instead, it becomes an interacting collection of independent software components. Thus,

Java enables a powerful new metaphor of application design and development.

INTERNATIONALIZATION

The Java language and the Java platform were designed from the start with the
rest of the world in mind. When it was created, Java was the only commonly used
programming language that had internationalization features at its core rather than tacked
on as an afterthought. While most programming languages use §-bit characters that
represent only the alphabets of English and Western European languages, Java uses 16-
bit Unicode characters that represent the phonetic alphabets and ideographic character
sets of the entire world. Java's internationalization features are not restricted to just low-
level character representation, however. The features permeate the Java platform, making
it easier to write internationalized programs with Java than it is with any other

environment.

PERFORMANCE

As described earlier, Java programs are compiled to a portable intermediate form
known as byte codes, rather than to native machine-language instructions. The Java
Virtual Machine runs a Java program by interpreting these portable byte-code
instructions. This architecture means that Java programs are faster than programs or
scripts written in purely interpreted languages, but Java programs are typically slower
than C and C++ programs compiled to native machine language. Keep in mind, however,
that although Java programs are compiled to byte code, not all of the Java platform is
implemented with interpreted byte codes. For efficiency, computationally intensive
portions of the Java platform such as the string-manipulation methods are implemented

using native machine code.

12

IMAGE DETAILS

PIXELS

An image is a rectangular array of dots called pixels (picture elements) where the
number of rows M and number of columns N of dots in an image are specified. At each
row-column intersection (m, n) there is a pixel, or picture element. The point (m, n) is the
location of the pixel, while the pixel value at that location is designated by p(m,n), or
sometimes by f(m,n) or f(x,y). The following figure shows the location (m, n), where 0 <
m < M-1 and 0 < n < N-1. Note that in the figure the downward vertical direction is x and

y is the horizontal rightward direction. The origin is in upper left corner.

COLVMNS
] B N-1

ROWS

M-1

X

&

Fig.3.1 Image co-ordinates

PIXEL VALUES

The pixel values in an image may be:
e Grayscale (or)

e Color

13

GRAYSCALE PIXEL VALUES

The grayscale images are simpler and each pixel value corresponds to one byte.
Grayscale usually has a range from 0 (no light intensity, or full black) to 255 (full light
intensity, or full white), in integer steps. Thus the 256 grayscale values for pixels are 0, 1,
2....255. Each of these takes one byte of storage in a computer or in a file, so if an image
has MxN = 256x256 = 65,536 pixels then that image takes 65,536 bytes of pixel storage
in computer memory or on a storage device. An MxN = 1024x1280 image has 1,310,720
pixels. A pixel value p(x,y) or p(mn,n), where 0 <=m <=M and 0 <= n <= N, is a byte (0
to 255 in binary) in grayscale or 3 bytes in color, where the respective bytes are the red

(R), green (G) and blue (B) values.

COLOR PIXEL VALUES

Color images most often take one of two different forms. The most common
method is called true-color and uses one byte for each of red, green and biue. Thus a
single pixel value requires 3 bytes of memory or disk storage. From these values we can
form (256) x (256)x(256) = 16,777,216 discrete colors, which is about the maximum
number of different colors that humans can distinguish. An MxN = 256x256 color image
of three bytes per pixel would then require 3(65,536) = 196,608 bytes. For an MxN =
1024x1280 color image the requirement is 3(1,310,720) = 3,932,160. It is clear that more
colors and more pixels are more costly in computer storage and time to send on the

Internet.

An older format for color is to allow only 256 colors at any one time on the
screen. A byte indicates a color but it is actually the address from 0 to 255 of one of 256
color registers, each of which contains 18 bits for 6 bits each of R, G and B. The 256
color set, called a palette, must be loaded into the registers before the image can be

displayed, or else the palette can be read from the image file.

14

GRAYSCALE PROCESSING

Grayscale images are suitable and enough for any image processing
application/project to apply and analyze all types of image-processing techniques such as
interpolation, filtering, enhancing, etc. Even when we process color images we often
process the intensity part, which is grayscale, and then put the color back into the
processed image. In color-images, true-color presents all the colors that human eye can
visualize. This is suitable for many types of images, but the current trend is toward even
more colors than true-color, which may be a waste of resources due to the fact that such

fine resolution of color is wasted on humans.

