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ABSTRACT:

The strong demand for low-power computing has been driven by a
growing variety of portable and battery-operated electronic devices. For instance, in
many portable-computing devices such as MP3-players and digital cameras, the full
processing capability of a processor is not always required. There are certain times
when the operating frequency may be reduced.

In this project the system dynamically monitors circujt
performance with a delay line and provides a substantially constant minimum supply
voltage for digital processors to properly operate at a given frequency. In addition, the
system adjusts the supply voltage to the required minimum under different process,
voltage, and temperature and load conditions. Here the buck converter is used as the
power delivery system. The gating signal to the buck converter is generated by VHDL
coding according to the requirement.

The FPGA logic element for implementing driver Circuit of buck
converter is programmed using VHDL language. It is simulated using MODELSIM XE
6.0a and synthesized by Xilinx ISE9.2i Web pack. It is implemented in a Xilinx FPGA
device XC3S400 PQ208. The buck converter circuit is designed in MATLAB7.0 and the
MATLAB7.0 is linked with MODELSIMS.0a to get PWM signal. MOSFET is used as

switching element in buck converter
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1. INTRODUCTION

1.1 OBJECTIVE:

This project aims at adjusting the supply voltage to the required
minimum constant value under different process, voltage and temperature and load

conditions.

1.2 NEED OF THE PROJECT:

In many portable-computing devices such as MP3-players and
digital cameras, the full processing capability of a processor is not always required.
There are certain times when the operating frequency may be reduced; and a lower
frequency means a longer allowable delay. This increased time margin also allows the
supply voltage level to be lowered albeit with an increased propagation delay. Since
power consumption is quadratic with supply voltage and proportional to operating
frequency, reducing both allows excellent energy-efficient operation. This project is
done using VLSI architecture. VLSI technology is 30-40 times faster than
microcomputer and 10 times faster than signal processing. In addition the VLSI
technology is reprogrammable and power consumption is less compared to
conventional processing.

1.3 ORGANISATION OF THE REPORT:

Chapter 1: Introduction to the project stating the need for this approach, objective and
Methodology

Chapter 2: Driver circuit — An overview

Chapter 3: Buck converter — An overview

Chapter 4: Details about the software implementation of Driver circuit

Chapter 5: gives the details about MATLAB implementation of Buck converter

Chapter 6: FPGA — Describes about the FPGA, its architecture, design flow and

applications. Details the architecture and features of the FPGA device



XC35400 used.
Chapter 7: Gives the details about the hardware implementation
Chapter 8: Conclusion — The project is done and the features of the project are discussed.

Appendices: Gives the features and the specification of the FPGA device used.

1.4 BUCK CONVERTER-DRIVER CIRCUIT:

The required minimum supply voltage is obtained using buck
converter. The delay of the gate signal to the buck converter is inversely proportional to
the supply voltage. Therefore, the application operates at a reduced clock frequency with
a lower supply voltage at the cost of performance reduction to meet the low power

requirement. This is achieved by PWM technique.

1.5 CONVENTIONAL TECHNIQUE FOR PWM:

The pulse-width modulator circuit consists of a saw-tooth generator,
an error amplifier, and a comparator. The frequency of saw-tooth generator can usually
be set by choosing proper values of an RC network. The error amplifier compares the
reference voltage and the feedback signal. The feedback signal is obtained using a
voltage divider network across the output of the buck converter circuit. The output of the
error amplifier is compared with the saw-tooth waveform and when this voltage is greater

than the output of saw tooth generator, the output of the comparator would be at logic '1".

When the output of comparator is at logic '1", the switch in the buck
converter circuit can be kept in the ON state. When the comparator is at logic '0', the

switch in the buck converter circuit can be kept in the OFF state.

If the output voltage tends to be greater than the desired value, the
output voltage of the error amplifier would fall and the duration for which the output of

comparator remains at logic '1' would decrease. Thus the duty cycle of the switch reduces



and the output of the buck converter would fall. When control by frequency modulation is
desired, the ON-period is kept constant, but the frequency is varied in order to bring
about regulation. Such a technique is necessary if the load on the regulator tends to be
come very low. It is difficult to make the ON-period below certain time duration and
when this limit is reached, control by pulse width modulation becomes impossible. Then
the duty cycle is reduced by keeping the ON period fixed and increasing the cycle period.

The value of minimum ON period depends on the transistor switch.

1.6 LIMITATIONS AND SOLUTIONS:

The disadvantage of analog circuits is that they tend to drift with time and
they are difficult to tune. Analog circuits are usually hot and are sensible to noise. If we
look at an analog signal, we can expect any real number from it and we can't identify for
sure what's noise and what's signal. The analog system fails to maintain the voltage at

constant level under different load conditions, temperature and process.

To overcome these limitations we are going for digital puise width
modulation. There is no problem of noise interference and heating of the circuit. It is very
compact compared to conventional circuits. The digital PWM is achieved by means of
VHDL coding.



1.7 METHODOLOGY:

The sequence of work carried out is been listed below,

VHDL coding: Describes the circuit structure

Simulation: To check the functionality of the code

MATLAB: For designing Buck converter and simulation

Synthesis: RTL is turned into design implementation in terms of logic

gates creates a net list

Mapping: Fits the design into available resources in the too]

Place & Route: Determining the position & interconnecting the sub blocks
Timing simulation: For timing analysis of CLBs and net delays

Bit stream: A binary file in terms of 0s and 1s to program FPGA

Hardware Implementation: Downloading the program to XILINX device and verifying

the output through LED
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2. DRIVER CIRCUIT

2.1 BLOCK DIAGRAM:

A block diagram of the all digital self-adjusting minimum power supply
system is presented in Fig. 1. The system consists of a closed-loop controller, a fixed
frequency clock signal (CLK), frequency information (FI), a dc—dc buck-converter, and a
processor as a load current source. The loop controller consists of a slacktime detector, a
voltage adjuster, and a PWM modulator. The presented controller performs the following
discrete-timecompensation:

D(n+1)=F(n)+aE(n)+A(n) (D
Where D(n+1) is the next value of the duty ratio,and F(n),E(n)are the frequency
compensation, the current values of the detected error, and A(n) the accumulated
compensation, respectively, and a is error scaling factor. As in (1), the control approach
does not request any previous values, while an accumulated compensation factor is
needed. The variations of PVT and load are dynamically updated in the compensation
factor. During updating, the duty ratio is controlled by a finite-state machine (FSM)
which maintains a substantially constant supply voltage. The scaling coefficient is used to

increase the error resolution and it is implemented by the shift-right function instead of

multiplication.
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FIG 1:BLOCK DIAGRAM OF DRIVER CIRCUIT.



