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NOMENCLATURE

SYMBOL ABBREVIATION

GA Genetic Algorithm
LP Linear Programming
FCAW Flux Cored Arc Welding
1 Welding Current
s Welding Speed
N Nozzle-To-Plate Distance
T Welding Gun Angle

GMAW Gas Metal Arc Welding

w Bead Width

P Average Depth of Penetration
R Height of Reinforcement

D Percentage Dilution
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Figure 1.1 Steps involved in the Optimization Process [4]

1.3.1. Linear Programming

Linear programming is an optimization method applicable for the solution
of problems in which the objective function and the cc ints appear as linear

functions of the decision variables. The constraint equations in a linear

programming problem may be in the form of equalities or inequalities. The linear

prog; ing type of optimization problem was first gnized in the 1930°s by

economist while developing methods for the optimal allocation of resources.
Linear progi ing is considered a revolutionary development that

permits us to make optimal decisions in plex situati At least four Noble

Prizes were awarded for contributions related to linear programming.

1.3.2. Random Search Method

The random search method described for unconstrained minimization can
be used, with minor modifications, to solve a constrained optimization problem.
The basic procedure can be described by the following steps:

CHAPTER 1

INTRODUCTION

LLOPTIMIZATION

Optimization is the p of obtaining the best result under given
circumstances. In design, construction and maintenance of any engineering
system, engineers/managers have to take many technological and managerial
decisions at several stages, figure 1.1 shows the steps involved in the optimization

process [11].

The ultimate goal of all such decisions is to either minimize the effort
required or maximize the desired benefit.

Aachanical bt aal

i design

Juif like pumps, turbines
and heat transfer equipment for maximum efficiency and mechanical components
like linkages, cams, and gears, machine tools for the purpose of achieving cither a

minimum manufacturing cost or a maximum component life.

Praducts o A PRE |
F

g are in designing optimum schedules of

1

various ini perati to minimize the idle time of machines and the

overall job completion time.

1.2. TYPES OF OPTIMIZATION TECHNIQUES
The following are the types of optimization.

i. Traditional optimizati i and

ii. Mon- Traditional optimization technique

1.3. TRADITIONAL AND NON-TRADITIONAL
OPTIMIZATION TECHNIQUES

Traditional techniques for optimization include linear programming,

random search method. geometric progr ing, dy ic prog and

i, Generate a trial design vector using one random number for each

design variable.
ii.  Verify whether the c ints are satisfied at the trial design vector.
Usually, the equality ints are idered satisfied whenever

their magnitudes lic within a specified tolerance. If any constraint is

violated ting new trial vectors until a trial vector that

satisfies all the constraints is found.

iii.  If all the constraints are satisfied, retain the current trial vector as the

best design if it gives a reduced objective functi value compared to
the previous best available design. Otherwise, discard the current

feasible trial vector and p d 1o step 1 to g a new trial design

vector.

iv. The best design available at the end of generating a specified
maximum number of trial design vectors is taken as the solution of the
constrained optimization problem.

1.3.3. Geometric Programming

Geometric Programming is a relatively new method of solving a class of

non linear prog ing probl It was developed by Duffin, Peterson and
Zener. It is used to minimize functions that are in the form of polynomials subject
10 constraints of the same type. It differs from other optimization techniques in the
emphasis it places on the relative magnitudes of the terms of the objective

function rather than the variable. Instead of finding optimal values of the design

first, g ic progr ing first finds the optimal value of the

objective function. This feature is especially ad geous in situations where the

optimal value of the objective function may be all that is of interest. In such cases,
calculation of the optimum design vectors can be omitted. Another advantage of
geometric programming is that it often reduces a complicated optimization
problem to one involving a set of simultaneous linear algebraic equations. The

major disadvantage of the method is that it requires the objective function and the



1.3.4. Dynamic Programming

Dynamic programming is a mathematical technique well suited for the
optimization of multistage decision problems. This technique was developed by
Richards Bellman in the early 1950s.

The dynamic programming technique, when applicable, represents of
decomposes a multistage decision problem as a sequence of single-stage decision
problems. Thus an N-variable problem is represented as a sequence of N single-
variable problems that are solved successively. In most cases, these N sub-
problems are easier to solve than the original problem. The decomposition to N
sub-problems is done in such a manner that the optimal solution of the original N-

iabl blem can be obtained from the optimal soluti of the N one-

dimensional problems. It is important to note that the particular optimization
technique used for the optimization of the N single- variable problems is

irrelevant. It may range from a simple enumeration process to a differential

Yol i

or a nonli p

The dynamic programming technique suffers from a major drawback,
known as the curse of dimensionality. However, despite this disadvantage, it is
very suitable for the solution of a wide range of complex problems in several areas

of decision making.

1.3.5. Integer Programming

When all the variables are constrained to take only integer values in an
optimization problem, it is called an integer programming problem. When the
variables are restricted to take only discrete values, the problem is called a discrete
programming problem. When some variables only are restricted 1o take integer
values, the optimization problem is called a mixed-integer programming problem.
When all the design variables of an optimization problem are allowed to take on

values of either zero or one, the p is called z P ing problem.

GA parameters along with relevant objective functions and set of machining

performance ints are imposed on GA optimization methodology to provide
optimum cutting conditions.
1.3.8. Scatter Search Technique

This technique origi from ies for combining rules and

surrogate constraints. Scatter Search is completely generalized and problem-

independent since it has no restrictive assumptions about objective function,

P

set and ints set. It can be easily modified to optimize machining

1

operation under various economic criteria and P It

can be extended as an on-line quality control strategy for optimizing machining

parameters based on signals from sensors.

1.3.9. Taguchi Technique

Genichi Taguchi is a Japanese engineer who has been active in the

a o1 A

improvement of Japan’s i p and p since the late 1940°s.

