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ABSTRACT

Image compression is an important aspect of multimedia data transmission,
especially through bandlimited, time-varying channels. The cost and limitation in
bandwidth of wireless channels has made data compression a necessity. Due to
the constraints of wireless channels, progressive image transmission has gained
widespread acceptance. Wavelet-based image coding lends itself naturally for
progressive transmission, where the important low frequency information in the
image is transmitted first, followed by the less important high frequency details.

In this project, the coding of images for progressi is add d, by
1 of the transform

applying a lifting wavelet, thresholdi
coefficients Finally is encoded using SPIHT encoding scheme and hence
compression is obtained. Lifting wavelet transform has its advantages over the
ordinary wavelet transform by way of reduction in memory required for its

implementation. This is made possible b lifting uses in-place

computation. The lifting coefficients replace the image samples present in the
The Haar wavelet has been used here because of its

pective memory 1
simplicity, but it can be extended to other wavelets that may give better results.
The performance of the system has been evaluated based on the compression ratio

and the peak signal-to-noise ratio.
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Chapter 1
AN INTRODUCTION
1.1 IMAGE PROCESSING

Image processing is any form of signal processing for which the input is an
image, such as photographs or frames of video; the output of image
processing can be either an image or a set of characteristics or parameters
related to the image. Most image-processing techniques involve treating the
image as a two-dimensional signal and applying standard signal-processing
techniques to it Image processing usually refers to digital image processing,
but optical and analog image processing are also possible.

Among many other image processing operations are:

= Image Compression

= Geometric transformations such as enlargement, reduction, and

rotation

= Color corrections such as brightness and contrast adjustments,

quantization, or conversion to a different color space

= Digital compositing or optical compositing (combination of two or
more images). Used in filmmaking to make a "matte”

= Interpolation, de mosaicing, and recovery of a full image from a raw

image format using a Bayer filter pattern



= Image editing (e.g., to increase the quality of a digital image)
= [mage differencing

= Image registration (alignment of two or more images)

= Image stabilization

= [mage segmentation

= Extending dynamic range by combining differently exposed images

Applications of Image processing
e Computer vision
» Face detection,
* Feature detection
o Lane departure warning system
¢ Medical image processing
» Microscope image processing
= Morphological image processing

* Remote sensing

1.2 DIGITAL IMAGE PROCESSING

Digital image processing is the use of computer algorithms to perform image
processing on digital images. As a subfield digital signal processing, digital
image processing has many advantages over analog image processing; it

1.2.2 TASKS

Digital image processing allows the use of much more complex algorithms
for image processing, and hence can offer both more sophisticated
performance at simple tasks, and the implementation of methods which

would be impossible by analog means.
In particular, digital image processing is the only practical technology for:

* Classification

« Feature extraction

e Pattern recognition

e Projection

e Multi-scale signal analysis

o Some techniques which are used in digital image processing include:
« Principal components analysis

» Independent component analysis
e Self-organizing maps

« Hidden Markov models

* Neural networks

1.3 IMAGE COMPRESSION

One of the major challenges in enabling mobile multimedia data services

will he the need to nrocess and wirelessly transmit a very large volume of

can avoid problems such as the build-up of noise and signal distortion during
processing The most common kind of digital image processing 1s digital

image editing.

1.2.1 HISTORY

Many of the techniques of digital image processing, or digital picture
processing as it was often called, were developed in the 1960s at the Jet
Propulsion Laboratory, MIT, Bell Labs, University of Maryland, and a few
other places, with application to satellite imagery, wirephoto standards
conversion, medical imaging, videophone, character recognition, and photo
enhancement. But the cost of processing was fairly high with the computing
equipment of that era. In the 1970s, digital image processing proliferated,
when cheaper computers and dedicated hardware became available. Images
could then be processed in real time, for some dedicated problems such as
television standards conversion. As general-purpose computers became
faster, they started to take over the role of dedicated hardware for all but the
most specialized and compute-intensive operations.

With the fast computers and signal processors available in the 2000s, digital
image processing has become the most common form of image processing,
and is generally used because it is not only the most versatile method, but
also the cheapest.

data. While significant improvements in achievable bandwidth are expected
with future wireless access technologies, improvements in Dbattery
technology will lag the rapidly growing energy requirements of future
wireless data services. One approach to mitigate to this problem is to reduce
the volume of multimedia data transmitted over the wireless channel via data

compression techniques

This has motivated active research on multimedia data compression
techniques such as JPEG [1,2], JPEG 2000 [34] and MPEG [5]. These
approaches concentrate on achieving higher compression ratio without
sacrificing the quality of the image. However these efforts ignore the energy

consumption during compression and RF transmission.

Since images will constitute a large part of future wireless data, we focus on
developing energy efficient and adaptive image compression and
communication techniques. Based on wavelet image compression, energy
efficient multiwavelet image transform is a technique developed to eliminate
computation of certain high-pass coefficients of an image.

1.4 PRINCIPLE OF COMPRESSION

Image compression addresses the problem of reducing the amount of data
required to represent a digital image. The underlying basis of the reduction
process is the removal of redundant data. From a mathematical viewpoint,

this amounts to transforming a 2-D pixel array into a statistically



uncorrelated data set. The transformation is applied prior to storage and

transmission of the image. The compressed image is decompressed at some

later time, to reconstruct the original image or an approximation to it.

1.4.1 DIFFERENT TYPES OF DATA REDUNDANCIES:

Interpixel redundancy: Neighboring pixels have similar values. This

property is exploited in the wavelet transform stage.

Psychovisual redundancy: Human visual system cannot simultaneously

distinguish all colors. This property is exploited in the lossy quantization

stage.

Coding redundancy: Fewer bits represent frequent symbols.

1.4.2 COMPRESSION ALGORITHMS

There are various algorithms for image transformation:
« Discrete cosine transform (DCT)
« JPEG
e Sub-band coding
« Embedded zero wavelet transform (EZW)

e Adaptive multiwavelet transform

names for scalability are progressive coding or embedded bitstreams.
Despite its contrary nature, scalability can also be found in lossless codecs,
usually in form of coarse-to-fine pixel scans. Scalability is especially useful
for previewing images while downloading them (e.g. in a web browser) or
for providing variable quality access to e.g. databases.

There are several types of scalability:

Quality progressive or layer progressive: The bitstream successively refines
the reconstructed image.

Resolution progressive: First encode a lower image resolution; then encode

the difference to higher resolutions.

Component progressive: First encode grey; then color.

Region of interest coding. Certain parts of the image are encoded with
higher quality than others. This can be combined with scalability (encode
these parts first, others later).

Meta information. Compressed data can contain information about the
image which can be used to categorize, search or browse images. Such
information can include color and texture statistics, small preview images

and author/copyright information.

1.5 IMAGE COMPRESSION PROCESS

1.1 The Image Compression Process

Fig.1.1 illustrates the main block diagram of the image
compression process. The image sample first goes through a transform,
which generates a set of frequency coefficients. The transformed coefficients
are then quantized to reduce the volume of data. The output of this step isa
stream of integers, each of which corresponds to an index of particular
quantized binary. Encoding is the final step, where the stream of quantized
data is converted into a sequence of binary symbols in which shorter binary
symbols are used to encode integers that occur with relatively high
probability. This reduces the number of bits transmitted.