2.2 SLACKTIME DETECTOR:
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FIG 2:CIRCUIT DIAGRAM OF SLACK TIME DETECTOR

Slack time detection is the ability to determine the minimum
voltage required for a given operating frequency. It requires continuous monitoring of a
critical path delay through the digital circuitry with respect to PVT, load, and
frequency. The proposed slacktime detector consists of a chain of delay cells and a tap
register as shown in Fig. 2. The principle of a delayline as an ADC, is based on the
relation between supply voltage and propagation delay. The slacktime detector
determines the voltage level of the delayline’s supply based on the propagation delay
through the delayline. In other words, the delay, along with the supply voltage, is
converted to a digital value by sampling the delayline.

There are three considerations for designing a delayline to monitor
the critical path timing over PVT variations. The first requirement is to avoid the worst
case crossover effect on the nonlinear characteristics between delay and voltage. The
crossover becomes worse when the delay increases longer or the voltage decreases.
Therefore, the margin for proper circuit operation is applied for high-crossover ratio.
Determination of the resolution of delayline is the second consideration. A fine step size

results in very slowsettling while a coarse step size can cause hysteretic oscillation.



The last requirement is to minimize the hardware burden for
delayline. As semiconductor fabrication technology improves, circuit delay is shorter
and, in turn, the number of needed cells to implement a critical path delay is larger. From
the last delayline design requirement, the cell of a delayline should have low
performance. A NOR structure slowly transits at high-to-low transition compared to a
NAND circuit’s transition. However, low-to-high transition time of a NOR gate is the
same as that of a NOT gate and is faster than a NAND gate. Therefore, a pair of NOR
and NOT gates is selected as the unit delay cell. The number of delay cells between taps
is determined by increasing a step voltage so the accumulated voltage steps require one
more tap active than the prior accumulated steps voltage at the worst case.

The number of delay cells between taps varies because the
propagation delay is not a linear function of supply voltage. The inverted input of the
delay cell (NOR-INV) receives the input clock signal or the output of prior delay cell;
and the noninverted input is connected to a delayline enable signal. The sampling clock
signal lags the input clock signal by a 1/4 of a period. The tap register samples the values
of the delayline at 1/4 period intervals after the input clock pulse begins to propagate
through the delayline. The magnitude of the supply voltage is inferred by determining
how far along the delayline the input clock pulse propagatesin a 1/4 period. Therefore, a
delayline in the negative feedback path of a closed loop reflects variations in circuit
performance in response to variations of PVT, load, and frequency, and adaptively scales
the regulated voltage of a buck converter via a loop controller. The delayline is
characterized at the worst case with regard to fixed-frequency input sources. Delay of the
delayline implies its process corner, junction temperature, and supply voltage at a given
work load. From this measurement, a desirable constant supply voltage is determined in
response to PVT and load variations. This guarantees the propagation delays just less

than the critical path delay limitation and assures proper operation.



2.3 TIMING DIAGRAMS:
2.3.1 TIMING DIAGRAM OF SLACKTIME DETECTOR:
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FIG 3:TIMING DIAGRAM OF SLACK TIME DETECTOR

The figure shows the timing of the inputs DX12- DX27 at each tap, the input clock
signal (ICLK), the sample clock signal (SCLK), and delayline enable signal (RSTN).

2.3.2 TIMING DIAGRAM OF CLOCKS:
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FIG 4: TIMING DIAGRAM OF CLOCKS



2.4 VOLTAGE ADJUSTER:
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FIG 5:BLOCK DIAGRAM OF VOLTAGE ADJUSTER

The voltage adjuster consists of an error compensator, a frequency
compensator, a process, voltage, and temperature compensator, and a control block as
shown in Fig. 5. The major role of the voltage adjuster is to compensate a supply voltage
error at a given frequency from the measurement of the slack time detector and to provide
a desirable constant voltage level against variations of frequency as well as PVT. In
addition, for high-speed and low-overshoot/undershoot start-up, it controls soft-start

operation.



2.4.1 ERROR COMPENSATOR:

TX2T
iy
THG -—%—-‘
"jm e k¥ 13
?"‘L_x
X255 .
_"f’; /}3—— el
Lo
THM w»%
i T S S
e TV 4
TX23 . .
&
. .
TXS “*i
~{~i'm"“»
—i_“L/}b--u— Wi
TX14
L‘Zf RNk
TXi3
“”Gw\bm X2
Txiz .................. L’/n

FIG 6:CIRCUIT DIAGRAM OF LOW LEVEL DETECTOR

The role of the error compensator is to detect the voltage
error,E(n) as in (2), and to generate a proportionally compensated value. It receives the
propagation delay word TX(27:12) from the slacktime detector and detects the position of

one and zero pair of taps as shown in Fig 6.

2.4.2 DATA USED FOR ERROR COMPENSATOR:
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The compensator converts the propagation delay position to an error voltage
by comparing it to the reference delay position (shown in the table given above) along
with supply voltage under worst case conditions. In turn, it generates a proportionally
compensated propagation delay word ECW (5:0) that represents a reference value at a

default frequency plus a compensated error value.

2.4.3 FREQUENCY COMPENSATOR:

..............

ECW(3:0)
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xxxxxxxxxxxxxxx
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FIG 7: CIRCUIT DIAGRAM OF FREQUENCY COMPENSATOR

The frequency compensator adjusts the duty cycle of the PWM pulse based
on the desired supply voltage at a given frequency. The first subtractor, SUBI, in Fig. 7
generates a difference between the frequency information, FI(5:0), and the internal
reference voltage level, RFI(5:0). The difference implies the desirable voltage variation
in response to a given frequency. The up/down counter (CNT) receives the difference and
counts up or down at the load signal (LOAD) until the output of the counter is equal to
the difference. This prevents the supply level and frequency variation from abruptly
changing and reduces ringing. The second subtractor, SUB2, receives the proporticnally

compensated propagation delay word ECW(5-0) from the error compensator and the



shift-lefted counter number for the subtrahend, and generates a frequency compensated
propagation delay word FCW1(5-0).