He has developed both the philosophy and methodology for process of products

4

quality improvement that depends heavily on statistical concepts and tools,
especially statistically designed experiments. Many Japanese firms have achieved
great success by applying his methods. Wu (1982) has reporied that thousands of
engineers have performed tens of thousands of experiments based on his
teachings. Sullivan (1987) reports that Taguchi has received some of Japan’s most
prestigious awards for quality achievement, including the Deming prize. In 1986,
Taguchi received the most prestigious prize from the International Technology

h 1 e

major contribution has involved combini gineering and o

achieve rapid improvements in cost and quality by optimizing product design and

manufacturing processes.

1.3.10. Resy Surface Methodology

Experimentation and making inferences are the twin features of general
scientific methodology. Statistics as a scientific discipline is mainly designed 1o

achieve these objectives. Planning of experiments is particularly very useful in

Non-traditional tect for optimization include fuzzy logic, search
technique, genetic algorithm, Taguchi technique and response surface

methodology [1].

1.3.6. Fuzzy Logic

Fuzzy logic has great capability to capture human commonsense
reasoning, decision-making and other aspects of human cognition. It overcomes

the limitation of classical logical systems, which impose inherent restrictions on

p of imprecise concepts. Vagueness in the cocfficients and

constraints may be naturally modeled by fuzzy logic. Modelling by fuzzy logic

opens up a new way lo optimize cutting conditions and also tool selection.

1.3.7. Genetic Algorithm (GA)

These are the algorithms based on mechanics of natural sclection and
natural genetics, which are more robust and more likely to locate global aptimum.
1t is because of this feature that GA goes through solution space starting from a
group of points and not from a single point. The cutting conditions are encoded as

genes by binary encoding 1o apply GA in optimization of p

A set of genes is combined together to form chromosomes, used to perform the

basic mechanisms in GA, such as crossover and mutation.

C is the ion to exch some part of two chromosomes to

generate new offspring, which is important when exploring the whole search
space rapidly. Mutation is applied after crossover to provide a small randomness

to the new ch To I each individual or chromosome, the
encoded cutting conditions are decoded from the chromosomes and are used to
predict machining performance measures. Fitness or objective function is a

1 of next ion in

function needed in the optimization p and
genetic algorithm. Optimum results of cutting conditions are obtained by
comparison of values of objective functions among all individuals after a number
ighting factors and ints. suitable p ters of GA

of iterati Besides

are required to operate efficiently. GA optimization methodology is based on

the basis of which inferences can be made in the best possible manner. The
methodology for making inferences has three main aspects. First, it establishes
methods for drawing inferences from observations when these are not exact but
subject to variation, because inferences are not exact but probabilistic in nature.

Second, it specifies methods for collection of data appropriately, so that

ptions for the application of i | methods to them are

isfied. Lastly, techniques for proper interpretation of results are devised.

1.4.ADVANTAGES OF NON-TRADITIONAL OPTIMIZATION
TECHNIQUES

The ad of No fitional optimization techniques are as follows: [4]

i. A population of points is used for starting the procedure instead of a single
design point.

ii. GA uses only the values of the objective function. The derivatives are not

used in the search procedure.
iii. Search method is lly applicable for solving discrete and integer
p ing probl For conti design variables, the string length

can be varied to achieve any desired resolution.

iv. The objective function value ponding to a design vector plays the

role of fitness in natural genetics.

v. In every new generation, a new set of strings is produced by using
randomized parents selection and crossover from the old generation.

1.5.PROCESS OPTIMIZATION

When optimization is based on the processes that the product undergoes is

called Process optimization.

The ability to control a process does not guarantee optimal control [14].
Optimal process control can be a difficult task due to several reasons:



i. Complex correlations between process variables might make it necessary

iy L

to many p ly during process adjustments.

ii. Several process levels might exist, all with different optimal variable

settings.

jii. Changes in raw material and process conditions require continuous

of variable

iv.  Several quality parameters might need to be optimized simultaneously.

A hensive and | process optimization should thus entail:

i. A dynamic optimization goal that should consist of a cost efficient

ighted bination of the i ing process outputs (production
variations, production cost, product qualities and emission levels). A
dynamic goal also means that it should be possible to automatically change

the optimization goal as the process levels change.

ii. Handling of any process complexity with possibilities to successfully
carryout the optimization, whether output from process models can be

used or not.

Handling of long term process changes with possibilities to continuously

carryout optimizati gardless of I changes or changes in raw
material.
This project work is mainly d with p T such as

ing current (1), welding speed (S), nozzle-to-plate distance (N) and welding
gun angle (T) of Flux Cored Arc Welding (FCAW). Hence it comes under process
oplimization.

1.6.OBJECTIVES OF OPTIMIZATION

Following are the objectives of optimization

Chapter 2

Literature Survey

ii. To decrease the fatigue of the worker who is on the shop floor.

iii, To i luctivity of the organizati dually.

iv. To satisfy the employees in the org

v. Procurement of material will be very less because of the higher
productivity.

1.7.TYPES OF SOLUTIONS [7]

i. A solution to an optimization problem specifies the values of the decision
variables, and also the value of the objective function.

ii. A feasible solution satisfies all constraints.

iii. An optimal solution is feasible and provides the best objective function
value, There may be multiple optimal solutions for a given problem.

iv. A near optimal solution is feasible and provides a superior objective
function value, but not necessarily the best.

1.8.CLASSIFICATION OF OPTIMIZATION PROBLEMS [7]

Existence of constraints: An optimization problem can be classified as a

[: ined or an ined one,

1 e

constraints. Nature of the equation: Optimization problems can be classified as

upon the presence or not of

linear, quadratic, polynomial lii lepending upon the nature of the
objective functions and the ints. This classification is important, because
computational hods are usually selected on the basis of such a classification,

i.e. the nature of the involved functions indicates the type of solution procedure.

Admissible values of the design variables: Depending upon the values
permitted for the design variables, optimization problems can be classified as

integer of real valued, and deterministic or stochastic.