The best image quality at a given bit-rate (or compression rate) is the main
goal of image compression. However, there are other important properties of

image compression schemes are :

Scalability generally refers to a quality reduction achieved by manipulation

of the bitstream or file (without decompression and re-compression). Other

Processing power. Compression algorithms require different amounts of
processing power to encode and decode. Some high compression algorithms

require high processing power.

The quality of a compression method is often measured by the Peak signal-
to-noise ratio. It measures the amount of noise introduced through a lossy
compression of the image. However, the subjective judgement of the viewer

is also regarded as an important, perhaps the most important, measure.

Tablel.] shows the qualitative transition from simple text to full-motion
video data and the disk space and transmission time needed to store and

transmit such uncompressed data.



TABLE 1.1 Multimedia data types and uncompressed storage space

and transmission time required.

Aultimedia | Size/Duration | Bits/pixel | Uncompressed | Transmission
Data or Size Time(Using a
Bits/Sample | (B for bytes) 28.8K
Modem)
A page of Varyin,
P 11"X 8.5" o _g 4-8KB 1.1-2.2sec
text resolution
Telephone 10 8bp -
) sec 5 KB 22 2sec
Quality
Grayscale
512X 512 8bpp 262KB 1 min 13 sec
Image
Color
512X 512 24bpp T86KB 3 min 39 sec
Image
Medical
2048 X 1680 12bpp 5.16MB 23 min 54 sec
Image
SHD
2048 X 2048 24bpp 12.58MB 58 min 15 sec
Image
; 640 X 480,
Full-motion 1 mi 24b 1.66GB 5
Vi min pp . days 8 hrs
(30 frames/sec)

"
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Fig. 2.1 Mother wavelet w(t)

Normally it starts at time ¢ = 0 and ends at 1 = T. The shifted
wavelet w(t - m) starts at £ =m and ends at £ =m *+ T. The scaled wavelets
w(2kt) start at =0 and end at = T/2k. Their graphs are w(f) compressed by
the factor of 2k as shown in Fig. 3.3. For example, when k=1, the wavelet is
shown in Fig 22 (a). If k= 2 and 3, they are shown in (b) and (c),
respectively.

(a)w(20) (b)w(dt) (gw(B1)

Fig. 2.2 Scaled wavelets

The wavelets are called orthogonal when their inner products
are zero. The smaller the scaling factor is, the wider the wavelet is. Wide
wavelets are comparable to low-frequency sinusoids and narrow wavelets

are comparable to high-frequency sinusoids.

Chapter 2
WAVELETS

2.1 WAVELET TRANSFORM OVERVIEW

Wavelets are mathematical functions defined over a finite
interval and having an average valueof zero that transform data into
different frequency components, representing each component with a
resolution matched to its scale.

The basic idea of the wavelet transform is to represent any
arbitrary function as a superposition of a set of such wavelets or basis
functions, These basis functions or baby wavelets are obtained from a single
prototype wavelet called the mother wavelet, by dilations or contractions
(scaling) and translations (shifts). They have advantages over traditional
Fourier methods in analyzing physical situations where the signal contains
discontinuities and sharp spikes. Many new wavelet applications such as
image compression, turbulence, human vision, radar, and earthquake
prediction are developed in recent years. In wavelet transform the basis
functions are wavelets. Wavelets tend to be irregular and symmetric. All
wavelet functions, w(2kt - m), are derived from a single mother wavelet,

w(1). This wavelet is a small wave or pulse like the one shown in Fig. 2.1

2.1.1 SCALING

Wavelet analysis produces a time-scale view of a signal.
Scaling a wavelet simply means stretching (or compressing) it. The scale
factor is used to express the compression of wavelets and often denoted by
the letter a. The smaller the scale factor, the more “compressed” the wavelet.
The scale is inversely related to the frequency of the signal in wavelet
analysis.

2.1.2 SHIFTING

Shifting a wavelet simply means delaying (or hastening) its
onset. Mathematically, delaying a function f{t) by & is represented by: f{t-k)
and the schematic is shown in fig. 2.3

+

(a) Wavelet function ‘¥(t) (b) Shified wavelet function ‘¥(t-k)

‘7

Fig. 2.3 Shifted wavelets



2.1.3 SCALE AND FREQUENCY

The higher scales correspond to the most “stretched”
wavelets. The more stretched the wavelet, the longer the portion of the
signal with which it is being compared, and thus the coarser the signal
features being measured by the wavelet coefficients. The relation between

the scale and the frequency is shown in Fig. 2.4.

rw(w{\r\ St ,—\/\!]'J’\MJ\
+ — _\/\fy——

Low scale High scale
Fig. 2.4 Scale and frequency

Thus, there is a correspondence between wavelet scales and

frequency as revealed by wavelet analysis.

2.2 DISCRETE WAVELET TRANSFORM

Calculating wavelet coefficients at every possible scale is a
fair amount of work, and it generates an awful lot of data, If the scales and
positions are chosen based on powers of two, the so-called dyadic scales and
positions, then calculating wavelet coefficients are efficient and just as
accurate. This is obtained from discrete wavelet transform (DWT).

coefficients. The schematic diagram with real signals inserted 1s as shown in
Fig. 2.6.

cl High Frequency

T2 q)) Satst

8 2500 DWT cosfficients

VAVAVAN
o r'f\//\fh \u

FA00 DWT coaTickeots

Fig. 2.6 Decomposition and decimation

2.2.1 ONE-STAGE FILTERING

For many signals, the Jow-frequency content is the most
important part. It is the identity of the signal. The high-frequency content, on
the other hand, imparts details to the signal. In wavelet analysis, the
approximations and details are obtained after filtering. The approximations
are the high-scale, low frequency components of the signal. The details are
the low-scale, high frequency components. The filtering process is
schematically represented as in Fig. 25.

B !
%

o]

Fig. 2.5 Single stage filtering

The original signal, S, passes through two complementary
filters and emerges as two signals. Unfortunately, it may result in doubling
of samples and hence to avoid this, downsampling is introduced. The

process on the nght, which includes downsampling, produces DWT

2.2.3 WAVELET RECONSTRUCTION

The reconstruction of the image is achieved by the inverse

discrete wavelet transform (IDWT). The values are first upsampled and then

passed to the filters. This is represented as shown in Fig. 28

Fig. 2.8 Wavelet Reconstruction

2.2.2 MULTIPLE-LEVEL DECOMPOSITION

The decomposition process can be iterated, with successive
approximations being decomposed in turn, so that one signal is broken down
into many lower resolution components. This is called the wavelet

decomposition tree and is depicted as in Fig. 2.7.

L=
b 2
[ [
ch

Fig. 2.7 Multilevel decomposition

The wavelet analysis involves filtering and downsampling,
whereas the wavelet reconstruction process consists of upsampling and
filtering. Upsampling is the process of lengthening a signal component by

inserting zeros between samples as shown in Fig. 2.9.

Fig. 2.9 Reconstruction using upsampling



2.2.4 RECONSTRUCTING APPROXIMATIONS AND DETAILS

It is possible to reconstruct the original signal from the
coefficients of the approximations and details. The process yields a
reconstructed approximation which has the same length as the original signal

and which is a real approximation of it.