The compensated error-step from the delayline is the same as the
resolution of the delayline (6 bits). However, the resolution of theDAC is higher than that
of the ADC, and the error step also has a higher resolution. To increase the control
resolution, the proportionally compensated error-value should be scaled close to the
resolution of the DAC. The third subtractor, SUB3, provides
a reference supply voltage word FCW2(5:0) at a given frequency FI(5:0). The one-bit
higher resolution compensated word FCW(7:1) is generated by adding the frequency
compensated word to the reference supply voltage word. However, a 7-bit DAC for a 6-
bit ADC is insufficient to avoid limit-cycling (Section II). Therefore, dither logic
generates a least significant bit (LSB) of the frequency compensated word FCW(0).

2.4.4 PROCESS, VOLTAGE, AND TEMPERATURE COMPENSATOR:

UPNRDOWN
FCW(TG)

USUULHDLD0S

> PW(T0)

LOAD

----- e - - e #

FIG 8: CIRCUIT DIAGRAM OF PVT COMPENSATOR
It consists of an internal dynamic voltage reference source, a pulse

width generator, and a ringing stopper as shown in Fig. 8. The internal dynamic
voltage reference source adds or subtracts one, two, or three steps according to the
increment/decrement indicators U1, U2, U3, D1, D2, D3, and generates an internal
dynamic voltage reference, IREF (7-0). The reference value compensates the
fluctuations due to process and temperature variations as well as the quantization error
of the external supply voltage. Fig. 12 illustrates the equivalent supply voltages which
ensure the same propagation delay at different operational and intrinsic parameters.
The pulse width generator, ADDI, receives the frequency compensated word



FCW(7:0) and the accumulated compensation | as in (2)] IREF(7-0), and generates a
normal PWM pulse width NPW(7-0). The ringing stopper receives three inputs: a shift-
lefted PWM pulsewidth, a normal PWM pulse width, and a shift-righted PWM
pulsewidth. It outputs a pulsewidth word PW(7-0) in response to selection signals UP,
NR, and DOWN. Since the high-valued derivative direction of supply voltage during
frequency-changing or starting-up is unchanged by the step-size compensated value
NPW(7:0), emphasized activation (double or half size of PWM pulse) is needed.

2.5 DPWM MODULATOR:
UPNRDOWN
FCW(TO) .!l
'ﬁ“““““““‘*“u“ff“‘i‘nun Py ;
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FIG 9:CIRCUIT DIAGRAM OF DPWM MODULATOR

The DPWM pulse modulator in Fig. 9 consists of a loadable
down counter and a pulse generator. Counter loads the PWM pulsewidth PW(7-0) from
the voltage adjuster by the LOAD,changing a binary output of counter as a count in
response to the DCLK. DPWM pulse modulator outputs a pulse modulated signal
PWM defined by the binary input value PW(7-0) of counter.
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3. BUCK CONVERTER
3.1 CIRCUIT:
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FIG 10: BASIC CIRCUIT DIAGRAM OF BUCK CONVERTER

3.2 STATES OF OPERATION:

The operation of the buck converter is explained first. This circuit can

operate in any of the three states as explained below.

3.2.1 FIRST STATE :
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FIG 11: BUCK CONVERTER IN STATE1(a)
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FIG 12: BUCK CONVERTER IN STATE]1 (b)

W




The first state corresponds to the case when the switch is ON. In this state,
the current through the inductor rises, as the source voltage would be greater than the
output voltage, whereas the capacitor current may be in either direction, depending on the
inductor current and the load current. When the inductor current rises, the energy stored

in it increases. During this state, the inductor acquires energy.

When the switch is closed, the elements carrying current are shown in
red colour in Fig. 11, whereas the diode is in gray, indicting that it is in the off state. In

Fig. 11, the capacitor is getting charged, whereas it is discharging in Fig. 12.

The equations that govern the operation of the circuit in the first state are shown below.
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3.2.2 SECOND STATE:
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FIG 14:BUCK CONVERTER IN STATE2(b)



The second state relates to the condition when the switch is off and the
diode is ON. In this state, the inductor current free-wheels through the diode and the
inductor supplies energy to the RC network at the output. The energy stored in the
inductor falls in this state. In this state, the inductor discharges its energy and the
capacitor current may be in either direction, depending on the inductor current and the
load current .The equations that govern the operation of the circuit in the second state are

shown below.

i __ Yo (3)
ct z
. _VC/
av, _ ir fi @)
cit o
3.3.3 THIRD STATE:
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FIG 15:BUCK CONVERTER IN STATE3

When the switch is open, the inductor discharges its energy. When it has
discharged all its energy, its current falls to zero and tends to reverse, but the diode
blocks conduction in the reverse direction. In the third state, both the diode and the
switch are OFF and Fig.15 illustrates the third state. During this state, the capacitor
discharges its energy and the inductor is at rest, with no energy stored in it. The inductor
does not acquire energy or discharge energy in this state. The equation that governs the

operation of the circuit in the third state is shown below.

R/ (5)
C

dt




3.3 WAVE FORMS OF THE BUCK CONVERTER:
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4. SOFTWARE IMPLEMENTATION

4.1 SIMULATION RESULT OF CLOCK GENERATOR:

ave - default

" 4856 ns

k¥

The figure shows the simulation result of the clock generator.
The total time period of CLK=12.5ns.

The total time period of DCLK=6.25ns.

The total time period of SCLK=50ns.

The total time period of ICLK=50ns.

The SCLK lags behind ICLK by 3.125ns.



4.2 SIMULATION RESULT OF SLACKTIME DETECTOR:

This figure shows the simulation result of the slack time detector.
When the count of sample clock (SCLK) reaches 32, the load goes high (1) and it causes
the delay line enabling signal to become low active signal. At this instant the delay lines
are tapped into the tap registers (tap_regl2 to 27). The time interval between each delay

line is 1ns.