In this thesis optimization of flux cored are welding (FCAW) is attempted

neima an antimiastian tashniana sallad Menctic Aloarithm (ALY

CHAPTER 2

LITERATURE SURVEY

21. LITERATURE SURVEY

Following are the overview of the relevant work done earlier related to the
problem identified and the hodology to be adopted to solve the chosen

problem for this work. It gives the

iption of ki iewed from various
research papers published in journals, proceedings of various conferences and
books.

Murugan, et al. (2004), has used GA to optimize the process parameters to

o

achieve minimum dilution, maximum rei P and

maximum bead width with the view of economizing on material.

Correia, et al. {2004), had done a work using GA as a method to decide

near-optimal settings of a GMAW welding p The problem was to choose
the near-best values of three control variables (welding voltage, wire feed rate and
welding speed) based on four quality responses (deposition efficiency, bead width.
depth of penetration and reinforcement), inside a previous delimited experimental
region. The search for the near-optimal was carried out step by step, with the GA
predicting the next experimental based on the previous, and without the
knowledge of the modeling equations between the inputs and outputs of the
GWAW process. The GAs was able to locate the near-optimum conditions with a

relatively small number of experiments.

Kannan, et al. (2005), has done the work on combined objective function

of maximizing the bead p ion, minimizing the dilution, reinforcement and
width was considered. Four SAW process parameters (voltage, wire feed rate,

welding speed and nozzle-lo-plate distance) were identified for optimization

subjected to realistic process ints. Several conventional techni had

been suggested in the literature for solving this problem. But these techniques are

= R I . TR R S T L T



! 1 and impl In order to the difficulties with conventional

technique called particle swarm optimization was impl d in this work.

P

Kannan, et al. (2005), has solved the problem of selecting optimum

of input p p for achieving the required clad quality by
optimizing the process parameters. In this paper an experimental study and
analysis of various input parameters and important clad quality parameters in
duplex stainless steel cladding of low carbon structural steel plates deposited by
flux cored are welding. The experiments were conducted based on the four-factor
five levels central composite rotatable design with full replications techniques and

mathematical models were developed using multipl o

P 2T

Sathiya, et al. (2005), had proposed a method to decide near optimal

settings of the g p p in friction ing of

stainless steel by using a Genetic Algorithm. This method tries to find near

ptimal settings of the welding process j through experiments without a
model between the inputs and output variable, It has an advantage of being able to
carryout search without modifying the design space, which includes some
irregular points. The method suggested in this study is used to determine the
welding process parameters by which the desired tensile gth can be obtained

in friction welding. The output variable is the tensile strength.

Aman Aggarwal, et al. (2005), had made an attempt 1o review the
literature on optimizing machining parameters in turning processes. Various

conventional techniques employed for machining optimization include geometric

programming, geometric plus linear progi ing, goal p i ial

q lynamic prog ing etc. The latest
techniques for optimization include fuzzy logic, scatter search technique, genetic
algorithm, and Taguchi technique and surface methodology.

Kannan, et al. (2006) has conducted experiments to study and analyze the
effects of various FCAW process parameters on important clad quality parameters

in duplex stainless steel cladding of low carbon structural steel plates. The

S e e kNl e i i Bt i Wi | ] s
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developed using multipl i hod. The effects of the inpul process

parameters on clad quality parameters on clad quality parameters have been

presented in graphical form , which helps in selecti process p

1o achieve the desired clad quality quickly.

Kumar, et al. (2006), has developed a Seven feed forward neural networks
were for gas metal arc fillet welding, one each for predicting penetration, leg
length, throat, weld pool length, cooling time between 800°C and 500°C.

locity and peak temp in the weld pool.

Mishra, (2007) has used genetic algorithm to determine a population of
solutions by minimizing an objective function that represents the difference
between the calculated and the desired values of weld pool penetration and width.
The use of a neural network in place of a heat transfer and fluid flow model

significantly expedites the computational task.

Kumar, et al. (2007) shown that the various combinations of welding

y to achieve a target gas metal arc fillet weld geometry can be

systematically and quickly computed by a real ber-based genetic algorithm
and a neural network that has been trained with the results of a heat transfer and
fluid flow model.

Crina Grosan et al. (2007) Evolutionary Computation has b an
important problem solving methodology among many researchers. The population

based collective learning process; self adaptation and robusiness are some of the
key features of evolutionary algorithms when compared 10 other global

optimization techniques. Even though evolutionary computation has been widely

accepted for solving several important f ical appli in engineering,
business, commerce etc., yel in practice sometimes they deliver only marginal
performance. Inappropriate selections of various parameters, representation, efc.
are frequently blamed. There is little reason to expect that one can find a

uniformly best algorithm for solving all optimization problems.

CHAPTER 3

PROCESS SELECTION AND DATA
COLLECTION FOR OPTIMIZATION

3.1. INTRODUCTION

Weld cladding is an excellent way to impart properties to the surface of a
substrate that are not available from that of base metal. Typical base metal
components that are weld cladded include the intermnal surfaces of carbon and low-
alloy steel pressure vessels used in chemical, fertilizer. food processing and
petrochemical plants. The biggest difference between welding a joint and cladding
is dilution. It is the amount of base metal melted divided by the sum of the filler
added and base metal melted.

Dilution reduces the alloying elements and increases the carbon content in

clad layer which reduces corrosion resistance properties, and causes other

llurgical problems [6]. The and properties of cladding are

strongly influenced by the dilution obtained. Control of dilution is very important
in cladding, where low dilution is typically desirable.

