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ABSTRACT

The segmentation of images into meaningful and
homogenous regions is a key method for image analysis within applications such as
content based retrieval. The watershed transform is a well established tool for the

segmentation of images.

However, watershed segmentation is often not
effective for textured image regions that are perceptually homogeneous. In order to

roperly segment such regions the concept of the “texture gradient” is now introduced.
properly seg 24 P g

Texture information and its gradient are extracted
using a novel non decimated form of a complex wavelet transform. A novel marker
location algorithm is subsequently used to locate significant homogeneous textured or
non textured regions. A marker driven watershed transform is then used to properly -
segment the identified regions. The combined algorithm produces effective texture and

intensity based segmentation for the application to content based image retrieval.
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CHAPTER 1
INTRODUCTION

1.1 IMAGE PROCESSING

Image processing is any form of signal processing for which the input an image such

as photographs or frames of video; the output of image processing can be either an image
or a set of characteristics or parameters related to the image. Most image-processing
techniques involve treating the image as a 2D signal and applying standard signal-
processing techniques to it.
As a subfield of digital signal processing, digital image processing has many advantages
over analog image processing; it allows a much wider range of algorithms to be applied
to the input data, and can avoid problems such as the build-up of noise and signal
distortion during processing.

The elements of an image analysis system are shown as below:

Represerdation
Segmertation and
Descrigtion
Preprocessing c:} Recogretion e
. - esult

Knowledge Base and
Prokiem domein ﬁ {:> Interpeetdion :>
|:—_lJ> Image ecouisition {:}

Figure 1.1: Elements of Image Analysis
Image analysis usually starts with a pre-processing stage, which includes

operations such as noise reduction. For the actual recognition stage, segmentation should
1



be done before it to extract out only the part that has useful information. Image
segmentation is a primary and critical component of image analysis. The quality of the
final results of an image analysis could depend on the segmentation step. On the other
hand, segmentation is one of the most difficult tasks in image processing, especially

automatic image segmentation.

Image processing and analysis is an important area in the field of robotics. The
operation for autonomous vehicle is based on acquiring data that describe its
environment. The motion planning and control of the vehicle requires an intelligent
controller to make decisions to allow it to maneuver in an unknown field based on these
data.

1.1.1 Applications of image processing
The various applications are:
. Computel; Vision
e Feature detection
e Medical Image processing
* Morphological image processing
¢ Face Detection
¢ Non - Photorealistic rendering

¢ Remote Sensing
1.2 IMAGE SEGMENTATION
The aim of computer based image segmentation is to isolate/distinguish/subdivide
a digital image into its constituent parts or objects. Image segmentation is often used as
an initial transformation for general image analysis and understanding. Examples of
. image segmentation applications include remote sensing, medical image analysis and
diagnosis, computer vision and the image segmentation necessary to enable region

indexing in a Content Based Retrieval (CBR) application.



The ultimate aim of an automatic image segmentation system is to mimic the
human visual system in order to provide a meaningful image subdivision. This is often
unfeasible, not only because Iof the technical difficuities involved but also because scenes
and objects themselves can be hierarchically segmented with no indication of what level
of hierarchy is meaningful to an intended user.

Another difficulty of mimicking the human approach to segmentation is that a human can
draw on an unconstrained and simply enormous set of object models with which to match
scene elements to. The more usual methods of image segmentation rely on more

primitive visual aspects of images such edges, color, texture.

The goal of the segmentation process is to define areas within the image that have some
properties that make them homogeneous. The definition of those properties should satisfy
the general condition that the union of neighboring regions should not be homogeneous if
we consider the same set of properties. After segmentation, we can usually establish that
the discontinuities in the image correspond to boundaries between regions.

Levels of segmentation:

o Complete segmentation: result in objects or regions of interest high
level knowledge involved
e  Partial segmentation: Image is divided into separate regions that are
homogeneous with respect to a chosen
property such as brightness, color, reflectivity,
texture etc.
The methods most commonly used for image segmentation can be categorized into 4
classes
|. Edge-based approaches: Image edges are detected and then linked into
contours that represent the boundaries of image objects. The main advantage of
edge-based approaches is their lower computational cost. However, the edge
grouping process presents serious difficulties in setting appropriate thresholds and

producing connected, one-pixel-wide contours.



2. Clustering-based approaches: Image pixels are sorted in increasing order as a
histogram according to their intensity values. Fuzzy-c-means (FCM) and K-means
fall into this method. The main advantage of this approach is that the problem of
setting thresholds can be avoided by using iterative processes. Also, the
segmented contours are always continuous. But, over segmentation may occur

because pixels in the same cluster may not be adjacent.

3. Split/merge approaches: An input image is first segmented into homogeneous
primitive regions using K-means or FCM as a ‘Split’ step. Then, similar
neighboring regions are merged according to a certain decision rule as a ‘Merge’

step.

4. Region-based approaches: The goal is the detection of regions that satisfy a
certain predefined homogeneity threshold. Region-based approaches are available
because the segmented contours are always continuous and one-pixel-wide. The
computation time of this approach is short. However, different similarity
threshold settings may lead to different segmentation results. Also it can cause

over segmentation.

5. Watersheds: The watersheds transformation is studied in this thesis as a
particular method of a region-based approach to the segmentation of an image. of
using the image directly, the transform uses a gradient image extracted from the
original image. The initial stage of any watershed segmentation method is
therefore to produce a gradient image from the actval image. The complete
transformation incorporates a pre-processing and post-processing stage that deals
with embedded problems such as edge ambiguity and the output of a large

number of regions.



CHAPTER 2

LITERATURE SURVEY

V. Grau*, A. U. J. Mewes, M.
Alcaiiiz,2002—The watershed transform has interesting properties that make it
useful for mamy different image segmentation applications: it is simple and
intuitive, can be parallelized, and always produces a complete division of the image,
However, when applied to medical image analysis, it has important drawbacks
(oversegmentation, sensitivity to noise, poor detection of thin or low signal to noise
ratio structures). We present an improvement to the watershed transform that
enables the introduction of prior information in its calculation. We propose to
introduce this information via the use of a previous probability calculation.
Furthermore, we introduce a method to combine the watershed transform and atlas
registration, through the use of markers.We have applied our new algorithm to two
challenging applications: knee cartilage and gray matter/white matter segmentation
in MR images. Numerical validation of the results is provided, demonstrating the

strength of the algorithm for medical image segmentation.