4.3 SIMULATION RESULT OF DPWM MODULATOR FOR (UND=100):

wave - default

1

126%ns |

This shows the simulation result of the DPWM modulator. The und
value is assigned to 100 and the indicator value is assigned to 0001000. For

und=100,pulses of 100ns are generated. These pulses are tapped out by PWM_OUT port.



4.4 SIMULATION RESULT OF DPWM MODULATOR FOR (UND=010):

[ELTRY

This shows the simulation result of the DPWM modulator. The und value
is assigned to 100 and the indicator value is assigned to 0001000. For und=010,pulses of
100ns are generated. These pulses are tapped out by PWM_OUT port.



4.5 SIMULATION RESULT OF DPWM MODULATOR FOR (UND=001):

wave - default

This shows the simulation result of the DPWM modulator. The und value
is assigned to 100 and the indicator value is assigned to 0001000. For und=010, pulses of
100ns are generated. These pulses are tapped out by PWM_OUT port.



CHAPTER-5



S.MATLAB

5.1 MATLAB IMPLEMENTATION OF BUCK COVERTER:

Input Data
Phase Offset
Encoded

Manchester Encoder

_j——-ysamp “udﬂMM_ouf -ﬂ
Scoped

VHDL Cosimulation1

" Didplay

BUCK CONVERTER

Scopes

DCV+

F.

L" I

Mosfet

h 2

-

Scoped

P—

Display3

The sample clock is generated by Manchester encoder. When the sample

clock is given to the VHDL co simulation block, it outputs the PWM pulses generated by
MODELSIM. These pulses are input to MOSFET as gating signal. The voltage bucked is

obtained across load resistors.



5.2 SIMULATION RESULTS:

Output voltage for und=100:

Output voltage for und=010:

Output voltage for und=001:
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6. FPGA

6.1 INTRODUCTION:

A Field Programmable Gate Array (FPGA) is a semiconductor device containing
electrically programmable logic components and programmable interconnects. The
programmable logic components can be programmed to duplicate the functionality of
basic logic gates such as AND, OR, XOR, NOT or more complex combinational
functions such as decoders or simple math functions. In most FPGAs, these
programmable logic components (or logic blocks, in FPGA parlance) also include
memory elements, which may be simple flip-flops or more complete blocks of memories.
An FPGA js similar to a PLD, but whereas PLDs are generally limited to hundreds of
gates, FPGAs support thousands of gates.

A hierarchy of programmable interconnects allows the logic blocks of an FPGA
to be interconnected as needed by the system designer, somewhat like a one-chip
programmable breadboard. These logic blocks and interconnects can be programmed
after the manufacturing process by the customer/designer (hence the term "field
programmable", i.e. programmable in the field) so that the FPGA can perform any logical

function needed.

6.2 ARCHITECTURE:

The typical basic architecture consists of an array of configurable logic blocks
(CLBs) and routing channels. Multiple /O pads may fit into the height of one row or the
width of one column in the array. Generally, all the routing channels have the same width

(number of wires). The basic components of FPGA are

* Configurable Logic Block (CLBs)

= Interconnect
* Input Output Block(IOBs)

* Memory and Complete Clock Management



An application circuit must be mapped into an FPGA with adequate resources.
‘The typical FPGA logic block consists of a 4-input lookup table (LUT), and a flip-flop,

as shown

Tl 4-nput —
Inputs —*1 I'_DF%“ D Hip Out
—_—] Fop

Clock —s]>

FIG 16: LOGIC BLOCK

There is only one output, which can be either the registered or the unregistered LUT
output. The logic block has four inputs for the LUT and a clock input. Since clock signals
(and often other high-fanout signals) are normally routed via special-purpose dedicated
routing networks in commercial FPGAs, they and other signals are separately managed.

For this example architecture, the locations of the FPGA logic block pins are shown

in3

in4

out

int out

FIG 17: LOGIC BLOCK PIN LOCATIONS

Each input is accessible from one side of the logic block, while the output pin can
connect to routing wires in both the channel to the right and the channel below the logic
block. Each logic block output pin can connect to any of the wiring segments in the

channels adjacent to it.



6.3 FPGA MANUFACTURERS:

Field programmable devices are manufactured by several companies and a few of them

are listed

* Altera Corporation

= Xilinx Inc

» Atmel Corporation

= QuickLogic Corporation

*  Actel Corporation

= Aeroflex Inc

» Lattice semiconductor corporation

* Leopard Logic Inc

Xilinx first formed in 1984, are the major manufacturers of CPLDs and SRAM based
FPGAs. Xilinx leads FPGA industry by its products

»  Virtex series

= Spartan series.
The PWM control IC designed is programmed into Spartan II XC3S400 PQ208&

6.4 FPGA DESIGN FLOW

The standard design flow for Spartan generation FPGAs include following three

major steps

* Design Entry and Synthesis
* Design Implementation

= Design Verification



6.4.1 DESIGN DESCRIPTION

Designer describes design functionality either by using schema editors or by using
one of the various Hardware Description Languages (HDLs) like Verilog or VHDL. The
control IC is designed in VHDL code. A standard simulator which supports VHDL is
used to verify the correctness of the design. Data can be analyzed in a number of ways.
Waveform display and tabular display are generally used to trace down the errors in
VHDL code. Functional simulation is done by creating testbench. Testbench is an

environment, where a design is checked by applying stimuli and monitoring responses.
6.4.2 SYNTHESIS

Next step is to synthesize the design. The goal of VHDL synthesis is to create a
design that implements the required functionality and matches the designer’s constraints
an area, speed or power. The synthesis tool reads the VHDL design and reports syntax
errors and synthesis errors. If there are no syntax errors, the designer can synthesize the
design and map to target technology. If any changes are to be made in the VHDL
description, then the description needs to be simulated again and the output is validated
for correctness. The synthesizer produces an output netlist in the target technology and a
number of report files. From the netlist, it can be determined that the design is reasonable
or not. The reports such as timing report and device utilization summary helps to

determine the quality of the design.
6.4.3 DESIGN IMPLEMENTATION:

Implementation includes Partition, Place and route. Place and Route transiates
the logic design into physical design, maps the components used in the design into
specific elements, places them and routes the interconnection between them. Place and

Route also helps to do timing analysis. After all cells are placed and routed, the output of

the place and route tool consists of data files that can be used to implement the chip. The
output of design implementation phase is bit-stream file. These files describe all the

connections needed to make the FPGA macro cells implement the functionality required.