The reconstructed details and approximations are ftrue
constituents of the original signal. Since details and approximations are
produced by downsampling and are only half the length of the original
signal they cannot be directly combined to reproduce the signal. It is
necessary to reconstruct the approximations and details before combining
them. The reconstructed signal is schematically represented as in Fig. 2.10.

S= A+ Dy
= Ay + D+ Oy

< Ag+ D4+ D+ Dy

Fig. 2.10 Reconstructed signal components

ng Ny
;= 2‘, 5iXaitj and b = z tixf‘*"'l
j=m =y

Although | and h are two separate output streams, together
they have the same total number of coefficients as the original data. The
output stream |, which is commonly referred to as the low-pass data may
then have the identical process applied again repeatedly. The other output
stream, h (or high-pass data), generally remains untouched. The inverse
process expands the two separate low- and high-pass data streams by
inserting zeros between every other sample, convolves the resulting data
streams with two new synthesis filters s’ and 1", and adds them together to
regenerate the original double size data stream.

ny n
yi=3% tlw+ T sjhi; where Iy =L 1zn=0

j=-ny j=-ny haw=h;, h2i =0

To meet the definition of a wavelet transform, the analysis and
synthesis filters s, t, s’ and t* must be chosen so that the inverse transform
perfectly reconstructs the original data. Since the wavelet transform
maintains the same number of coefficients as the original data, the transform
itself does not provide any compression. However, the structure provided by
the transform and the expected values of the coefficients give a form that is
much more amenable to compression than the original data. Since the filters
s,t,5 and { are chosen to be perfectly invertible, the wavelet transform itself

is lossless. Later application of the quantization step will cause some data

2.2.5 1-D WAVELET TRANSFORM

The generic form for a one-dimensional (1-D) wavelet
transform is shown in Fig. 3.12. Here a signal is passed through a low pass
and high pass filter, h and g, respectively, then down sampled by a factor of
two, constituting one level of transform.

Fig. 2.11 1D Wavelet Decomposition.

Repeating the filtering and decimation process on the lowpass
branch outputs make multiple levels or “scales” of the wavelet transform
only. The process is typically carried out for a finite number of levels K, and
the resulting coefficients are called wavelet coefficients.

The one-dimensional forward wavelet transform is defined by
a pair of filters s and t that are convolved with the data at either the even or
odd locations. The filters s and t used for the forward transform are called
analysis filters.

loss and can be used to control the degree of compression. The forward
wavelet-based transform uses a 1-D subband decomposition process; here a
1-D set of samples is converted into the low-pass subband (L1) and high-pass
subband (Hi). The low-pass subband represents a down sampled low-
resolution version of the original image. The high-pass subband represents
residual information of the original image, needed for the perfect

reconstruction of the original image from the low-pass subband
2.2.6 2-D TRANSFORM HEIRARCHY

The 1-D wavelet transform can be extended to a two-
dimensional (2-D) wavelet transform using separable wavelet filters. With
separable filters the 2-D transform can be computed by applying a 1-D
transform to all the rows of the input, and then repeating on all of the

columns.

LL1 HL1

LH1 HH1

Fig. 2.12 Subband Labeling Scheme for a one level, 2-D Wavelet

Transform



The original image of a one-level (K=1), 2-D wavelet
transform, with corresponding notation is shown in Fig. 2.12. The example
is repeated for a three-level (K =3) wavelet expansion in Fig. 2.13. In all of
the discussion K represents the highest level of the decomposition of the

wavelet transform.

LL, | HL,
HL,
LH, | HH, —
LH; HH,
LH; HH;

Fig. 2.13 Subband labeling Scheme for a Three Level, 2-D Wavelet

Transform

The 2-D subband decomposition is just an extension of 1-D
subband decomposition. The entire process is carried out by executing 1-D
subband decomposition twice, first in one direction (horizontal), then in the
orthogonal (vertical) direction. For example, the low-pass subbands (Li)

resulting from the horizontal direction is further decomposed in the vertical

Aicmntine landiom ta T T i and T Hi enbhande

To obtain a two-dimensional wavelet transform, the one-
dimensional transform is applied first along the rows and then along the
columns to produce four subbands: low-resolution, horizontal, vertical, and
diagonal. (The vertical subband is created by applying a horizontal high-
pass, which yields vertical edges.) At each level, the wavelet transform can
be reapplied to the low-resolution subband to further decorrelate the image.
Fig. 2.15 illustrates the image decomposition, defining level and subband
conventions used in the AWIC algorithm. The final configuration contains a
small low-resolution subband. In addition to the various transform levels, the
phrase level 0 is used to refer to the original image data. When the user
requests zero levels of transform, the original image data (level 0) is treated

as a low-pass band and processing follows its natural flow.

Low Resolution Subband
T 4
3
4 [4 Level 2 Level 1
3 3 Vertical subband
HL
Level 2 Level 2
Level 1 Level 1
Horizontal Subband | Diagonal Subband
LH HH

Fig. 2.15 Image Decomposition Using Wavelets

Similarly, the high pass subband (Hi) is further decomposed
into HLi and HHi. After one level of transform, the image can be further
decomposed by applying the 2-D subband decomposition to the existing LL1
subband. This iterative process results in multiple “transform levels”. In Fig.
213 the first level of transform results in LH1, HL1, and HH1, in addition to
LL1, which is further decomposed into LH2, HL2, HH2, LL2 at the second
level, and the information of LL2 is used for the third level transform. The
subband LLi is a low-resolution subband and high-pass subbands LHi1, HLi,
HHi are horizontal, vertical, and diagonal subband respectively since they
represent the horizontal, vertical, and diagonal residual information of the
original image. An example of three-level decomposition into subbands of
the image CASTLE is illustrated in Fig. 2.14.

Fig. 2.14 The process of 2-D wavelet transform applied through three

transform levels

2.2.7 WAVELET COMPUTATION

In order to obtain an efficient wavelet computation, it is
important to eliminate as many unnecessary computations as possible. A
careful examination of the forward and reverse transforms shows that about
half the operations either lead to data which are destroyed or are null

operations (as in multiplication by 0).

The one-dimensional wavelet transform is computed by
separately applying two analysis filters at alternating even and odd locations.
The inverse process first doubles the length of each signal by inserting zeros
in every other position, then applies the appropriate synthesis filter to each
signal and adds the filtered signals to get the final reverse transform.

2.3 ENERGY EFFICIENT WAVELET IMAGE COMPRESSION

The proposed image codec works on the algorithm based on
EEWITA (Dong-Gi Lee 2002). The EEWITA follows the classical paradigm
of transformation, quantization and encoding but exploits the multiresolution
property of wavelets. A modified wavelet transformation is employed during

the image decomposition process.

A wavelet-based transform algorithm (EEWITA) that aims at
minimizing computation energy (by reducing the number of arithmetic
operations and memory accesses) and communication energy (by reducing

tha mumhar of tranemitted hits) is undertaken, Further, the algorithm aims at



effecting energy savings while minimally impacting the quality of the image.
EEWITA exploits the numerical distribution of the high-pass coefficients to
eliminate a large number of samples from consideration in the image

COMPpTEssion process.