C.R. JUNG 1, J. SCHARCANSKI
2003 presents-the watershed transforrn has been used for image segmentation relying
mostly on image gradients. Howéver, background noise tends to produce spurious
gradients, that cause over-segmentation and degrade the output of the watershed
transform. Also, low-contrast edges produce gradients with small magnitudes, which may
cause different regions to be erroneously merged. In this paper, a new technique is
presented to improve the robustness of watersheds segmentation, by reducing the
undesirable over-segmentation. A redundant wavelet transform is used to denoise the

image and enhance the edges in multiple resolutions, and the image gradient is estimated



with the wavelet transform. The watershed transform is then applied to the obtained
gradient image, and segmented regions that do not satisfy specific criteria are removed.
Andrea Gavlasov’a, Ale”s Proch’azka, and Martina Mudrov'a

Image segmentation, feature extraction and image components classification form a
fundamental problem in many applications of multi-dimensional signal processing. The
paper is devoted to the use of Wavelet transform for feature extraction associated with
image pixels and their classification in comparison with the watershed transform. A
specific attention is paid to the use of Haar transform as a tool for image compression and
image pixels feature extraction.

Proposed algorithm is verified for simulated images and applied for a selected MR

biomedical image processing in the MATLAB environment.

Nasser Chaji and Hassan Ghassemian 2006 presents a
new biologically . motivated method is proposed to effectively detect perceptually
homogenous region boundaries. This method integrates the measure of spatial variations
in texture with the intensity gradients. In the first stage, texture representation is
calculated using the nondecimated complex wavelet transform. In the second stage,
gradient images are computed for each of the texture features, as well as for grey scale
intensity. These gradients are efficiently estimated using a new proposed algorithm based
on a hypothesis model of the human visual system. After that, combining these gradient
images, a region gradient which highlights the region boundaries is obtained. Non
maximum suppression and then thresholding with hysteresis is used to detect contour
map from the region gradients. Natural and textured images with associated ground truth
contour maps are used to evaluate the operation of the proposed method. Experimental
results demonstrate that the proposed contour detection method presents more effective

performance than conventional approaches.



CHAPTER 3
METHODOLOGY

The watershed transform is a well established tool for the
segmentation of images. Vital information characterizing texture can be lost in
smoothing operation. In order to improve the generalization of watershed techniques and
apply them properly to images containing significant amounts of texture content, the
texture content information should be preserved within the algorithm. Texture boundaries
have been used for the effective partitioning of natural images using the edge flow
technique [18].

However, this technique does not use a measure of texture
gradient but compares the texture content at each pixel to its neighbors in order to “flow”
its texture content in the maximum gradient direction. Where “texture flows” meet,
boundaries are constructed. However, over-segmentation, a major problem with the
watershed transform, will not be solved by the use of the texture gradient. We develop a
novel marker based solution (basins are flooded from selected sources rather than
minima). This method lends itself well to the intended application of image region

characterization for content based retrieval.

The summary of the steps involved are depicted in the figure given below:

Non Non Median Gradient of
Decimated > Decimated Filtering Image
Complex Complex
Y
Image Marker Texture
Segmentation driven Gradient Of
watershed Segmentation Image

Figure 3.1: Flowchart of image Segmentation




Non Decimated
Complex I::::]

Wavelet

Non Decimated
Compiex
Wavelet

—

Non Decimated
Complex
Wavelet

Figure 3.2 Flowchart depicting construction of Non Decimated Complex

Wavelet Transform

3.1 WAVELET TRANSFORMS

Wavelets are mathematical functions that cut up data into different

frequency components, and then study each component with a resolution matched to its

scale.

Mathematical transformations are applied to signals to obtain a further information from
that signal that is not readily available in the raw signal They have advantages over
traditional Fourier methods in analyzing physical situations where the signal contains
discontinuities and sharp spikes. Wavelets were developed independently in the fields of
mathematics, quantum physics, electrical engineering, and seismic geology. Interchanges
between these fields during the last ten years have led to many new wavelet applications

such as image compression, turbulence, human vision, radar, and earthquake prediction.

Different transforms available are:

. Fourier transform

. Short time Fourier transform

. Wavelet transform

Why do we need the frequency information?

Often times, the information that cannot be readily seen in the time-domain can be

seen in the frequency domain.




There are two main types of wavelet transform-continuous and
discrete[2].The discrete transform is very efficient from the computational point of view
but its only drawback is that it is not translation invariant. Translations of the original
signal lead to different wavelet coefficients. To overcome this and to get more complete
characteristics of the analyzed signal the modified version of the traditional wavelet
transform DWT known as the Non-Decimated Wavelet Transform(NDWT)or stationary
wavelet transform which has no subsampling step and therefore keeps the same number

of coefficients at each level was proposed
3.1.1 CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform was developed as an alternative approach to
the short time Fourier transform to overcome the resolution problem. The wavelet
analysis is done in a similar way to the STFT analysis, in the sense that the signal is
multiplied with a function, {\it the wavelet}, similar to the window function in the STFT,
and the transform is computed separately for different segments of the time-domain

signal. However, there are two main differences between the STFT and the CWT:

I. The Fourier transforms of the windowed signals are not taken, and therefore single
peak will be seen corresponding to a sinusoid, i.e., negative frequencies are not

computed.

2. The width of the window is changed as the transform is computed for every single
spectral component, which is probably the most significant characteristic of the wavelet

transform. The continuous wavelet transform is defined as follows:

CWT¥(r,3) = O¥(r,8) = \/| f:r(t)w ( ) dt

Equation 3.1 Continuous Wavelet transforms



As seen in the above equation, the transformed signal is a function of two variables, tau
and s, the translation and scale parameters, respectively. psi(t) is the transforming

function, and it is called the mother wavelet .

