Design and Development of an
Intelligent Embedded System for
Bearing fault Detection 1n
Submersible pumps

P_ 92313
A Project Report

Submitted by

L.RAJARAJESWARI - 71206415005

in partial fulfillment for the award of the degree
of

Master of Engineering
in

Power Electronics and Drives

DEPARTMENT OF ELECTRICAL & ELECTRONICS
ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE - 641 006

ANNA UNIVERSITY: CHENNAI 600 025

2007 - 2008

BONAFIDE CERTIFICATE

Certified that this project report entitted “Design and development of an
intelligent embedded system for bearing fault detection in submersible pumps” is

the bonafide work of

Miss 1. Rajarajeswari - Register No. 71206415005

Who carried out the project work under my supervision.

Kidmbraamn s Az D m% Facos
Signature of the Head of the Departmeiit Signatire of the Guide

Prof K.Regupathy Subramanian Mrs. D. Somasundareswarl

Certified that the candidate with university Register No: 7/ QbII5005 was
examined in Project viva- voce examination held on .. [~F-2c008..

Internal Examiner

DEPARTMENT OF ELECTRICAL & ELECTRONICS
ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE - 641 006

i

I
gl AOTDULDICO])

Pt =gl A A WDLPUNSUDUDYO N fOdd

Illn\\IJL.GM\QJ)_‘Db

........................ KWws 1% ag AT U IRAIVMSTYYINNSYIROG T "SI S40YINy—0)
Confnrid T L A NN 2BARA Lot vzﬂqﬁwm‘ Yod

...

BT ARV TY G ACEE N P SRS L R R & ST NS E&cﬁ?m@, Ny Zws.wﬁu.. paritius
. 3

Ladnd m pajyuasasd pup 9002-SIALAIN Ul parpdrorgand SDY

.....

________ WWOHIS B ISYMSIGIVD VY TS/ 10u7 Rftpie 0] stoSwl
NOILVdIviLd va 30 alvoidilaza0

8007 dv T
imm SINALSAS NOILLYIINNIWINOGD NI SANFHL ONIDYIINT NO FONIHTINOD TYNOLLVYN
"‘u ONTYAANIONT NOLLVDINNAWOO ANV SOINOYLDATA A0 INTAWILIVIAqQ 394

w7

00290 400 a0t 58 _ v , m O
ANL £~ JHOLVEANWIOD W
L ”

7 ADOTONHOHAL ANV ONIYIANIONT 40 HOATTOI NVHLSNANIH Rt

4

AHENR:

Mahendra Submersible Pumps (P) Ltc.

Date : 17.5.2008

TO WHOMEVER IT MAY CONCERN

This is to certify that the following final year M.E., (Power Electronics &
Drives) student of KUMARAGURU COLLEGE OF TECHNOLOGY.
COIMBATORE. has completed a project in DESIGN AND DEVELOPMENT
OF AN INTELLIGENT EMBEDDED SYSTEM FOR BEARING FAULT
DETECTION IN SUBMERSIBLE PUMPS in our concern for a period from Dec
2007 to Apr 2008.

L.RAJARAJESWARI 71206415005

During this period, she has shown interest in conducting the tests required

and has done a good work towards completion of the project.

Mahendwlaersible Purps (P) Ltd
Jakakumar Ramdass

Managing Director

UKAS

Pl %3

= From parched brown to fertile green ...

|
¥

Sales Branches at : Sangalore, Calicut, ndore, Jabalpy, Jaiour, Kollam, Nagowr, Pune, Raipur, Ranchi, Secunderabad, Tchut Vijgyawada.

iv

ABSTRACT

Submersible pumps are used on both open well and in bore wells for
agricultural purposes. In particular during summer season, the yield from both open
well as well as bore well pumps will be poor. But they are operated frequently without
knowing the water level present in the well. This will cause winding fault and bearing
fault in the motor. These faults if left undetected, may lead to the degradation and
eventual failure of motors. The results of many studies show that bearing problem
account for over 40% of all machine failures. Hence it is always essential to check the
motor condition from time to time. This can be done by various conventional
methods, but these methods require down time of motor. Among the methods that can
be employed for fault detection, intelligent embedded techniques offer a good solution
due to their capacity of handling numerical and heuristic information.

This project aims at the implementation of intelligent embedded techniques for
monitoring motor current patterns in a submersible pump. The fault signature
extracted from the motor current patterns by using Fast Fourier Transformation is
used for the prediction of motor bearing condition. In addition, the motor is protected
against abnormal voltage and current conditions. The insulation condition is also
checked. Soft computing techniques like neural network and fuzzy logic are
implemented to simulate the pump bearing fault diagnosis based on the extracted
information features. The experimental results are presented. Since this scheme
detects the faults at their earlier stage, the maintenance can be carried out in organized
manner, which reduces the down time and repairing cost. This approach is validated
in a 1 HP 230V SOHZ 2880-rpm single-phase submersible pump.

Sy 16L& F(HBSBLD

siuordifien LbyssT GumbuTgud eflusmnsdlnars Hobsoeusfl wHOILD
Supgimen Semipdeflsd LWRILGSSILGEDS. GSPiiuTes GareL sTemseTed
@ounfedmBa HeoLs@w Bila setey Wasabd Gopbs oIGEDE. DpenTed
FUTATeT LbUSET BFeman DPIWTs BUSSUILGEINS. BEUDDTE) USRI LOHMILD
Buiimig®e LIPSTEIDSEI. BULISTEIS SeRTLOWILE T L Ted, GTlLTeny
CawellpsasGsg alEw. Guadaisaisd gou@GL GuEBLLTTET LGSsia 40%
aflsast® Guilm uwdamed gHuGEps aaim usGoam opwieyseflal (6ol
2 mHGFUWOLL (BeTengl. senGey SeueutBurgl Guomlnilal saiemwemw GarBliug
seufluordng. Beunenn uspmpDsefled QALLLBSHDLEUTH LIPMSS SHL DL
STOSHOTEMFE. SEUITDTA LIRSISMET S (penmesiisd, BeaibLelbgmei
SIDLILL (LpsnmITeng) FDBS Ue0enasHS(hHs D).

Ans apalled GumlLri W siglieysenst el BanGL eliGiggai enduL L
ey LLSUGSSUILL (Beengl. Lwdlemred goup d oiglieysener UTeOL
adBurflT wTDDIHed cpeud sawLBUuGsugTed Builm ugpHlemen aeliETE
seoflea(ppdng. Gogud Bwupempuilsd GLTLLTITE HFTSTIeN W DIIpSHSLH
wonh Srew BlesoulelGhaw urHeTssILGEDE. GuriLmiler BenFGeaogen
SeTenHULID GorHeseand. LWHEmeT pulsy GFlw Bluged susmeolifisiensd
wHmH . usend) (Weppulh LWSIUGSSILL GTENG. BUDIPMDWITED LIDSHISlene
engalpBu il peusred urmofiy GFeey Waaw GmpdsluGEng. Bbs
Quenelg @k 2 @GSy Hper GErewi slwiddst wodle cpeold
GFLSHUGSSLILL (HeTeTS).

\'!

ACKNOWLEDGEMENT

The satisfaction that accompanies the sucecessful completion of any task would
be incomplete without the mention of people who made 1t possible, whose constant
guidance and encouragement crowns all efforts with success.

I express my deep sense of gratitude to our beloved Principal Dr. Joseph V.
Thanikal, B.E., M.E., Ph.D., PDF, CEPIT, for providing all the facilities to carry out
this project in a successful manner.

I take pleasure in thanking Prof. K. Regupathy Subramanian, B.E (Hons),
M.Sc., MIEEE, IES, Head of the Department, Electrical and Electronics Engineering,
Kumaraguru College of Technology, for his constant encouragement throughout the
project.

I am highly indebted to my guide Mrs. D. Somasundareswari, M.E., AMIE,
MSSI, MISTE, Senior Lecturer, Department of Electrical and Electronics
Engineering, Kumaraguru College of Technology, who guided me throughout the
project with her invaluable suggestions and encouraged successfully for the
compietion of this project.

I express my sincere thanks to Dr.V.Duraisamy, M.E., Ph.D_, MISTE, AMIE,
MIEEE, Principal, Hindusthan College of Engineering and Technology, Coimbatore,
for providing me valuable suggestions and immense support through out this project.

I wish to express my sincere thanks to “The Institution of Engineers —
India”, Kolkata for sponsoring to this project under R & D Grant. Grant No.SCK/T-
R&D/26/2007-2008.

I wish to express my sincere thanks to Sri. Jayakumar Ramdas, Managing
Director, M/s. Mahendra Submersible Pumps Pvt Ltd., for providing the necessary
testing facilities. I also thank Mr.S.Ramakrishnan, Electrical Engineer, M/s.
Mahendra Submersible Pumps Pvt Ltd., for providing technical support.

I am also grateful to the dynamic support of all our staff and friends, who

helped me in many ways during the course of this project.

vii

CONTENTS

Title

Bonafide certificate
Proof of publication
Company Certificate
Abstract in English
Abstract in Tamil
Acknowledgement
Contents

List of Tables

List of Figures

Abbreviations

CHAPTER1 INTRODUCTION
1.1 Bearing Faults in Submersible Pumps
1.2 Need for a Monitoring System
1.3 Objective
1.4 Bearing Structural Defects
1.5 Literature Survey
1.6 Organisation of the thesis

Page No.
ii
i

v

vil
viil
x1
Xi

Xiv

(]

How b

CHAPTER2 EXPERIMENTAL SETUP FOR DATA ACQUISTION

2.1 Fauit Detection Scheme
2.2 Experimental Hardware Setup
2.3 Experimental Results

2.3.1 Monitoring stator current spectrum
2.3.2 Monitoring stator current and rotor speed

CHAPTER3 NEURAL NETWORK BASED FAULT DIAGNOSIS

3.1 Introduction to Neural Network
3.1.1 Neuron Model

e e e

22
23

3.1.2 Activation Functions
3.1.3 Learning Rules
3.2 Back-Propagation Neural Network
3.2.1 Choice of Parameters for Network Training
3.2.2 Learning Rate
3.2.3 Momentum Factor
3.3 Structure of BP Network for Fault Detection
3.3.1 Fault Detection by Monitoring Stator Current Spectrum
3.3.2. Simulation Results
3.3.3. Fault Detection by Monitoring Stator Current and Rotor Speed
3.3.4 Simulation Results

CHAPTER 4 FUZZY LOGIC BASED FAULT DIAGNOSIS
4.1 Introduction
4.2 Mamdani Fuzzy Logic Inference System
4.2.1 Fuzzifier
4.2.2 Fuzzy Rules
4.2.3 Inference Engine
4.2 .4 Defuzzifier
4.3 Fuzzy Logic Based Fault Detection Method
4.4 Simulation Results

24
26
26
29
29
30
30
30
31
32
33

34
35
36
37

38
38
39
42

4.5 Comparison of Neural Network and Fuzzy Logic Based Fault Diagnosis

System

CHAPTER 5 HARDWARE IMPLEMENTATION
5.1 Hardware Description
5.2 Block Diagram
5.3 Voitage Sensing Circuit
5.4 Current Sensing Circuit
5.5 Leakage Current Sensing Circuit
5.6 Speed Sensing Unit
5.7 Relay and Buzzer Circuit
5.8 Introduction to dsPIC

1x

42

45
46
46
47
47
48
49
49

5.8.1 dsPIC30f4013
5.8.2 High-Performance Modified RISC CPU
5.8.3 DSP Features

5.8.4 Peripheral Features

5.8.5 Analog Features

5.8.6 Special Micro controller Features

5.8.7 CMOS Technology

5.8.8 dsPIC30F4013 — Pin Configuration

5.8.9 CPU Architecture

5.8.10 Status Register

5.8.11 Program Counter

5.8.12 Memory Organization

5.8.13 Flash Program Memory

5.8.14 VO Ports

5.8.15 Interrupts

5.8.16 Timer2/3 Module

5.8.17 IPC Module

5.8.18 12-Bit Analog-To-Digital Converter Module
5.8.19 SPI Module

5.8.20 LCD Module

5.8.21 MPLAB ICD 2 In-Circuit Debugger

5.8.22 MPLAB C18 and MPLAB C30C Compilers
5.8.23 MPLAB ASM30 Assembler, Linker and Librarian
5.8.24 MPLAB SIM Software Simulator

5.9 Software Description
5.9.1 Flow chart

CONCLUSION

REFERENCES

APPENDIX A Development Board
APPENDIX B dsPIC Programming

49
49
50
50
51
51
51
52
52
53
53
53
53
54
54
54
54
54
55
55
55
56
56
56
58
58

59
60
62
69

LIST OF TABLES

Table Title Page No.
2.1 Submersible pump specification 7
2.2 Experimental results for healthy bearings 10
23 Experimental results for faulty bearings 15
24 Experimental results by monitoring stator

current and speed 21
3.1 Simulation results 33
4.1 Fuzzy Rules 39
4.2 Membership functions 40
43 Simulation results 42
4.4 Comparison of Neural network and fuzzy logic based

fault diagnosis 43

xi

Figure

1.1
1.2
1.3
1.4
2.1
22
23
2.4
25
2.6
2.7
2.8
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
4.1
42
43
4.4

LIST OF FIGURES
Title

Faults in submersible pumps
Bush bearing in healthy condition
Thrust bearing in healthy condition
Thrust bearing in faulty condition
Experimental setup for data acquisition
Photographic view of the setup
Voltage spectrum for healthy bearng
Current spectrum for healthy bearings
Current spectrum for faulty bearings
FFT waveform for healthy bearings
FFT waveform for healthy bearings
FFT waveform for faulty bearings
Structure of biological neuron

Single — Input Neuron without Bias
Single Input Neuron with Bias

Hard Limit Activation Function
Linear Activation Function
Log-Sigmoid Activation Function
Architecture of BP Neural Network

Structure of BP Network for Fault Detection

Epoch Vs Error Characteristics for healthy bearings
Epoch Vs Error characteristics for faulty bearings
Structure of BP Network for Fault Detection

Epoch Vs Error characteristics

Mamdani Fuzzy Logic Inference Systems

Triangular membership functions

Graphical interpretation of fuzzification, inference

Centroid Defuzzification Method

xil

Page No.