The following figure shows the grayscale pixel values as a function f(m,n) of the
pixel locations at rows m and columns n. Thus we can picture an image as a 3-D surface
that has elevation (gray level) as range above the image plane that is the domain. The

gray levels are discrete values, so the surface is made of discrete steps at the pixels.

fim, n}

y oy N1
b : -

FOWS ™ ' .{_7

COLEMNS

Fig.3.2 Display of a Pixel Value

15

CHAPTER 4
ANALYSIS OF REQUIREMENTS

4.1 ASSUMPTIONS

A certain degree of user interaction, most notably in the crack-detection stage, 1s
required for optimal results. User interaction is rather unavoidable since the large
variations observed in the typology of cracks would lead any fully automatic algorithm to
failure. However, all processing steps can be executed in real time, and, thus, the user can
instantly observe the effect of parameter tuning on the image under study and select in an
intuitive way the values that achieve the optimal visual result. Needless to say, only
subjective optimality criteria can be used in this case since no ground truth data are
available. The opinion of restoration experts that inspected the virtually restored images

was very positive

4.2 SYSTEM ARCHITECTURE

An integrated methodology for the detection and removal of cracks on digitized
paintings is presented in this paper. The cracks are detected by thresholding the output of
the morphological top-hat transform. Afterward, the thin dark brush strokes which have
been misidentified as cracks are removed using either a median radial basis function
neural network on hue and saturation data or a semi-automatic procedure based on region
growing. Finally, crack filling using order statistics filters or controlled anisotropic
diffusion is performed. The methodology has been shown to perform very well on

digitized paintings suffering from cracks

4.3 ARCHITECTURAL GOALS AND CONSTRAINTS

The appearance of cracks on paintings deteriorates the perceived image
quality. However, one can use digital image processing techniques to detect and eliminate
the cracks on digitized paintings. Such a “virtual” restoration can provide clues to art

historians, museum curators and the general public on how the painting would look like

16

in its initial state, i.e., without the cracks. Furthermore, it can be used as a nondestructive
tool for the planning of the actual restoration. A system that is capable of tracking
and interpolating cracks is presented. The user should manually select a point on each

crack to be restored.

A method for the detection of cracks using multi oriented Gabor filters is
presented. Crack detection and removal bears certain similarities with methods proposed
for the detection and removal of scratches and other artifacts from motion films.
However, such methods rely on information obtained over several adjacent frames for
both artifact detection and filling and, thus, are not directly applicable in the case of
painting cracks. Other research areas that are closely related to crack removal include
image inpainting which deals with the reconstruction of missing or damaged image areas
by filling in information from the neighboring areas, and disocclusion, i.e., recovery of

object parts that are hidden behind other objects within an image.

Methods developed in these areas assume that the regions where information has
to be filled in are known. Different approaches for interpolating information in structured
and textured image areas have been developed. The former are usually based on partial
differential equations (PDEs) and on the calculus of variations whereas the latter rely on
texture synthesis principles. A technique that decomposes the image to textured and
structured areas and uses appropriate interpolation techniques depending on the area
where the missing information lies has also been proposed. The results obtained by these
techniques are very good. A methodology for the restoration of cracks on digitized
paintings, which adapts and integrates a number of image processing and analysis tools is
proposed in this paper. The methodology is an extension of the crack removal framework

presented.

17

4.4 LAYERING ARCHITECTURE

IMAGE FILE PROCESSING

To understand how image files are stored and their file formats, and perform

basic operations like reading, writing and drawing an image on screen.

IMAGE FILES

An image is stored in a particular file format. The most popular formats
nowadays are GIF (Graphics Interchange Format), JPEG (Joint Photographic
Experts Group), PNG (Portable Network Graphics), TIFF (Tagged Image File
Format), PGM (Portable Gray Map) and PPM (Portable Pixel Map).

PNM FILE FORMAT

PNM is the acronym for Portable Any Map. The PNM images are the
simplest image file formats for processing. These files contain the actual pixel
values without any compression or decomposition of the data into file sections;
and hence these images are more suitable for any image processing application.
PNM images are of three types, namely portable bit-maps (PBM), portable gray-
maps (PGM), and portable pix-maps (PPM). These formats are a convenient
(simple) method of saving image data as they are equally easy to read in ones own

applications.