The term mother wavelet gets its name due to two important properties of the wavelet

analysis as explained as follows:

The term wavelet means a small wave. The smallness refers to the condition that this
(window) function is of finite length(compactly supported). The wave refers to the
condition that this function is oscillatory. The term mother implies that the functions
with different region of support that are used in the transformation process are derived
from one main function, or the mother wavelet. In other words, the mother wavelet is a

prototype for generating the other window functions.
The translation

The term translation is used in the same sense as it was used in the STFT; it is related to
the location of the window, as the window is shifted through the signal. This term,
obviously, corresponds to time information in the transform domain. However, we do not
have a frequency parameter, as we had before for the STFT. Instead, we have scale
parameter which is defined as $1/frequency$. The term frequency is reserved for the

STFT. Scale is described in more detail in the next section.
The Scale

The parameter scale in the wavelet analysis is similar to the scale used in maps. As in the
case of maps, high scales correspond to a non-detailed global view (of the signal), and
low scales correspond to a detailed view. Similarly, in terms of frequency, low
frequencies (high scales) correspond to a global information of a signal (that usually
spans the entire signal), whereas high frequencies (low scales) correspond to a detailed

information of a hidden pattern in the signal (that usually lasts a relatively short time).

10



Scaling, as a mathematical operation, either dilates or compresses a signal. Larger scales
correspond to dilated (or stretched out) signals and small scales correspond to

compressed signals.

In the definition of the wavelet transform, the scaling term is used in the denominator,

scales s > 1 dilates the signals whereas scales s < 1, compresses the signal
3.1.2 WAVELET THEORY

This section describes the main idea of wavelet analysis theory, which can also be
considered to be the underlying concept of most of the signal analysis techniques. The FT
defined by Fourier use basis functions to analyze and reconstruct a function. Every
vector in a vector space can be written as a linear combination of the basis vectors in
that vector space , i.e., by multiplying the vectors by some constant numbers, and then
by taking the summation of the products. The analysis of the signal involves the
estimation of these constant numbers (transform coefficients, or Fourier coefficients,
wavelet coefficients, etc). The synthesis, or the reconstruction, corresponds to computing

the linear combination equation.

A basis of a vector space V is a set of linearly independent vectors, such that any vector v
in V can be written as a linear combination of these basis vectors. There may be more
than one basis for a vector space. However, all of them have the same number of vectors,

and this number is known as the dimension of the vector space.

For example in two-dimensional space, the basis will have two vectors.

v = Zl/’kbk
&k

Equation 3.2

Equation 3.2 shows how any vector v can be written as a linear combination of the basis

vectors b_Kk and the corresponding coefficients nu’k .
11



This concept, given in terms of vectors, can easily be generalized to functions, by
replacing the basis vectors b_k with basis functions phi_k(t), and the vector v with a

function f(t). Equation 3.2 then becomes
F(E) = = prep(®)

Equation 3.3

The complex exponential (sines and cosines) functions are the basis functions for the FT.
Furthermore, they are orthogonal functions, which provide some desirable properties for

reconstruction.

Although the discretized continuous wavelet transform enables the computation of the
continuous wavelet transform by computers, it is not a true discrete transform. As a
matter of fact, the wavelet series is simply a sampled version of the CWT, and the
information it provides is highly redundant as far as the reconstruction of the signal is
concerned. This redundancy, on the other hand, requires a significant amount of
computation time and resources. The discrete wavelet transform (DWT), on the other
hand, provides sufficient information both for analysis and synthesis of the original

signal, with a significant reduction in the computation time.
The DWT is considerably easier to implement when compared to the CWT.
3.2 TEXTURE CHARACTERIZATION

In order to produce a texture gradient we
first need to characterize the texture content of the image at each pixel. A number of
methods have been proposed to do this. One of the most popular techniques is the use of
a set of scaled and orientated complex Gabor filters (e.g., [19]). By suitable spanning of
the frequency space, each pixel can be characterized in texture content.

However, when considering the differences in texture within an image (e.g., the texture

gradient) this often produces suboptimal characterization for segmentation. To produce
12



an optimal system, the Gabor filters need to be tuned to the texture content of the image.
Different schemes for adaptive Gabor filtering have been implemented [20}], [21]. These
and other schemes use arbitrary techniques that are entirely separate from the texture
feature extraction process whilst also being excessively computationally complex.

In order to integrate an adaptive scheme with
the texture feature extraction process the Non-Decimated Complex Wavelet Packet
Transform (NDXWPT)is developed. The magnitude of the coefficients of each complex
subband can be used to characterize the texture content. This is because the basis
functions from each subband (very closely) resemble Gabor filters, i.e., they are scale and
directionally selective whilst being frequency and spatially localized. Each pixel can
therefore be assigned a feature vector according to the magnitudes of the NDXWPT
coefficients. A pixel at spatial position has one feature for each NDXWPT subband
coefficient magnitude at that position: defined as , where is the subband number. A
feature vector is therefore associated with each pixel characterizing the texture content at

that position.

3.3NON-DECIMATED COMPLEX WAVELET PACKET TRANSFORM
In order to develop the nondecimated
complex wavelet packet transform (NDXWPT) transform, it is first instructive to develop

a nonadaptive version using the NDXWT transform.

3.3.1 NON-DECIMATED COMPLEX WAVELET TRANSFORM

The structure of the nondecimated complex
wavelet packet transform is based upon the Non-Decimated Wavelet Transform(NDWT)
(defined in [15]) combined with the Complex Wavelet Transform (XWT) (defined in
[16]).
.3.2.1 NON-DECIMATED WAVELET TRANSFORM(NDWT)

The nondecimated wavelet transform uses
the same structure as the DWT but without any subsampling. This leads to a transform

that has every subband having exactly the same number of coefficients as the number of
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samples in the original signal. This of course leads to an over complete representation.
However, this transform has the advantage of being completely shift invariant, an aspect
which has been exploited by applications such as image fusion , where it was described
as the Shift Invariant Discrete Wavelet Transform (SIDWT). The structure of the NDWT
is shown in figure below. This clearly shows that in order to retain the same effective
filtering without the downsampling, the filters at each stage must be upsampled with the
right number of zeros. The filters in below figure are best represented in the —transform
domain with the filters and representing the low and high pass filters respectively. The
filters used at level are Ho(z *"%) and H,(z *"). The terms represent the

original filters upsampled with zeros in-between each original filter tap.

More precisely, it applies the transform at each point of the image and saves the detail
coefficients and uses the low-frequency coefficients for the next level. By using all

coefficients.