\D\D\OOOOOOO\JO\UJUJUJ""‘

w NN N
-~ 26 & RREERN

31

32
33
35
37
38
39

4.5
4.6
4.7
438
5.1
52
53
54
5.3
56
5.7
5.8
59
5.10
3.11
5.12

Input Membership Functions for current
Input Membership Functions for speed
Output Membership Functions for temperature
Surface Viewer
Schematic diagram
+5V and +12V power supply
+9V power supply

Fault diagnostic module

Voltage sensing circuit

Current sensing circuit

Leakage current sensing circuit

Speed sensing unit

Relay and Buzzer circuit

Pin Configuration

Photograph of the fault diagnostic module

Flow chart

40
41
41
41
44
45
45
46
47
47
48
48
49
52
57
58

dsPIC
dsc
FFT
PC
MCSA
CT

PT

HP
Hz
LCD
AC
DC

LED

NNFD
FFD
Sub
trimf
smf

zmf

ABBREVIATIONS

digital signal Peripheral Interface Controller
digital signal controller

Fast Fourier Transform

Personal Computer

Motor Current Signature Analysis
Cwrrent Transformer

Potential Transformer

Revolutions per Minute

Horse power

Hertz

Liquid Crystal Display

Alternating Current

Direct Current

Amperes

Light Emitting Diode

Analog to Dagital Converter
Neural Network based Fault Diagnosis
Fuzzy Logic based Fault Diagnosis
Submersible pump
Triangular Membership Function
S-type Membership Function
Z-type Membership Function

CHAPTER 1

INTRODUCTION

Submersible pumps find tremendous applications in the field of irrigation engineerng
and in dewatering. In submersible pump sets, both pump and motor are installed deep inside
the tube well. There are many techniques and commercially available tools to monitor
submersible pumps to insure a high degree of reliability uptime. Environmental, duty, and
installation issues may combine to accelerate motor and pump failure far sooner than the
designed lifetimes. It is apparent then that a failure monitoring system should be capable of
extracting, in a consistent manner, the evidence of many possible failures from measurements
from physically different semsors. Therefore condition-monitoring schemes have
concentrated on specific failure modes such as the stator, the rotor or the bearings. Most of
the researches are suggested towards electrical monitoring of the motor through stator
current.

1.1 BEARING FAULTS IN SUBMERSIBLE PUMPS

Bearings play an important role in the reliability and performances of all pump sets.
Most of the faults arising in pumps are related to bearing faults. It is stated that about 40% of
faults occurring in submersible pumps are due to bearing failures. The different types of

faults occurring and its percentage are shown in the figure 1.1

PERCENTAGE OF FAULTS

OTHERS ROTOR
14% 9%

2 isTATOR

Figure 1.1 Faults in submersible pumps
1.2 NEED FOR A MONITORING SYSTEM
Condition monitoring in submersible pumps is gaining importance due to the need to
increase reliability and to decrease the production loss due to breakdown. By comparing the
stator current spectrum of a submersible pump running under healthy and faulty conditions,
detection of faults like mass imbalance, rotor rub, shaft misalignment and bearing defects is
possible. These signals can also be used to detect the incipient failures of the machine

components, through the online monitoring system, reducing the possibility of catastrophic
damage and the downtime. Although ofien the visual inspection of the frequency domain
features of the measured signals is adequate to identify the faults, there is a need for a
reliable, fast, and automated procedure of diagnostics. Artificial intelligence techniques like
Neural Fuzzy techniques can be implemented in the system for automated detection and
diagnosis of machine conditions.

1.3 OBJECTIVE

To design an intelligent embedded fault diagnostic module for on line condition
monitonng of submersible pumps.

1.4 BEARING STRUCTURAL DEFECTS

In submersible pump sets, both pump and motor are installed deep inside the tube
well. The complete unit consisting of pump and motor is suspended in the bore vertically
from the discharge rising pipe. Two types of bearings are vsed in submersible pumps. They
are 1) Bush bearings 2) thrust bearing. The motor is a squirrel cage induction type with water
lubricated bush bearings. They consist of well-insulated windings with pure clean cold water
swirounding the windings. The axial thrust of the pump is taken up by the thrust bearing.
The pump bearings are water lubricated.

In particular during summer season, the yield from both open well as well as bore
well pumps will be poor. But they are operated frequently without knowing the water level
present in the well. This will cause winding fault and bearing fault in the motor. These faults
if left undetected, may lead to the degradation and eventual failure of motors. There are many
other ways, which reduce the time of bearing failure. These include contamination, corrosion,
improper lubrication and improper installation.

Bearing corrosion is produced by the presence of sand or by careless handling during
installations. Installation problems are often caused by improperly forcihg the bearing onto
the shaft or in the housing. This produces physical damage, which leads to premature failure.
Misalignment of the bearing is also a common result of defective bearing installation. Figures
1.2 and 1.3 show the bush bearing and thrust bearing in healthy condition. Figures 1.4 shows
the thrust bearing in faulty conditions.

Figure 1.2 Bush bearing in healthy Figure 1.3Thrust bearing in healthy
condition condition

Figure 1.4 Thrust bearing in faulty condition

1.5 LITERATURE SURVEY
Induction machines are widely used in submersible pumps from fractional horsepower

to many horsepower ratings. On line monitoring of electrical machines in critical applications
has been increasingly necessary to improve their reliability and to minimize failure. These
machines are operated at different environmental conditions. This causes incipient faults in
the rotor winding and bearing. Bearings play an important role in the reliability and
performance of all motor system. As pointed out by Peter Vas (1993), various types of Al-
based bearing fault monitoring systems in induction motors are used. They are

e Monitoring stator current (r.m.s value) and the rotor speed;

e Vibration signals;

e Monitoring stator current spectrum

There are many published techniques and many commercially available tools to
monitor induction motors to insure a high degree of reliability uptime. In spite of these tools,
many companies are still faced with unexpected system failures and reduced motor lifetime.
Most of the faults arising in motors are often linked with bearing faults. In general, condition-
monitoring schemes have concentrated on sensing specific failure modes in one of three
phase induction motor components: the stator, the rotor, or the bearings. Even though thermal
and vibration monitoring have been utilized for decades, most of the recent research has been
directed toward electrical monitoring of the motor with emphasis on inspecting the stator
current of the motor.

Randy R.scheon et al, (1995) have proposed the initial step of investigating the
efficacy of current monitoring fir bearing fault detection by correlating the relationship
between vibration and current frequencies caused by incipient bearing failures. Mohamed El
Hachemi Benbouzid (2000) has proposed the method of motor current signature analysis,
which utilizes the results of spectral analysis of the stator current for fault detection in
induction motors. Bo Li et al, (2000) have proposed an approach for motor rolling bearing
fault diagnosis using neural networks and time/frequency domam bearing vibration analysis

Many papers have been published in international journals in this area. Much of the
work done in motor fault detection has focused on the mechanical engineering area with the
vibration analysis technique. Those however are delicate and expensive. Steele et al (1982)
have proposed that the stator current monitoring can provide the same indications without
requiring access to the motor. However, in the Jast several years, motor fault detection and
diagnosis have attracted the attention of electrical engineers because of emerging
technologies such as embedded systems, neural networks and fuzzy logic. Therefore this
project aims at developing an intelligent embedded system for bearing fault detection in
submersible pumps.

1.6 ORGANIZATION OF THE THESIS

This report presents about the bearing faults occurring in submersible pumps and the
techniques implemented to detect those faults at an early stage. Chapter 1 tells about the
defects that are occurring in bearings, need for a monitoring system etc., Chapter 2 briefs the
experimental setup used for fault detection and experimental results obtained by FFT.
Chapter 3 details the hardware implementation of the fault diagnostic module, the process
flow chart and dsPIC programming. Chapter 4 describes the peural network based fault
detection method and simulation results. Chapter 5 describes the fuzzy logic based fault

detection method with simulation results and comparison of the two techniques for bearing

fault detection where shown.

CHAPTER 2
EXPERIMENTAL SETUP FOR DATA ACQUISTION

2.1 FAULT DETECTION SCHEME
The purpose of the monitoring system is to measure the submersible pump stator

current spectrum and to analyze these data to determine the bearing condition. The stator
current is sensed through the phase terminal that is connected to the submersible pump by a
current transformer and an equivalent voltage signal is given to the dsPIC dsc. It converts the
sampled signal to the frequency domain using Fast Fourier Transformation (FFT). To
illustrate the fault detection scheme, a 1 HP, submersible pump is used. Expenments were
conducted by using faulty thrust and bush bearings. Fault detection in done by using two
methods:

1) By monitoring stator current (r.m.s value) and the rotor speed.

2) By monitoring the stator current spectrum.
2.2 EXPERIMENTAL HARDWARE SETUP

1 Ph 50 Hz supply

N 'Sub
P CT
h 4
Rheostat
Y
Embedded PC
system with FFT

Figure 2.1 Experimental setup for data acquisition
The Figure 2.1 shows the experimental setup used in this project. The 1 ph supply is
given to the submersible pump. The phase terminal is connected to the current transformer,
which steps down the current value. A rheostat is connected which converts the current to an
equivalent voltage. It is then given to the dsPIC processor for fast Fourier transformation. The
output is connected to a PC, where the current waveforms and the obtained FFT spectrum can
be displayed. Separate bearings with healthy and faulty conditions are used and the data are

obtained. Neural network and fuzzy logic are also used to detect the bearing fault. Figure 2.2
shows the photographic view of the setup.

Figure 2.2 Photographic view of the setup

Table 2.1 shows the specification of the submersible pump used for fault detection.

Table 2.1 Submersible pump specification

Type Submersible pump
Power Rating 1 HP

Voltage 230V

Frequency 50 Hz

Current 6A

Speed 2880 rpm

No. Of poles 2

2.3 EXPERIMENTAL RESULTS
The experimental results for bearing fault detection were obtained separately by
i) Monitoring the stator current spectrum.
11) Monitoring the stator current (r.m.s value) and rotor speed.
2.3.1 Monitoring stator current spectrum
The voltage and current spectrum obtained for healthy and faulty bearings is shown in
Figures 2.3 — 2.5. The Fast Fourier Transformation (FFT) is done on the obtained voltage and
current spectrum and the frequency components are obtained. FFT waveforms are shown in
Figures 2.6 - 2.8.

Amplicude

Aplitude:

R T b Ak T e

PRI N

256 pta @ 8000 Ez:

Imporved frow ‘weltoge nermal’
16 bit fractional: Binparcy

1.0000

0.7500

05200

g.zsoo b ool 3 g1 bbb - F- -0

4. 0000

-0.2500 |-

-0.5003 }--}-

-0.7500} - -

=X, 0030

200

23.906 27.891

15.938 13.922

Timt mE;

Figure 2.3.Voltage spectrum for healthy bearing

Tmporced Lrom ‘current nozmal.dact

1. 00D
i

0.7500 |---}--1---

0. 5000
02500
0.0000]
=0.2500

#5000

256 pEa’B- 5000 HE: 16 it fractisnal: Bimary

H

3 DR FEUR RN P RPN S PR B . R B o L il D ot ol

I

il

=1 0000 0

Figure 2.4.

5.958 Fo668 11.555 .15.938 19.947 73.906. 27.89% 31.315

Tame fm%)

Current spectrum for healthy bearings

“oicrent Tenlegidnge.
36 bit frectlionsdy Bikmr

Il

I

WP & + - -
o)
—

: s — _
i ! :
: H 3 .
W . I T l 5. B I T -5 SO DR S O
.

313875

~17.72 FFT{wvoltage normal.tim}

40.0 1024 prs @ 8000 Hz: complex 64 bit double: Binary
Z0.0
Xy
= .
T 0.0 :
= f
w .
b :
[=
7 ;
= -—-20.0 l
-40.0 - ; :
0.0c00 1.0000 2 .0000 3.0000 4.0000
Frequency (kHz} @ [Frame 0/64.00 {(m3}] 1.7578
Figure 2.6 FFT waveform for healthy bearings
FFT{current normal.tim)
40.0 1024 pts R 8000 Hz: complex 64 bit double: Binary
.i"':,; 20,0 [-mmmmdrme e :
y : : :
k= : !
= : :
3 .
= : : :
o 0.0}--- A v
= : :
-20.0 ' : ; ' ' ;
G.0000 1.0009 2 .80000 3.0000 4 .00090
Freguency (kHz) # [Frame 0764.00 [m3})]
Figure 2.7 FFT waveform for healthy bearings
FFT(current faulty.tim)
140.0 1024 pts B 8000 Hz: complex 64 bit double: Binary

Hagnitude (dB!}

40. . : ’ : :
6 “o600 1.0000 2.0000 3.0000 4.,0000

Freguency(kHz)] B [Frame 0/64.00 {m3)]

Figure 2.8 FFT waveform for faulty bearings
The data obtained for healthy and faulty bearings by monitoring the stator current spectrum
are shown in Table 2.2 & 2.3.