Various welding processes employed for weld cladding are Shielded Metal
Arc Welding, Submerged Metal Arc Welding, Gas Tungsten Arc Welding,
Plasma Arc Welding, Gas Metal Arc Welding, Flux Cored Arc Welding (FCAW),
Electroslag Welding, Oxy-Acetylene Welding and Explosive Welding. In this

work, FCAW process was selected for optimization due to the following features,

i. High speed deposition rate and i d p ivity
ii. Smooth welding characteristics and weld finish

iii. Lower cost for the shielding pas
iv. Simple and more cost effective post weld cleaning

v. Reliable and consistent weld quality



width (W)

Reinforcement (R)

=

Penatration (P}

T ase el

Percentage Dilution (D) = [B/(A+B)}x100
o Figure 3.1. weld Bead Geometry

3.2. DATA COLLECTION

Kannan and Murugan had chosen process parameters for the study were

Iding current (1), welding speed (S), nozzle-to-plate distance (N). and welding
torch angle (T) in Materials Processing Technology, April 2006. pp 230-239. The
chosen response variables were weld bead width (W). average depth of
p ion (P), average height of reinft (R), and percentage dilution (D).
The chosen levels of the selected process parameters with their units and notations

are given in Table 3.1.

Table 3.1. Welding process parameters and their levels [6]

’ - Factor Levels
Parameter Unit | D
=3 -1 [0 [+1[+2]
Welding Current A 1 200 | 225 | 250 | 275 | 300
Welding Speed em/min s 20 |30 |40 |50 |e0
Nozzle-to-Plate Distance | mm N 22 |24 |26 |28 |30
Welding Gun Angle degree T 20 115 |10 |05 |00 |

The following data were collected from their paper for this work.

Trial | Process Parameters Weld Bead Geometry
Ne. | 1¢A) [cmfsmin} (:m) Ll :m ( :m) {mRm} D (%)
25 [ 250 | 40 2 | 10| 2788 | 070 | 455 | 1033 |
2 | 250 | 40 26 | 10| 2942 | 083 | 435 | 13.60 |
27 | 250 | 40 26 | 10| 2800 | 077 | 448 | 1073
28 | 250 | 40 2 | 10| 2790 | 087 | 450 | 1.7
|29 [ 250 a0 26 | 10| 2920 | 083 | 432 | 1376 |
30 | 250 | 40 2% | 10| 2780 | 079 | 438 | 1099
31 | 250 | 40 26 | 10| 2780 | 080 | 457 | 1067 |
W - Widih, P — Penetration, R — Reinforcement. D - %Dilution

The following equations are taken from the paper [6] for writing the M
file.

Bead width (W) (mm) = 27.225+2.4941-3.2445+0.41 SN-0.610T-0.3031%+1.0668°
+0.316T7-0.6161S (3.1)

Average Depth of Penetration (P) (mm) = 0.764+01041+0.0748-0.048N+0.110T
+0.0218™+0.061ST (3.2)

Average height of reinforcement (R) (mm) = 4.535+0.1281-0.4758+0.054N+
0.052T +0.0535%-0.052SN (3.3)

Percentage Dilution (D) = 11.702+1.466]1+2.7305-1.037N+1.608T-0.75115-
0.593IN +1.4825T (3.4)

Table 3.2. Welding Conditions (Natural Scale) and their Weld Bead

Geometry dimensions [7]
Tral Pmess. Parameters Weld Bead G-eometry
No. | 1A | conioy | cmm) | T° | (omm | (ommy | cumy | D€
1| 25 30 24 | 15| 2050 | 061 | 497 | 0786
2 | s 30 24 | 15| 3662 | 073 | 500 12.10
3 | 225 50 24 | 15| 2420 | 063 | 423 | 1135
4 | 215 50 24 | 15| 2800 | 077 | 427 | 1198
5 | 225 30 28 | 15| 3000 | 057 | 480 | 0654
6 | 275 30 28 | 15| 3498 | 067 | 495 | 0882
7 | 225 50 28 | 15| 2559 | 058 | 418 | 0969
8 | 275 s0 | 28 | 15| 2951 | 070 [ 424 | 1106
9 | 225 30 24 | 05| 2834 | 073 | 532 | 0897
10 | 275 30 24 |o5| 3450 | 097 | si0] 1375
1| 225 50 24 | 05| 2400 | 100 | 420 | 1852
12 | 218 50 24 | 05| 2780 | 120 | 434 | 2058
13 | 225 30 28 | 05| 2026 | 060 | 525 | 0746
14 | 215 30 28 | 05| 3480 | 080 | 522 | 0914
15 | 225 50 28 |os| 2530 | 097 | 357 1800
16 | 275 50 28 | 05| 27270 | 100 | 421 | 1450
17 | 200 40 26 | 10| 2005 | 040 | 3.98 | 05.86
18 | 300 40 26 | 10 | 3100 | 107 | 490 | 1648
19 | 250 | 20 2 | 10| 3953 | 070 | 568 | 0531
20 | 250 60 26 | 10| 2300 | 100 | 363 | 1735
T2 | 250 | 40 22 | 10| 2510 | 083 | 481 | 1171
2 | 250 | 40 | 30 [10] 2800 | 063 | 432 09.01
23 | 250 a0 26 | 20| 3020 | 056 | 417 | 1054
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CHAPTER 4

OPTIMIZATION OF FLUX CORED ARC
WELDING USING GENETIC ALGORITHMIC
APPROACH

4.1. INTRODUCTION

The idea of applying the biological principle of natural evolution to
artificial systems, introduced more than three decades ago, has seen impressive
growth in the past few years. The basic concept of Genetic Algorithm is to encode
a potential solution to a problem as a series of parameters. A single set of
parameter value is treated as the genome of an individual solution. An initial

population of individuals is generated at random or statistically.

Every evolutionary step, known as a generation, the individuals in the

3 dead {,

current population are (eval 4) according to some predefined quality

criterion, referred to as fitness function. The chromosomes with the highest
population fitness function. The chromosomes with the highest population fitness
score are selected for mating. The genes of the two parents are allowed to
exchange to produce offsprings. These children then replace their parents in the
next generation. Thus, the old population is discarded and the new population
becomes the current population. The current population is checked for
acceptability of solution. The iteration is stopped after the completion of maximal

number of generations or on the attainment of the best result.

