f—26570

SECURING MOB'I'I_JE AD HOC

NETWORKS USING IKM

A PROJECT REPORT

Submitted by

M.AARTHI PRIYA 71205205001
RAMYA.N. . 71205205045

T.YAMINI 71205205060

in partial fulfillment for the award of the degree
of
BACHELOR OF TECHNOLOGY

IN

INFORMATION TECHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE
ANNA UNIVERSITY : CHENNAI 600 025

APRIL 2009

ANNA UNIVERSITY : CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “SECURING MOBILE AD HOC NETWORKS
USING IKM” is the bonafide work of MLAARTHI PRIYA, RAMYA.N AND
T.YAMINI who carried out the project work under my supervision.

o _@wﬂp LI — X

SIGNATURE SIGNATURE

Ms.N.Suganthi Dr.S.Thangasamy

SUPERVISOR DEAN

Department of Department of

Information Technology, Computer Science and Engineering,
Kumaraguru College Of Technology, Kumaraguru-College Of Technology,
Coimbatore-641006. Coimbatore-641006.

The candidates with University Register Nos. 71205205001, 71205205045 &
71205205060 examined by us in the project viva-voce examination held on

A\ N
X .

INTERNAL/EXAMINER EXTERNAL EXAMINER

DECLARATION

We,
M.AARTHI PRIYA Reg.No: 71205205001
RAMYA.N Reg.No: 71205205045
T.YAMINI Reg.No: 71205205060

hereby declare that the project entitled “SECURING MOBILE AD
HOC NETWORKS USING IKM”, submitted in partial fulfillment to
Anna University as the project work of Bachelor of Technology
(Information Technology) degree, is a record of original work done by us
under the supervision and guidance of Departmentl of Information
Technology, Kumaraguru College of Technology, Coimbatore.

Place: Coimbatore

Date: 27.pa4- 2009

PN
T Ao Sial
[M.Aarthi priya] [Ramya.N] [T.Yamini]

Project Guided by

- & (/M

[L.S Jayashree M.E., Ph.D] [Ms.N.Suganthi M.E,, Ph.D D]

ACKNOWLEDGEMENT

We express our sincere thanks to our Chairman Padmabhushaan
Arutselvar Dr.N.Mahalingam B.Sc., F.LE., Vice Chairman Dr.K.
Arumugam B.E., M.S., ML.L.LE., Correspondent Shri.M.Balasubramaniam
and Joint Correspondent Dr.A.Selvakumar for all their support and ray of
strengthening hope extended. We are immensely grateful to our Vice-
Principal, Prof.,R.Annamalai for his invaluable support to the outcome of
his project.

We are deeply obliged to Dr.S.Thangasamy, BE (HONS), Ph.D.,
- ‘Dean, Department of Computer Science and Engineering for his valuable
guidance and useful suggestions during the course of this project.

We also extend our heartfelt thanks to our project co-ordinator
Ms.L.S.Jayashree M.E.,Iﬁ, Asso. Prof., Department of Information
Technology for providing us her support which really helped us.

We are indebted to our project guide Ms.N.Suganthi, M.E.,Iﬁ,
Sr.Lecturer, Department of Information Technology for her helpful guidance
and valuable support given to us throughout this project.

We thank the teaching and non-teaching staffs of our Department for
providing us the technical support during the course of this project. We also

thank all of our friends who helped us to complete this project successfully.

CHAPTER NO.

w

RSk

TABLE OF CONTENTS

TITLE
ABSTRACT
LIST OF FIGURES
INTRODUCTION
1.1. GENERAL
1.2. PROBLEM DEFINITION
1.3.OBJECTIVE OF THE PROJECT
LITERATURE REVIEW
2.1.FEASIBILITY STUDY

2.1.1.CURRENT STATUS OF THE
PROBLEM

2.1.2.PROPOSED SYSTEM AND
ADVANTAGES

2.2 HARDWARE REQUIREMENTS
2.3.SOFTWARE REQUIREMENTS
2.4.SOFTWARE OVERVIEW

DETAILS OF THE METHODOLOGY
EMPLOYED

PERFORMANCE EVALUATION
CONCLUSION

FUTURE ENHANCEMENTS
APPENDICES

REFERENCES

PAGE NO.