Table 2.2 Experimental results for healthy bearings

S.No | Voltage Current Speed in | Temperature
(Normal) Ipm in °C

1 0 0 2820 43
2 12539 -23169 2820 43
3 23169 32767 2820 43
4 30272 -23169 2820 43
5 32767 0 2820 43
6 30272 23169 2820 43
7 23169 -32767 2820 43
8 12539 23169 2820 43
9 0 0 2820 43
10 -12539 -23169 2820 43
11 -23169 32767 2820 43
12 -30272 -23169 2820 43
13 -32767 0 2820 43
14 -30272 23169 2820 43
15 -23169 -32767 2820 43
16 -12539 23169 2820 43
17 0 0 2820 43
18 12539 -23169 2820 43
19 23169 32767 2820 43
20 30272 -23169 2820 43
21 32767 0 2820 43
22 30272 23169 2820 43
23 23169 -32767 2820 43
24 12539 23169 2820 43
25 0 0 2820 43
26 -12539 -23169 2820 43
27 -23169 32767 2820 43
28 -30272 -23169 2820 43
29 -32767 0 2820 43
30 -30272 23169 2820 43
31 -23169 -32767 2820 43
32 -12539 23169 2820 43
33 0 0 2820 43
34 12539 -23169 2820 43
35 23169 32767 2820 43
36 30272 -23169 2820 43
37 32767 0 2820 43
38 30272 23169 2820 43
39 23169 -32767 2820 43
40 12539 23169 2820 43
41 0 0 2820 43
42 -12539 -23169 2820 43
43 -23169 32767 2820 43
44 -30272 -23169 2820 43

10

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

91
92
93

-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-327617
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820

43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43

11

94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169

2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820
2820

43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43
43

12

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
i71
172
173
174
175
176
177
178
179
180
181
182
183
134
185
186
187
188
189
190
191

-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169

-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767

2820
2820
2820
2820
2820
2820
2820
2820
2820
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818

PRERERRERERSESS

ERERERE

Ny
-+

PRRRRERRRRRRRRERRRRRRRRRERRERE

13

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

-23169
32767
-23169

23169
-32767
23169

2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818

i e S N N G S Sl N N N N

£
o N

o S N e e e e g i N N Nl G e e S N N N G N N N N N

14

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

0
12539
23169
30272
32767
30272
23169
12539

0

-12539
-23169
-30272
-32767
-30272
-23169
-12539

0
-23169
32767
-23169
0
23169
-32767
23169
0
-23169
32767
-23169
0
23169
-32767
23169

2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818
2818

RREERERERRRRERERERR

Table.2.3 Experimental results for faulty bearings

S.No | Voltage Current Speed in | Temperature
(Fauity) M in °C
1 0 -3157 2604 73
2 12539 -29324 2604 73
3 23169 27757 2604 73
4 30272 -26036 2604 73
5 32767 5443 2604 73
6 30272 20277 2604 73
7 23169 -32768 2604 73
8 12539 14981 2604 73
9 0 149 2604 73
10 -12539 -14124 2604 73
11 -23169 32767 2604 73
12 -30272 -17366 2604 73
13 -32767 1845 2604 73
14 -30272 19625 2604 73
15 -23169 -32768 2604 73
16 -12539 24754 2604 73
17 0 -3726 2604 73
18 12539 -21074 2604 73
19 23169 32767 2604 73
20 30272 -20613 2604 73
21 32767 -1914 2604 73
22 30272 25244 2604 73
23 23169 -32768 2604 73
24 12539 22873 2604 73
25 0 -1013 2604 73
26 -12539 -22380 2604 73
27 -23169 30236 2604 73

15

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
43
49
50
51
52
53
54
55
56
57
38
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272

-25884
2519
17180
-30358
24193
-2314
-20455
32767
-30321
-484
26368
-30504
27589
420
-32623
31635
-17118
-8375
20782
-32768
30269
-4371
-29872
30880
-26612
4085
24670
-26171
21127
-2475
-16634
26784
-16679
7209
21371
-32768
31023
169
-27660
32133
-18396
-2002
26420
-28999
23683
-2664
-26030
30992
-32425

2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604

73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73

16

77
78
79
80
81
82
83
34
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767

-6365
22205
-32768
21802
5391
-22113
28864
-24532
-6031
20211
-29403
23651
-16949
-28318
32056
-19711
1605
20462
-32768
26737
-4273
-20287
25159
-16825
-4924
14448
-32768
14928
-299
-27300
32767
-25423
-460
28065
-32768
32767
3612
-23685
32767
-17752
-2341
21160
-32768
23903
-177
-22989
32767
-21681
-3958

2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604

73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73

17

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-1253%
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272

21131
-24538
19289
-3626
-27685
26406
-32622
2893
25271
-31428
27251
-885
-31013
32767
-23654
-2103
22520
-31260
21541
-858
-27650
32767
-20176
1987
26007
-32768
19063
1820
-26484
32767
-22281
-5025
19341
-32768
24839
-3008
-24793
26831
-26581
-11
16548
-24207
29037
341
-23071
32767
-19208
-5623
25649

2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2604
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602

73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74

18

175
176
177
178
179
180
181
182
183
184
i85
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169

-32768
25352
-568
-15186
32767
-25886
-2235
23906
-32072
29304
-83
-24414
31621
-29863
-3366
19950
-32768
21172
6108
-18193
31646
-28256
4906
23636
-32768
24556
866
-23890
32767
-19276
-1031
32767
-32768
19611
-8589
-15708
32767
-23282
3478
24082
-32768
9354
-372
-24501
32767
-20451
-3100
20513
-28613

2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602

74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74

19

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

12539
23169
30272
32767
30272
23169
12539

-12539
-23169
-30272
-32767
-30272
-23169
-12539

22538
8900
-29026
31016
-24998
-2001
22147
-25539
17820
-396
-18302
26664
-29293
-1339
20723
-32768
23982
-459
-23895
32767
-21794
-57
20214
-32225
22258
5211
-18419
30627
-15209
832
21901
-31126
30711

2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602
2602

74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74
74

20

2.3.2 Monitoring stator current and rotor speed
The data obtained by monitoring the stator current (r.m.s value) and rotor speed 1s
shown in Table 2.4

Table 2.4 Experimental results by monitoring stator current and speed

S.No Current Speed Temperature
1 6.2 2655 48
2 6.5 2640 48
3 7.0 2610 53
4 8.5 2590 57
5 10.0 2600 72
6 11.6 2500 73

21

CHAPTER 3
NEURAL NETWORK BASED FAULT DIAGNOSIS

3.1 INTRODUCTION TO NEURAL NETWORK

An artificial neural network is an information processing system that has certain
performance characteristics in common with biological neural networks. Laurene Fausett
(2004) explains that the artificial neural networks have been developed as generalization of
mathematical models of human cognition or neural biology, based on assumptions that:

¢ Information processing occurs at many simple elements called neurons.

e Signals are passed between neurons over connection links.

‘e Each connection link has as associated weight, which, in a typical neural net,
multiplies the signal transmitted.

e Each neuron applies an activation function (usually nonlinear) to its net input (sum of
weighted input signals) to determine it output signal.

A biological neuron has three types of components that are of particular interest in
understanding an artificial neuron: its dendrites, soma and axon. Dendrites receive signal
from other neurons. The signals are electrical impulses that are transmitted across a synaptic
gap by means of a chemical process. The soma or cell body sums the incoming signals.
When sufficient input is received, the cell fires; that is, it transmits a signal over its axon to
other cells. Figure 3.1 shows the structure of biological neuron.

Axon from >

another

neuron To dendrite
_ of another

™ neuron

v
Synaptic gap /

Axon

Dendrite

Figure 3.1 Structure of biological neuron
An Artificial Neural Network is characterized by,

e [ts pattern of connections between the neurons (called its architecture)

22

e Its method of determining the weights on the connections (called its traimng or
learning, algorithm), and
e lts activation function
The network function is determined largely by the connections between elements.
Therefore, a neural network can be trained to perform a particular function by adjusting the
values of the connections (weight) between the elements commonly neural networks are
adjusted, or trained, so that a particular input leads to a specific target output.
The network weight is adjusted based on a comparison of the output and the target,

until the network output matches the target.

3.1.1 Neuron model

Figure 3.2 shows a neuron with a single scalar input with no bias. The scalar input p,
is transmitted through a connection that multiplies its strength by the scalar weight w, to form
the product wp, again a scalar. Here the weighted input wp is the only argument of the

activation function f, which produces the scalar output a.

Po W n’lz_a_’
| |

Neuron without bias

a=f(wp)
Figure 3.2 Single — Input Neuron without Bias

Figure 3.3 shows a neuron with a scalar input, with scalar bias. The bias is much like
a weight, except that it has a constant input of 1. The activation function net input n, again a
scalar, is a sum of the weighted input wp and the bias b., this sum is the argument of the
activation function f. f is an activation function, typically a step function or a sigmoid
function, that takes the argument n and produces the output a. w and b are both adjustable

parameters of the neuron.

23

P._M'_’ n’rf a’

Neuron with bias

a=f(wp+b)
Figure 3.3 Single Input Neuron with Bias

)
b
@

The central idea of neural networks is that such parameters can be adjusted so that the
network exhibits some desired or interesting behavior. Thus, we can train the network to do a
particular job by adjusting the weight or bias parameters, or perhaps the network itself will

adjust these parameters to achieve some desired end.

3.1.2 Activation functions
An activation function may be linear or a non-linear function of an. A particular
activation function is chosen to satisfy some specification of a problem that the neuron is

attempting to solve. There are three most commonly used activation function. They are

(a) Hard limit activation function
(b) Linear activation function
(c) Log-sigmoid activation function

(a) Hard limit activation function:

2
%
n
5 >
s SR
a = hardlim (n)

Figure 3.4 Hard Limit Activation Function
Figure 3.4 shows the graphical representation of the hard limit activation function. The hard

limit activation function sets the output of the neuron to 0 if the function argument is less
than 0, or 1 if its argument is greater than or equal to 0.

24

(b) Linear activation function:

The output of a linear activation function is equal to its input. The output {a) versus

input (p) characteristic of a single-input linear neuron is shown in Figure 3.5.

a = purelin (n)

Figure 3.5 Linear Activation Function

(c) Log-sigmoid activation function:

a
........... M4l
—/ }H
o .
............. -l

a = logsig (n)
Figure 3.6 Log-Sigmoid Activation Function

Figure 3.6 shows the log-sigmoid activation function. This activation function takes
the input (which may have any value between plus and minus infinity) and squashes the
output into the range 0 to 1, according to expression

a=1/1+¢" (3.1)

This activation function is commonly used in muitilayer networks that are trained
using the back-propagation algorithm, in part because this function is differentiable.

25

3.1.3 Learning rules

The weights and biases of the network can be modified by means of ‘learning rule’.
This procedure may also be referred to as a fraining algorithm. The purpose of the Jearning
rule is to train the network to perform some task. Neural networks can be trained to solve
problem that are difficult for conventional computers or human beings. There are many types
of neural network learning rules. They fall into three broad categories: supervised learning,

unsupervised learning and reinforcement (or graded) learning.

(a) Supervised leaming: In supervised learning, the network is provided with inputs and
the corresponding correct output. As the inputs are applied to the network, the network
outputs are compared to the targets. The leaming rule is then used to adjust the weights and
biases of the network in order to move the network outputs closer to the targets. An example
for the supervised learning is the perceptron-learning rule.

(b) Reinforcement learning: This is similar to supervised learning, except that, instead of
being provided with the correct output for each network input, the algorithm is only given a
grade. The grade is a measure of the network performance over some sequence of inputs.
This type of learning is currently much less common than supervised learning.

(c) Unsupervised learning: In unsupervised learning, the weights and biases are
modified in response to network inputs only. There are no target outputs available. The
network learns to categorize the input patterns into a finite number of classes. An example

for unsupervised learning algorithm is Adaptive Resonance Theory.

3.2 BACK-PROPAGATION NEURAL NETWORK

In supervised learning, the first learning rule is perception-learning rule, in which the
learning rule is provided with a set of examples of proper network behavior. As each input is
applied to the network, the learning rule adjusts the network parameters so that the network
output will move closer to the target. The perception learning rule is very simple, but it is also
quite powerful. This rule will always converge to a correct solution, if such a solution exists.
The perception-learning rule forms the basis for understanding the more complex networks.
As with the perceptron rule, the Least Mean Square (LMS) algorithm is an example of
supervised training. The LMS algorithm will adjust the weights and biases to minimize the
mean square error, where the error is the difference between the target output and the network
output. The perceptron-net is incapable of implementing certain elementary functions. These

limitations were overcome with improved (multilayer) perceptron networks. Performance

26

learning is another important class of leaming law, in which the network parameters are
adjusted to optimize the performance of the network. Back propagation (BP) algorithm can
be used to train multilayer networks. As with the LMS learning law, BP is an approximate
steepest descent algorithm, in which the performance index is mean square error. The
difference between the LMS algorithm and back propagation is only in the way in which the
derivatives are calculated. The single-layer perceptron like networks are only able to solve
linearly separable classification problems. Multilayer perceptron, trained by BP algorithm
were developed to overcome these limitations and is currently the most widely used neural
network. In addition, multi-layer networks can be used as universal function approximators.
A two-layer network, with sigmoid-type activation functions in the hidden layer, can
approximate any practical function, with enough neurons in the hidden layer. The Figure 3.7
shows the Architecture of BP Neural Network.

Output
layer

Hidden

Figure 3.7 Architecture of BP Neural Network

The BP algorithm uses the chain rule in order to compute the derivatives of the
squared error with respect to the weights and biases in the hidden layers. It is called BP
because the derivatives are computed first at the last layer of the network, and then
propagated backward through the network, using the chain rule, to compute the derivatives in
the hidden layers.

The BP training algorithm is an interactive gradient algorithm designed to minimize
the mean square error between the actual output of a feed-forward net and the desired output.

27

Step 0: Initialize weights.

Step 1: While stopping condition is false, do steps 2-9,
Step 2: For each training patr, do steps 3-8,
Feed forward:
Step 3: Each input unit (X;, i=1...n) receives input signal x; and broadcasts

this signal to all units in the layer above (the hidden units).
Step 4: Each hidden unit (Z;, j =1...n) sums it weighted input signals,
Z mj=vy+ Z xivij ,
i=l1
Applies it activation function to compute its output signals,
Zj=f{z_in;),and sends this signal to all units in the layer above .
Step 5: Each output unit (yi, k=1...m) sums its weighted input signals,
P
Y_Ing=Wa= Y ZjWjk
=1
And applies its activation function to compute its signals,
Yk= f(y_ink).
Back propagation of error:
Step 6: Each output unit (yx.k=1...m) receives a target pattern corresponding
to input training pattern, computes its error information term ,
3 = eyl (y_im),

Calculates its weight correction term (used to update w later),

Awjk = adkzj ,
Calculates its bias correction term (used to update Wok later)
Awok = adk
Step7: Each hidden unit (Z;, j =1...p) sums its delta inputs

5 _inj= Sowik,

k=l
multiplies by the derivative of its activation function to calculate its error
information term
F=8_ injf'(z_in),
Calculates its weight correction term (used to update V;; later),
Avij = adjxi,
And calculates its bias correction term (used to update V; later),

28

Avoj = adj.
Update weights and biases:
Step8: Each output unit (Yy, k=1...m) updates its bias and weights (j=0...p):
Wi(new)=wji(old)= Awyk,
Each hidden unit (Z;, j...p) updates its bias and weights (1=0...n};
Vij(new)=vij(old) + Avij

Step 9: Test stopping condition.

3.2.1 Choice of parameters for network training

When the basic BP algorithm is applied to a practical problem the training may take
days or weeks of computer time. This has encouraged considerable research on methods to
accelerate the convergence of the algorithm. The research on faster algorithms falls roughly
into two categories; the first category involves the development of heuristic techniques,
which arises out of a study of the distinctive performance of the standard BP algorithm.
These heuristic techniques include such ideas varying the learning rate, using momentum and
rescaling variables. Another category of research has focused on standard numerical

optimization techniques.

3.2.2 Learning rate

The speed of training the BP network is improved by changing the learning rate
during training. Increasing the learning rate on flat surfaces and then decreasing the learning
rate when slope increases can increase the process of convergence. If the leaming rate is too
large, it leads to unstable learning. And if it is too small, it leads to incredibly long training
times. Hence care has to taken while deciding learning rate. There are many different
approaches for varying the learning rate. The leaming rate is varied according to the

performance of the algorithm. The rules of the variable learning rate BP algorithm are:

1. If the squared error increases by more than some set percentage ? (typically one
to five percent) after weight update, then the weight update is discarded, the
leaming rate is multiplied by some factor o < p <1, and the momentum coefficient

? (if it is used) is set to zero.