> HI(Z) —

— > H](Zz) —

A 4

> HO(Z) > H](Z4) =

Hy(Z%) >

> Hy(Z) |> .

Figure 3.3 Non-decimated wavelet Transform.

at each level, we get very well ailocated high-frequency information. With this transform
the number of pixels involved in computing a given coefficient grows slower and so the
relation between the frequency and spatial information is more precise. From the

computational point of view the NDWT has larger storage space requirements and
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involves more computations. Two main algorithms a trous [6] and Beylkin's algorithm

{1] exist for computing the transform .For reviews on the topic see [5], [i12], and [13]

3.3.2.2 COMPLEX WAVELET TRANSFORM (XWT)

Complex wavelet transform a form of discrete
wavelet transform, which generates complex coefficients by using a dual free of wavelet
filters to obtain their real and imaginary parts for motion estimation was developed. It
provides both shift invariance and good directional selectivity with only modest increases
in signal redundancy and computational load. However development of a CWT with
perfect reconstruction and good filter characteristics has proven difficult until recently.
Nick Kingsbury[2]has developed a dual-tree algorithm with a real biorthogonal
transform, and an approximate shift invariance can be obtained by doubling the sampling
rate at each scale, which is achieved by computing two parallel subsampled wavelet trees
respectively and it generates the real and imaginary parts of the wavelet coefficients
separately. It introduces limited redundancy (2m:1 for m-dimensional signals) and allows
the transform to provide approximate shift invariance and directionally selective filters
(properties lacking in the traditional wavelet transform) while preserving the usual
properties of perfect reconstruction and computational efficiency with good well-
balanced frequency responses.

In [7.8], the Dual-Tree Complex Wavelet Transform (DT CWT) is introduced. The

following properties are exhibited:

¢ Approximate shift invariance; .

¢ Good directional selectivity in 2-dimensions (2-D) with Gabor-like filters (also
true for higher dimensionality, m-D);

¢ Perfect reconstruction (PR) using short linear-phase filters;

* Limited redundancy, independent of the no. of scales,2 : 1 for 1-D (2m : 1 for m-
D);

+ Efficient order— only N computation twice the simple DWT for 1-D (2m times
for m-D).
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The dual-tree complex DWT of a signal x(») is implemented using two critically-sampled
DWTs in parallel on the same data. The DTCWT has 6 filters, all of which are
directionally selective (—15°, —45°, —75°, +15°, +45°+75°).
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Figure 3.4 Complex Dual Tree

Any finite energy analog signal x(¢ ) can be decomposed in terms of wavelets and scaling

functions via

X
xty= ) cmet—m

n=—00
s o) O . . ’
+30 3T dim2#2y2if—n).
jgﬁn = e 0

The scaling coefficients ¢(n) and wavelet coefficients d(j, n) are computed via the inner

products
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There exists a very efficient, linear time complexity algorithm to compute the coefficients
c(n) and d( j, n) from a fine-scale representation of the signal (often simply ¥ samples)
and vice versa based on two octave-band, discrete-time FBs that recursively
Apply a discrete-time low-pass filter #0(n), a high-pass filter #1(n), and upsampling and
downsampling operations. These filters provide a convenient parameterization for
designing wavelets and scaling functions with desirable properties, such as compact time
support and fast frequency decay (to ensure the analysis is as local as possible in time

frequency)and orthogonality to low-order polynomials (vanishing moments)[12).

The key challenge in dual-tree wavelet design is thus the joint design of its two FBs to
yield a complex wavelet and scaling function that are as close as possible to analytic. The
question of how to design filters #0(n) and 41(n} satisfying the perfect reconstruction
(PR) conditions so that the wavelet w(r ) has short support and vanishing moments was
answered by Daubechies [12].The two real wavelet transforms use two different sets of
filters, with each satisfying the PR conditions. The two sets of filters are jointly designed
so that the overall transform is approximately analytic. Let #0(n), #1(n) denote the low-
pass/high-pass filter pair for the upper FB, and let g0(n), gl(n) denote the low-pass/high-

pass filter pair for the lower FB. .
1) FILTER DESIGN FOR THE DUAL-TREE CWT

In particular, the analysis-reconstruction subsystem can introduce three separate types of
distortions: aliasing, short-time phase distortion, and short-time frequency distortion [9
10]. The use of quadrature mirror filters (QMF's) [6] allows the aliasing to be removed in

the reconstruction stage, and consequently, QMF's have become a fundamental building
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block in most tree-structured subband coder systems. This leads to the definition of a new
class of exactly reconstructing analysis/ reconstruction filters called "conjugate

quadrature filters" or CQF's.

In this system, the analysis is performed by the two frequency selective filters, H,(e )
and Hy (¢ ) , which are nominally a half-band low-pass and half-band high-pass filter,
respectively. In the reconstruction, the bands are filtered by low pass and high pass
synthesis filters (Go(€” ), Gi(€® )

X(e") = DIHo(e™) Goe™) + Hy(e") Gi(e™)) X(&*)

+ @) [Ho(—e™) Gy(e™) + Hi(—e™) Gi(e™)] X(—e™).

component is contained in the first term of (1), while the second term contains the
aliasing. In the classic QMFs solution [11]}, the aliasing is removed by defining the

reconstruction filters as

Go(e) = Hy(~e)

Gi(e’) = —Hy(—e™)
In addition, QMF's are defined to be frequency shiftedversions of one another, i.e.,
H\(e”) = Hy(—~¢e™)

and are also constrained to have even length. For this class of analgfsis/reconstruction

)

system, exact reconstruction requires that
2 Jo 2, Jan
Hy(e’)y — Hi(e’) = 2.
The filters used are hence designed in such a manner that the wavelet used in one branch
is approximately the Hilbert Transform of the wavelet in the other branch. The

coefficients in one branch can then be considered the real part of a complex wavelet

transform with the coefficients in the other branch considered as the imaginary part. The
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dual-tree CWT used here is of length-8 filters, the table of coefficients of the analysing
filters in the first stage. The reconstruction filters are obtained by simply reversing the

alternate coefficients of the analysis filters.

h(0) | -001050740 | g(0) | -0.23037781
[) | 003288301 |g(I) | 0.71484657
003084138 | o(2) | -0.63088076
018703481 | g(3) | -0.02798376
4) | 002798376 [ g(4) | 0.18703481
) | 063088076 | g(5) | 0.03084138
6) | 071434657 | g(6) | -0.03288301
7y | 023037781 [e(7) | -0.01059740

Table 1: Coefficients of Daubechies wavelet transform filter used in the

experiment.