]

14

20
22
23
24
39

ABSTRACT

Many group-oriented and mobile ad-hoc applications require security
services. We therefore need a secure distributed group key agreement scheme so
that the group can encrypt their communication data with a common secret group
key. Tree-Based Group Diffie-Hellman (TGDH), which uses a binary key tree to
arrange all the keys, is used for secure group key distribution. The keys are
generated from the ID’s (IKM) assigned to the members. The rekeying can be
implemented either for every member join/leave (Individual rekeying) or for a
batch of join/leave events in a given interval (Interval-based rekeying). The
Interval based rekeying (Queue Batch) is efficient than individual rekeying. In our
project we compare the time taken for a set of join/leave events in these
approaches. This distributed contributory group key provides backward
confidentiality (i.e., joined members cannot access previous communication data)
and forward confidentiality (i.e., left members cannot access future communication

data).

LIST OF FIGURES:

FIGURE NO. TITLE

1.
2.

3

A key tree used in the TGDH protocol.
Illustration of the rekeying operation after a single leave
Illustration of the rekeying operation after a single join

Example of the Queue-Merge Phase

PAGE NO.
14
16
17
19

INTRODUCTION

GENERAL

LINTRODUCTION :

1.1. GENERAL:

With the emergence of many group-oriented mobile ad-hoc
applications, there is a need for security services to provide group-oriented
communication privacy and data integrity. To provide this form of group
communication privacy, it is important that members of the group can
establish a common secret key for encrypting group communication data.
We therefore will require a secure distributed collaborative dynamic group
key agreement scheme so that the group can encrypt their communication
data with a common secret group key. This scheme differs from the
traditional secure key communication by:

a) distributed nature in which there is no centralized key server,

b) collaborative nature in which the group key is contributory (i.c., each
group member will collaboratively contribute its part to the global
group key), and

¢) Dynamic nature in which existing members may leave the group
while new members may join.

Here, group members are arranged in a logical key hierarchy known as a key
tree. Using the tree topology, it is -easy to distribute the group key to
members whenever there is any change in the group membership (e.g., a

new member joins or an existing member leaves the group).

PROBLEM DEFINITION

1.2. PROBLEM DEFINITION:

To achieve secure group communication for mobile ad-hoc
networks, the key tree approach is used which associates keys in a
hierarchical tree. In order to efficiently maintain the group key in a dynamic
group with more than two members, we use the Tree-Based Group Diffie-
Hellman (TGDH) protocol which uses a binary key tree to arrange all the
keys, is used for secure group key distribution. The keys are generated from

the ID’s (IKM) assigned to the members.

In this approach, we establish a group key via a distributed and
collaborative approach for a mobile ad-hoc network. Each member of the
group contributes its part to the overall group key and re-keying is
performed at each join or leave event. This is implemented either for every
member join/leave (Individual rekeying) or for a batch of join/leave events
in a given interval (Interval-based rekeying). In our project we compare
Individual and Interval-Based rekeying approaches based on the time taken
for a predefined set of join/leave requests and the number of requests

handled within a specified time.

OBJECTIVE OF THE PROJECT

1.3. OBJECTIVE OF THE PROJECT:

The main intent of the project is to provide a fundamental
understanding about establishing a group key via a distributed and
collaborative approach for mobile ad-hoc networks and performing efficient
rekeying. We show that one can use the TGDH protocol to achieve such

distributive and collaborative key agreement.

To reduce the rekeying complexity, an interval-based approach
is used to carry out rekeying for multiple join and leave requests at the same
time. To show that the interval based algorithms significantly outperform the
individual rekeying approach and show that the Queue-batch algorithm

performs the best.

LITERATURE REVIEW

FEASIBILITY STUDY

CURRENT STATUS OF THE PROBLEM

2. LITERATURE REVIEW:
2.1. FEASIBILITY STUDY:
2.1.1. CURRENT STATUS OF THE PROBLEM:

With the emergence of many group-oriented mobile ad-hoc
applications, there is a need for security services to provide group-oriented
communication privacy and data integrity. To provide this form of group
communication privacy, it is important that members of the group can
establish a common secret key for encrypting group communication data.

To achieve secure group communication, Wallner et al. and

~ Wong et al propose the key tree approach that associates keys in a
hierarchical tree and rekeys at each join or leave event. Li et a/. and Yang et
al. then apply the periodic rekeying concept in Kronos to the key tree
setting. All the key-tree-based approaches require a centralized key server
for key generation. All the above schemes are decentralized and hence avoid
the single-point-of-failure problem in the centralized case, though they
introduce high message traffic due to distributed communication. These
approaches do not have a previously agreed upon common secret key,
communication between group members is susceptible to eavesdropping.

Centralized protocols rely on a centralized key server to
distribute the group key. But Centralized servers are susceptible to single
point attack, breach of security and are not suitable for peer groups and ad
hoc networks. Here, Group key is not generated in a shared and contributory
fashion. So backward confidentiality (i.e., joined members cannot access
previous communication data) and forward confidentiality (i.e., left

members cannot access future communication data) cannot be provided.