The high-pass coefficients are generally represented by small
integer values, Because of the numerical distribution of the high-pass
coefficients and the effect of the quantization step on small valued
coefficients, we can estimate the high-pass coefficients to be zeros (and

hence avoid computing them) and incur minimal image quality loss.

This approach has two main advantages. First, because the high-
pass coefficients do not have to be computed, EEWITA helps to reduce the
computation energy consumed during the wavelet image compression

process by reducing the of executed operations. Second, because the

encoder and decoder are aware of the estimation technique, no information
needs to be transmitted across the wireless channel, thereby reducing the

communication energy required.

2.4 COMPRESSION
2.4.1 HH ELIMINATION METHOD

During the wavelet transform, each input image goes through the
row and column transform decomposing the image into four subbands (LL,
LH, HL, HH). The modified wavelet transformation is used for EEWITA to

A number of useful information is lost when the elimination is
continued after one or two levels of decomposition. To retain the image
quality, the elimination level is performed only in the lower levels and to
achieve high compression and to save computational energy, elimination

level is performed to high levels of transformation.

2.4.2 H* ELIMINATION METHOD

The H* elimination method also employs the modified wavelet
transformation and in this method it retains the most significant low pass
subband and eliminates all the high pass subbands i.e., horizontal, vertical
and diagonal subbands.

In this method, the input image is processed only through the
low pass filter during both the row and column transform steps. The higher
levels of image decomposition can be carried out in the same way,
eliminating all high pass subbands only if the compression is of major
concern and with image quality being of importance, the elimination process

can be stopped at the lower levels of transform.

implement the HH elimination and H* elimination methods. To implement
the HH elimination method after the row transform, the high pass
coefficients are only fed into the low pass filter and not the high pass filter in
the following column transform step as shown in Fig. 2.16. This avoids the
generation of the diagonal subband (HH). This method saves computational
energy as in accordance with the analysis of computation that denotes the
two loads namely data access load and computation load that are associated

with the subband generation.
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Figure 2.16 HH Elimination Method

The HH elimination method, which eliminates the insignificant
high pass subband, can then be then be continued to process the image by a
greater depth of transformation. The multiple level of decomposition is
performed in the same way neglecting the high pass subband at the first level
of decomposition and be subjected to a normal two-dimensional wavelet

transform from the second level with the consideration of the image loss.
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Figure 2.17 H* Elimination Method

2.5 WAVELET IMAGE COMPRESSION

The foremost goal is to attain the best compression
performance possible for a wide range of image classes while minimizing
the computational and implementation complexity of the algorithm For a
compression algorithm to be widely useful, it must perform well on a wide
variety of image content while maintaining a practical compression/
decompression time on modest computers. In order to allow a broad range of
implementation, an algorithm must be amenable to both software and

hardware implementation.



COMPRESSION STEPS

The steps needed to compress an image are as follows:

1. Digitize the source image into a signal, which is a string of numbers.

2. Decompose the signal into a sequence of wavelet coefficients.

3. Use quantization to convert coefficients to a sequence of binary symbols.

4. Apply entropy coding to compress it into binary strings.

The first step in the wavelet compression process is 10
digitize the image. The digitized image can be characterized by its intensity
levels, or scales of gray that range from 0 (black) to 255 (white), and its
resolution, or how many pixels per square inch. The wavelets process the

signal, but upto this point, compression has not yet occurred.

The next step is quantization which converts a sequence of
floating numbers to a sequence of integers. The simplest form is to round to
the nearest integer. Another option is to multiply each number by a constant
and then round to the nearest integer. Quantization is called lossy because it
introduces error into the process, since the conversion is not a one-io-one
function.

The last step is encoding that is responsible for the actual
compression. One method to compress the data is Huffman entropy coding.
With this method, an integer sequence, is changed into a shorter sequence,
with the numbers being 8 bit integers. The conversion is made by an entropy
coding table.

(DFT), Discrete Cosine Transform (DCT), Discrete Wavelet Transform

(DWT) and many more, each with its own advantages and disadvantages.

A quantizer simply reduces the number of bits needed to store
the transformed coefficients by reducing the precision of those values. Since
this is a many-to-one mapping, it is a lossy process. Quantization can be
performed on each individual coefficient, which is known as Scalar
Quantization (SQ). Quantization can also be performed on a group of
coefficients together, and this is known as Vector Quantization (VQ).

An entropy encoder further compresses the quantized values
losslessly to give better overall compression. It uses a model to accurately
determine the probabilities for each quantized value and produces an
appropriate code based on these probabilities so that the resultant output
code stream will be smaller than the input stream.

The most commonly used entropy encoders are the Huffman
encoder and the arithmetic encoder, although for applications requiring fast
execution, simple run-length encoding (RLE) has proven very effective. Itis
important to note that a properly designed quantizer and entropy encoder are
absolutely necessary along with optimum signal transformation to get the
best possible compression.

TYPICAL IMAGE CODER
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Fig. 2.18 (a) Wavelet Coder, (b) Wavelet Decoder

A typical image compression system consisting of three
closely connected components namely (a) Source Encoder (b) Quantizer,
and (c) Entropy Encoder is shown in Fig. 2.18. Compression is
accomplished by applying a linear transform to decorrelate the image data,
quantizing the resulting transform coefficients, and entropy coding the

quantized values.

The source coder decorrelates the pixels. A variety of linear

transforms have been developed which include Discrete Fourier Transform

2.6 BASIC LIFTING SCHEME WAVELETS

Wavelet algorithms are recursive. The output of one step of the algorithm
becomes the input for the next step. The initial input data set consists of 2°
elements. Each successive step operates on 2™ elements, were i =1 n-1.
For example, if the initial data set contains 128 elements, the wavelet
tranform will consist of seven steps on 128, 64, 32, 16, 8,4, and 2 elements.

On this web page step;y; follows step;. If element i in step ] is being updated,
the notation is step;;. The forward lifting scheme wavelet transform divides
the data set being processed into an even half and an odd half. In the
notation below even; is the index of the i" element in the even half and odd;
is the i® element in the odd half Viewed as a continuous array the even
element would be a[i] and the odd element would be afi+(n/2)].

Another way to refer to the recursive steps is by their power of two. This
notation is used in Ripples in Mathematics. Here step., follows step;, since
each wavelet step operates on a decreasing power of two. This is a nice
notation, since the references to the recursive step in a summation also

correspond to the power of two being calculated.

2.6.1 PREDICT WAVELETS

Like all lifting scheme wavelets the predict wavelet transform starts with a
split step, which divides the data set into odd and even elements, The predict
step uses a function that approximates the data set. The difference between
the approximation and the actual data replaces the odd elements of the data



set. The even elements are left unchanged and become the input for the next
step in the transform. The predict step, where the odd value is "predicted”
from the even value is described by the equation

Oddjuj = odd;; - P even;; )

The inverse predict transform adds the prediction value to the odd element
(reversing the prediction step of the forward transform). In the inverse
transform the predict step is followed by a merge step which interleaves the

odd and even elements back into a single data stream.