29

2. If the squared error decreases after a weight update, then the weight update is
accepted and the learning rate is multiplied by some factor 7 > 1. If ? has been
previously set to zero, it is reset to its original value.

3. If the squared error increases by less than ? then the weight update is accepted but
the learning rate is unchanged. If ? has been previously set to zero, it is reset to its

original value.

3.2.3 Momentum factor

In BP with momentum, the weight change is in a direction that is a combination of the
current gradient and the previous gradient. This is a modification of gradient descent whose
advantage arises chiefly when some training data are very different from the majority of the
data. By the use of momentum larger training rate can be used, while maintaining the stability
of the algorithm. Another feature of momentum is that it tends to accelerate convergence
when the trajectory is moving in a consistent direction. The larger the value of ?, the more the

momentum the trajectory has. The momentum coefficient is maintained with the range [0, 1).

3.3 STRUCTURE OF BP NETWORK FOR FAULT DETECTION

An artificial neural network is composed of neurons with a deterministic activation
function. The neural network is trained by adjusting the numerical value of the weights will
contain the non-linearity of the desired mapping, so that difficulties in the mathematical
modeling can be avoided. The BP training algorithm is used to adjust the numerical values of
the weights and the internal threshold of each neuron. The network is trained by, initially
selecting small random weights and internal threshold and then presenting all training data.
Weights and thresholds are adjusted after every training example is presented to the network;
until the weight converges or the error is reduced to acceptable value. The fault detection
scheme is implemented by
1) Monitoring the stator current spectrum
2) Monitoring the stator current and rotor speed

3.3.1 Fault detection by monitoring stator current spectrum
Fault detection neural network consists of two layers: hidden layer and the output
layer. The inputs to the neural network are voltage, current and speed. The hidden layer

consists of three neurons. The output layer has one neuron that comresponds to bearing

30

condition. The transfer function used for hidden layer is log-sigmoid and for output layer,
tan-sigmoid is used. The leamning rate is 0.0155085 and the momentum factor is 0.8
respectively.

Figure 3.8 shows the structure of BP Network for Fault Detection by monitoring the

stator current spectrum.

Voltage

Current
Bearing
condition

Speed

Input layer Hidden layer Output layer

Figure 3.8 Structure of BP Network for Fault Detection
The network is trained separately for healthy bearings and faulty beanings.

3.3.2 Simulation results

o Pearformance is 0.154297 Goal is 0
1 v T T T

10° 4

Training-Blue Tesl-Red

a 2 40 60 &80 100 120 140 18 180

Cepiem) 190 Epoche

Figure 3.9 Epoch Vs Error Characteristics for healthy bearings

31

o Performance is 0.0247663, Goal is 0

-]

-3

@

-g gh‘_

=

2 0"}

ol

&

£

=

s

-

10‘? A 1 'l 1 A L 1 I 1L
0 100 200 300 400 500 600 700 BOD 900 1000
Stop Training 1000 Epochs

Figure 3.10 Epoch Vs Error characteristics for faulty bearings

3.3.3. Fault detection by monitoring stator current and rotor speed

Fault detection neural network consists of two layers: hidden layer and the output
layer. The inputs to the neural network are current and speed. The hidden layer consists of
three neurons. The output layer has one neuron that corresponds to bearing condition. The
transfer function used for hidden layer is log-sigmoid and for output layer, tan-sigmoid 1s
used. The learning rate is 0.01477 and the momentum factor is 0.85 respectively.

Figure 3.11 shows the structure of BP Network for Fault Detection.

Bearing
condition

Input layer Hidden layer Output layer

Figure 3.11 Structure of BP Network for Fault Detection

32

3.3.4 Simulation results

Performance is 2.67345e- 009, Goal is O

10’

Training-Blue

_ T,,,.fl W00 200 300 aéﬁnmsé':gnchsaiz 700 800 900 100D
Figure 3.12 Epoch Vs Error characteristics
The Figure 3.12 shows the Epoch Vs Error characteristics by monitoring the stator
current (r.m.s value) and rotor speed. The results obtained are shown in Table 3.1. The error
is calculated by the formula,
|Actual value ~ observed valuej

* 100
Actual value
The actual value is obtained from experimental setup and the observed value 1s
obtained from NN simulation.
Table 3.1 Simulation results

'SNo. Cument Speed Temperatwre %Emor
| Obtained
in NNFD |

1 62 2655 48 079

2 65 . 2640 a8 1.40

3 70 | 2610 53 . 003

4 85 2590 57 0

5 100 | 2600 72 Y

6 11.0 ; 2500 73 0.02

Average ﬁ;arceﬁtage error obtained | 0376

33

CHAPTER 4
FUZZY LOGIC BASED FAULT DIAGNOSIS

4.1 INTRODUCTION

Problems in the real world quite often turn out to be complex owing to an element of
uncertainty either in the parameters, which define the problem, or in the situations in which
the problem occurs.

The uncertainty may arise due to partial information about the problem, or due to
information which is not fully reliable, or due to inherent imprecision in the language with
which the problem is defined, or due to receipt of information from more than one source
about the problem which is conflicting. It is in such situations that fuzzy set theory exhibits
immense potential for effective solving of the uncertainty in the problem. Fuzziness means
‘vagueness’. Fuzzy set theory is an excellent mathematical tool to handle the uncertainty
arising due to vagueness.

Fuzzy logic systems are universal function approximators. In general, the goal of the
fuzzy logic system is to yield a set of outputs for given inputs in a non-linear system, without
using any mathematical model, but by using linguistic rules. It has many advantages. They
are

e Fuzzy logic is conceptually easy to understand. The mathematical concepts ~ behind
fuzzy reasoning are very simple. What makes fuzzy better is the "Naturalness” of its
approach and not its far-reaching complexity.

e Fuzzy logic is flexible. With any given system, it's easy to massage it or layer more
functionality on top of it without starting again from scratch.

o Fuzzy logic is tolerant of imprecise data. Everything is imprecise if you look closely
enough, but more than that, most things are imprecise even on careful inspection.
Fuzzy reasoning builds this understanding into the process rather than tacking it onto
the end.

o Fuzzy logic can model nonlinear functions of arbitrary complexity. You can create a
fuzzy system to match any set of input-output data. This process is made particularly
easy by adaptive techniques like Adaptive Neuro-Fuzzy Inference Systems (ANFIS),
which are available in the Fuzzy Logic Toolbox.

e Fuzzy logic can be built on top of the experience of experts. In direct contrast

34

to neural networks, which take training data and generate opaque, impenetrable
models, fuzzy logic lets you rely on the experience of people who already understand
your system.

¢ Fuzzy logic can be blended with conventional control techniques. Fuzzy systems don't
necessarily replace conventional control methods. In many cases fuzzy systems
augment them and simplify their implementation.

e Fuzzy logic is based on natural language. The basis for fuzzy logic is the basis for
human communication. This observation underpins many of the other statements

about fuzzy logic.

4.2 MAMDANI FUZZY LOGIC INFERENCE SYSTEM
Mamdani-type of fuzzy logic controiler contains four main parts, two of which
perform transformations. The four parts are
» Fuzzifier (transformation 1)
¢ Fuzzy rule base
¢ Inference engine (fuzzy reasoning, decision-making logic)

o Defuzzifier (transformation 2)

Knowledge base
(Rule base and
(Crisp Data base) (Crisp)
h 4 A
Fuzzifier Defuzzifier -
(transformation 1) (transformation 2) -
h
Y
Inference
(Fuzzy) | nemne (Fuzzy)
Controlled plant

Figure 4.1 Mamdani Fuzzy Logic Inference Systems

35

4.2.1 Fuzzifier

The fuzzifier performs measurement of the input variables (input signals, real
variables), scale mapping and fuzzification (transformation 1). Thus all the monitoring input
signals are scaled and fuzzification means that the measured signals (crisp input quantities
which have numerical values) are transformed into fuzzy quantities. This transformation is
performed by using membership functions. In a conventional fuzzy logic controller, the
number of membership functions and the shapes of these are initially determined by the user.
A membership function has a value between 0 and 1, and it indicates the degree of
belongingness of a quantity to a fuzzy set. If it is absolutely certain that the quantity belongs
to the fuzzy set, then its value is 1(it is 100% certain that the quantity belongs to this set), but
if it is absolutely certain that it does not belong to this set then its value is 0. Similarly if for
example the quantity belongs to the fuzzy set to an extent of 50%, then the membership
function 1s 0.5.

There are many types of different membership functions, piecewise linear or
continuous. Some of these are smooth membership functions, e.g. bell-shaped, sigmoid,
Gaussian etc. and others are non-smooth, e.g. triangular, trapezoidal etc. the choice of the
type of membership function used in a specific problem is not unique. Thus it is reasonable to
specify parameterized membership functions, which can be fitted to a practical problem. If
the number of elements in the universe X is very large or if a continuum is used for X then 1t
is useful to have a parameterized membership function, where the parameters are adjusted
according to the given problem. Parameterized membership functions play an important role
in adaptive fuzzy systems, but are also useful for digital implementation. Due to their simple
forms and high computational efficiency, simple membership functions, which contain
straight-line segments, are used extensively in various implementations. Obviously, the

triangular membership function is a special case of the trapezoidal one.

0 x<a
| (x-a) / (b-a) a=x=b “n
PAGGD.L)= 1 (cx) / (c-b) b=x=c '
0 X>C

Triangutar membership function depends on three parameters a, b, ¢ and can be

described as follows by considering four regions.

36

.

a b X

Figure 4.2 Triangular membership functions

A triangular membership function is shown in Figure 4.2 are used for both the input
and output variable and the points a, b, ¢ are also denoted. Alternatively, it is possible to give
a more compact form

pA’(x; a, b, ¢) =max {min [(x-a)/ (b-a), (c-x) / (c-b)], 0} 4.2)

The detection of bearing fault severity is considered by utilizing Mamdani-style fuzzy
inference and using as input variables are speed and current .Low, medium, and high are the
three membership functions used for the input variables. Poor, fair, and good are the

membership functions used for output variable.

4.2.2 Fuzzy rules

The knowledge base consists of the database and the linguistic control rule base. The
database provides the information, which is used to define the linguistic control rules and the
fuzzy data manipulation in the fuzzy logic controiler. The rule base specifies the control goal
actions by means of a set of linguistic control rules. In other words, the rule base contains
rules such as would be provided by an expert. The fuzzy logic controller looks at the input
signals and by using the expert rules determines the appropriate output signals (control
actions). The rule base contains a set of if-then rules. The main methods of developing a rule
base are:

e Using the experience and knowledge of an expert for the application and the

control goals;

e Modeling the control action of the operator;

» Modeling the process;

¢ Using a self-organized fuzzy controller;

¢ Using artificial neural networks;

37

When the initial rules are obtained by using expert physical considerations, these can
be formed by considering that the three main objectives to be achieved by the fuzzy logic
controller are:

e Removal of any significant errors in the process output by suitable adjustment of

the control output;

e Ensuring a smooth control action near the reference value (smali oscillations in

the process output are not transmitted to the control input);

¢ Preventing the process output exceeding user specified values;

By considering the two dimensional matrix of the input variables, each subspace 1s
associated with a fuzzy output situation.

4.2.3 Inference engine

It is the kernel of a fuzzy logic controller and has the capability both of simulating
human decision—making based on fuzzy concepts and of inferring fuzzy control actions by
using fuzzy implication and fuzzy logic rules of inference as shown in Figure 4.3. In other
words, once all the monitored input variables are transformed into their respective linguistic
variables, the inference engine evaluates the set of if-then rules and thus result is obtained
which is again a linguistic value for the linguistic variable. This linguistic result has to be

then transformed into a crisp output value of the fuzzy logic control.

1 N AN N
M WA 1 B
AN
0.5 - 05 0.5 [~
x Y z
Input vanable Output variable
Figure 4.3 Graphical interpretation of fuzzification, inference

4.2.4 Defuzzifier

The second transformation is performed by the defuzzifier, which performs scale
mapping as well as defuzzification. The defuzzifier yields a non-fuzzy, crisp control action
from the inferred fuzzy control action by using the consequent membership functions of the

38

rules. There are many defuzzification techniques. They are centroid method, centre of gravity
method, height method, mean of maxima method, first of maxima method, sum of maxima.
In this project centroid method defuzzification technique is used as shown in Figure 4.4. It
follows that the output value is

z* = [pdz) zdz / fu(z) dz (4.3)

h 4

7* 7

Figure 4.4 Centroid Defuzzification Method

4.3 FUZZY LOGIC BASED FAULT DETECTION METHOD
The fuzzy inference system used is Mamdani. Hybrid membership function is used
for both the input speed and current and for the output temperature. Three membership

functions for the input variables as well as for output variable are selected.

Table 4.1 Fuzzy Rules
CURRENT | SPEED | TEMPERATURE

LOW MEDIUM FAIR

LOW HIGH GOOD
MEDIUM LOW FAIR
MEDIUM | MEDIUM FAIR
MEDIUM HIGH GOOD

HIGH MEDIUM BAD

HIGH LOW BAD

39

Table 4.1 gives the seven fuzzy rules used for bearing fault detection. The hybrid
membership function is used for fuzzification. Table 4.2 shows the name, type and ranges of
the membership functions used for the input and output variables.

Table 4.2 Membership functions

Variable Name of the mf | Range Type of the mf
Current Low 6A - 8.3A smf

Medium 8.1A -9.8A Trimf

High 9.5A - 12A zmf
Speed Low 2220rpm - 2400rpm | smf

Medium 2390rpm — 2600rpm | trimf

High 2570rpm — 2720rpm | zf
Temperature | Good 40°C - 59°C smf

Fair 57°C-170°C trimf

Bad 68°C - 75°C zmf

The membership functions used for simulation are shown in Figures (Figure4.5—
Figure 4.7). The Figure 4.8 shows the surface viewer of the FFD.

Figure 4.5 Input Membership Functions for current

Figure 4.8 Surface Viewer

41

S T I

*

4.4 SIMULATION RESULTS
The error percentage is calculated for different inputs. The results obtained are shown
in Table 4.3.The error is calculated by the formula,

| Actual value ~ observed value |

*100
Actual value
The actual value is obtained from experimental setup and the observed value is
obtained from fuzzy logic simulation.