2) THE 1-D DUAL-TREE CWT
Because the 1-D wavelet and scaling filters neglect the negative half spectrum, these
regions cover only the first quadrant of the frequency cell. However, real images contain
non-redundant information in both first and second quadrants; therefore, we need to
include a parallel processing path whose equivalent filters Each level of the complete tree
produces six complex valued bandpass subimages as well as two lowpass subimages and

on which the subsequent filtering stage operates.
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Figure 3.5 2D-Complex Wavelet Transform
3) EXTENSION TO MULTI-DIMENSIONS

To extend the transform to higher-dimensional signals, a filter bank is usually applied

separably in all dimensions. The 2-D DWT produces three bandpass subimages at each

level, which are corresponding to LH, HH, HL, and oriented at angles of 0°, £45°, 90°.
CWT REAL. PART

CWT IMAGIMNARY PART

REAL DWT

g0 15 0
Figure 3.6. 2-D impulse responses of the complex wavelets at level 4 (6 bands at angles
from -75° to +75°) and equivalent responses for a real wavelet transform (3 bands)
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The 2-D CWT can provide six subimages in two adjacent spectral quadrants at each

level, which are oriented at angles of £15°, £45° £75° This is shown in fig 3.6

The strong orientation occurs because the complex filters are asymmetry responses. They
can separate positive frequencies from negative ones vertically and horizontally. So
positive and negative frequencies won’t be aliasing. The orientations of details is shown

in fig 3.7.
2L

r—

Figure 3.7 Directional selectivity of the frequency space corresponding to the complex

wavelet transform

CONVERSION FROM THE XWT TO THE NDXWT

The implementation of the XWT is identical to the implementation of the
DWT with complex valued filters. The conversion of the XWT to its non-
decimated form (NDXWT) is therefore identical to the conversion of the DWT to
its non-decimated form(NDWT), i.e., all subsampling is removed and all filters

past the first level are upsampled.
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3.3.2.3 WAVELET PACKET TRANSFORM

Wavelet packet transform (WPT) is a generalization of the dyadic wavelet
transform (DWT) that offers a rich set of decomposition structures. WPT was first
introduced by Coifman ef al. [16] for dealing with the nonstationarities of the data better

than DWT does.

J

T @
J # EY-
-G

Fig. 3.8 Full wavelet packet binary tree for two levels

The wavelet decomposition can be done in two different ways:

» pyramid-structured wavelet transform,

» tree —structured wavelet transform
The wavelet decomposition of an image, u;ing ;)yramid-structured wavelet transform,
generates a set of subimages, which contains low-frequency components of the original
image. This decomposition is suitable for images in which the majority of information is
concentrated in low frequency region, i.e. for inspection images primarily with smooth

components.

Many researchers have concluded [4] that the most significant information of
texture often appears in the middle frequency bands. Hence, further decomposition in the
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lower frequency region by conventional wavelet transform may not help much Therefore
an appropriate way to perform wavelet transform for textured image is to locate dominant
frequency bands and then decompose them further. This leads to the concept of tree-

structured wavelet transform or wavelet packets.

The hierarchical wavelet transform uses a family of wavelet functions and its
associated scaling functions to decompose the original signal (image) into different
subbands due to their finite duration which provides both the frequency and spatial
locality The key difference between the traditional pyramid algorithm and the wavelet
packet algorithm is that the recursive decomposition is no longer applied to the low
frequency sub-bands. Instead, it is applied to any of the frequency bands based on some

criterion or cost function, leading to quadtree structure decomposition.

D
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Fig 3.9 Decomposition structure at 0.5bpp of the boat image
If an orthonormal wavelet basis has been chosen, the coefficients computed are
independent and possess a distinct feature of the original signal. Wavelet packets can be

described by the following collection of basis functions[18]:

L]

W, 27 x— D =23 h(m — 20N 27 W, (27 x — )

Wy n (27 x =) = V257 S g — 2DV 2P W, (27 x —m)

where p is a scale index, | is a translation index, h is a lower-pass filter , g is a
high-pass filter with g(k) =(-~1)k h(1 — k) . The function Wy( x) can be identified with

the scaling function ¢ and W; (x } with the mother wavelet y .The search for the “best”
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non-redundant representation of the data by any subtree of the WPT is called best-basis
selection[5] . Best-basis selection begins by evaluating each subband with a desired

metric (e. g. rate or distortion, entropy, variance, energy).

First, we perform a full wavelet packet decomposition for each class texture and

use the energy measure as signatures for the coefficients (See Algorithm]1).

Algorithm 1: Tree-Structured Wavelet Transform

1) Decompose a given textured image with 2-D two-scale wavelet transform
into 4 subimages, which can be viewed as the parent and children nodes
in a tree as

2) Calculate the energy of each decomposed image (children node). That is,
if the decomposed image is x(m, n),with 1 <= m<= M and | <=n<= N,
the energy is

M N

i
€ = m‘* ZZ l:r(m,n)l.
=1 j=l _____________ (6)
3) If the energy of a subimage is significantly smaller than others, we stop

the decomposition in this region since it contains less information. This
step can be achieved by comparing the energy with the largest energy
value in the same scale.

4} If the energy of a sﬁbima;ge is significantly larger, we apply the above

decomposition procedure to the subimage.

However, the full wavelet packet decomposition will produce many coefficients
and so a large feature set will be obtained. As proposed by Chang and Kou [4], the most
dominant frequency channels obtained from tree structured wavelet transform are very
good for discriminating textures. Hence, we can reduce the feature set by means of

choosing the signatures with highest energy value
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Practically, the size of the smallest subimages should be used as a stopping
criterion for further decomposition. If the decomposed channel has a very narrow size,
the location and the energy value of the feature may vary widely from sample to sample
so that the feature may not be robust. According to our experience, the size of the
smallest subimages should not be less than 16 x 16. Consequently, if the input image size
is 256 x 256 (or 64 x 64), a 4-level (or 2-level) tree-structured wavelet transform is

appropriate.