The simple predict wavelets are not useful for most wavelet applications.
The even elements that are used fo "predict” the odd elements result from
sampling the original data set by powers of two (e.g., 2, 4, 8...). Viewed
from a compression point of view this can result in large changes in the
differences stored in the odd elements (and less compression). One of the
most powerful applications for wavelets is in the construction of filters. The
“"down sampling" in the predict wavelets does not provide an approximation

of the data at each step, which is one of the requirements for filter design.
2.6.2 THE UPDATE STEP

The update step replaces the even elements with an average. This results in a
smoother input for the next step of the next step of the wavelet transform.
The odd elements also represent an approximation of the original data set,
which allows filters to be constructed. A simple lifting scheme forward
transform is diagrammed in Figure 2.19.

In the lifting scheme version of the Haar transform the update step replaces
an even element with the average of the even/odd pair (e.g., the even

element s; and its odd successor, Sis1)

_even;; + odd”
even, =——f =
Jeli 2

The original value of the odd;; element has been replaced by the difference
between this element and its even predecessor. Simple algebra lets us

recover the original value:
odd,; = even;; + odd;. ;
Substituting this into the average, we get

even,, +even,, +odd,,,
2

even,,, =

odd et

even,,,, =even;, +—

El

The averages (even elements) become the input for the next recursive step of
the forward transform. This is shown in Figure 2.20, below.

even values L m s
Update
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LifinzSch waveles transform)

Figure 2.19 Lifting Scheme Forward Wavelet Transform

The update phase follows the predict phase. The original value of the odd
elements has been overwritten by the difference between the odd element
and its even "predictor”. So in calculating an average the update phase must
operate on the differences that are stored in the odd elements:

even;.; = even;; + U odd;e ;)

2.6.3 LIFTING SCHEME HAAR TRANSFORM

In the lifting scheme version of the Haar transform, the prediction step
predicts that the odd element will be equal to the even element. The
difference between the predicted value (the even element) and the actual
value of the odd element replaces the odd element. For the forward

transform iteration j and element i, the new odd element, j+1,i would be

odd;s ;= odd;; - eveny;

Two steps inthe.

Figure 2.20 Two Steps in Wavelet Lifting Scheme Forward Transform

The number of data elements processed by the wavelet transform must be a
power of two. If there are 2" data elements, the first step of the forward
transform will produce 2™' averages and 27! differences (between the
prediction and the actual odd element value). These differences are
sometimes referred to as wavelet coefficients. Figure 2.21 shows a 4-steps
forward wavelet transform on a 16-element data set.

laverage

] 11 4 (1 2 2
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4 steps ofa 16 element wavelet ransform

Figure 2.21 4 steps of a 16 element wavelet transform



The split phase that starts each forward transform step moves the odd
elements to the second half of the array, leaving the even elements in the
lower half. At the end of the transform step the odd elements are replaced by
the differences and the even elements are replaced by the averages. The even
elements become the input for the next step, which again starts with the split
phase. The result of the forward transform is shown in Figure 2.22. The first
element in the array contains the data average. The differences (coefficients)

are ordered by increasing frequency.

Datp average

(MO gIn
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Resulr of 2 waveler with coeffi crdered in
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Figure 2.22 Result of a wavelet iransform with co efficients ordered in

increasing frequency.

One of the elegent features of the lifting scheme is that the inverse transform
is a mirror of the forward transform. In the case of the Haar transform,
additions are substituted for subtractions and subtractions for additions. The
merge step replaces the split step.

Chapter 3
THRESHOLDING

Thresholding is a process where coefficients which too small are suppressed,
in the process retaining the more significant bits. There are two thresholding
methods frequently used.

1. Soft thresholding
2. Hard thresholding

The soft-threshold function (also called the shrinkage function)
takes the argument and shrinks it toward zero by the threshold.

The other popular altemative is the hard-threshold function
which keeps the input if it is larger than the threshold ; otherwise,it is set to
ZEro.

The wavelet thresholding procedure removes noise by
thresholding only the wavelet coefficients of the detail subbands, while
keeping the low resolution coefficients unaltered. The soft-thresholding rule
is chosen over hard-thresholding for several reasons. First, soft-thresholding
has been shown to achieve near-optimal minimax rate over a large range of
Besov sp Second, for the g lized Gaussian prior assumed in this
work, the optimal soft-thresholding estimator yields a smaller risk than the
optimal hard-thresholding estimator (to be shown later in this section).
Lastly, in practice, the sofi-thresholding method yields more visually

pleasant images over hard-thresholding because the latter is discontinuous

wven valiues
EF]
+
oddvalues
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Figure 2.23 Lifting Scheme inverse transform

and yields abrupt artifacts in the recovered images, especially when the
noise energy is significant. In what follows, soft-thresholding will be the
primary focus. While the idea of thresholding is simple and effective,
finding a good threshold is not an easy task. For one-dimensional (1-D)
deterministic signal of length , Donoho and Johnstone proposed for
VisuShrink the universal threshold, which results in an estimate
asymptotically optimal in the minimax sense (minimizing the maximum
error over all possible -sample signals). One other notable threshold 1s the
SURE threshold, derived from minimizing Stein’s unbiased risk estimate
when soft-thresholding is used. The SureShrink method is a hybrid of the
universal and the SURE threshold, with the choice being dependent on the
energy of the particular subband . The SURE threshold is data-driven, does
not depend on explicitly,and SureShrink estimates it in a subband-adaptive
manner. Moreover, SureShrink has yielded good image denoising
performance and comes close to the true minimum MSE of the optimal soft-
threshold estimator, and thus will be the main comparison to our proposed
method In the statistical Bayesian literature, many works have concentrated
on deriving the best threshold (or shrinkage factor) based on priors such as
the Laplacian and a mixture of Gaussians. With an integral approximation to
the pixel-wise MSE distortion measure as discussed earlier, the formulation
here is also Bayesian for finding the best soft-thresholding rule under the
generalized Gaussian prior.



Chapter 4
QUANTIZATION

Quantization, involved in image processing, is a lossy compression
technique achieved by compressing a range of values to a single quantum
value. When the number of discrete symbols in a given stream is reduced,
the stream becomes more compressible. For example, reducing the number
of colors required to represent a digital image makes it possible to reduce its
file size. Specific applications include DCT data quantization in JPEG and
DWT data quantization in JPEG 2000.Here the transform coefficients are
reduced in precision. This operation is lossy unless the quantization step is

one and the coefficients are integer.

JPEG 2000 supports two types of quantization,
1. Scalar quantization

2. Vector quantization.

4.1 SCALAR QUANTIZATION
The wavelet coefficients are quantized using a uniform scalar
quantizer with dead zone. For each subband b,a basic quantizer step size

delta b is used to quantize all the coefficients in that subband according to

Z=[q+r*sign(q)}deltab g not equal to 0
=0 otherwise

Where q is the quantizer index, delta b is the step size and r is the
reconstruction bias( r = 0.5 results in midpoint reconstruction i.e. no bias
and r<0.5 biases the reconstruction towards zero). The quantization step size
is same as that used in the encoder. Different step sizes are used for the

various subbands.