Table 4.3 Simulation results

SNo. Cument Speed Temperature % Error
: : Obtained
in FFD
i 6.2 2655 48 0.208
2 6.5 2640 : 48 0
4 85 2500 57 0
s w0 20 7o
6 om0 250 |73 0136
Average percentage error ébtained 0.057

4.5 COMPARISON OF NEURAL NETWORK AND FUZZY LOGIC BASED FAULT
DIAGNOSIS SYSTEM

Neural network approach is a black box approach, where the expert knowledge is
hidden in the black box system in the form of weights and biases of the neural network.
However, in fuzzy logic based system the actions of a human expert are clearly present in the
rule base. Comparison of the neural network and fuzzy based fault diagnoses for monitoring
the stator current and rotor speed is given in Table 4.4.

42

Table 4.4 Comparison of Neural network and fuzzy logic based fault diagnosis

S.No | Method % Error
1 Neural Network based Diagnosis 0.376
2 Fuzzy Logic based Diagnosis 0.057

From the above table, it is inferred that the fuzzy logic based fault diagnosis gives
reduced error compared with neural network based fault diagnosis

43

CHAPTER 5
HARDWARE IMPLEMENTATION

The hardware implementation is done using a dsPIC digital signal controller that uses
the MCSA method for detecting the bearing fault. This method monitors the frequency
components of stator current spectrum. Figure 5.1 shows the schematic diagram of the

hardware implementation.

SINGLE PHASE AC SUPPLY: 230V. 50 Hz

| o

4 - J ,’
CT Slip coil
PT
WAAN 10 ohms CA)
_IYYY
v

Speed sensing unit
with Atmel 89C51
Micro controller

dsPIC20F3013 Processor

RS232

LED
Display
unit

Keypad

LCD Module

Figure 5.1 schematic diagram

5.1 HARDWARE DESCRIPTION

The hardware consists of several modules for measuring supply voltage, load current,
speed and leakage current. The main part is the dsPIC dsc. These modules require dc supply
in the range of +5V, +9V and +12V respectively for their operation. Figures 5.2 shows the
power supply circuit for +5V and +12V. Figure 5.3 shows the power supply circuit for

obtaining +9V.
haag oF ’:]_12‘,
e P
EcereTen o
1 our S EY au [o X2

GHO
2.1 ain

3 " - 1
! o L me
] 7 o - o) LEp
= - T~ T~
19T s34t mnaL Ther

Iy fm. L.

g
s /5“("
‘2{
F
i
i

== ¢§
b
o Pla Tomwa]
74 Pt
1 ot A + < 3w
T ey
[T

Figure 5.2 +5V and +12V power supply

+IVEC N
| - R 1
3 c1e TR D wz B }F R17
Al 2 - A ——t
TR 2 ? 188
= RI&
=
em 028 4 o= o1
ke & RED o g alrdar
3z
POR
1

= ~

Figure 5.3 +9V power supply

The available AC input voltage is 230 V, 50 Hz. It is stepped down to 12 V AC by a
step down transformer. It is rectified using a full bridge rectifier, which consists of four
IN4007 diodes. The output obtained is filtered using capacitors to get a smooth DC. The
obtained DC voltage is given through voltage regulators to regulate the voltage that varies
due to changes in load or fluctuates due to AC input voltage. LM 7812 and LM 7805 are used
to provide the required regulated supply respectively. The +9 V power supply is provided for
giving supply to the dsPIC processor board.

45

5.2 BLOCK DIAGRAM

LCD Display Unit
Voltage S— ﬂ)
Transducer internal dsPIC Slip-
12 bit 16 bit senal P speed
ADC rOCESSOr Tt meter
Current With FET | iner
terface
Transducer [———> ! , Speed
sensor
Insulation Q ﬂ H
Sensor
Buzzer Tripping
Circuit
(Relay)

Figure 5.4 Fault diagnostic module

The block diagram of the fault diagnostic module is shown in Figure 5.4. It shows the
various sensing parameters such as voltage, load current, leakage current and speed. These
signals are processed in the dsPIC dsc for fault detection and given to the LCD and LED
display units for monitoring purpose. Relay is provided for tripping purpose and buzzer is
used as indication of a fault. The speed-sensing unit consists of a slip coil for sensing the
speed and an ATMEL 89C51 micro controller is used for computing the speed. The speed
sensing unit is connected to the dsPIC dsc using a RS-232 serial port communication.
5.3VOLTAGE SENSING CIRCUIT

The voltage sensing circuit is shown in Figure 5.5. The PT 1s connected in parallel to
the single-phase supply. The rating is 300V/6V.The output voltage of PT 1s stepped down and
given to the inverting input terminal of the op-amp LM 358. For positive half cycle, diode D3
conducts and for negative half cycle diode D2 conducis. The obtained DC output is given to
pin AN2 of the dsPIC processor. This circuit is called the precision diode and it is capable of
rectifying input signals of the order of milli voit. By placing a diode in the feedback loop of
the op-amp, the cut-in voltage can be eliminated by the open loop gain of the op-amp

46

cr
Il i)
3

R
s
A3 1’1"\/‘ 5 I LN3SE
1_} &_E_L_ i___i_ - |
Wl : 2 a2 4 Smo
e I 1K \EB:S 2200hm
PT o
. J?_ R11
= !GI:%T 2 "’\:l N2
Figure 5.5 Voltage sensing circuit
5.4 CURRENT SENSING CIRCUIT
_]?’110'25!
1K}
foen
uts
iz,\: 5 [gnssn
3] ?s mnn
GCURRENT
TRANSFORNER 4
= 192.1 ANR

Figure 5.6 Current sensing circuit

The current sensing circuit is shown in Figure 5.6. The CT is connected in series to
the input single-phase supply for monitoring the load current. The rating of the current
sensing circuit is 25 A. The CT ratio is 5:1. The output from the CT is given as input to the
inverting input terminal of the op-amp. As mentioned in the previous section, for positive half
cycle diode D3 conducts and for negative half cycle diode D2 conducts. The obtained DC
output is to the pin ANO of the dsPIC processor.
5.5 LEAKAGE CURRENT SENSING CIRCUIT

The leakage current sensing circuit is shown n Figure 5.7. For measuring leakage
current, the CT is connected to the neutral terminal before the neutral is earthed. The
secondary winding of the CT is connected to the leakage current sensing unit via an ammeter.
When there is leakage current, the current will flow through the neutral terminal and the CT

senses this current. It is indicated in the ammeter. For submersible pumps the leakage current

47

ct %.f 10250

R\'\?{ i

uig
(. 18354
T
q/ S
220 5Tm

:12.1} — am

RI g

ji?jz Sw 2

CURPENT
TRANSFOQHEMER

.;"

Figure 5.7 Leakage current sensing unit
should not exceed 160mA. Below this value, the insulation condition will be good. The CT
ratio is 1:1. The output from the CT is given as input to the inverting input terminal of the op-
amp. As mentioned in the previous section, for positive half cycle diode D3 conducts and for
negative half cycle diode D2 conducts. The obtained DC output is to the pin AN1 of the

dsPIC processor.

5.6 SPEED SENSING UNIT
LED Display Unit
Stip coil .| Analog ATMEL Senal To
pulse ™ Signal =1 89C51 Micro [~ Poit |——>| DSPIC
controller controller Processor
Keypad

Figure 5.8 Speed sensing unit

The speed-sensing unit is shown in Figure 5.8. Slip coil pulse is given to the analog
signal controller. Analog signal controller is used to control the amplitude of the input signal
to the micro controller. ATMEL 89C51 micro controller is used for computing the speed
proportional to the input pulse. It is connected to the DSPIC processor through a serial port.
A LED display unit is provided for displaying the speed. Keypad option is also provided to
select frequency, slip, or speed to display on the LED display.

48

5.7 RELAY AND BUZZER CIRCUIT

The relay and buzzer circuit is shown in Figure 5.9. If a bearing fault occurs, the
current will be high. It will be displayed on the LCD unit. At the same time, the trip circuit is
activated which stops the pump. Buzzer indication is also provided. The relay and buzzer are

connected to the pin RBO of the dsPIC processor.

Figure 5.9 Relay and Buzzer circuit

5.8 INTRODUCTION TO dsPIC

The micro controller used in this project is an advanced processor of the microchip
family of devices. They contain extensive Digital Signal Processor (DSP) functionality within
high-performance 16-bit micro controller architecture with modified RISC CPU and CMOS
technology. Advantages are low power consumption and high speed.

5.8.1 dsPIC30F4013:

The digital signal controller used in this project is dsPIC30F4013. It is a 40-pin PDIP
with modified Harvard architecture. Fiash technology is used so that the data can be retained
even when the power is switched off.

5.8.2 High-Performance Modified RISC CPU:

» Modified Harvard architecture

» C compiler optimized instruction set architecture
+ Flexible addressing modes

* 83 base instructions

49

« 24-bit wide instructions, 16-bit wide data path

« Up to 48 Kbytes on-chip Flash program space

« 2 Kbytes of on-chip data RAM

+ 1 Kbytes of nonvolatile data EEPROM

+ 16 x 16-bit working register array

« Up to 30 MIPS operation:

- DC to 40 MHz external clock input

- 4 MHz-10 MHz oscillator input with

PLL active (4x, 8x, 16x)

« Up to 33 interrupt sources:

- 8 user selectable priority levels

- 3 external interrupt sources

- 4 processor traps

5.8.3 DSP Features:

« Dual data fetch

» Modulo and Bit-Reversed modes

« Two 40-bit wide accumulators with optional saturation logic

» 17-bit x 17-bit single-cycle hardware fractional/integer multiplier

« All DSP instructions are single cycle

- Multiply-Accumulate (MAC) operation

» Single-cycle £16 shift

5.8.4 Peripheral Features:

« High-current sink/source /O pins: 25-mA/25 mA

« Up to five 16-bit timers/counters; optionally pair up

16-bit timers into 32-bit timer modules

« Up to four 16-bit Capture input functions

» Up to four 16-bit Compare/PWM output functions

« Data Converter Interface (DCI) supports common audio Codec protocols, including 12S and
AC’97

» 3-wire SPI module (supports 4 Frame modes)

»]2C™ module supports Multi-Master/Slave mode and 7-bit/10-bit addressing

+ Up to two addressable UART modules with FIFO buffers

» CAN bus module compliant with CAN 2.0B standard

50

5.8.5 Analog Features:

* 12-bit Analog-to-Digital Converter (ADC) with:

- 200 ksps conversion rate

- Up to 13 input channels

- Conversion available during Sleep and Idle

+ Programmable Low-Voltage Detection (PLVD)

» Programmable Brown-out Reset

5.8.6 Special Micro controller Features:

+ Enhanced Flash program memory:

- 10,000-erase/write cycle (min.) for industrial temperature range, 100K (typical)
+ Data EEPROM memory:

- 100,000-erase/write cycle (min.)} for industrial temperature range, 1M (typical)
» Self-reprogrammable under software control

» Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
« Flexible Watchdog Timer (WDT) with on-chip low-power RC oscillator for reliable
operation

+ Fail-Safe Clock Monitor operation:

- Detects clock failure and switches to on-chip low-power RC oscillator

+ Programmable code protection

* In-Circuit Serial Programming™ (ICSP™)

» Selectable Power Management modes:

- Sleep, ldle and Alternate Clock modes

5.8.7 CMOS Technology:

* Low-power, high-speed Flash technology

» Wide operating voltage range (2.5V to 5.5V)

» Industrial and Extended temperature ranges

» Low-power consumption

51

5.8.8 dsPIC30F4013 — PIN CONFIGURATION
The pin out diagram for DSP30F4013 1s shown in the Figure 5.10

MCLR
ANO/VREF+/CN2/RB0
AN1/VREF-/CN3/RB1
AN2/SS1/LVDIN/CN4/RB2
AN3/CNS/RB3

AN4/IC7T/CN6/RB4
ANS/IC8/CN7/RBS
PGC/EMUC/AN6/OCFA/RB6
PGD/EMUD/AN7/RB7

ANS/RBS

VDD

VSS

OSC1/CLKI

OSC2/CLKO/RC15
D1/SOSCIT2CK/UIATX/CN1/RC13
>1/SOSCO/T1CK/U1ARX/CNO/RC14
' INTO/RA11
IC2/INT2/RD9

OC4/RD3

VSS

5.8.9 CPU ARCHITECTURE

OO0 O00O00O0000000O0amnmrmr

=2 BN B R R R

dsPIC30F4013

N

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

o0 uUuu

AVDD

AVSS
AN9/CSCK/RB9
AN10/CSDI/RB10
AN11/CSDO/RB11
AN12/COFS/RB12
EMUC2/0C1/RD0
EMUD2/0C2/RD1
VDD

VSS

CIRX/RF0

CITX/RF1
U2RX/CN17/RF4
U2TX/CN18/RF5
UIRX/SDI1/SDA/RF2
EMUD3/UI1TX/SDO1/SCL/RF3
EMUC3/SCK1/RF6
IC1/INT1/RDS8
OC3/RD2

VDD

The core has a 24-bit instruction word. The Program Counter (PC) is 23 bits wide
with the Least Significant bit (LSb) always clear, and the Most Significant bit (MSb) is

ignored during normal program execution, except for certain specialized instructions. An

instruction prefetch mechanism is used to help maintain throughput. The working register

array consists of 16-bit x 16-bit registers, each of which can act as data, address or offset

registers. One working register (W15) operates as software Stack Pointer for interrupts and
calls. The data space is 64 Kbytes (32K words) and is split into two blocks, referred to as X
and Y data memory. Each block has its own independent Address Generation Unit (AGU).

52

5.8.10 STATUS REGISTER

The dsPIC DSC core has a 16-bit STATUS register (SR), the Least Signmficant Byte
{LSB) of which is referred to as the SR Low byte (SRL) and the Most Significant Byte
(MSB) as the SR High byte (SRH). The upper byte of thc STATUS register contains the DSP
adder/subtracter Status bits, the DO Loop Active bit (DA) and the Digit Carry (DC) Status
bit.
5.8.11 PROGRAM COUNTER

The program counter is 23 bits wide; bit 0 is always clear. Therefore, the PC can
address up to 4M instruction words.
5.8.12 MEMORY ORGANIZATION
Program Address Space

The program address space is 4M instruction words. It is addressable by a 24-bit
value from either the 23-bit PC, table instruction Effective Address (EA), or data space EA,
when program space is mapped into data space the program space address is incremented by
two between successive program words in order to provide compatibility with data space
addressing. User program space access is restricted to the lowerdM instruction word address
range (0x000000 to0x7FFFFE)
Data Address Space

The core has two data spaces. The data spaces can be considered either separate (for
some DSP instructions), or as one unified linear address range (for MCU instructions). The
data spaces are accessed using two Address Generation Units (AGUs) and separate data
paths.
5.8.13 FLASH PROGRAM MEMORY

The dsPIC30F family of devices contains internal program Flash memory for
executing user code. There are two methods by which the user can program this memory:
1. Run-Time Self-Programming (RTSP)
2. In-Circuit Serial Programming™ (ICSP™)
In-Circuit Serial Programming (ICSP)

dsPIC30F devices can be serially programmed while in the end application circuit.
This is simply done with two lines for Programming Clock and Programming Data (which
are named PGC and PGD, respectively), and three other lines for Power {(VDD), Ground
(VSS) and Master Clear (MCLR).