PBM FILE FORMAT

PBM images are for storing black and white images. PBM stores
single bit pixel image as a series of ASCII Os or 1s. Traditionally O refers to white
while 1 refers to black. The header is identical to PPM and PGM format except
there 1s no maximum pixel value in the third header line, as it doesn't have any

meaning here. The magic identifier for PBM is P1.

18

PGM FILE FORMAT

PGM images are grayscale image file formats. It i1s of two types,
containing magic identifiers namely P2 and P5. P2 stores pixel values as the
ASCII characters for the digits, delimited by spaces between consecutive pixel
values. P5 writes the bytes without delimiters binary numbers from 0 to 255. It is
often used by image processing researchers around the world for comparison of
their methods and algorithms with other ones and appears in most journals on

image processing.

We see that the P5 type of PGM is packed (without delimiters) so there is
a single byte for each pixel. This is also called the raw data format. The size of
this file i1s 65,576 bytes. The P2 type of PGM uses a byte for each numerical
symbol (digit) and therefore requires three bytes for each number greater than 99
and also uses a space character after each pixel value. Thus the file is nearly four
times as large. This P2 file is 245,724 bytes. However, humans can read the P2
type of PGM file, whereas they can not read the ASCII characters of the packed

bytes, which can appear different in different editors (characters 128 to 255).

PPM FILE FORMAT

PPM images are RGB color images, which magic identifiers P3 for ASCII
data and P6 for binary data. P6 image files are obviously smaller than P3 and
much faster to read. Note that P6 PPM files can only be used for single byte

colors. The components are stored in the usual order, red - green - blue.

CRACK DETECTION

The basic characteristics of cracks are that they have elongated structural

characteristics. Crack-detection is carried out using top-hat transform. Top-hat

19

transform is basically a grayscale morphological filter that transforms the input
grayscale image into another grayscale output image where pixels with a large

gray value are potential crack or crack-like elements.

REMOVAL OF MIS-IDENTIFIED CRACKS

Apply thresholding to separate cracks from the rest of the image. Manual
interaction is required in this module. A binary image will be created showing

only the crack regions is created.

CRACK REMOVAL

Use trimmed mean filter to remove the cracks. The thresholded binary
image and top-hat transformed image are stacked over to identify cracks and then
the cracks from the original image are removed using the pixels from the regions

around the cracks.

20

CHAPTER 5
SYSTEM DESIGN

5.1 USECASE DIAGRAM

An actor initiates a use case, and an actor (possibly the initiator, but not
necessarily) receives something of value from the use case. The graphic representation is
straightforward: An ellipse represents a use case, and a stick figure represents an actor.
The initiating actor is on the left of the use case, and the receiving actor is on the right.
(Many modelers omit the receiving actor, and the UML 2.0 specification doesn't mention
it.) The actor's name appears just below the actor. The name of the use case appears either
inside the ellipse or just below it. An association line connects an actor to the use case,
and represents communication between the actor and the use case. The association line is

solid, like the line that connects associated classes.

One of the benefits of use case analysis is that it shows the boundary between the
system and the outside world. Actors are typically outside the system, whereas use cases
are inside. You use a rectangle (with the name of the system somewhere inside) to

represent the system boundary. The rectangle encloses the system's use cases.

21

Open the
1mage

Tophat
Transform

Enter Intensity
value

Select the ROI

User value System

Stroke
Removal

Crack
Removal

Figure 5.1 Use Case Diagsram

22

5.2 ACTIVITY DIAGRAM

The processing within an activity goes to completion and then an automatic
transmission to the next activity occurs. An arrow represents the transition from one
activity to the next. Like the state diagram, the activity diagram has a starting point
represented by a filled-in circle and an endpoint represented by a bull's-eye. A sequence
of activities almost always comes to a point where a decision has to take place. One set of
conditions leads to one path, another set of conditions to another path, and the two paths
are mutually exclusive. You can represent a decision point in either of two ways. (Sounds
like a decision.) One way is to show the possible paths coming directly out of an activity.
The other is to have the activity transition to a small diamond—reminiscent of the
decision symbol in a flowchart—and have the possible paths flow out of the diamond.
(As an old flow charters, I prefer the second way.) Either way, you indicate the condition

with a bracketed condition statement near the appropriate path.