4.2. BASIC DESCRIPTION OF GENETIC ALGORITHM

The Genetic Algorithms are inspired by Darwin’s theory about evolution
[8]. Algorithm is started with a set of solutions from one population are taken and
used to form a new population, This is motivated by a hope, that the new
population will be better than the old one. Solutions which are selected to form
new solutions (offsprings) are selected according to their fitness. The more

enitahle thev are the more chances thev have to reproduce. This is repeated until

Population
(Chromosomes)

New Generation Decoded

Evaluation

Genetic
Operators

(Fitness)

~ = ti
Manipulation Selection

(Mating Pool) Reproduction

Figure 4.1. Genetic Algorithm Cycle [8]

4.3.3.6. Replace

Newly generated population is used for a further run of algorithm, that is,
individuals from old population are killed and replaced by the new ones.
4.3.3.7. Test

The generation is stopped, if the end condition is satisfied and returns the
best solution in current population.
4.3.3.8. Loop

1f the termination criteria are not met, the loop is repeated from the fitness
step again as reported above.

some conditions (for example, number of population or improvement of the best

solution) are satisfied.

4.3. OUTLINE OF BASIC GENETIC ALGORITHM CYCLE

The Genetic Algorithm cycle used in this study is illustrated in Figure 4.1
The various steps involved are briefly described as given below,

4.3.1. Start

Random populations of ‘n’ chre {suitable soluti for the
problem) are generated.
4.3.2. Fitness

The fitness function of each ch in the population is eval |

4.3.3. New Population

A new population is created by repeating following steps.

4.3.3.1. Selection

Two parent chromosomes are selected from the population according to
their fitness, better the fitness, bigger the chance 1o be selected.

4.3.3.2. Cross-over

The parents are crossed over to form a new offspring with a cross-over
probability.

4.3.3.3. Childless

If no cross-over is performed, offspring is an exact copy of parents.

4.3.3.4. Mutation

New offsprings are mutated with a mutation probability.

4.3.3.5. Accepting
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CHAPTER 5

OPTIMIZATION USING GENETIC
ALGORITHM TOOL IN MATLAB

5.1. OPTIMIZATION PROCEDURE

The FCAW optimization procedure using genetic algorithm shown in

figure 5.1 is used in this study. Here, initial population means the lower bounds of

the ization probl and each possible solution is called an individual. In
this work, a possible solution is formed by values of the welding current, welding
speed, nozzle-to-plate distance and welding gun angle. The following section will
give the clear cut procedure of using the MATLAB genetic algorithm tool options
fior the problem that has been chosen [13).

5.1.1. Fitness Function

Fitness function is the objective function that is to minimize. Specify the
function as a function handle of the form @objfun, where objfun.m is an M-file
that returns a scalar. In this study percentage dilution is taken as objective
function.

5.1.2. Number of variables

The bers of ind d iables for the fitness function. Here four

P

numbers of variables were taken for simulation.

5.1.3. Plot Functions

Plot functions enable to plot various aspects of the genetic algorithm as it
is exccuting. Each one will draw in a separate axis on the display window. The
stop button on the window is used to interrupt a running process. The following

section shows the options in the gatool command window.

5.1.3.1. Plot interval

Dl L 1 ifiae tha e af P h LNCCESKIVE

5.1.3.9. Distance Plot

Distance plot will plot the average distance between individuals at each
generation.
5.1.3.10. Range Plot

Range plot will plot the minimum, maximum, and mean fitness function
values in each generation.
5.1.3.11. Selection Plot

Selection plot will plot a histogram of the parents. This shows you which
parents are contributing to each generation.
5.1.2.12. Custom function

Custom function enables to use own plot function.
5.1.4. Population Options

Population options specify options for the population of the genetic
algorithm as shown in the table 5.2.
5.1.4.1. Population type

Population type specifies the type of the input to the fitness function.
Double vector is taken as the population type.
5.1.4.2. Population size

Population size specifies how many individuals there arc in cach
generation. If population size to be a vector of length greater than 1, the algorithm
creates multiple subpopulations. Each entry of the vector specifies the size of a

subpopulation. For this work population size is set as five.

5.1.4.3. Creation function

Creation function specifies the function that creates the initial population.

The default creation function uniform creates a random initial population with a

5.1.3.2. Best Fitness Plot

Best fitness plot, plois the best function value in cach generation versus
iteration number. The best fitness value will show the optimized value of the
objective function. In this work it shows the optimized value of percentage

dilution, as shown in the figure 6.1.
5.1.3.3. Expectation Plot

Expectation plot will plot the expected number of children versus the raw
scores at each generation.
5.1.3.4. Score Diversity Plot

Score diversity plot will plot a histogram of the scores at each generation.
5.1.3.5. Stopping Plot

Stopping plot will plot the stopping criteria levels.
5.1.3.6. Best Individual Plot

Best individual plot, plots the vector entries of the individual with the best
fitness function value in each generation. Here it plots the histogram of welding
current, welding speed, nozzle-to-plate distance and welding gun angle which is
indicated as 1, 2, 3 and 4 respectively in the figure 6.2.
5.1.3.7. Genealogy Plot

Genealogy plot plots the genealogy of individuals. Lines from one

generation to the next are color-coded as follows:

i. Red lines indicate mutation children.
ii. Blue lines indicate crossover children.

iii. Black lines indicate elite individuals.
Genealogy plot is shown in the figure 6.3.

5.1.3.8. Scores Plot

5.1.4.4. Initial population

Initial population enables to specify an initial population for the genetic
algorithm. An initial population not specified, for this work the algorithm will

create one using the creation function.

5.1.4.5. Initial scores

Initial scores enable to specify scores for initial population. 1f initial scores
not specificed, the algorithm will compute the scores using the fitness function. For
this work initial score was not specified.