53

Run-Time Self-Programming (RTSP)

RTSP is accomplished using TBLRD (table read) and TBLWT (table write)
instructions. With RTSP, the user may erase program memory, 32instructions (96 bytes) at a
time and can write program memory data, 32 instructions (96 bytes}) at a time.

5.8.14 /O PORTS

All of the device pins (except VDD, VSS, MCLR andOSC1/CLKI) are shared
between the peripherals and the parallel 1/O ports. All /O input ports feature Schmitt Tngger
inputs for improved noise immunity. All port pins have three registers directly associated
with the operation of the port pin. The Data Direction register (TRISx) determines whether
the pin is an input or an output. Reads from the latch (LATx), read the latch. Writes to the
latch, write the latch (LATx). Reads from the port (PORTX), read the port pins and writes to
the port pins, write the latch (LATx). The use of the ADPCFG and TRIS registers control the
operation of the A/D port pins.

5.8.15 INTERRUPTS

The dsPIC30F sensor and general purpose families have up to 41 interrupt sources
and 4 processor exceptions (traps), which must be arbitrated, based on apriority scheme.
5.8.16 TIMER2/3 MODULE

The dsPIC30F4013 dsc has five timers namely Timerl, Timer2/3 and Timer 4/5.
Timer 2/3 1s used in this project. It is a 32-bit timer (which can be configured as two 16-bit
timers) with selectable operating modes.

5.8.17 C MODULE

The Inter-Integrated Circuit (1I2CTM) module provides complete hardware support for
both Slave and Multi-Master modes of the I*C serial communication standard, with a 16-bit
interface. PC REGISTERS I2CCON and I2CSTAT are control and STATUS registers,
respectively. The I2CCON register 1s readable and writ able. The lower 6 bits of 2CSTAT
are read-only. The remaining bits of the I2CSTAT are read/write. 2CRSR is the shift register
used for shifting data, whereas I2CRCYV is the buffer register to which data bytes are written,
or from which data bytes are read. The [2CADD register holds the slave address.

5.8.18 12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The 12-bit Analog-to-Digital Converter (ADC) allows conversion of an analog input
signal to a 12-bit digital number. This module is based on Successive Approximation
Register (SAR) architecture and provides a maximum sampling rate of 200 ksps. The A/D
module has up to 16 analog inputs, which are multiplexed into a sample and hold amplifier.

The output of the sample and hold is the input into the converter, which generates the result.
The analog reference voltage is software selectable to either the device supply voltage
(AVDD/AVSS) or the voltage level on the (VREF+/VREF-) pin. The A/D converter has a
unique feature of being able to operate while the device is in Sleep mode with RC oscillator
selection.
The A/D module has six 16-bit registers:
» A/D Control Register } (ADCONT1)
» A/D Control Register 2 (ADCON2)
* A/D Control Register 3 (ADCON3)
» A/D Input Select Register (ADCHS)
+ A/D Port Configuration Register (ADPCFG)
* A/D Input Scan Selection Register (ADCSSL)
The ADCON1, ADCON2 and ADCONS3 registers control the operation of the A/D module.
The ADCHS register selects the input channels to be converted. The ADPCFG register
configures the port pins as analog inputs or as digital ¥O. The ADCSSL register selects
inputs for scanning.
5.8.19 SP MODULE

The Serial Peripheral Interface (SPI) module is a synchronous serial interface. It is
useful for communicating with other peripheral devices, such as EEPROMs, shift registers,
display drivers and A/D converters, or other micro controllers.
5.8.20 LCD MODULE

A 2x16 ASCIl-text LCD is provided on the dsPICDEM2 Development Board.
dsPIC30F devices installed on the dsPICDEM?2 development board may use this LCD to
display characters. The interface to the LCD is via a 2-wire Serial Peripheral Interface
(SPT™),
5.8.21 MPLAB ICD 2 In-Circuit Debugger

Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time
development tool, connecting to the host PC via an RS-232 or high-speed USB interface.
This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC
MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built
into the Flash devices. This feature, along with Microchip’s In-Circuit Serial Programming
TM (ICSPTM) protocol, offers cost effective, in-circuit flash debugging from the graphical
user interface of the MPLAB Integrated Development Environment. The user using

55

configuration options in MPLAB IDE may select one of four pairs of Debug I/O pins. These
pin pairs are named EMUD/EMUC, EMUDI/EMUCI, EMUD2/EMUC2 and
MUD3/EMUCS3.
5.8.22 MPLAB C18 and MPLAB C30C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI
C compilers for Microchip’s PIC18 family of micro controllers and thedsP1C30, dsPIC33 and
PIC24 family of digital signal controllers. These compilers provide powerful integration
capabilities, superior code optimization and ease of use not found with other compilers. For
easy source level debugging, the compilers provide symbol information that is optimized to
the MPLAB IDE debugger.
5.8.23 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic
assembly language fordsPIC30F devices. MPLAB C30 C Compiler uses the assembler to
produce its object file. The assembler generates relocatable object files that can then be
archived or linked with other relocatable object files and archives to create an executable file.
5.8.24 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted
environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. The
MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18
and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The
software simulator offers the flexibility to develop and debug code outside of the hardware
laboratory environment, making it an excellent, economical software development tool.

The photograph of the fault diagnostic module is shown in Figure 5.11

56

Figure 5.11 photograph of the fault diagnestic module

57

5.9 SOFTWARE DESCRIPTION
The software part contains the flowchart for the monitoring system and the program

of the dsPIC processor. Figure 5.12 shows the flowchart.

5.9.1 FLOW CHART
‘ Start l

h 4

Initialize Input and Output ports

h J

Initialize Timer and ADC

Y

Initialize LCD

h 4
Enable Interrupts

h 4

Get Voltage, Current, Leakage
current and Speed values

h

Obtain Fast Fourier
Transformation

h

Compare vatues using soft
computing techniques

No
Yes

Trip relay and Buzzer ON

A 4

Send values to LCD via
inter integrated circuit

Figure 5.12 Flow chart

58

CONCLUSION

The project has investigated the feasibility of detecting bearing faults using a spectrum of
the stator current for a single-phase 1HP submersible pump. Since bearings support the rotor, a
bearing defect also produces vanations in air gap length of the machine. These vanations
generate noticeable changes in the stator current spectrum. Measured current spectrums were
presented separately for healthy and faulty bearings to venfy the fault. The frequency
components of the stator curent pattern have been expenmentally analyzed by Fast Fourier
Transformation. A hardware implementation using embedded processor is developed for on-line
monitoring and experimental results are obtained. Neural networks and fuzzy logic based fault
detection have been used to perform pump bearing fault diagnosis based on the extracted
information features. The performance of the neural network and fuzzy logic based fault
detection is compared in terms of error percentage. From the simulation results, it is inferred that
the fuzzy logic based fault detection gives the reduced percentage error than the neural network
based fault detection. Thus, this work suggests that non-invasive diagnostic system of motor
current signature analysis monitoring can lead to an improvement in the reliability of diagnosis

of bearings.

59

REFERENCES

[1] M.E. Steele, R.A Ashen, and L.G.Knight, “An electrical method for condition monitoring of
motors”, in int.conf.Elec.Mach-Design and applicat. , no 213, pp 231-235, July 1982.

[2] *“ Methods of motor current signature analysis”, Elec.Mach.Power sys, vol.20. No.5, pp 463-
474, Sept, 1992.

[3] M.E.H Benbouzid, “A review of Induction motors signature analysis as a medium for faults

detection™, IEEE Trans.ind.elect, Vol 47, No 5, Oct 2000.

[4] R.R.Schoen et al, “ Motor bearing damage detection using stator current monitoring”, IEEE

Trans.ind.applicat, Vol 31, pp 1274-1279, Nov/Dec 1995.

[5] Bo Li et al, “ Neural network based motor rolling bearing fault diagnosis”, IEEE
Trans.ind.elect, Vol 47, No 5, Oct 2000.

[6] R.C.Kryter et al.,” Condition monitoring of machinery using motor current signature

analysis,” sound Vib, pp 14-21, Sept 1989.

[7]1 J Penman et al., ” Condition monitoring of electrical drives,” Proc.inst.Elect.Eng, pt.b

Vol. 133, pp 142-148, May 1986.

[8]1 S. Chen et al.,, “A new approach to motor condition monitoring in induction motor

dnives,”IEEE Trans.Ind.Applicat., Vol.30, pp. 905-911 July/Aug. 1994.

[91 Fiorenzo fillippetti, Giovanni Franceschini, and Peter vas, “Recent development of induction
motor drives fault diagnosis using Al techniques “, IEEE Trans. Industrial Electronics.,
vol.47,pp.994-1003.

[10] Rajasekaran .S and Vijayalaksmi Pai.G.A, ¢ Neural networks, Fuzzy Logic and Genetic

Algorithm Synthesis and Applications’, Prentice Hall of India, 1995.

60

{11] Linear Integrated Circuits, D.Rai Choudary and Shail Jain, Wiley Eastern Ltd., 1991.

[12] Artificial Intelligence-Based Electrical Machines and Drives’, Peter Vas 1999, Oxford

University.

[13] www.microchip.com

[14] www.atmel.com

61

APPENDIX A

dsPICDEM 2 Development Board User’s Guide

dsPICDEM™ 2 DEVELOPMENT BOARD SCHEMATIC (SHEET

FGURE A-2:

5}] i ¥
TInd "1 92168/ | 142462050
ylavo-£e = o Jy S— =
A -] . L i
oy - £ : i ey
= = = = = e ol L] iR —
— R + [T s
PELIL YN mm..ﬁ.a.ﬁ. — % A + [—
i RATRFTR i h._. % = iy ol =
T JE)] —
[R e 1otn
Ndo 4mau |y
THL TeRt NS e BE/TLORILA IS TR~ ar QT H L 0E /2 [adaAeRldsg
= FATFRTVRIRT| 51 " [ArRerT o= [LI " [ol
S a— 7 7o i P 1 aaame— e T L - {
E———vmrnr Frapmgy—————di}
OB — BT R | " (R I g n M T
Gl AT | 1 0 PRI TR i o FrwerEneTmeT. G
e T AT | Rl gt
PR —smimssmmmm]) n Foworrre—— R ﬂrll..l!.!qn u e G
By &t L a——— RT3 & o [
Ga—————mri [e —— & il -
.~ Rr——————qrmr| & N L e ——-
P~ R M 1 . i a— e e L EE———
LY Do S
5 R—ammm———mpwT¥ | 0 + [Tt ey o + v
=M G| 0 ¢ [T o i M ——
D G Tyt
Y| v [FoRrA Rt i R —— T = + TE—————————i
Oy « [T T SRR | & B L i —
E————sawer] Ity
W} + [T - ST : Frrmrw—————
a—— i V— =————————rie | [y
1ain (LT
A|WIp4 JoSEBc0l J0sUBS
il . | B 1 I

£ 2005 Microchip Technology Inc.

DS515SEA-page 06

62

Hardware Drawings and Schematics

dsPICDEM™ 2 DEVELOPMENT BOARD SCHEMATIC (SHEET

20F7)

FIGURE A-3:

Ndd 408d iy

TiInd erdd LL2E/ | 1OPRRDIIS0

T W+ [ERETAR [——— 3 -
Gi———moamrosre| » a [Ax 7y Caiy————————gprw| o [m
= Ty CTR TR P | 4t n [T Eﬂ u
IR ST | 0 [YRS, S G w0 TIAAMES | & "
oy o [o O i oo A
= s [e — T L ML

Gy |
Sl —mrwwr] f— o S ... b M
Gl » « TR e —————g{ g n
O —————————rypT] o » TR - Ga—— . .
G » [T oy | % ‘
e o + [T o e '
oI ™ ¢ TR - oe—) .
———e—yr| » MR | S——._ A t
e &8 B oaea—— L mmimn it '
18z fren
UOISIBALUGD JBNOd B |OURD) J0T0H
il = { H) Y

DSEiSE8A-page U7

© 2005 Microchip Tedhnology nc:

63

dsPICDEM 2 Development Board User’s Guide

dsPICDEM™ 2 DEVELOPMENT BOARD SCHEMATIC (SHEET

30F7)

FIGURE A-4:

] i)| 2]] I]
[Ry R
T g
._|=.. R e
]
[-
W) A T =l H—yri
— R Ty AN e
a - - u_
N u..t::q.ib._
= T
a4 T
1 R KT
e =
3
M [
ﬁ 4318
00U UG HO
F 33

rpaildnn-z14

2> Ay
Qaua ,_IIASQ_lIlﬂ
’ 4 (1]
0

O 504 259 |GV o8n

wou

E
|hﬁ - Ll _— = VXN A
—— - T
Ner . - L TER | 3 uom o
g - i
e J.) “ " = -y
7 h_ ™
on
NV
d I i) | A I Y

& 2005 Microchip Tecimology inc.

DS51558A-page 93

Hardware Drawings and Schematics

dsPICDEM™ 2 DEVELOPMENT BOARD SCHEMATIC (SHEET

40F7)

FIGURE A-5:

] 4]] a 1 Y
N q d [l
= = T Te ety
FTTTITRR EEY n. .HI_ ™
TS N W AL
T & WA Cm— Iy e i ™ =
b— A im H0 W 0
AR P 5 KOAR N RY n .ul L =
o miAD Ol
SV B0 O L TH o JL_ T e
ot B T
T el 440 TYFHON
0 TGN [HaTas al
AZU & ZUNME/LUNNKT
—hE
W o gfﬁnﬂﬂ [—
T2 e Bl _,a‘-ﬂi!ﬁrﬂw i lusll._. e
[‘ f) qW T trr " VD O A
240 THUON —_
A3 U0LOW 740G/ LGANE - Arbimn o
an L
min ik
L AN PR G O
Ll
= = = U L T T
Ty a y LT T
AL ni K| &) 8 :
a2 » e
115 a »~
GRS LT Aowid ppy seioN | @] LY v e
3 A L TN BAY M al
i W T ~{t ¥
RN " TN S
1dvn
il I 2 T <] Y

DSEIS58A-page 50

© 2005 Microchip Technalogy Inc.