?

Start

\
\4

p

Open the Image

\\ —/
Y

-

Tophat Transform

. —/

Y
Enter Intensity Value
—

\ 4

-

Select ROI Value

A
v

p

Remove Brush Value

.
A4

—

Remove Cracks

Figure 5.2 Activity Diagram

23

5.3 DATA FLOW DIAGRAM

The Data Flow Diagram (DFD) is a graphical representation of the flow of

process through an information system.

Image

without
_Tac

Image
Processing

Image with
Crack

User

Image

Figure 5.3 Level-0 DFD Diagram

24

25

Image

Processing Reading Drawing Image

Identified Crack

Crack
Detection

Output

Thershold Image

Image

User Identified Brus

Strok

Remove
Brush Stroke

Final Image

Crack
Removal

Figure 5.4 Level-1 DFD Diagram

26

User

Input \

Image Type

Image
Processing

Drawing
Image

Image

Crack
Detection

Image

Calculate|Intensity

Apply
Thershold
Intensity

Identify t&e Crack

Mis-
identified
Crack

Separate Crack & Brush Stroke
Y

Crack

Removals

Draw|Image

Final Image

Figure 5.4 Level-2 DFD Diagram

27

CHAPTER 6

SYSTEM TESTING
6.1 TESTING METHODOLOGY

6.1.1 UNIT TESTING

A unit test is a procedure used to validate that a particular module of source code
is working properly. Thus, we can say that this is a module-level testing where each of
the modules are tested individually. This type of testing is mostly done by the developers
and not by end-users. The goal of unit testing is to isolate each part of the program and
show that the individual parts are correct. Unit testing provides a strict, written contract

that the piece of code must satisfy.

Here in this project, we have tested each pair of modules before it could be
integrated and packaged. Each module pair has been tested for their functionality. They
were originally developed to run as CLI (Command Line Interface) and were forced to
undergo Black Box testing, White Box Testing and Domain testing. At later stage in the

system development, a GUI was developed to view the monitored status.

Test 1:
Procedure

The mandatory fields have to be filled before proceeding to next process.
Solution

The alert message has to be displayed to fill the mandatory details.

Test 2:
Procedure

Enter intensity value to identify the cracks and it displays the identified cracks.
Solution

This problem is solved by re-enter the intensity values and repeats the process

again and again to identify the cracks.

28

Test 3:
Procedure

When an image is in progress and if a user tries to perform another operation.
Solution

The prompt is made that the image is in progress and want to continue with the

refresh button.

6.1.2 INTEGRATION TESTING

Integration testing is testing the software after all its modules are put together.
The problem, of course, is “putting them together” that is interfacing. Data can be lost
across when sub-functions are combined and it may not produce the desired major
function individually may be magnified to unacceptable levels and global data structures
can present problems. Integration Testing is a systematic technique for constructing the
program structure while at the same time conducting tests to uncover errors associated
with interfacing. The objective is to take unit-tested modules and build a program

structure that has been dictated by design.

There is often a tendency to attempt Non-increment Integration; that is to
construct the program using a “big Band” approach. All modules are combined in
advance. The entire program is tested as a whole and chooses usually results. Sets of
errors are encountered. Corrections are difficult because isolating the causes is
complicated by the vast expanse of the entire program. Once these errors are corrected,

new ones appear and the process continues in a seemingly endless loop.

6.1.3 VERIFICATION AND VALIDATION TESTING:

Verification refers to the set of activities that ensure that system correctly
implements a specific function. Validation refers to a different set of activities that ensure
that the system that has been built is traceable to customer requirements. Verification and

validation encompass a wide array of software quality assurance (SQA) activities that

29

include formal reviews, quality and configuration audits, performance monitoring,
simulation, feasibility study, documentation review, database review, algorithm analysis,

development testing, qualification testing and installation testing.

Open an Image:
All the pixels are read by the system to draw the image with all pixels and

to read dimension of the image.