6.4.4 DESIGN VERIFICATION:

Bit stream file is fed to a simulator which simulates the design functionality and
reports errors in desired behavior of the design. Timing tools are used to determine
maximum clock frequency of the design. Now the design is loading onto the target FPGA

device and testing is done in real environment.
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FIG 18:DESIGN FLOW

6.5 ARCHITECTURE OF XC3S400:

6.5.1 BLOCK DIAGRAM:

The Spartan-lIl family of FPGAs is implemented with a regular, flexible,
programmable architecture of Configurable Logic Blocks (CLBs), surrounded by a
perimeter of programmable Input/Output Blocks (IOBs), interconnected by a powerful
hierarchy of versatile routing resources. The architecture also provides advanced
functions such as Block RAM and clock control blocks as shown in figure 19. Features of

XC2S200 model are

= System gates -200,000



* Logic cells — 5292
* CLBs-1176

DCAA nBe
* Block RAM (bits) — 56K
( TR A
= [/JO-208 =
2 =
T LK =
= an Block RAM  Multiplier

F1G.19: BASIC ARCHITECTURE OF XC35400

6.5.2 Input/Output Block

The Spartan-1I IOB features inputs and outputs that support 16 I/O signaling
standards, including LVCMOS, HSTL, SSTL, and GTL. These high-speed inputs and
outputs are capable of supporting various state-of-the-art memory and bus interfaces. The

three IOB registers function either as edge-triggered D-type flip-flops or as level sensitive

latches. I |
e ] veco
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i
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FIG 20: INPUT/OUTPUT BLOCK



6.5.3 Logic Cells

The basic building block of the Spartan-II CLB is the logic cell (LC). An LC
includes a four-input function generator, carry logic, and a storage element. The output
from the function generator in each LC drives both the CLB output and the D input of the
flip-flop. Each Spartan-III CLB contains four LCs, organized in two similar slices. In
addition to the four basic LCs, the Spartan-1II CLB contains logic that combines function
generators to provide functions of five or six inputs. Consequently, when estimating the

number of system gates provided by a given device, each CLB counts as 4.5 LCs.

Spartan-III function generators are implemented as 4-input look-up tables
(LUTs). In addition to operating as a function generator, each LUT can provide a 16 x 1-
bit synchronous RAM. The Spartan-III LUT can also provide a 16-bit shift register that is
ideal for capturing high-speed or burst-mode data. This mode can also be used to store
data in applications such as digital signal processing. The storage elements in the
Spartan-III slice can be configured either as edge-triggered D-type flip-flops or as level-

sensitive latches.
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FIG 21: LOGIC CELL OF XC35400



6.5.4 Delay-Locked Loop

Associated with each global clock input buffer is a fully digital Delay-Locked
Loop (DLL) that can eliminate skew between the clock input pad and internal clock input
pins throughout the device. Each DLL can drive two global clock networks. The DLL
monitors the input clock and the distributed clock, and automatically adjusts a clock
delay element. Additional delay is introduced such that clock edges reach internal flip-
flops exactly one clock period after they arrive at the input. This closed-loop system
effectively eliminates clock-distribution delay by ensuring that clock edges arrive at

internal flip-flops in synchronism with clock edges arriving at the input.
6.5.5 Block RAM

Spartan-III FPGAs incorporate several large Block SelectRAM+ memories of 4K
bits. These complement the distributed SelectRAM+ resources that provide shallow
RAM structures implemented in CLBs. Each block can be configured at ratios between
4Kx1 and 256x16.
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FIG 22: BLOCK RAM

6.5.6 Features of XC3S400

The XC35400 features up to 200,000 system gates, 14 total RAM blocks, and up
to 284 I/Os in three low-cost, high-volume packages: PQ208, FG256, and FG456.



The XC3S400 includes

» Distributed and Block Memory

e Four Digital Delay Locked Loops per Device
e Versatile I/O Interface Technology

e Full PCI Compliance

6.6 APPLICATIONS OF FPGA:

Applications of FPGAs include DSP, software-defined radio, aerospace
and defense systems, ASIC prototyping, medical imaging, computer vision, speech
recognition, cryptography, bioinformatics, computer hardware emulation and a growing
range of other areas. FPGAs originally began as competitors to CPLDs and competed in a
similar space, that of glue logic for PCBs. As their size, capabilities, and speed increased,
they began to take over larger and larger functions to the state where some are now
marketed as full systems on chips (SOC). Due to their programmable nature, FPGAs are

an ideal fit for many different markets such as

= Acrospace & Defense

* Automotive

* Broadcast

* Industrial/Scientific/Medical
= Storage & Server

*  Wireless and Wired Communications
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7. HARDWARE IMPLEMENTATION

7.1 FPGA XC2S200 PQ208:

The photo shows the programmed FPGA XC2S200 PQ208 device
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FIG 23: FPGA XC2S300 PQ208 DEVICE




7.2 DESIGN OBJECT LIST-1/0 PINS:




7.3 ARCHITECTURE VIEWS OF XC3S 400 PQ208:

%iling PACE - [Device Architecture for xc3s400-4-pq208]




7.4 FINAL RESULTS:

RTL Top Level Output File Name
Top Level Output File Name
Output Format

Optimization Goal

: ADSH.ngr
: ADSH
:NGC

: Speed

Avelable Operaiions are:
1 Progam

T verty

b Get Device D

4 Jmp Got Devics Signature).
E e Check [dcode:

e icd Sahs Regite

Design Statistics

#10s :20
Cell Usage:

# BELS 129
# LUT3 19
# LUT4 118
# MUXF5 12
# 10 Buffers 119
# IBUF 111
# OBUF : 8

!