65

dsPICDEM 2 Development Board User’'s Guide

FIGURE A-6: dsPICDEM™ 2 DEVELOPMENT BOARD SCHEMATIC {(SHEET
C— !
Rlikisssstbibioesti f
JHPARERERERRIRRSRY
| g |
k3
X T
q "
i
- T iég | g
hy - JJi éb—'&:
!E y |,
o i}
Eﬂ! : o ; fe
S . o
H] "‘};"’ b, ;éh: g
3 ol g 1-—|| LI
jé’ b m
2 it i
e T ¢
et
DS51658A-page 100 S 2005 Microchip Technalogy Inc.

66

Hardware Drawings and Schematics

dsPICDEM™ 2 DEVELOPMENT BOARD SCHEMATIC {SHEET

6 OF7)

RGURE A-T:

Tir 4353
fm

M

T 1TINS =
men e v o
AL
marse i o

»
L]
;T] 5
H

HOSN3S 7/ d9

DS515650A-page 101

@ 2005 Microchip Technology e,

67

dsPICDEM 2 Development Board User’s Guide

FIGURE A-8; dsPICDEM™ 2 DEVELOPMENT BOARD SCHEMATIC {(SHEET
TOFT)
- | < H " I =
N 5
5 5 =
i . 3
ﬂ L {) g
- =
13§
bes
u B + " {1 /4 B
E ” A3
&ﬁ" E"; 5 2 I
&-—-ﬂm——&:—i]l
2 Bz vd?g
&) | :ég ko
B
E ; nuc,;—-]ll
= L B
——e—
1k
h
= o
b
It
- e = -
5,s !—'Dt
e
= L
g
-]] 1) I ~F
- ——
DSE1569A-paga 102 2005 Microchip Technalogy Inc.

68

APPENDIX B: dsPIC PROGRAMMING
//Pre-Processor Directives:
//Provide pre-processor directives to include Device header files and
//any application specific header files. Path locations to the Device
//header files are set up within the MPLAB Project>>BuildOptions>>Project
//dialog box. The path should point to X:\MPLAB C30\support\h\, where
//"X:" is the folder where the MPLAB C30 tools are installed.
#include <p30fxxxx.h> //"p30fxxxx.h" is a generic header file for dsPIC30F
//devices. This file will in turn select the actual
//device header file, based on the device selected
/by the MPLAB workspace/project. Using the p30fxxxx.h
//file makes it easy to migrate a project from one
//dsPIC device to another.
#include "system.h" //"system.h" 1s a header file defined for this demo
//application.
//Macros for Configuration Fuse Registers:
//nvoke macros to set up device configuration fuse registers.
//The fuses will select the oscillator source, power-up timers, watch-dog
/timers, BOR characteristics etc. The macros are defined within the device
//header files. The configuration fuse registers reside in Flash memory.
_FOSC(CSW_FSCM_OFF & XT PLLB); //Run this project using an external crystal
/frouted via the PLL in 8x multiplier mode
//For the 7.3728 MHz crystal we will derive a
//throughput of 7.3728e+6*8/4 = 14.74 MIPS(Fcy)
/1,~6Tnanoseconds instruction cycle time(Tcy).
_FWDT(WDT_OFF); //Tumn off the Watch-Dog Timer.
_FBORPOR(MCLR_EN & PWRT _OFF); //Enable MCLR reset pin and turn off the
//power-up timers.
_FGS(CODE_PROT _OFF); //Disable Code Protection

//Declaration to Link External Functions & Variables:

//Declare functions being used that are defined outside this file, or
/felsewhere in this MPLAB project.

69

extern SPI_Init(void);

extern UpdateDisplayBuffer(void),
extern WritetUART to RS232(void);
extern WriteSPI_to LCD(void);
extern UART Init(void);

extern ADC_Init(void);

extern INTx_ init(void);

extern Timer! Init(void);

extern Timer2 Init(void);

//Functions and Variables with Global Scope:
//Declare functions in this file that have global scope.

int main (void);

//Code execution automatically reaches the main() function after

/Hwo events have occurred;

//1. A Reset event triggered by hardware or software

/12. The execution of the C Start up library functions, present

// in the crt0.0 file in the libpic30-coff.a library file

int main (void)

{

ADPCFG = OxFFFF; //After reset all port pins multiplexed

/fwith the A/D converter are configred analog.
//We will reconfigure them to be digital
//by writing all 1's to the ADPCFG register.
//Note: All dsPIC registers are memory mapped.
//The address of ADPCFG and other registers
/fare defined in the device linker script

/fin your project.

//Function Delay5ms() available in file, Delay.s
DelaySms(100); //Provide 500ms delay for the LCD to start-up.

70

//Function SPI_Init() available in file, SPI_for L.CD.c
SPI Init(); /fInitialize the SP1 module to communtcate with

//the LCD.

//Function UART Init() available in file, UART.c

UART Init(); //nitialize the UART module to communicate
//with the COM port on the Host PC via an
//RS232 cable and the DB9 connector.

//Function ADC_Init() available in file, A_to_D_Converter.c
ADC Imt(); //Initialize the A/D converter to convert
//signals from the Temperature Sensor and the

//Potenttometer.

//Function INTx_10O_Init() available in file, INTx_IO_pins.c

INTx_IO Init(); //nitialize the External interrupt pins and
//some /O pins to accept input from the
//switches, 85 and S6 and drive the LEDs, D3
//and DA4.

/Function Timerl Init() & Timer2 Init() available in file, Timers.c

Timerl _Init(); //Initialize Timer1 to provide "blinking" time
//for the LED:s.

Timer2 Inmit(); /Imtialize Timer2 and Timer3 as a 32-bit
//Timer to be used for updating data sent to
//the LCD(SPI) and COM(UART) interfaces.

while (1) //Main Loop of Code Executes forever
{
while (IFSObits. T3IF ==1) //Wait until 32-bit Timer
{ /finterrupt flag bit is set.
IFSObits. T3IF=0; //Clear 32-bit timer interrupt
/fflag bit

71

T2CONbDits. TON=0; //Stop 32-bit Timer

//Function UpdateDisplayBuffer() available

//in file, DisplayRoutines.c

UpdateDisplayBuffer(); //Write the most recent
//temperature and potentiometer

/fvalues into display buffer

//Function WriteUART to RS232() available in UART.c
WriteUART fo_RS232(); //Update RS232 via UART

//Function WriteSPI to LCD() in file, SPI for LCD.c
WriteSPI to 1.CD(); //Update the LCD via SPI

T2CONDbits. TON =1; //Start 32-bit Timer again

}
}
return 0; //Code never reaches here!
}
#include <p30fxxxx.h>

//Defines for System Clock Timing -

//For oscillator configuration XT x PLL8 mode,

//Device Throughput in MIPS = Fcy = 7372800%8/4 = ~14.74 MIPS
//Tastruction Cycle time = Tcy = 1/(Fcy) = ~68 nanoseconds

#define XTFREQ 7372800 //On-board Crystal frequency

#define PLLMODE 8 //On-chip PLL setting

#define FCY XTFREQ*PLLMODE/4 //Instruction Cycle Frequency

//Defines that equate Switches on board to specific interrupt pins on device

#define Switch S5 PORTADbits.RA11 //Switch S5 is connected to RA11
#define Switch S6 PORTDbits.RD8 //Switch S6 is connected to RDS

72

//The Port A structures defined in certain device header files provided

/fin the MPLAB C30 v1.30 compiler do not contain definition for port pin RA11.
//Please use the device header file in MPLAB C30 compiler v1.32 or later.
//Pre-Processor Directives:

#include <p30fxxxx.h>

#include "system.h"

/{Declaration to Link External Functions & Variables:

extern int current;;

//Functions and Variables with Global Scope:

void Timerl Init(void);

void Timer2 Init(void);

void __attribute ((__interrupt)} _TlInterrupi(void),

//Timer1_Init() sets up Timer] to count up to the maximum 16-bit value, OxFFFF,
//and interrupt the CPU. ISR processing is enabled for Timer 1.
void Timerl Init(void)

{

T1CON = 0x0020; /fTimer}1 set up to count on instruction cycle
/fedge with 1:64 prescaler applied initially.

PR1 = OxFFFF; //Period Register, PR1, set to maximum count
IFSObits. T1IF =0; //Clear the Timerl Interrupt Flag
IECObits. TIIE=1; //Enable Timer] Interrupt Service Routine
T1CONbits. TON=1; //Start Timer 1

}

/fTimer2_Init() sets up Timer2 and Timer3 to count up to a 32-bit value,
//0x003FFFFF with a prescaler of 1:1. 32-bit Timer ISR is disabled.
void Timer2 Init(void)

{

73

T2CON = 0x0000; //32-bit Timer3:Timer2 pair set up
T2CONDits.T32 =1; //to increment every instruction cycle

PR3 = 0x003F;

PR2 = O0xFFFF; //Period Register, PR3:PR2, set to O0x003FFFFF
IFSObits. T3IF =0; //Clear the Timer3 Interrupt Flag

IECObits. T3IE=0; //Disable Timer3 Interrup Service Routine
T2CONbits. TON=1; //Start 32-bit timer, setting Timer 2 ON bit

//_T1Interrupt() is the Timerl Interrupt Service Routine

//The routine must have global scope in order to be an ISR.

//The ISR pame is the same name provided for the module in the device linker
//script.

//At every Timer] interrupt event, the state of the two LEDs, D3 and D4,

/1is toggled/flipped.

void _attribute _ ((__interrupt_)) _T1Interrupt(void)

{

/" if{current > 820) // faulty
I/
1 LATBbits. LATBO =1,
i}
else
//LATBDits. LATB0 = 0;

1 LATBbits. LATB0 =~ LATBbits. LATB0; //Toggle LATBO (LED D3)
/ LATBbits. LATB1 =~ LATBbits. LATB1; //Toggle LATB1 (LED D4)
IFSObits. T1IF = 0; //Clear Timer] Interrupt Flag

}
#include "p30foxxx.h”

void __attribute ((__interrupt_)) _OscillatorFail(void);
void _ attribute_ ((__interrupt__)) _AddressError(void);

74

void _ attribute ((__interrupt_)) _StackError(void);

void __ attribute_ ({__interrupt_)) _MathError(void);

void _ attribute ((__interrupt_)) _AltOscillatorFail{void);
void _ attribute_ {(__interrupt__)) _AltAddressError(void);
void __ attribute _((__interrupt_)) _AltStackError(void);
void __ attribute_ ((__interrupt_)) _AltMathErmor(void);

/ *
Primary Exception Vector handlers:
These routines are used if INTCON2bits. ALTIVT = G.
All trap service routines in this file simply ensure that device
continuously executes code within the trap service routine. Users
may modify the basic framework provided here to suit to the needs
of their application.
*/
void _ attribute__((__interrupt_)) _OscillatorFail(void)
{
INTCONI1bits.OSCFAIL = 0; /{Clear the trap flag
while (1);

void __ attribute_ ((__interrupt_)) _AddressError(void)

{
INTCONT1bits. ADDRERR = 0; /{Clear the trap flag
while (1);

3

void __ attribute__ ((__interrupt_)) _StackError(void)

{
INTCONI1bits.STKERR = 0; //Clear the trap flag
while (1);

void _ attribute ((__interrupt__)) MathEmor(void)

75

INTCONI1bits. MATHERR = 0; //Clear the trap flag
while (1);

/*

Alternate Exception Vector handlers:

These routines are used if INTCON2bits ALTIVT = 1.

All trap service routines in this file simply ensure that device
continuously executes code within the trap service routine. Users
may modify the basic framework provided here to suit to the needs

of their application.
*/

votd _ attribute ((_ interrupt_)) AltOscillatorFail(void)

{
INTCON1bits.OSCFAIL = 0;

while (1);

void _ attribute__ ((__interrupt__)) _AltAddressError(void)

{
INTCON1bits. ADDRERR = 0;

while (1);

void _ attribute_ ((__interrupt_)) _AltStackError(void)

{
INTCON1bits.STKERR = 0;

while (1);

void _ attribute ((_ interrupt_)) _AltMathEmor{void)

76

}

INTCON1bits. MATHERR = 0;
while (1);

//Pre-Processor Directives:

#include <p30fxxxx.h>

#include "system.h"

//Functions and Variables with Global Scope:

void INTx_1O_Init(void);

void _ attribute_ ((__ interrupt_)) INTOInterrupt(vord);
void _ attribute ((__interrupt_)) INT1Interrupt(void);

//Functions:

//INTx_IO_Init() sets up the INTO and INT! pins connected to the
//switches S5 and S6, on the dsPICDEM2 board. It also sets port
//pins, RBO and RB1, as output pins to drive LEDs, D3 and D4.
void INTx IO Imt(void)

{

//Set up Switches S5 and S6 as external interrupt input pins

//S5 connected to INTO

//S6 connected to INT1

INTCON2 = 0x0003; //Setup INTO-1 pins to interupt on falling edge
IFSObits.INTOIF = 0; //Reset INTO interrupt flag

IECObits.INTOIE = 1; //Enable INTO Interrupt Service Routine
IFS1bits.INT1IF = 0; //Reset INT1 interrupt flag
IEC1bits.INT1IE=1; //Enable INT1 Interrupt Service Routine

//Set up port pins RBO and RB1 fo drive the LEDs, D3 and D4
//RBO connected to D3

//RB1 connected to D4

LATBbits. LATBO=0; //Clear Latch bit for RBO port pin

77

TRISBbits. TRISBO = 0; //Set the RBO pin direction to be an output
LATBbits. LATB1 =0; //Clear Latch bit for RBI port pin
TRISBbits. TRISB1 = 0; //Set the RB1 pin direction to be an output

//_INTOInterrupt() is the INTO interrupt service routine (ISR).

//The routine must have global scope in order to be an ISR.

//The ISR name is chosen from the device linker script.