5.1.4.6. Initial range

Initial range specifies lower and upper bounds for the entries of the vectors
in the initial population. Initial range can be specified as a matrix with 2 rows and
initial length columns. The first row contains lower bounds for the entries of the
vectors in the initial population, while the second row contains upper bounds. If
initial range is specified as a 2-by-1 matrix, the two scalars are expanded to
consiant vectors of length initial length. Here the initial range is specified as [-2, -
2,-2,-2; 2,2, 2, 2] which is the coded values of the input.

5.1.5. Fitness Scaling Options

The scaling function converts raw fitness scores returned by the fitness
function to values in a range that is suitable for the selection function.
5.1.5.1. Scaling function

Scaling function specifies the function that performs the scaling. The

following functions are the various options:

i. Rank will scale the raw scores based on the rank of each individual, rather
than its score. The rank of an individual is its position in the sorted scores.
The rank of the fittest individual is 1, the next fittest is 2 and so on. Rank

fitness scaling removes the effect of the spread of the raw scores.



ii. Proportional will make the expectation proportional to the raw filness
score. This strategy has weaknesses when raw scores are not in a "good"

range.

iii.

Top will scale the individuals with the highest fitness values equally. 1f
this option selected, then specify as quantity, the number of fittest
individuals that produce offspring. Quantity must be an integer between 1

and population size or a fraction between 0 and 1 specifying a fraction of
the population size. Fach of these individuals has an equal probability of
reproducing. The rest have probability 0 of rep ducing. The exp ion
has the form [0 1/n 1/ 00 1/n00 I/n..].

iv. Shift linear - The function will scale the raw scores so that the expectation
of the fittest individual is equal to a constant, which should be specified as

maximum survival rate, multiplied by the average score.
v, Custom will enables 1o write own scaling function.
Among these options rank is chosen as the scaling function for this work,

5.1.6. Selection Options

The selection function will choose parents for the next generation based on

their scaled values from the fitness scaling function.

PR

Selection option is chosen from the

ing selection fi

i, Stochastic uniform will layout a line in which each parent corresponds 1o a
section of the line of length proportional to its expectation. The algorithm
will move along the line in steps of equal size, one step for each parent. At
each step, the algorithm will allocate a parent from the section it lands on.

The first step is a uniform random number less than the step size.

ii. Remainder will assign parents deterministically from the integer part of

each individual's scaled value and then uses roulette selection on the

5.1.8. Mutation Options

Mutation functions will make small random changes in the individuals in
the population, which provide genetic diversity and enable the GA to search a
broader space. Specify the function that performs the mutation in the mutation

function field. The option is chosen from the following functions:

i, Uniform is a two-step process. First, the algorithm will select a fraction of
the vector entries of an individual for mutation, where each entry has a
probability of mutation rate of being mutated. In the second step, the
algorithm will replace each selected entry by a random number selected
uniformly from the range for that entry.

ii. Gaussian will add a rand ber to each vector entry of an individual,
This random number is taken from a Gaussian distribution centered on
zero. The variance of this distribution can be controlled with two
parameters. The scale parameter determines the variance at the first
generation. The shrink p trols how i shrinks as

gencrations go by. If the shrink parameter is 0, the variance is constant, If
the shrink parameter is 1, the variance shrinks to 0 linearly as the last

generation is reached.

iii. Custom will enables to write own mutation function.

Uniform is the option for the study.
5.1.9. Crossover Options
Crossover combines two individuals, or parents, to form a new individual,

or child, for the next generation.

It specifies the function that performs the crossover in the crossover

function field. From the following functions the crossover option is chosen:

i Single point will choose a random integer n between 1 and number of

variables. and selects the vector entries numbered less than or equal to n

iii.

i

Uniform will select parents at random from a uniform distribution using
the expectations and number of parents. This results in an undirected
search. Uniform selection is not a uscful search strategy, but can used to
test the genetic algorithm.

iv. Roulette simulates a roulette wheel with the area of each segment
proportional to its expectation. The algorithm then uses a random number

1o select one of the sections with a probability equal to its area.

v. Tournament - The function will select each parent by choosing individuals
at random, and then choosing the best individual out of that set to be a
parent.

vi. Custom will enables to write own selection function.
Hence roulette is chosen for the study.

5.1.7. Reproduction Options

Reproduction options will determine how the genetic algorithm creates
children at each new generation.

5.1.7.1. Elite count

Elite count will specify the ber of individuals that are g d to
survive to the next generation. Hence elite count must be a positive integer less

than or equal to population size.

5.1.7.2. Crossover fraction

Crossover fraction will specify the fraction of the next generation, other
than elite individuals, that are produced by crossover. The remaining individuals,

other than elite individuals, in the next g ion are produced by ion. So

crossover fraction should be a fraction between 0 and 1. either by entering the
fraction in the text box or moving the slider.

second parent, and concatenates these entries to form the child. For
example,

pl=labcdefgh]

p2=[12345678]

crossover point (at random) =3

child=[abc45678]

Two point will select two random integers m and n between | and number
of variables. The algorithm selects genes numbered less than or egual to m
from the first parent, will select genes numbered from m+1 to n from the
second parent, and selects genes numbered greater than n from the first
parent. The algorithm then concatenates these genes 1o form a single gene.

For example,

pl=labecdefgh]
p2=[12345678)

crossover points (at random) = 3.6
child=fabc456gh]

Scattered will create a random binary vector. It then selects the genes
where the vector is a | from the first parent, and the genes where the
vector is a 0 from the second parent, and combines the genes to form the

child. For example,

pl=[abcdefgh]

p2=[12345678]

random crossover vector = [1 1001 000]
child=[ab34e678]

Intermediate creates children by a weighted average of the parents.