4.2 VECTOR QUANTIZATION

A vector quantizer is composed of two operations. The first is the
encoder, and the second is the decoder. The encoder takes an input vector
and outputs the index of the codeword that offers the lowest distortion. In
this case the lowest distortion is found by evaluating the Euclidean distance
between the input vector and each codeword in the codebook. Once the
closest codeword is found, the index of that codeword is sent through a
channel (the channel could be a computer storage, communications channel,
and so on). When the encoder receives the index of the codeword, it
replaces the index with the associated codeword. Figure 2 shows a block

diagram of the operation of the encoder and decoder.

q=sign(y) x | |y|

deltab

where y is the input to the quantizer, sign(y) denotes the sign of the input
coefficient y (it is +1 for positive and -1 for negative values), delta b is the
step size, and q is the resulting quantizer index. Dead zone means that the
quantization range around zero is (2*delta b). this ensures that more zeros
result. This operation is lossy and is used for lossy compression. Scalar

quantizer with dead zone is shown in fig 4.1

Fig 4.1 Dead Zone Quantizer

The reconstructed wavelet coefficients are dequantized to form the

approximation of the original image. The formula used for this is given by,

The Encoder The Decoder

Output Vector

Input Vector

Figure 4.2: The Encoder and decoder in a vector quantizer. Given an input

vector, the closest codeword is found and the index of the codeword is sent
through the channel. The decoder receives the index of the codeword, and
outputs the codeword.



Chapter 5
ENCODING-SPIHT

5.1 INTRODUCTION TO SPIHT

SPIHT is a powerful wavelet-based image compression method called Set
Partitioning in Hierarchical Trees (SPIHT). This award-winning method
has received worldwide acclaim and attention since its introduction in 1995.
Thousands of people, researchers and consumers alike, have now tested and
used SPTHT. It has become the benchmark state-of-the-art algorithm for

image compression.

The SPIHT method is not a simple extension of traditional methods for
image compression, and represents an important advance in the field. The

method deserves special attention because it provides the following:

. Highest Image Quality

. Progressive image transmission
. Fully embedded coded file

. Simple quantization algorithm
B Fast coding/decoding

. Completely adaptive

. Lossless compression

. Exact bit rate coding

. Error protection

5.1.2 PROGRESSIVE IMAGE TRANSMISSION

In some systems with progressive image transmission (like WWW browsers)
the quality of the displayed images follows the sequence: (a) weird abstract
art; (b) you begin to believe that it is an image of something, (c) CGA-like
quality; (d) lossless recovery. With very fast links the transition from (a) to
(d) can be so fast that you will never notice. With slow links (how "slow"
depends on the image size, colors, etc.) the time from one stage to the next
grows exponentially, and it may take hours to download a large image.
Considering that it may be possible to recover an excellent-quality image
using 10-20 times less bits, it is easy to see the inefficiency. Furthermore,

the mentioned systems are not efficient even for lossless transmission.

The problem is that such widely used schemes employ a very primitive
progressive image transmission method. On the other extreme, SPIHT is a
state-of-the-art method that was designed for optimal progressive
transmission (and still beats most non-progressive methods!). It does so by
producing a fully embedded coded file (see below), in a manner that at any
moment the quality of the displayed image is the best available for the

number of bits received up to that moment.

So, SPIHT can be very useful for applications where the user can quickly
inspect the image and decide if it should be really downloaded, or is good

enough to be saved, or need refinement.

Each of these properties is discussed below. Note that different compression
methods were developed specifically to achieve at least one of those
objectives. What makes SPIHT really outstanding is that it yields all those

qualities simultaneously.

5.1.1 IMAGE QUALITY

Extensive research has shown that the images obtained with wavelet-based
methods yield very good visual quality. At first it was shown that even
simple coding methods produced good results when combined with wavelets
and is the basis for the most recently JPEG2000 standard. However, SPIHT
belongs to the next generation of wavelet encoders, employing more
sophisticated coding. In fact, SPIHT exploits the properties of the wavelet-

transformed images to increase its efficiency.

Many researchers now believe that encoders that use wavelets are superior to
{hose that use DCT or fractals. We will not discuss the matter of taste in the
evaluation of low quality images, but we do want to say that SPIHT wins in
the test of finding the minimum rate required to obtain a reproduction
indistinguishable from the original. The SPIHT advantage is even more
pronounced in encoding color images, because the bits are allocated
automatically for local optimality among the color components, unlike other
algorithms that encode the color components separately based on global
statistics of the individual components.

5.1.3 OPTIMIZED EMBEDDED CODING

A strict definition of the embedded coding scheme is: if two files produced
by the encoder have size M and N bits, with M > N, then the file with size N
is identical to the first N bits of the file with size M.

Let's see how this abstract definition is used in practice. Suppose you need to
compress an image for three remote users. Each one have different needs of
image reproduction quality, and you find that those qualities can be obtained
with the image compressed to at least 8 Kb, 30 Kb, and 80 Kb, respectively.
If you use a non-embedded encoder (like JPEG), to save in transmission
costs (or time) you must prepare one file for each user. On the other hand, if
you use an embedded encoder (like SPIHT) then you can compress the
image to a single 80 Kb file, and then send the first 8 Kb of the file to the
first user, the first 30 Kb to the second user, and the whole file to the third

User.

SPIHT achieves this feat by optimizing the embedded coding process and
always coding the most important information first.

An even more important application is for progressive image transmission,
where the user can decide at which point the image quality satisfies his
needs, or abort the transmission after a quick inspection, etc.



5.1.4 COMPRESSION ALGORITHM

The following is a comparison of image quality and artifacts at high

compression ratios versus JPEG

Original SPIHT JPEG

Fig.5.1 Image quality and artifacts at high compression ratios

SPIHT represents a small "revolution” in image compression because it
broke the trend to more complex (in both the theoretical and the
computational senses) compression schemes. While researchers had been
trying to improve previous schemes for image coding using very
sophisticated vector quantization, SPIHT achieved superior results using the
simplest method: uniform scalar quantization. Thus, it is much easier to
design fast SPIHT codecs.
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5.1.7 RATE OR DISTORTION SPECIFICATION

Almost all image compression methods developed so far do not have precise
rate control. For some methods you specify a target rate, and the program
tries to give something that is not too far from what you wanted. For others
you specify a "quality factor” and wait to see if the size of the file fits your
needs. (If not, just keep trying...)

The embedded coding property of SPIHT allows exact bit rate control,
without any penalty in performance (no bits wasted with padding, or
whatever). The same property also allows exact mean squared-error (MSE)
distortion control. Even though the MSE is not the best measure of image
quality, it is far superior to other criteria used for quality specification.

5.1.8 ERROR PROTECTION

Errors in the compressed file cause havoc for practically all important image
compression methods. This is not exactly related to variable length entropy-
coding, but to the necessity of using context generation for efficient
compression. For instance, Huffman codes have the ability to quickly
recover after an error. However, if it is used to code run-lengths, then that

property is useless because all runs after an error would be shifted.

SPIHT is not an exception for this rule. One difference, however, is that due
to SPIHT's embedded coding property, it is much easier to design efficient

error-resilient schemes.