WPT exploits interband and intraband dependencies of the transform coefficients.
Experimental results show that wavelet packet transform brings consistent improvement
over dyadic wavelet transform. Wavelet Packet Transform (WPT) provides good spectral

and temporal resolutions in arbitrary regions of the time-frequency plane.

3.4 GRADIENT ESTIMATION

Since an edge is defined by an abrupt change in intensity value, an operator that is
sensitive to this change can be considered as an edge detector. The rate of change of the
intensity values in an image is large near an edge and small in constant areas. Therefore,
a gradient operator may be used in order to highlight the edge pixels.

In two-dimensional images, it is important to consider level changes in many directions.
For this reason, the directional sensitive gradient operators are used. The output of any
directional sensitive gradient-operator contains information about how strong the edge is

at that pixel in the same direction of the operator sensitivity.
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3.4.1 GRADIENT EXTRACTION FROM THE NDXWT TRANSFORM

Figure 3.10 Complex Wavelet Subband

The above figure shows the magnitude of a single, orientated, second scale subband from
a NDXWT complex wavelet decomposition of the Lena test image, This image shows
how the texture content is highlighted by wavelet subbands (see the feather region on
Lena’s hat). It is therefore reasonable to characterize the texture content at each spatial
position (x,y)using the feature vector t(X,Y) (where i is the NDXWT subband number
and the vector Ti(x,y) values are defined as the NDXWT subband coefficient magnitude
at that position). This is made possible because the nondecimated wavelet subbands are
all the same size as the image.

A simple approach to obtaining the texture gradient of an image would then be to
calculate the gradient of each subband magnitude and sum them. This would work for
purely textured images. However, all texture extraction methods will give high energy
values over simple intensity boundaries found in nontextured image regions (see the edge
of the top of the hat in Fig. 7). The gradient of the subband magnitudes will give a double
edge at such intensity boundaries. The gradient of each subband should therefore aim at

step detection rather than edge detection. A simple method to perform this is a separable
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median filtering on the magnitude image followed by gradient extraction. This has the
effect of removing the edges and preserving the steps. The texture content can then be
represented by the median filtered versions of the subband magnitudes.

Since an edge is defined by an abrupt change in intensity value, an operator that is
sensitive to this change can be considered as an edge detector. The rate of change of the
intensity values in an image is large near an edge and small in constant areas. Therefore,
a gradient operator may be used in order to highlight the edge pixels.

In two-dimensional images, it is important to consider level changes in many directions.
For this reason, the directional sensitive gradient operators are used. The output of any
directional sensitive gradient operator contains information about how strong the edge is

at that pixel in the same direction of the operator sensitivity.

Here the horizontal gradient is calculated as

B(.ky=AG k+1)- AGk-1) - (7
The vertical gradient is calculated as

B(,k)=AG+1.k+1)- A(G-1.k) e (8)

The gradient of the image is calculated as the square root of the sum of the squares of the
horizontal and vertical gradients.

This can be represented by: MT;(x,y)=MedianFilter( Ti(x,y)) for I<i<n --—————--(9)

3.4.2 MEDIAN FILTER

The median filter is a non-linear digital filtering technique, often used to remove
noise from images or other signals. It is particularly useful to reduce speckle noise and
salt and pepper noise. Its edge-preserving nature makes it useful in cases where edge

blurring is undestrable

How It Works

The median filter considers each pixel in the image in turn and looks at its nearby

neighbors to decide whether or not it is representative of its surroundings. The values in
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the window are sorted into numerical order; replace the center value in the window with

the median of all the pixel values in the window. The kernel is usually square but can be

any shape. . (If the neighborhood under consideration contains an even number of pixels,

the average of the two middle pixel values is used.) Figure 3.11 illustrates an example

calculation.

An example of median filtering of a single 3x3 window of values is shown

123 1125 | 126 | 130 | 140
122 1124 | 126 | 127 | 135
118 | 120 | 150 | 125 | 134
119 1115 | 119 {123 | 133
111 {11s | 110 | 120 | 130

- Neighbourhood values:

115, 119,120,123, 124,
125, 126, 127, 150

-  Median value: 124

Figure 3.11Calculating the median value of a pixel neighborhood. A 3x3 square

neighborhood is used here --- larger neighborhoods will produce more severe smoothing.

The median filter has two main advantages over the mean fiiter:

o The median is a more robust average than the mean and so a single very

unrepresentative pixel in a neighborhood will not affect the median value

significantly.

e Since the median value must actually be the value of one of the pixels in the

neighborhood, the median filter does not create new unrealistic pixel values when

the filter straddles an edge. For this reason the median filter is much better at

preserving sharp edges than the mean filter

e In general, the median filter allows a great deal of high spatial frequency detail to

pass while remaining very effective at removing noise on images where less than

half of the pixels in a smoothing neighborhood have been effected. (As a
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consequence of this, median filtering can be less effective at removing noise from

images corrupted with Gaussian noise.)

Other advantages
o Gives more smoothing but more distortion
o It removes 'impulse’ noise (outlying values, either high or low).

o in the presence of noise it does blur edges in images slightly.

MEDIAN FILTER

Figure 3.12 Median filtered image
The median filtering should reflect the size of the edges in the complex “subbands
produced by simple intensity boundaries in order to negate them, i.e.octave scale median
filtering. In order to calculate the gradient of the texture content one needs to consider the
gradient within the multidimensional feature space. The simplest way to do this is to sum
the gradients obtained for each of the individual features. Defining to be the magnitude of

the texture gradient we have:

(L)
| V(M (5, m))|
TG, )y = : ‘
( » & ) ; IE ( MT'; )
—~---(10)
where is the number of subbands and A is approximated using a Gaussian derivative

gradient extraction technique [18] [with the scale parameter set to 2.0]. LbMT; is the |,
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norm energy of the median filtered subband and is included to normalize the effect of
each subband on the gradient.