Program Succeeded |




Device utilization summary:
Selected Device : 3s400pq208-4

Number of Slices : 15 outof 3584 0%
Number of 4 input LUTs : 27 outof 7168 0%
Number of 10s : 20

Number of bonded IOBs : 19 outof 141 13%

Clock Information:

No clock signals found in this design

Asynchronous Control Signals Information:

No asynchronous control signals found in this design

Timing Summary:

Speed Grade: -4

Minimum period: No path found
Minimum input arrival time before clock: No path found
Maximum output required time after clock: No path found

Maximum combinational path delay: 16.130ns
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8. CODING OF THE PROGRAM

POWER DELIVERY SYSTEM

library ieee;

use ieee.std logic 1164.all;

use ieee.std_logic_arith.all;

use ieee.std logic_unsigned.all;

use ieee.numeric_std.all;

entity buck is

port(clk: inout bit; dclk,sclk,iclk,load,rstn: inout bit;
tap regl2,tap regl3,tap_regl4,tap_regl5:inout bit;
tap reglé6,tap regl7.tap regl8,tap_regl9:inout bit;
tap_reg20,tap_reg21,tap reg22.tap reg23:inout bit;
tap_reg24,tap reg25.tap reg26,tap reg27:inout bit;
dataout1,dataout2,dataout3,dataout4:inout bit;
dataout5,dataout6,dataout?,dataout8:inout bit;
dataout9,dataout10,dataout11,dataout12:inout bit;
dataout13,dataout14,dataout15,dataout16:inout bit;
dataout17,dataout18,dataout19,dataout20:inout bit;
dataout21,dataout22,dataout23,dataout24:inout bit;
dataout25,dataout26,dataout27:inout bit;
FlL:in std_logic vector(0 to 5); -- force the input
cnttap:in std_logic; -- force the input
und:in std_logic_vector(2 downto 0 ) ;
indicator:in std_logic_vector(6 downto 0);
PW: inout std_logic vector(7 downto 0);
FCW:inout std_logic_vector(0 to 6);
PWM in : inout std_logic_vector (7 downto 0) ;
PWM_out : out std_logic);

end entity;



architecture only of buck is
function delayline (inputl,input2:bit)
return bit is
variable res:bit;
variable a:bit;
variable b:bit;
variable c:bit;
variable d:bit;
variable e:bit;
begin
a:=((not (inputl)) nor input2);
b:=((not (a)) nor input2);
c:=((not (b)) nor input2);
d:=((not (c)) nor input2);
e:=((not (d)) nor input2);
res:=e;
return res;
end function delayline;
function left_shift (q:std_logic vector(0 to 5))
return std_logic_vector is
variable r,res:std_logic vector(0 to 5);
begin
r(0):==q(1);
r(1):==q(2);
12)=q(3);
r(3):=q(4);
r(4):=q(5);
r(5):='0";
1es:=T;
return res;

end left_shift;



function right_shift (q:std_logic_vector(0 to 5))
return std_logic_vector is
variable r,res:std_logic_vector(0 to 5);
begin

r(0):='0";
r(1):=q(1);
r(2):=q(2);
1(3):=q(3);
1(4):=q(4); e
r(5):=q(5);

res:=r;
return res;

end right_shift;

function left_shiftl (q:std_logic_vector(0 to 7))
return std_logic vector is
variable r,res:std logic_vector(0 to 7);

begin

r(0):=q(1);
r(1):=q(2);
1(2):=q(3);
r(3):=q(4);
r(4):=q(5);
1(5):=q(6);
1(6):=q(7);
(7)="0";

res:=t;

return res;

end left_shiftl;



function right_shiftl (q:std_logic_vector(0 to 7))
return std_logic_vector is
variable r,res:std_logic_vector(0 to 7);
begin
r(0):='0";
r(1):=q(0);
1(2):=q(1);
r(3):=q(2);
r(4):=q(3);
1(5)=q(4);
1(6):=q(5);
1(7):=q(6);
res:=t;
return res;

end right_shiftl;

constant t1:time:=12 ns;
--80MHZ (CLK)
signal count:natural:=0;
constant t5:time:=1 ns;
--signal detect volt:real;
type indata is array(12 to 27) of bit;
signal Tap reg data,IX reg data:indata;
--signal voltage error:real;
signal ECW:std_logic_vector(0 to 5);
signal binary detect_volt,binary voltage error:std_logic vector(l to 6);
signal ff:std logic:='0";
signal subl,sub3,sub2:std logic vector(0 to 5);
signal counter_out:std _logic_vector(0 to 5):="000111";
signal R_FI:std logic vector(0 to 5);
signal a:std logic_vector(0 to 5);



signal mux1:std_logic vector(7 downto 0);
signal add1,regl,add2:std_logic vector(0 to 7);
signal PWM_Accumulator : std logic vector(8 downto 0):="000000000";
signal IREF:std_logic_vector(7 downto 0):="00001000"; --8 volt
begin
--CLOCK GENERATOR MODULE
process(dclk)
begin
dclk<='1" after 6 ns;
-- wait for (t1/2) ;
dclk<='0" after 6 ns;
-- wait for (t1/2) ;

end process;

process(sclk)
begin
sclk<='1" after 3 ns;
-- wait for (t1*4);
sclk<="0' after 3 ns;
-- wait for (t1*4) ;

end process ;

process(iclk)
begin
iclk<='1" after 48 ns;
-- wait for (t1*4);
iclk<='0" after 48 ns;
-- wait for (t1*%4) ;
end process ;

process (clk)



begin
clk<='1" after 12 ns;
-- wait for t1;
clk<='0'after 12 ns;
-- wait for t1;
end process ;
process(SCLK)
begin
if SCLK="1" then
count<=count+1;
LOAD<=0";
RSTN<="1";
if count=31 then
LOAD<="1%
RSTN<='0";
count<=0;
end if;
end if;

end process;