Intermediate crossover is ¢ lled by a single p ratio:
child] = parent] + rand * ratio * (parem2 - parent1)

“s am o - A e diiand aea unthin the



If ratio is in a larger range, say 1.1 then children can be generated outside
the hypercube. Ratio can be a scalar or a vector of length number of
variables. If ratio is a scalar, then all of the children will lic on the line
between the parents. If ratio is a vector then children can be any point
within the hypercube.

v Heuristic will create children that lie on the line containing the two
parents, a small distance away from the parent with the better fitness value

in the direction away from the parent with the worse fitness value.
vi. Custom will enable to write own crossover function.
So intermediate is used for this work.

5.1.10. Migration Options

Migration is the movement of individuals between subpopulations, which
the algorithm creates if population size is to be a vector of length greater than 1.
Every so often, the best individuals from one subpopulation replace the worst
individuals in another subpopulation. Controlling migration occurs by the
following three parameters.
5.1.10.1. Direction

Migration can take place in one direction or two.

i, If direction is set as forward, migration takes place toward the last
subpopulation. That is the nth subpopulation migrates into the (n+1)'th
subpopulation.

ii. If direction is set as both. the nth subpopulation migrates into both the
{n-1) th and the (n+1) th subpopulation.

Migration wraps at the ends of the subpopulations. That is, the last
subpopulation migrates into the first. and the first may migrate into the last. To

prevent wrapping. a subpopulation of size zero is specified.

5.1.12.2. Time limit

Time limit will specify the maximum time in seconds the genetic
algorithm runs before stopping.
5.1.12.3. Fitness limit

If the best fitness value is less than or equal to the value of fitness limit,
the algorithm stops.
5.1.12.4. Stall generations

If there is no improvement in the best finess value for the number of
generations specified by stall generations, the algorithm stops.
5.1.12.5. Stall time limit

If there is no improvement in the best fitness value for an interval of time
in seconds specified by stall time limit, the algorithm stops.
5.1.13. Output Function Options
5.1.13.1. History to new window

The iterative history of the algorithm outputs 1o a separate window.
5.1.13.2. Interval

Interval specifies the number of generations between successive outputs.
5.1.13.3. Custom

Custom enables to write own output function.
5.1.14. Display to Command Window Options
5.1.14.1. Level of display

Level of display specifies the amount of information displayed in the
MATLAB command window while running the genetic algorithm. Option is

chosen from the following options:

5.1.10.2. Fraction

Fraction controls how many individuals move between subpopulations.

Fraction is the fraction of the smaller of the two subpopulations that moves. If

individuals migrate from a subpopulation of 50 individuals into a population of
100 individuals and fraction is 0.1, 5 individuals (0.1 * 50) migrate. Individuals
that migrate from one subpopulation to another are copied. They are not removed
from the source subpopulation.

Default migration fraction 0.2 is taken for the work.
5.1.10.3. Interval

Interval controls how many g ions pass igrati For this

el

work migration interval is set as 20, hence between

takes place every 20 generations.

5.1.11. Hybrid Function Options

Hybrid function enables to specify another minimization function that runs
after the genetic algorithm terminates. The choices are

i. None
ii. fminsearch
iii. patternsearch

iv. fminunc

None is set as hybrid function option. Because no other function will run
after GA terminates.

5.1.12. Stopping Criteria Options

pping criteria will d ine what causes the algorithm to terminate.
5.1.12.1. Generations

Generations specify the maximum number of iterations the genetic

e PR

i. Off - Only the final answer is displayed.
ii. Tterative - Information is displayed for each iteration.

iii. Diagnose - Information is displayed if the algorithm fails to converge. In
addition, options that are changed from the defaults are listed.

iv. Final - The outcome of the pattern scarch (successful or unsuccessful), the
reason for stopping, and the final point are displayed.

Off is chosen for the work.

of 1,8, Nand T)

r—_

I Fitness Function Evaluation

¥
Roulette Selection
Reproduction
Intermediate
Crossover
¥

New population (upper bound of 1, S, ]

l Initial Population (lower bound ]

Nand T)

Stopping
Rules

Figure 5.1. Flowchart for Genetic Algorithm
5.2. SIMULATION PROCEDURE

The aim of this study is to find the optimum adjusts for the welding



closest possible of the cited values. And it is assumed that the near optimal point

is within the following experi | region proposed by Kannan and Murugan
and is shown in the Table 5.2.
Table 5.1. GA search ranges [5]
—_—
Parameters Range —‘
Welding current(l) 200-300 A
Welding speed (S) 20-60 ecm/min

Nozzle-to-plate distance (N) | 22-30 mm

Welding gun angle (T) 0-20°

When the MATLAB command window is opened, M-file has been
created and saved as the file name dot m. Then, in the MATLAB command
window to open GA tool, type gatool and press enter. When GA toolbox is
opened, enter the fitness function as @file name (same file name where the M-file
has been saved), number of variables that is used for the fitness function and
select the plots required. Following Table 5.2 show the options used for the study

In GA, the population size, crossover rate and muiation rate are
important factors in the performance of the algorithms. A large population size or
a higher crossover rate allows exploration of the solution space and reduces the
chances of settling for poor solution. However, if they are too large or high, it

results in wasted computation time exploring

space.

promising regions of the

About mutation rate, if it is too high, there will be much random
perturbation, and the offspring will loose the good information of the parents. The
1% value is within the typical range for the ion rate. The ¢ rate is
90% i.e.. 90% of the pairs as d, wi the ining 10% are added to the

next generation without crossover. The chosen type of the crossover was single,

which means that a new individual is formed when the parent genes are swapped

. T 2 L ) i i ol

application, it is always desirable to have maximum weld bead width and

o

ement with mini P jon. The process parameters and their
notations used in writing the M-file using MATLAB software are given below.

x(1) = Welding current (I)

%(2) = Welding speed (S)

%(3) = Nozzle-to-plate distance (N)
x(4) = Welding torch angle (T)

5.4. OPTIMIZATION OF THE FUNCTION

The purpose is optimization of weld bead geometry parameters with their
limits as constraints. The model is a nonlinear equation with constraints. The
constrained minimum of a scalar function of several functions of several variables

at an initial esti which is referred as * ined nonli optimization” is

+ N fall

ally stated as f

Minimize fix)
Subject to g(x1, x2, x3...xn) <0
The limits of the constraints bead width; penetration and reinforcement
were established by data obtained from past experience with a view that they
should provide a sound and defiect-free weld bead along with a feasible solution to

the objective function. =

Several numerical hods are avai for optimization of non linear

equation with constrainis. A Genetic Algorithm method is efficient and quickest
one, and this method was used to determine the optimum percentage dilution. The
step by step procedure of minimization of percentage dilution using the GA
optimization tool box available in MATLAB software is given below.