The TG gradient clearly highlights the edge of the texture regions in the artificial texture
images together with the natural image (see edge of the feathers in the hat). Clearly this
gradient is suited to the detection of texture boundaries. In order to preserve the ability of
the system to detect intensity changes, this gradient is combined with a simple intensity

gradient as follows:

1.2
Glz,y) = misx X (|Vf])

)= TG yp T

where G(x,y) is the final combined gradient and mix is a suitably chosen constant for
mixing the intensity and texture gradients. v F is just the gradient of the plain intensity
image calculated
using the Roberts Operator
F(MT(x,y)|) is defined as
{ mean(MT|) if <=mean(|MT))

{
{ (MT(x.y) if IMT(x,y)[>=mean(|MT])
nos - the n umber of complex sub bands produced by the non decimated

complex wavelet packet decomposition

The power 1.2 of ( W FD’?  : This is included to increase the dynamic range of the
.- gradient image emphasizing the larger gradient values.

The power of 3 of (TG(x,)) : This is included to emphasize the larger texture gradient
values. This is necessary because the newly defined
texture gradient has a smaller dynamic range.

The function F - The F(\MT, (x,y)|3 factor is included to reduce the effect
of the spurious gradients within highly textured regions.
The F function is included so the factor

F(\MT¢x,y)|’ does not relatively elevate the importance of

the regions where |MT(x,y)| is small.
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3.5 MARKER DRIVEN SEGMENTATION

The problem of over-segmentation of
the watershed method was dealt with through the flooding from selected sources (i.e.,
marker driven segmentation). The other methods were not chosen as they did not apply
easily to texture gradients [11] or they tend to produce small residual regions
(hierarchical watersheds [8]) and therefore were not suited to an application to region
characterization. Most of the marker selection methods suggested by Beucher[5] are
application dependant
The aim of marker identification within a content based retrieval application is to
pinpoint regions that are homogeneous in terms of texture, color and intensity and of a
significant size. To meet these criteria a minimum region, moving threshold and region
growing method was adopted as shown in Algorithm I1.
This algorithm calculates the mean and standard deviation of the gradient image. Then
several thresholded binary images are produced at reasonably spaced thresholds using the
mean and standard deviation of gradient image. For each binary thresholded image, the
number of closed and connected regions greater than the given minimum size is
calculated. The threshold with the maximum number of connected regions is used as the
output marker image. This is a similar method to that developed by Deng and Manjunath

[21] although this not applied to marker selection.

Algorithm {I: MinsizeThreshold(minsz,G)

Comment :minsz - the minimum acceptable marker size
Comment : G - input Gradient image
std = STANDARDDEVIATION OF G
median = MEDIANOF G
threshs[12] = {-0.9,-0.6,-0.55,-0.5,-0.4,-0.35, -0.3,-0.2,-0.1,0.0,0.1,0.2}
fori=1to 12
{ thresholdLevel = median + threshsfi] * std

thresholdImage = GTl(threshoidlLevel,G)
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GCRIL.T(minsz)
NOR(markerlmage[i])

markerlmage]|i]

I

regionNumberfi]

}

minlndex= FindMinValue(regionNumbers)

return{markerImage(minlndex})

Comment : GTI - GetThresholdImage
Comment : GCRLT - GetConnected RegionsLessThan
Comment : NOR - Number of Regions

The smaller the value of minsize may lead to oversegmentation. However the larger
values may lead to separate regions being merged. This is a common problem for
segmentation algorithms. However these images show how the presented algorithm is

able to properly segment image regions according to intensity and texture changes.

3.6 WATERSHED TRANSFORMATION

WATERSHEDS are one of the classics in
the field of topography. Everybody has heard for example about the great divide, this
particular line which separates the U.S.A. into two regions. A drop of water falling on
one side of this line flows down until it reaches the Atlantic Ocean, whereas a drop
falling on the other side flows down to the Pacific Ocean. As we shall see in further detail
later, this great divide constitutes a typical example of a watershed line. The two regions
" it separates are called the catchment basins of the Atlantic and the Pacific Oceans,

respectively. The two Oceans are the minima associated with these catchment basins.
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Mimna

Fig.3.13. Building dams at the places where the water different minima would merge

coming from two different minima would merge.

Let us express this immersion process more formally: I being the grayscale image under
study, denote hp;, the smallest value taken by I on its domain DI. Similarly, denote hpay,
the largest value taken by I on DI. In the following, Th(l) stands for the threshold of I at

level h;

Tp(I) = {p € D;,I(p) < h}.

We aiso denote C(M) the catchment basin associated with a minimum M and Ch(M) the

subset of this catchment basin made of the points having an altitude smaller or equal to h:
Ca(M) = {p € C(M),I(p) < b} = C(M) N Tu(I).

By analogy, we can figure that we have pierced holes in each regional minimum of L, this
picture being regarded as a (topographic) surface. We then slowly immerse our surface
into a lake. Starting from the minima of lowest altitude, the water will progressively fill
up the different catchment basins of I. Now, at each pixel where the water coming from
two different minima would merge, we build a “dam” (see Fig. 2). At the end of this
immersion procedure, each minimum is completely surrounded by dams, which delimit
its associated catchment basin. The whole set of dams which has been built thus provides
a tessellation of I in its different catchment basins. These dams correspond to the

watersheds of 1.
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This informal analysis of the immersion process can be established mathematically by the
definition of ‘geodesic distance’ and ‘geodesic influence zone’. ‘Geodesic influence
zone’ deals with the expansion of the plateau from each local minimum for watersheds

transformation.

Definition: Geodesic Distance

The geodesic distance dA(x,y) between two pixels x and y in A is the infimum (greatest

lower bound of given set) length of the paths which join x and y and are totally included
in A.

Definition: Geodesic Influence Zone

Suppose A contains a set B consisting of several connected components Bl, B2 .
Bk. The geodesic influence izA(B.) of a connected component B of B in A is the locus of
1 1
the points of A whose geodesic distance to B_is smaller than their geodesic distance to
1

any other component of B. It can be expressed as
iz a (B)={ p€ A, ¥j €[1k] /{i}, da ,(p.B)} ---mmme=(14)
The immersion process and its results along with catchment basins and watersheds can be

described in terms of geodesic influence zone.

geodesic

catchment
bagins

Figure 3.14: Illustration of Geodesic Influence Zone
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Definition: Catchment Basins and Watersheds by Immersion

The set of the catchment basins of the gray-scale image I is equal to the set X

hmax
obtained after the following recursion:
1.X, =7, (D. L) ={peD, I(p)s h}.
2. 90 & [Iyy By =1} Xoy =min Uiz (X))
————————————— (1%)

The immersion procedure is done in the recursion, and the watersheds of | correspond to

the set of the points of DI which do not belong to any catchment basin.