//On every INTO interrupt event, the rate at which the LEDs blink is changed
/by varying the prescaler on Timer] between the states 1:1, 1:8, 1:64 & 1:256
void _ attribute_ ((__interrupt_)) INTOInterrupt(void)

{
while (Switch S5 == 1); /Wait in ISR until Switch S5 is released

//Change Timer] Prescaler to next value

/fin the sequence 1:1, 1:8, 1:64, 1:256
if (T1CONDbits. TCKPS = 3) TICONbits. TCKPS = 0;
else TICONDits. TCKPS +=1;

IFSObits.INTOIF = 0; //Clear the INTO interrupt flag or else
//the CPU will keep vectoring back to the ISR

//_INT1Interrupt() is the INT1 interrupt service routine (ISR).
//The routine must have global scope in order to be an ISR.
//The ISR name is chosen from the device linker script.
//On every other INT1 interrupt event, the state of LED D3 is flipped so that
//the two LEDs are NOT ON simultaneousty. On every other INT1 interrupt event,
//the state of LED D3 is flipped back so that the two LEDs are ON simultaneously.
void _ attribute _((__interrupt_)) INT1Interrupt(void)
{
while (Switch_S6 = 1); /Wait in ISR until Switch S5 is released
/! LATBbits. LATBO =~ LATBbits. LATBO; //Toggle LED D3

78

IFS1bits.INT1IF = 0; //Clear the INTO interrupt flag or else
//the CPU will keep vectoring back to the ISR
}
//Pre-Processor Directives:
#include <p30fxxxx.h>

#include "system.h"

//Functions and Variables with Global Scope:
void ADC _Init(void);
void _ attribute ((__interrupt_)) _ADClnterrupt(void);

int TempSensor = 0;
int Potentiometer = 0;

int leackage = 0;

//Functions:

/ADC_Init() is used to configure A/D to scan and convert 2 input channels
//per interrupt. The A/D is set up for a total sampling rate of 8KHz
//or 4KHz per channel. The internal counter in the A/D is used to provide
//Acquisition time delay. The input pins being scanned are AN2 and AN3.
//AN2 and AN3 are connected to the Temperature Sensor and the Potentiometer
//on the dsPICDEM2 board.
void ADC Init(void)
{

//ADCONI1 Register

//Set up A/D for Automatic Sampling, Auto-Convert

//All other bits to their default state

ADCONI1bits.SSRC =7;

ADCONI1bits. ASAM = 1;

//ADCON2 Register

79

//Set up A/D for interrupting after 3 samples get filled in the buffer
//Also, enable Channel scanning

//All other bits to their default state

ADCON2bits.SMPI = 2;

ADCON2bits.CSCNA = 1;

//ADCON3 Register

//Set up Acquisition time (Tacq) for 31 Tad periods

/fwhere, Tad = A/D conversion clock time.

//Set up Tad period to be 20.5 Tcy (Tcy = instruction cycle time)
//Given that each conversion takes 14*Tad (=Tconv) periods,
//Total Sample Time = Acquisition Time + Conversion Time

// =31 + 14)*Tad = 45*Tad periods

// =45 * 20.5 * Tcy = 922.5*Tcy periods

//At 7.3728 MIPS, Tcy = 135 ns = Instruction Cycle Time

//So Tsamp = Tacq + Tconv = 45*Tad(in this example)= 125.1 microseconds
//So Fsamp = Sampling Rate ~= 8 KHz

/{/All other bits to their default state

ADCON3bits.SAMC =31,

ADCON3bits. ADCS =40,

//ADCHS Register

//When Channel scanning is enabled (ADCON2bits. CSCNA=1)
//AND Alternate mux sampling is disabled (ADCON2bits. ALTS=0)
//then ADCHS is a "don't care”

ADCHS = 0x0000;

//ADCSSL Register
//Scan channels AN2, AN3, AN4 fas part of scanming sequence

ADCSSL = 0x001C;

//ADPCFG Register
//Set up channels AN2, AN3 as analog inputs and leave rest as digital

80

//Recall that we configured all A/D pins as digital when code execution
/fentered main() out of reset

ADPCFGbits.PCFG2 = 0;

ADPCFGbits.PCFG3 = 0;

ADPCFGbits. PCFG4 = 0;

//Clear the A/D interrupt flag bit
IFSObits. ADIF = 0;

//Set the A/D interrupt enable bit
IECObits.ADIE = 1;

//Tum on the A/D converter

//This is typically done after configuring other registers
ADCONI1bits. ADON = 1;

//_ ADCnterrupt() is the A/D interrupt service routine (ISR).

//The routine must have global scope in order to be an ISR.

/fThe ISR name is chosen from the device linker script.
void __ attribute ((__interrupt)) ADClnterrupt(void)

{

//Copy the A/D conversion results from ADCBUFn to variables-
/MMPotentiometer” and "TempSensor"”.

//Since ADCONZ2bits.SMPI = 1, only the first two (i.e. SMPI+1) ADCBUFn
/Nocations are used by the module to store conversion results

Potentiometer = ADCBUFO + 20;

TempSensor = ADCBUF1*2;

leackage = ADCBUF2#2;

//Clear the A/D Interrupt flag bit or else the CPU will
//keep vectoring back to the ISR

81

IFSObits. ADIF = 0;

}

//Pre-Processor Directives:
#include <p30fxxxx.h>

#include "system.h”

#define BAUDRATE 9600 /Desired Baud Rate

#define BRGVAL (FCY/BAUDRATEY16)-1 //Formula for UIBRG register
/Hfrom dsPIC30F Family
//Reference Manual

//Declaration to Link External Functions & Variables:

extern unsigned char DisplayData[];

//Functions and Variables with Global Scope:

void UART Init (void);

void WritetUART to RS232(void);

void __ attnibute ((__interrupt_}) U1TXInterrupt(void),

unsigned char *UARTCharPtr;

//Functions

/UART Init() sets up the UART for a 8-bit data, No Parity, 1 Stop bit
//at 9600 baud with transmitter interrupts enabled
void UART Imit (void)
{
UIMODE = 0x0000; //Clear UART1 registers
U1STA = 0x0000;

82

/{Since the SPI1 (SCK1, SDO1, SDI1) pins are multiplexed with the UART
//(U1TX and UIRX) pins on this device this demonstration program
/fwill use alternate UART] pins (UTATX and ULARX)
//The SPI1 module is used to comunicate to the LCD Controller while
//UART1 module is used to communicate with the RS232 port on the PC
UIMODEDbits. ALTIO = 1; //Enable UIATX and UIARX instead of
//UITX and UIRX pins

UIMODEDbits. UARTEN = 1; //Enable UART! module
U1BRG = BRGVAL; //Load UART1 Baud Rate Generator

IFSObits. UIRXIF = 0; //Clear UART1 Recetver Interrupt Flag
IFSObits. UITXIF = 0; //Clear UARTI Transmitter Interrupt Flag
IECObits. UIRXIE = 0; //Disable UART1 Receiver ISR
IECObits. UITXIE=1; //Enable UART1 Transmitter ISR
U1STAbits. UTXISEL = 1; //Setup UART] transmitter to interrupt

//when a character is transferred to the

/fTransmit Shift register and as result,

//the transmit buffer becomes empty.

U1STAbits.UTXEN = 1; //Enable UART1 transmitter
UARTCharPtr = &DisplayData[0]; //Initialize UARTCharPtr to point
/fto the first character in the Display buffer

/WriteUART _to_RS232() triggers interrupt-driven UART communication by writing
//the first character in the Display buffer to the UART Transmit register
void WriteUART to RS232(void)
{
if (UARTCharPtr > &DisplayData[0]) &&
(UARTCharPtr < &DisplayData[38])) return;
else

{

83

UARTCharPtr = &DisplayData[0]; //Re-Initialize UART display
/fbuffer pointer to point to
//the first character

U1TXREG = *UARTCharPtr++; //Load the UART transmit

//register with first character

/_ UlTXInterrupt() is the UART1 Interrupt Service Routine.

//The routine must have global scope in order to be an ISR.

//The ISR name is the same name provided for the module in the device linker
//script.

/fThe UART1 ISR loads the UART1 4-deep FIFO buffers with the next

//4 characters in the Display buffer unless it encounters a null character.

void _ attribute ((_ interrupt)) UlTXInterrupt(void)

{
inti=0
while (FUARTCharPtr 1= "\0") && (i <4))
{
U1TXREG = *UARTCharPtr++;
i+
}
IFSObits.U1TXIF = 0; //Clear the UART]1 transmitter interrupt flag
}

//Pre-Processor Directives:
#include <p30fxxxx.h>
#include "system.h"

#define LCDLINEICMD 0x80 //Command to set LCD display to Line 1
#define LCDLINE2CMD 0xC0; //Command to set LCD display to Line 2

/Declaration to Link External Functions & Variables:
extern Delay5ms (int);

extern unsigned char DisplayData[};

//Functions and Variables with Global Scope:
void SPI_Init(void);
void WriteSPI_to LCD{void);

unsigned char *LCDCharPtr;

/ISP _Imt Function:
//SPI1 module set up to communicate with the LCD controller on-board.
//Note that when SP11 is enabled on this device, the UART] pins will not be
/favailable due to peripheral multiplexing. So this project utilizes
//alternate UART1 pins, UIATX and UTLARX
void SPI_Imit(void)
{
SPIISTAT = 0x0000;
SPIICON = 0x0020; //Set the SPI1 module to 8-bit Master mode
IFSObits.SPI1IF = 0; //Clear the SPI1 Interrupt Flag
IECObits.SPIIIE = 0; //SPI1 ISR processing is not enabled.
//SPI1 will be used in polling-mode
SPI1STATbits.SPIEN = 1; //Turn on the SPI1 module

/fWriteSPI to LCD() Function:

//WriteSPI_to LCD() writes 32 characters to the 2x16 LCD
/fusing the SPI1 interface in a polling fashion.

//After each byte is written, the Interrupt Flag bit is polled and the
//mext character is written after the interrupt flag bit 1s set.

void WriteSPI to LCD(void)

{

int temp, 1;

85

1=0;
temp = SP11 BUF;
SPI1STATbits.SPIROV = 0;
IFSObits.SPI1IF = §;
DelaySus(50);
SPIIBUF = LCDLINE1CMD; //First write the command to set cursor
/fto Linel on LCD
L.CDCharPtr = &DisplayData[0]; //Set up LCD character pointer to point
/#to the Display buffer
while(i < 16)
{
while (IFSObits.SPI11F=0); //Now write 16 characters
temp = SPI1BUF; /fto Line 1 of the LCD
IFSObits. SPILIF = 0;
SPI1STATbits.SPIROV = (;
Delay5ms(1);
SPIiBUF = *LCDCharPtr++;

i+

3

3
while (IFSObits.SP11IF=—0);

temp = SPI1BUF;
IFSObits.SPIIF = 0;
SPI1STATbits.SPIROV = 0;

temp = *LCDCharPtr++; //Some characters in the Display buffer

temp = *LCDCharPtr++; //are skipped while writing to LCD. CR

Delay5us(50); /fand LF are for writing to RS2322 UART

SPI1BUF = LCDLINE2CMD; //Next, write the command to set cursor
//to Line2 on LCD

1=0;

while(i < 16)

{

while (IFSObits.SPI1[F=0); //Now write 16 characters
temp = SPI1BUF; //to Line 2 of the LCD

IFSObits.SPHIF = 0,
SPI1STATbits.SPIROV = 0;
Delay5us(50);

SPIIBUF = *LCDCharPtr++;
1++;

k]

}

//Pre-Processor Directives:
#include <p30fxxxx.h>

#include "system.h”

//Declaration to Link External Functions & Variables:
extern int TempSensor,
extern int Potentiometer;

extern int leackage;

int current,temperature;

//Functions and Variables with Global Scope:
void UpdateDisplayBuffer(void); |

void ADCResult?Decimal(unsigned int ADRES);

unsigned char DisplayData[] = "I=00.0A \\nT=100C Vol=0.00V\r\n\r\n\0";
unsigned char adones=0);

unsigned char adtenths=0;

unsigned char adhundredths=0;

//UpdateDisplayBuffer() Function:
//This function writes new A/D readings to the Display Buffer.
/The display buffer stores a string to be displayed on both the RS232 and
/fthe LCD.
void UpdateDisplayBuffer(void)
{
int temp = ; //Convert TC1047A reading to Deg

87

/*

*/

//Celstus
temp = TempSensor - 0x199; //Determine if the temperature is
if (temp > 0) //negative, in order to write
{ /feither a + or - sign to display areas

DisplayData[20] = '+,

j

else

{
temp = 0x199 - TempSensor;
DisplayData[20] = '-';

}

// leackage current
ADCResult2Decimal(leackage); //Convert the hex value to decimal
DisplayData[13] = adones; //Update the display buffer characters
DisplayData[14] = adtenths; //Update the display buffer characters
DisplayDatal 15] = adhundredths;

// TempSensor is connected with Current measuring

current = TempSensor;
ADCResult2Decimal(current*2); //Convert the hex value to decimal
DisplayData[2] = adones; //Update the display buffer characters
DisplayData[3] = adtenths; //Update the display buffer characters
DisplayData[5] = adhundredths;

temperature = TempSensor - 100;
if(temperature < 350)
temperature = 350;

if(temperature > 850)
temperature = 850;

88

I

ADCResult2Decimal(temperature); //Convert the hex value to decimal

DisplayData[21] = adones; //Update the display buffer characters
DisplayData[21] = adtenths; //Update the display buffer characters
DisplayData[22] = adhundredths;

if(TempSensor > 820) // faulty
{
DisplayData[8] = 'F";
DisplayData[9] ='a";
DisplayData[10] ="u’;
DisplayData[11]="T;
DisplayDataf12] =t';

LATBbits. LATBO = 1;
}

else

DisplayData[8} = 'G';
DisplayData[9} = 'o';

DisplayData[10] ='0’;
DisplayData[11] ="'d";
DisplayData[12] ="";

LATBbits. LATBO = (;

ADCResult2Decimal(Potentiometer); //Convert the A/D hex value to
DisplayData[30] = adones; //decimal and update the display buffer
DisplayData[31] = adtenths;

DisplayData[32] = adhundredths;

89

/{ADCResult2Decimal() Function:
//This function converts a 12-bit A/D result in hexadecimal to decimal

/fassuming a 5 volt reference voltage.

void ADCResult2Decimal(unsigned int ADRES)

{

adones = (; /freset values

adtenths = 0;
adhundredths = 0;
while (ADRES > (x8}

{

if(ADRES > 0x333) /ftest for 1 volt or greater
{
adones++; /fincrement 1 volt counter
ADRES -= 0x334; {/subtract 1 volt

3
else iff ADRES > 0x51 && ADRES <= 0x333) //test for 0.1 volt or greater

{
if (adtenths < 9}

{

adtenths++; /fincrement tenths

3

else
{
adonest++; {ftenths has rolted over
adtenths = 0; //so increment ones and reset tenths
}
ADRES -=0x52;
}
else iff ADRES > 0x8 && ADRES <= 0x51) //est for 0.01 volt or greater

{
if (adhundredths < 9)

adhundredths++;
}
else
{
adhundredths = 0;
if (adtenths < 9)
{
adtenths++;
i
else
{
adonest++;
adtenths = (;
}
}
ADRES -= 0x9;

}

adones += 0x30;
adtenths += 0x30;
adhundredths += 0x30;

/increment hundreths

/freset hundredths

/fand increment tenths

/funless tenths has rolled over

//so increment ones and reset tenths

91