Intensity Value
The numeric fields must not contain any alphabets or special characters. This

validation is checked.

ROI Value

The character field must not contain any special characters. This validation is

checked

6.1.4 SYSTEM TESTING

System testing of software or hardware is testing conducted on a complete,
integrated system to evaluate the system's compliance with its specified requirements.
System testing falls within the scope of black box testing, and as such, should require no

knowledge of the inner design of the code or logic.

As a rule, system testing takes, as its input, all of the "integrated” software
components that have successfully passed integration testing and also the software
system itself integrated with any applicable hardware system(s). The purpose of
integration testing is to detect any inconsistencies between the software units that are
integrated together (called assemblages) or between any of the assemblages and the
hardware. System testing is a more limiting type of testing; it seeks to detect defects both

within the "inter-assemblages" and also within the system as a whole.

30

6.2 TEST PLAN

6.2.1 TEST ENVIRONMENT

e Test cases are prepared according to design / specifications.

e FEach Test case and the items under test are documented in detail in a set
format.

o The input and the initial values are then filled in the Unit Test Plan (UTP)
as per each test case & theoretical values evaluated.

e The UTP is then reviewed and executed.

6.2.2 FEATURES TO BE TESTED

The following functional features will be tested:

Opening the image

Tophat Transform

Enter the different intensity values
Select the ROI Value

Algorithm for stroke removal

Algorithm for Crack removal

Additionally testing will be done simultaneously from multiple clients to ensure that

all data changes are done online.

31

CHAPTER 7
CONCLUSION

Cracks are detected by using top-hat transform, whereas the thin dark brush
strokes, which are misidentified as cracks, are separated either by an automatic technique
by a semi-automatic approach. Crack interpolation is performed by appropnately
modified order statistics filters or controlled anisotropic diffusion. The methodology has
been applied for the virtual restoration of images and was found very effective by

restoration experts.

However, there are certain aspects of the proposed methodology that can be
further improved. For example, the crack-detection stage is not very efficient in detecting
cracks located on very dark image areas, since in these areas the intensity of crack pixels
is very close to the intensity of the surrounding region. A possible solution to this
shortcoming would be to apply the crack-detection algorithm locally on this area and

select a low threshold value.

The application is formulated by analyzing the requirements of the users in the
company. Each and every module has undergone various test conditions. With a full
stretch testing, it has been ensured that the system can enhance ideally without any bugs
or crashes, which will make the end user more compatible with the project. The
application is designed as user friendly and all the options available are clear and self

explanatory so that the user can understand the system easily.

32

FUTURE ENHANCEMENT:

Use of image Inpainting techniques could also improve results in that aspect.
Another improvement of the crack filling stage could aim at using properly adapted
versions of nonlinear multichannel filters (e.g., variants of the vector median filter)
instead of processing each color channel independently. These improvements will be the

topic of future work on this project.

Another situation where the system (more particularly, the crack filling stage)
does not perform as efficiently as expected is in the case of cracks that cross the border
between regions of different color. In such situations, it might be the case that part of the
crack in one area is filled with color from the other area, resulting in small spurs of color
in the border between the two regions.. However, this phenomenon is rather seldom and,
furthermore, the extent of these erroneously filled areas is very small (2-3 pixels
maximum). A possible solution would be to perform edge detection or segmentation on
the image and confine the filling of cracks that cross edges or region borders to pixels

from the corresponding region.

33

CHAPTER 8
APPENDICES

8.1 Screen shots

Detection and Removal of Cracks in Digitized Paintings

‘Open Image

Tophat Transform

l
{ Refresh Image
!
1

Threshold

Selected ROl Points:

View ROl

l
! Remove Brush Strokes
l

Remove Cracks

i
|
|

Figure A 1.1 shows the dialog box to execute the functions of the system

34

ion and Removat of Cracks

Open In"lage J
Refresh mage. B

Tophat Transform l

(‘
|
|
|

Threshold |

Selected ROl Points:

1 View RO} |

[Remove Brush Strokes |

] Remove Cracks l

Figure A 1.2 shows the dialog box to open the image

Detection and Removal

35

i ¥ Open Image: -

Refresh image

g“rophat Transforny

g
I

Threshold

Selected ROI Points:

View ROI

Remove Brush Strokes

T

Remove Cracks

i

Figure A 1.3 shows the dialog box to execute Tophat transform

36

" Open Bnage

. Refresh image

Tophat Transform

Threshold

[Selected ROI Points:

| View ROI

| Remove Brush Strokes

I . Remove Cracks

Figure A 1.4 shows the dialog box to enter the intensity value

37

igitized Paintings

e |

Tetrosh mage |

i Tophat ‘T‘ra‘ns“rorrr‘rf |

‘ ‘{"l‘h‘reéi“loldf |
olocted ROTPomts:

| View ROI o

" Remove Brush Strokes . |

! Remove Cracks |

Figure A 1.5 shows the image status at intensity value 180

38

Selected RO Points:

Enter Threshold intensity:
210

: Vlgiv ROI ‘]

Remove Brush Strokes |

Remove Cratks]

Figure A 1.6 shows the dialog box to enter the intensity value

39

e

i Tophat Transform |

" Threshold

View ROI [

Remove Brush Strokes I

Remove Cracks I

Figure A 1.7 shows the image status at intensity value 210

5& Detection and Removat of Cracks in Dig

40

Pos: (456, 2035, DROLF i | Openimage - I:
S [otoshimass |
| Tophat ﬁéﬁﬁotm - | .
| " Threshold |
Eeloctod RO Points:
Enter Threshold Intensity: |
[230
| View ROl ‘ |
[Remove Brush Sﬁokes]
a8 Remove Cracks |

Figure A 1.8 shows the dialog box to enter the intensity value

41

Tophat Transform

|
| " Refresh Image
|
I

Thieshold

Felecied ROl Points:

| View ROI

[Remove Brush Strokes

|

[Remove Cracks

Figure A 1.9 shows the image status at intensity value 230

Detection and Removal of Cracks in Digitized Pa

) ROI Points., "~ Open Image

Tophat Transform

|

- Refresh Image
l
l

Threshold

Selected ROl Points:

| View ROl

l

4

.

Figure A 1.10 shows the dialog box to enter the intensity value

Detection and Removal of Cracks in Digitized Paintings

Open Image

Tophat Transform

‘ | Refresh Image
|
‘l

Threshold

Selected RO! Points:

View ROl

I Remove Brush Strokes

[Remove Cracks

Figure A 1.11 shows the image status at intensity value 250

44

]

Refresh mage

|

Tophat Transform

|

[' ‘Op.enln'i?a‘jge
B

|

[

Threshold

|

163,24}
(160,144)
{161,307}
1164,471)

Felected RO} Points:
{

[Miew ROI

| Remove Brush Strokes

[Remove Cracks

Figure A 1.12 shows the identified cracks and the brush strokes

Open mage

Tophat Transform

Al
{ Refresh image|
|
|

Threshold

N S TR) SRS Sy S

Selectetl ROl Points:
(163,24)
{160,144)
{161,307}
{164,471}

[View ROI

[Remove Brush Strokes

[Remove Cracks

Figure A 1.13 shows the cracks of the image

46

| [Refresh image

r Tophat Transform

’ f Threshold
lected RO Points:
(163,24)
{160,144)
{161,307)
{164,471}
“{ View ROI J

r Remove Brush Strokes

|

l Remove Cracks:

Figure A 1.4 shows the crack removed image

47

REFERENCES

BOOKS

e Herbert Schildt. ‘“The Complete Reference”. Tata McGraw-Hill Publications.
Second Edition, 2002.

e Joshua. Bloch., ‘Effective Java Programming’. Addison-Wesley Professional
Publications, Third Edition, 2004.

e Roger S. Pressman. ‘Software Engincering’. Tata McGraw-Hill Publications.
Sixth Edition, 2004.

e Patrick Naughton, ‘Java Hand Book’, Osborne McGraw-Hill Publications, Third
Edition, 2001

e Mirdula Pariha, ‘Programming Java’, Tata MacGraw-Hill publication, Third
Edition 2002

WEBSITES

e http://www.sun.com/

e http://www.java.sys.com/

e htip:/www.jguru.com/

e http://www.java.sun.com

e http://www.javalobby.org

e hittp://www.javaboutigue.com