From these basic concepts and primitive algorithm, Luc and Pierre improved the
immersion-based algorithm for watersheds extraction. The algorithm consists of two
important
steps, sorting and flooding and the queue structure is used to make computation time
shorter. A mathematical dilation process is used to find new local minimum candidates

and to find the geodesic influence zone in flooding.

In the topographic representation of a given image I, the numerical value (i.e., the gray
tone) of each pixel stands for the elevation at this point.

Roughly speaking, it is based on a sorting of the pixels in the increasing order of their
gray values, and on fast breadth-first scannings of the plateaus enabled by a first-in-first-
out type data structure. Its adaptation to any kind of underlying grid (4-, 6-,
&connectivity . . . ) is straightforward, and it can be fairly easily extended to n-

dimensional images and even to graphs.
Our implementation, here decomposed is into two steps:
= initial sorting

= flooding step
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The Sorting Step

Among the vast number of available sorting
techniques [19], one is particularly suited to the present problem. It is a distributive
algorithm [19] which resorts to address calculations. This technique was introduced by E.
J. Isaac and R. C. Singleton in [20] and is briefly described in [19, pp. 162-1661. The
procedure first determines all the exact frequency distribution of each image gray level.
The cumulative frequency distribution is then computed. This induces
the direct assignment of each pixel to a unique cell in the sorted array.

Let us denote n the number of image pixels
and hpi, and h,, the lowest and largest gray levels, respectively. The present sorting
technique has the considerable advantage of requiring only 2n “look and do” operations-
one for determining the frequency distribution and the other for the assignment-plus h,, -

hmin - 1 additions to get the cumulative frequency distribution.

The Flooding Step

Once the pixels have been sorted, we
proceed to the progressive flooding of the catchment basins of the image. Suppose the
flooding has been done up to a given level h. Every catchment basin already discovered-
i.e., every catchment basin whose corresponding minimum has an altitude lower or equal
to h-is supposed to have a unigque label. Thanks to the initial sorting, we now access the
pixels of altitude h + 1 directly and given them a special value, say MASK. Those pixels
among them which have an already labeled pixel as one of their neighbors are put into the
queue. Starting from these pixels, the queue structure enables to extend the labeled
catchment basins inside the mask of pixels having value MASK, by computing geodesic
influence zones. After this step, only the minima at level h + 1 have not been reached.
Indeed, they are not connected to any of the already labeled catchment basins. Therefore,
a second scanning of the pixels at level h + 1 is necessary to detect the pixels which still

have value MASK. and to give a new label to the thus discovered catchment basins.
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Fig 3.15 According to the hexagonal distance, all the bold pixels (gray areas) are

equidistant to the two black ones.

The queue which is used is a first-in-first-out data structure: the pixels which are first put
into it are those which can first be extracted. In practice a queue is simply a large enough

array of pointers to pixels, on which three operations may be performed:
fifo-add(p)  Puts the (pointer to) pixel p into the queue.

fifo-first() ~ Returns the (pointer to) pixel which is at the beginning of the queue, and
removes it from the queue.

fifo-empty () Returns true if the queue is empty and false otherwise.

In order to implement such operations, a kind of “circular” queue is one
of the most efficient choices: the array representing our FIFO structure is addressed by
two indexes, ptr-first and ptr-last. Each time a new element is put into the queue, it is
stored at the address toward which ptr-last is pointing. prt-last is then incremented. When
the limit of the array is reached, this index loops back to the beginning of the array.
Similarly, ptr- first is a pointer toward the first element which can be removed from the
structure, and is incremented after each removal. It may also loop back to the start of the
array.

Not only does the use of a queue of pixels speed up the computations, it also allows us to

solve the accuracy problems.
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CHAPTER 4
IMPLEMENTATION RESULTS

4.1 SEGMENTATION : CAMERAMAN IMAGE

+} Figure No. 1 IZJ@]@
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Figure 4.1.1 Input image of Cameraman image for image segmentation
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Figure 4.1.2 Texture Gradient image of Cameraman Image
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b Figure No. 3
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Figure 4.1.3 : Foreground Marker for Cameraman image
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Figure 4.1.4 Background Marker Extracted for Cameraman Image
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Figure 4.1.5 Watershed extracted image of Cameraman Image
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4.2 SEGMENTATION : LENA IMAGE
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Figure 4.2.1 Input image of Lena image for image segmentation

44



<} Figure No. 2
File Edit view Insert Tools Window Help

BEHS NAP/ | BED

Figure 4.2.2 Texture Gradient image of Lena Image "
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Figure 4.2.3 Foreground Marker for Lena Image
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Figure 4.2.4 Background Marker Extracted for Léna Image
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Figure 4.2.5 Watershed extracted image of *Lenavlmage
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-) Figure No. 1
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Figure 4.3.1 Input image of Rice Grain for image segmentation
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Figure 4.3.2 Texture Gradient image of Rice Grain Image
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Figure 4.3.3 Foreground Marker for Rice Grain Image
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Figure 4.3.4 Background Marker Extracted for Rice Grain
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-} Figure No. 6
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Figure 4.3.5 Watershed extracted image of Rice Grain
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CHAPTER 5

CONCLUSION AND FJTURE WORK

5.1 CONCLUSION

In this project, the non decimated complex wavelet packet transform is
constructed  using Best basis selection algorithm having cost function as energy. The
image is then median filtered to perform smoothening and the gradient of the image is
extracted using Roberts operator. Then the textured gradient is extracted because it is
more efficient for homogeneous region .Then the image is segmented using immersion
procedure where the catchment basins are flooded from the minima. To prevent over

segmentation the marker driven segmentation algorithm is developed.

5.2 FUTURE WORK

In this project the Roberts Operator is used. Though the
computation speed can be increased it could resuit in less clarity of image. This could be
enhanced by using the Guassian derivative gradient. Moreover the entire image
segmentation procedure could be applied to more sophisticated applications in medical

fields where the proper segmentation of images is very important.
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