--SLACKTIME DETECTOR MODULE

p6:process(iclk,rstn,dataout1 dataout2,dataout3,dataout4,dataout5,dataout6,dataout7,data

out8 , dataout9,dataout10,dataout11,dataout12,dataout13,dataout14,dataout15,dataout16,
dataout17,dataout18,dataout19,dataout20,dataout2 1 ,dataout22,dataout23,dataout24,

dataout25,dataout26,dataout27)

begin

dataoutl<= delayline(iclk,rstn) ;

dataout2<= delayline (dataoutl,rstn)after t5 ;

dataout3<=delayline (dataout2,rstn) after t5 ;

dataout4<=delayline (dataout3,rstn) after t5;

dataoutS<=delayline (dataout4,rstn) after t5;



dataout6<=delayline ( dataout5,rstn) after t5;
dataout7<=delayline (dataout6,rstn) after t5;
dataout8<=delayline (dataout7,rstn) after t5;
dataout9<=delayline (dataout8,rstn) after t5;
dataoutl0<=delayline (dataout9,rstn)after t5;
dataout1 1<=delayline (dataout10,rstn) after t5;
dataoutl2<=delayline (dataoutl 1,rstn) after t5;
dataoutl3<=delayline (dataout12,rstn) after t5;
dataoutl4<=delayline (dataoutl3,rstn)after t5;
dataoutl 5<=delayline (dataout14,rstn) after t5;
dataout16<=delayline (dataout15,rstn) after t5;
dataoutl 7<=delayline (dataout16,rstn) after t5;
dataoutl8<=delayline (dataoutl7,rstn)after t5;
dataout19<=delayline (dataout18,rstn) after t5;
dataout20<=delayline (dataout19,rstn) after t5;
dataout2 1<=delayline (dataout20,rstn) after t5;
dataout22<=delayline( dataout21,rstn) after t5;
dataout23<=delayline (dataout22 rstn) after t5;
dataout24<=delayline (dataout23,rstn) after t5;
dataout25<=delayline (dataout24,rstn) after t5;
dataout26<=delayline (dataout25,rstn) after t5;
dataout27<=delayline( dataout26,rstn) after t5;
end process p6;
p7:process(sclk,dataout12,dataout13,dataout14,dataout15,dataout16,
dataoutl7,dataout18,dataout19,dataout20,dataout2 1,dataout22,dataout23,dataout24,
dataout25,dataout26,dataout27)
begin
if SCLK="1" then
tap_regl2<=dataout12 ;
tap_regl3<=dataoutl3 ;
tap regl4<=dataoutl4 ;



tap_reglS5<=dataoutl5 ;

tap_regl6<=dataout16 ;

tap_regl7<=dataoutl7 ;

tap_regl8<=dataoutl8 ;

tap_regl9<=dataoutl9 ;

tap_reg20<=dataout20 ;

tap _reg21<=dataout21 ;

tap_reg22<=dataout22 ;

tap_reg23<=dataout23 ;

tap_reg24<=dataout24 ;

tap_reg25<=dataout25 ;

tap_reg26<=dataout26 ;

tap _reg27<=dataout27 ;

Tap_reg_data<=(tap_regl2,tap regl3,tap_regl4,tap regl5.tap regl6,tap regl7.tap regl
8,tap_regl9,

tap_reg20,tap_reg21,tap_reg22,tap reg23,tap reg24.tap reg25.tap reg26,tap reg27);

end if;

end process;

--ERROR COMPENSATOR

p8:process(tap_regl2,tap regli3,tap regl4,tap regl5,
tap_regl6,tap regl7.tap regl8.tap regl9,
tap_reg20,tap _reg21.tap reg22.tap reg23,
tap_reg24.tap_reg25,tap reg26,tap reg27,Tap reg data,IX reg data)

variable IX12,IX13,IX14,1X15,1X16,I1X17,1X18,1X19,IX20:bit;

variable 1X21,IX22,1X23,1X24,1X25,1X26,I1X27:bit;

variable binary reference voltage:std logic_vector(1 to 6):="011000";

--variable reference voltage:real:=1.20;

begin

IX12:=(tap_regl2 nand (not(tap_regl3)));

IX13:=(tap_regl3 nand (not(tap_reg14)));



IX14:=(tap_reg14 nand (not(tap regl5)));
IX15:=(tap_regl5 nand (not(tap_regl6)));
IX16:=(tap_regl6 nand (not(tap_regl7)));
IX17:=(tap_regl7 nand (not(tap regl8)));
IX18:=(tap_regl8 and (not(tap regl9)));
IX19:=(tap_regl9 nand (not(tap reg20)));
[X20:=(tap_reg20 nand (not(tap_reg21)));
[X21:=(tap_reg21 nand (not(tap_reg22)));
[X22:=(tap_reg22 nand (not(tap reg23)));
IX23:=(tap_reg23 nand (not(tap_reg24)));
[X24:=(tap_reg24 nand (not(tap_reg25)));
IX25:=(tap_reg25 nand (not(tap reg26)));
IX26:=(tap_reg26 nand (not(tap_reg27)));
IX27:=(tap_reg27);
IX_reg data<=(IX12,IX13,IX14,IX15,I1X16,1X17,1X18,1X19,1X20,1X21,1X22,IX23,IX2
4,1X25,1X26,1X27);
if IX reg data="0111111111111110" then
binary detect volt<="011011";
--detect volt<=1.35;
elsif IX reg data="1011111111111110" then
binary detect_volt<="011010";
--detect_volt<=1.30;
elsif IX reg data="1101111111111110" then
binary detect volt<="011001";
--detect_volt<=1.25;
elsif IX_reg data="1110111111111110" then
binary_detect volt<="011000";
--detect_volt<=1.20;
elsif IX reg data="1111011111111110" then
binary_detect volt<="010111";
--detect_volt<=1.15;



elsif IX reg data="1111101111111110" then
binary detect volt<="010110";
--detect volt<=1.10;
elsif IX reg data="1111110111111110" then
binary detect volt<="010101";
--detect volt<=1.05;

elsif IX reg data="1111111011111110" then
binary detect volt<="010100";