5.1.5 ENCODING/DECODING SPEED

The SPIHT process represents a very effective form of entropy-coding. This
is shown by the demo programs using two forms of coding: binary-uncoded
(extremely simple) and context-based adaptive arithmetic  coded
(sophisticated). Surprisingly, the difference in compression is small,
showing that it is not necessary to use slow methods (and also pay royalties
for them!). A fast version using Huffman codes was also successfully tested,

but it is not publicly available

A straightforward consequence of the compression simplicity is the greater
coding/decoding speed. The SPIHT algorithm is nearly symmetric, i.e., the
time to encode is nearly equal to the time to decode. (Complex compression
algorithms tend to have encoding times much larger than the decoding

times. )

5.1.6 LOSSLESS COMPRESSION

SPIHT codes the individual bits of the image wavelet transform coefficients
following a bit-plane sequence. Thus, it is capable of recovering the image
perfectly (every single bit of it) by coding all bits of the transform. However,
the wavelet transform yields perfect reconstruction only if its numbers are
stored as infinite-precision numbers. In practice it is frequently possible to

recover the image perfectly using rounding after recovery, but this is not the

most efficient approach. P-2F2F
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This happens because with embedded coding the information is sorted
according to its importance, and the requirement for powerful error
correction codes decreases from the beginning to the end of the compressed
file. If an error is detected, but not corrected, the decoder can discard the
data after that point and still display the image obtained with the bits
received before the error. Also, with bit-plane coding the error effects are

limited to below the previously coded planes.

Another reason is that SPTHT generates two types of data. The first is sorting
information, which needs error protection as explained above. The second
consists of uncompressed sign and refinement bits, which do not need

special protection because they affect only one pixel.

While SPIHT can yield gains like 3 dB PSNR over methods like JPEG, its
use in noisy channels, combined with error protection as explained above,
leads to much larger gains, like 6-12 dB. (Such high coding gains are
frequently viewed with skepticism, but they do make sense for combined

source-channel coding schemes.)

5.2 APPLICATIONS

SPIHT exploits properties that are present in a wide variety of images. It had
been successfully tested in natural (portraits, landscape, weddings, etc.) and
medical (X-ray, CT, etc) images. Furthermore, its embedded coding process

proved to be effective in a broad range of reconstruction qualities. For



instance, it can code fair-quality portraits and high-quality medical images

equally well (as compared with other methods in the same conditions).

SPIHT has also been tested for some less usual purposes, like the

compression of elevation maps, scientific data, and others.

5.3 SPIHT Optimized Algorithm

The the following are the suite of application specific SPIHT compression
products:

D-SPIHT (Dypamic)

The D-SPIHT software is capable of the most efficient compression of
monochrome, 1 and 2 byte per pel, and color images. It has the features of
specifying bit rate or quality at encoding time. For bit rate specification, the
compressed file is completely and finely rate-embedded. Rate-embedded
means that any lower rate D-SPIHT file is a subset of the full file and can be
decoded to the given smaller rate. The decoding has the special feature of
producing smaller resolution image reconstructions (such as thumbnails)

directly from the compressed file without offline processing.

S-SPIHT (Striped)

The S-SPIHT software shares many features of D-SPIHT, but it works with
a small memory. The small memory leads to a slight degradation in

lossy compression of any size image and can decompress a given arbitrary
region to any resolution very quickly. It comes either in a command line
version for WINDOWS/DOS or UNIX (or Linux) or with additional region-
of-interest (ROI) encoding and decoding in a UNIX (or Linux) GUI
version. It is an excellent choice for remote sensing and GIS applications,

where rapid browsing of large images 1s necessary.
PROGCODE (Lossless & Progressive)

PROGCODE is our pioneering progressive lossy to purely lossless
(reversible) greyscale compression algorithm. It sets the standard for
lossless compression. For larger images, the compression is still efficient,
but the larger memory utilization slows down execution. This algorithm can
efficiently compress medical images either lossless or with any desired rate.
Moreover, the lossless file can act as an archive in a file server, from within
which any desired lossy lower rate file can be extracted and decompressed
directly without offline processing. This software is also ideal for multi-user
storage or transmission systems, where users with different capabilities and
requirements can receive the image to their desired accuracy from a single

file or transmission.
SPM (Fastest Lossless!)

SPM software is especially designed for lossless and lossy compression of
medical images. The method is not based on SPIHT, but on our patented
quadrature splitting algorithm called AGP (for Amplitude and Group
Partitioning). SPM calls for a quality factor, with 0 giving perfectly lossless

compression. Because the intended application is medical images, the

performance compared to D-SPIHT. Therefore, this software is ideal for
compression of very large images, such as those from GIS and remote
sensing systems. It is both efficient and fast. A good strategy for
compression of image of any size is to use a combination of D-SPIHT and
S-SPIHT, with S-SPIHT taking over from D-SPIHT when an image
dimension exceeds 1024 or 2048.

T-SPIHT (Tiled)

T-SPIHT is a specially designed form of SPIHT that compresses large
images in tiles, Remote sensing, geographical, and meteorological data are
often handled in tiles rather than all at once. Therefore, systems for
processing such data would prefer to use a compression by tiles. T-SPIHT
can efficiently compress, with constant quality and without tile boundary
artifacts, large image or data sets, whether in tile format or not. In fact, the
compression is significantly more efficient than JPEG2000 in its tiled

compression mode.
P-SPIHT (Photo-ID)

P-SPIHT is especially designed to efficiently compress small grayscale and
color images. It is more efficient in this application than JPEG2000 or any
other competing software. It is ideal for storage of photo ID’s on plastic
cards with magnetic strips.

PROGRES (Progressive Resolution Decompression)

PROGRES is a progressive resolution, extremely fast version of SPIHT that
has full capability of random access decoding. It chooses a quality factor for

allowed lossy compression adheres to degrees of high quahty. The
outstanding characteristics of SPM, besides efficiency, are very fast
compression and decompression, regardless of image size. It comes either
in a command line version for WINDOWS/DOS or UNIX (or Linux) or in 2
WINDOWS GUI version. All versions allow reduced resolution decoding

from a single compressed file.



Chapter 6
Project Description

6.1.2 FORWARD WAVELET LIFTING SCHEME:
Wavelet based image compression process involves two important processes
(i)Compression Wavelets are widely used in data compression. Wavelet lifting is a
(ii)Decompression process through which the whole image is partitioned into a set of odd and
even entities and then deriving the first order (FL.F H) and second order of
Lets first look at how the compression process is carried low and high frequency components(LL,HL,LH,HH).

6.1 COMPRESSION STAGE

Lifting
Input |__, | Based | Thresholding | Quantizing Encoding iR Lifting Based Wavelet Image Containing Frequency
Image Wavelet NPAT ANARY: ——: Transform — Components
Transform

Fig.6.2 Forward Wavelet Lifting Scheme

Fig.6.1 Foreward Compression block diagram.
Steps involved in Forward Lifting:

6.1.1 READING AN IMAGE FILE: 1. The first step in lifting is to split the odd and even entities of an image .
From these odd and even entities we move further to find the set off low and
The image file should be given as the input, the image is read in the high frequency components using the formula
form of pixels. An image file can be of any dimensions. Ideally, we take a
256 x 256 dimension image. An image that contains 256 rows and 256 FH(j,k)=odd(j.k)-even(j.k).
columns .
FL(j.k)=even(j,k)+round(FH(j k)/2), 6.1.3 THRESHOLDING

2 The resultant frequency components FH and FL are taken now. Similar to Thresholding is a process where coefficients which is too small are

the I thy i iti i
previous step, the frequency component FH is partitioned into odd and suppressed, in the process retaining the more significant bits. This process is

even entities which are HODD, HEVEN and FL is partitioned into LODD done in the high frequency quadrants HL,HH and LH containing the lesser

and LEVEN.
significant lot.