Step 1: writing M-file function [f, g] =f{x)

f{1)=11.702+1.466%x(1)+2.73%x(2)-1.037*x(3)+1.608*x(4)-0.751*x(1)*x(2)-
0.593% x(1)* x(3) +1.482*x(2)*x(4);Percentage dilution.

Table 5.2. Options of GA computation

Population type Double Vector
?upulalicn size 5

Creation Function Uniform o

Initial range [-2,-2,-2,-2;2.2,2.2]

Fitness scaling function Rank i

Selection function Roulette —

Reproduction elite count 2 B

Crossover fraction 09

Mutation function Uniform

Mutation rate 0.01

Crossover function Intermediate

Migration Direction Forward

Migration Fraction 0.2 |

Migration Interval 20

Hybrid Function none

Number of generations 100

Stall Generations 50

Stall time limit 20 ]

53. SELECTION OF OBJECTIVE FUNCTIONS AND
CONSTRAINTS

The objective function selected for optimization was p dilution.

The response variables bead width, ge depth of p ion and 2
height of reinforcement were given as constraints in their equation form. In

plimization, & Iy the ¢ ints with their upper bounds should be given in

2(1)=27.775+2.494*x(1)-3.244*x(2+ 0.45%x(3)-0.61*x(4)-0.303*x(1)"2+1.066*
(22 +0.316* x(4)"2 -0.616x(1 1#x(2)-39.53;Bead Width and its upper limit.

2(2)=20.15-27.775+2.494%x(1 1-3.244*x(2)+0.45%x(3)-0.61*x(4)-0.303*x(1 2
+1.066* x(2)"2 + 0.316*x(4)*2-0.616*x(1)*x(2); Bead Width and lower limit.

g[3)=0,?64+l].l04“‘)((I}F{).D?Q‘X(Z}-0.0éls‘xﬂ)*-o.l1'x(4}+0.02! *x(2)°2+0.061
*x(2)* x(4)-1.2; Penetration and its upper limit.

£(4)=0.4-0.764+0.104*x(1)+0.074* x(2)-0.048*x(3)+0.1 1 *x(4)+0.021*x(2)"2+
0.061* %(2)*x(4); Penetration and its lower limit.

2(5)=4.535+0. l'ZS‘x(1)-0.4‘?5‘x(2)+0.054‘x(3)+0.052*x{4)+0.053 *x(2y"2-0.052
*#x(2)*x(3)-5.68; Reinforcement and its upper limit.

2(6)y=3.63-4.535+0.128* x(1)-0.475*x(2)+0.054*x(3)+0.052* x(4)+0.053*x(2)"2-

0.052* x(2)*x(3); Reinforcement and its lower limit.
g(7)=f-20.58; upper limit of percentage dilution.
@(8)=5.31-f; lower limit of percentage dilution.

Step 2: invoke an optimization routine

Select and type in the corresponding boxes as per the requirement as shown in the
Table 5.2.

Step 3: Run the M-file.



CHAPTER 6

RESULTS AND DISCUSSIONS

6.1. GENETIC ALGORITHMIC APPROACH

After running the M-file in MATLAB simulation software for the options
that has been shown on table 5.2, following various optimum results have been

obtained.

The optimum values of the process parameters were obtained at 52™

iteration.

Corresponding input parameters are as follows.

x(1) = Welding current (1) = 261.005A

%(2) = Welding speed (5) = 26.28 cm/min

%(3) = Nozzle-to-plate distance (N) = 27.89198 mm
. x(4)= Welding torch angle (T) = 11.86535 °

For these optimized process parameters, the values of the clad quality

paramelers are

Bead Width (W) = 36.66542 mm
Penetration (P) = (.666234 mm
Reinforcement (R) = 5.441047 mm
Percentage Dilution (D) = 10.8667%
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Figure 6.3. G logy Plot
Figure 6.1. Best Fitness Plot gure enealogy Plo

Figure 6.2. Best Individual Plot Figure 6.4. Roulette Selection Plot

The above figures 6.1., 6.2., 6.3. and 6.4. are the plots obtained when

the optimized results was obtained.



CHAPTER 7

CONCLUSION

The possibility of a FCAW optimization procedure using GA is

ion of the near

investigated in this work; more specifically, the I
FCAW process parameters, welding current, welding speed, nozzle-to-plate
distance and welding torch angle. The search for the optimization was based on

the minimization of an objective function.

It was found that GA can be a powerful tool in experimental welding

optimization, even when the experimenter does not have a model for the process.

H . the optimization by GA technique requires a good setting of its

own such as size, number of generations, ¢te. otherwise

F PP

there is a risk of an insufficient sweeping of the search space. These results will

solve lot of real time problems in the facturing industries.
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APPENDIX 1

Various optimum results obtained while simulating the gatool in
MATLAB.7 software while computing different number of trials. Some of them

are shown in the following screen shots.

Appendix 1

Figure A.2. Percentage Dilution 8.9018%



Figure A.3. Percentage Dilution 9.0083%

TR T

Figure A4, Percentage Dilution 9.1536%

Figure A.7. Percentage Dilution 15.0727%
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