--detect _volt<=1.00;

elsif IX reg data="1111111101111110" then
binary detect volt<="010011";
--detect_volt<=0.95;

elsif IX_reg data="1111111110111110" then
binary detect volt<="010010";
--detect_volt<=0.90;

elsif IX reg data="1111111111011110" then
binary detect volt<="010001";
--detect_volt<=0.85;

elsif IX reg data="1111111111101110" then
binary detect_volt<="010000";
--detect_volt<=0.80;

elsif IX reg data="1111111111110110" then
binary detect volt<="001111";
--detect_volt<=0.75;
elsif IX reg data="1111111111111010" then
binary detect volt<="001110";
--detect_volt<=0.70;

elsif IX_reg data="1111111111111100" then
binary detect volt<="001101";
--detect volt<=0.65;
elsif IX reg data="1111111111111111" then



binary_detect_volt<="000000";
--detect_volt<=0.60;
end if;
--voltage error<=((detect_volt-reference_voltage));
binary voltage error<=(binary_detect_volt-binary_reference_voltage);
ECW<=(binary reference voltage-binary voltage error);
end process p8;
--FREQUENCY COMPENSATOR
process(ECW,FI,load,cnttap,counter_out)
variable RFI:std_logic_vector(0 to 5):="000100";
variable cmp :std_logic_vector(0 to 5);
begin
sub1<=(FI-RFI) ;
cmp:=(counter_out-subl);
if load="1" then
if subl=counter out then
R_FI<=counter_out;
elsif subl>counter out then
counter_out<=(counter_out+"000001");
R _FI<=counter_out;
elsif subl<counter out then
counter _out<=(counter out-"000001");
R_FI<=counter_out;
end if;
end if;
end process;
process(R_FILload,cnttap,sub2,sub3)
variable RFI:std logic vector(0 to 5):="000100";
begin
sub3<=(RFI-R FI);
a<= left_shift(R_FI);



sub2<=(ECW-a) ;
FCW(l to 6)<=(sub2+sub3);
case cnttap is

when '0' =>
ff<=not ff;
when 'l' =>
ff<='0";
when others=>
end case;

if enttap ='1' then

if load="1" then
FCW(0)<=ff;
else
end if;
end if;
end process;
--PVT COMPENSATOR
process(clk,FCW,indicator,load,und,IREF,mux1 ,add2,regl PWM_in,PW)
begin
--- if rising_edge(clk) then

case indicator is
when "1000000" =>
mux1<="00000011";
when "0100000"=>
mux 1<="00000010";
when "0010000"=>
mux 1<="00000001";
when "0001000"=>
mux 1<="00000000";
when "0000100"=>
mux1<="11111111";



when "0000010"=>
mux1<="11111110";
when "0000001"=>
mux1<="11111101";
when others=>
end case;
add 1 <=(IREF+mux1);
if load="1" then
regl<=addl;

elsif load="0' then

regl <=IREF;
end if;
add2<=(FCW+regl);
case und is
when "100" =>
PW<=left_shiftl(add2);
when "010" =>
PW<=(add2);
when "001" =>
PW<=right_shiftl(add2);
when others=>
PW<="00000000";
end case;
--PWM Modulator module
if clk'event and clk="1" then

PWM_in<=PW;

if PWM_in/="XXXXXXXX" then
PWM_Accumulator <= ("0" & PWM_Accumulator(7 downto 0)) + ("0" & PWM _in);
else
PWM_Accumulator <="000000000";

end if;



end if;
end process;
PWM_ out <= PWM_Accumulator(8);

end architecture;
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9. CONCLUSION:

In this project, a power delivery system has been developed to
provide a constant minimum supply voltage with the maximum peak ripple of 5 mV,
and guarantees less propagation delay than critical path delay over changes in PVT,
load, and frequency. Therefore, the fully digital technique holds promise as a controller
for AVS regulation in digital applications that present a hostile environment for noise-
sensitive analog circuits. Moreover, it contributes to the yield improvement since the
propagation delay variations due to the variations of intrinsic parameter and operating
condition are compensated by dynamically adjusting the supply voltage.



APPENDIX 1

& XILINX®

XILINX Spartan I1I - XC3S400

Features

Xilinx XC3S400-FG456 or XC3S1500-FG456 Spartan-3 FPGA
Xilinx platform FLASH configuration PROM

2 Oscillators (66 MHz installed & socket for use frequency selection)
Parallel cable 111 equivalent JTAG configuration port

2 AvBus expansion connectors

1, 50-pin header for easy 1/O access (includes 4 LVDS pairs)
Universal 32-bit PCI edge connector®

10/100 Ethernet port*

DB15 & video DAC

RS-232 console

PS2 keyboard and mouse ports

Analog [/O**

IM SRAM

256kb serial EEPROM

4-position DIP switch

2 push-buttons

8 discrete LEDs

Dual-digit 7-segment LED display



Spartan II FPGA family members and description about RAM, /O, Gates.

Table 1: Spartan-it FRGA Family Members

cLB Maximum Todal Total
Logic System Gates Array | Total | Available | Distributed RAM | Block BAM

Device Cells {Logic and RAM) (RxC) | CLBs | User/O(¥) Bits Bits
XCas18 432 15,000 8x12 96 88 6,144 16K
Xces30 972 30,000 12x18 | 2186 92 13,824 24K
XC2850 1728 50,000 16x24 | 384 176 24,578 32K
Xcas160 2,700 100,000 20x30 | 600 178 38,400 40K
XC28150 3,888 150,000 24x36 | BB4 260 55,296 48K
XC28200 5,202 200,000 28x42 | 1,176 284 75.284 56K




REFERENCES:

[1] T. D. Burd and R. W. Brodersen, “Design issues for dynamic voltage scaling,” in
Proc. ISLPED Conf., 2000, pp. 9-14.

[2] K. Suzuki ef al., “Variable supply-voltage scheme for low-power high-speed CMOS
digital design,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 454-462, Mar. 1998.

[3] G.-Yawed and M. Horowitz, “A fully digital, energy-efficient, adaptive Power-supply
regulator,” IEEE J. Solid-State Circuits, vol. 34, no. 4, pp. 520-528, Apr. 1999.

[4] J. Kim and M. Horowitz, “An efficient digital sliding controller for Adaptive power
supply regulation,” in Proc. Very Large Scale Integetor. (VLSI) Circuits Dig. Tech.
Papers Conf., 2001, pp. 133-136.

[5] D. W. Kang, “Low-power digital adaptive voltage controller design based on hybrid
control and reverse phase mode,” Ph.D. dissertation, Dept. Elect. Comp. Eng.,
Northeastern Univ., Boston, MA, 2003.

[6] J.Bhaskar “VHDL primer”’3rd Edition 2003,Pearson Education, Inc.
[7]www.digchip.com

[8] www.powerdesigner.com