3.In order to obtain the second order of frequency components, we use the

following computation .
HH Image
o ) ) Containing ___, Thresholding 5 Threshold Components

f2lhigh(j,k)=LODD(j,k)-LEVEN(j, k), Frequency

Components
HL
f2llow(j k)=LEVEN(j k)+round(f2thigh(j,k)/2); Fig.6.3 Thresholding
LH
f2hhigh(j,k)=HODD(j,k)-HEVEN(.k),

This process is done by selecting an optimum threshold value and

LL comparing it with other pixel values and assigning zeros for the values
f2hlow(j k)= HEVEN (j,k)*+round(£2hhigh(j,k)/2 below that particular value of threshold At the end of this thresholding

process we will get a lot of zeros and few significant values.
This brings towards the end of forward lifting process as the image
now contains 4 quadrants containing frequency components HH, HL, LH
and LL.



6.1.4 QUANTIZATION:

Quantization in image compression Is a process in which the

resulting threshold components are divided by a uniform scalar value.

Thresholded

Components — Quantizing —» Quantized components

Fig.6.4 Quantization

By applying quantization,we ensure that the number of discrete
symbols in a given stream is reduced,thereby reducing the number of bits to
represent the discrete values.

6.1.5 ENCODING

The quantized components are now encoded using a very effective
form of entropy encoding known as SPIHT(Set Partitioning In Hierarchial
Trees).

The bit streams are now ready to be transmitted to the receiving
end. With this the image compressing stage comes to an end. Now, the

processes at the receiver side can be explained in the sections to follow.

Quantized

Components — ENCODING(SPIHT) ——>  BITSTREAM

Fig.6.5 Encoding

SPIHT codes the individual bits of the image wavelet fransform
coefficients following a bit-plane sequence. Thus, it is capable of recovering
the image perfectly (every single bit of it) by coding all bits of the transform.
The output of this SPIHT encoding is a stream of bits.

6.1.6 TRANSMITTER SECTION

BITSTREAM —> TRANSMITTER

Fig.6.6 Transmitter Section

The transmitted bits are received by a receiver at the opposite end.
There will hardly be any error when a comparison is made between the
transmitted and the received bits. Such is the efficiency of SPIHT encoding.

6.2 DECOMPRESSION STAGE 6.2.2 DECODING
Decoding is the reverse process of encoding where we use
Reverse Output inverse-SPIHT in order to decode the bit streams to a quantized data. The
Received Decoding i Lifting Reconstructed S ;
BitStreams | | Quantizing || wavelet |~ midgs original content is restored.

Fig.6.7 Decompression Stage block diagram

BITSTREAM ——> DECODING INVERSE SPIHT — —»  QUANTIZED
DATA
6.2.1 RECEIVER SECTION

DATA RECEIVED

Fig.6.9 Decoding

Receiver — BITSTREAM

SPIHT is therefore an error resilient form of coding .This happens

) because with embedded coding the information is sorted according to its
Fig.6.8 Receiver Section . A :
importance, and the requirement for powerful error correction codes



decreases from the beginning to the end of the compressed file. If an error is
detected, but not corrected, the decoder can discard the data after that point

and still display the image obtained with the bits received before the error.

6.2.3 INVERSE QUANTIZATION

In the case of inverse quantization, the quantized data is multiplied

with a uniform scalar value , which was used in the forward quantization

scheme.
QUANTIZED INVERSE QUANTIZER ____, FREQUENCY
DATA COMPONENTS

Fig.6.10 Inverse Quantization

The resulting function is applied to the four quadrants and this will lead to

the restoration of the four different frequency components.

rf2hl (j.k)=LL(j k)-round(LH(j.k)/2)
ri2hh (jk)=LH(j.k)+rf2hi{j.k)

2. Having obtained the reverse components,we can now do odd
and even separation as the second process in reconstruction. Thus, we obtain
odd and even entities of the four frequency components odd and even
entities of the four frequency components which are

LEVEN,LODD,HEVEN,HODD...

3. Similarly, we recombine LEVEN,LODD as RL and
HODD,HEVEN as RH.

4 The resulting RL and RH frequency components are computed
to get the RLOW and RHIGH components as

RLOW(j.k)=rl(j.k)-round(rh(j,k)/2)

RHIGH(j,k)=r(j k)+rh(j,k)

5. The final step is the interpolation step where we obtain the
reconstructed image as the output.

6.2.4 REVERSE WAVELET LIFTING SCHEME

The reverse lifting process is done to the 4 frequency components
LL, LH, HL, and HH.

FREQUENCY _ REVERSE RECONSTRUCTED

Fig.6.11 Reverse Wavelet Lifting Scheme

Steps involved in reverse lifting

1. At this juncture, we now have the four frequency components
which are similar to the frequency components of the forward lifting process
, using these four components we now focus our attention on calculating the
reverse frequency components from which it is easier to do odd and even

separation of the four frequency components.
rf211 (j,k)=HL(j k)-round(HH( k)/2)

rf21h (j,K)=rf211( k) +21high(.k)

Chapter 7
RESULTS

Test Image 1

Input Image Reconstructed Output Image

Figure7.1

Table 7.1 Imagel Results

RESULTS

PSNR [53.75dB

A1

e 207



Test Image 2

Input Image Reconstructed Output Image

Figure7.2

Table 7.2 Image2 Results

RESULTS ]

PSNR - [62.10dB 1

CR 35 = e
CONCLUSION

Test Image 3

As a result, we obtain a very effective Compression ratio and a high

Progressive Signal To Noise Ratio (PSNR) and consequently a very small
Mean Square Error{MSE). The reconstructed image has a minimum
difference compared to the original image.

Image Compression is done here using wavelet lifting process. The
Wavelet lifting process is a very effective method prior to the thresholding
and quantization process.

The Wavelet lifting process done over here is a lossy compression
technique, since we are using thresholding and quantization methods.

Thresholding is effective because it makes computations simpler,
efficient and occupies low memory space. Then, scalar quantization is done
which reduces the number of bits to represent a discrete value and uses a
minimum number of bits to encode the discrete values.

The encoding scheme used here is SPTHT encoding which is a
very novel method of entropy-encoding. Since SPIHT encodes data in the
form of bit steams we can achieve a high transmission efficiency. There is
also a negligible utility of on-chip memory and memory access during the
computation, so that it can achieve significant reduction in both die area and
power dissipation.

In the future, Modifications to SPIHT including adding error

protection to the bit-stream and region of interest coding will be considered.

Input Image Reconstructed Output Image
Figure7.3
Table 7.3 Image3 Results
RESULTS —
PSNR | 53.15dB
CR |16
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