PROPOSED SYSTEM AND ITS ADVANTAGES

2.1.2. PROPOSED SYSTEM AND ITS-ADVANTAGES :

To solve the problems faced by the Centralized key server, we need a
secure distributed group key agreement so that people can establish a
common group key for secure and private communication in mobile ad-hoc
networks. Note that this type of key agreement protocols is both distributed
and contributory in nature: each member of the group contributes its part to
the overall group key. Moreover, an advantage of distributed protocols over
the centralized protocols is the increése 1n System reliability, because the
group key is generated in a s.hared'and contributory fashion and there is no

single-point-of-failure.

This scheme differs from the traditional secure key communication by:

a) distributed nature in which there is no centralized key server,

b) collaborative nature in which the group key is contributory (i.e., each
group member will collaboratively contribute its part to the global
group key), and

¢) Dynamic nature in which existing members may leave the group
while new members may join.

Here, group members are arranged in a logical key hierarchy
known as a key tree. Using the tree topology, it is easy to distribute the
group key to members whenever there is any change in the group
membership. Group key is generated in a shared and contributory fashion.

So backward confidentiality and forward confidentiality are ensured.

HARDWARE AND SOFTWARE REQUIREMENTS

2.2,

2.3.

HARDWARE REQUIREMENTS :

Processor . Inte]l Pentium I1I 500 MHz

Primary Memory : 128 MB
Secondary memory(Hard disk) : 10 GB
Other Equipment : Keyboard, Mouse.

SOFTWARE REQUIREMENTS :

Operating System : Windows 2000 or XP
Front End Used . NetBeans IDE 6.0
Language Used : Java

Software Required : J2SDK 1.6

SOFTWARE OVERVIEW

2.4. SOFTWARE OVERVIEW :
Introduction to Java :

Java is an object-oriented programming language
developed by Sun Microsystems, a company best known for its high-end
UNIX/LINUX workstations. Modeled after C++, the java language is
designed to be small, simple and portable across platforms and operating
systems, both at source and the binary level, which means that java
programs can run on any machine that has java virtual machine installed.
There are two types of java programs. They are java applets and java
applications.

Java is a platform independent at both the source level
and the binary level; platform independence means that a program can run
on any computer system. Java programs can run on any system for which a
Java Virtual Machine has been installed. Unlike other programming
languages when java programs are compiled byte codes are generated which
is a special set of machine instructions that are not specific to any one-
processor or computer system.

Unlike most object-oriented languages, Java includes
a set of input and output capabilities and other utility functions. Then basic
libraries are part of standard environment, which includes simple libraries
from networking, common Internet protocols and user interface toolkit
functions. Because the libraries are written in Java, they are portable across
platforms as all Java applications are. Apart from these features, Java has the
following features:

Features:

1. Simple

2. Object-oriented
3. Distributed

4. Robust

5. Secure

6. Architecture neutral
Portable
Interpreted

. High performance
10 Multithreaded

11. Dynamic

0 20 =

¢ Java is simple.

What it means by simple is being small and familiar. Sun
designed Java as closely to C++ as possible in order to make the system
more comprehensible, but removed many rarely used, poorly understood,
confusing features of C++. These primarily include operator overloading,
multiple inheritance and extensive automatic coercions. The most important
simplification is that Java does not use pointers and implements garbage
collection so that we don’t need to worry about dangling pointers, invalid
pointer references and memory leaks and memory management.

¢ Java is secure.
Java is intended to be used in networked environments.
Toward that end, Java implements several security mechanisms to protect us
against malicious code that might try to invade your file system. Java
provides a firewall between a networked application and our computer.

e Java is object-oriented.

This means that the programmer can focus on the data in his
application and the interface to it. In Java everything must be done via
Method invocation on a Java object. We must view our whole application as
an object; an object of a particular class.

e Java is distributed.

Java 1s designed to support applications on networks. Java
supports various levels of network connectivity through classes in java.net.
For instance, the URL class provides a very simple interface to networking.
If we want more control over the downloading data than is through simpler
URL methods, we would use a URLConnectionObject which is returned by
a URL URL.openConnection() method. Also, you can do your own
networking with the Socket and ServerSocket classes.

¢ Javais robust.
Java is designed for writing highly reliable or robust software.
Java puts a lot of emphasis on early chacking for possible problems, later
dynamic (runtime) checking and eliminating situations that are error prone.
The removal of pointers eliminates the possibility of overwriting memory
and corrupting data.

e Java is architecture-neutral.

Java program are compiled to an architecture neutral byte-code
format. The primary advantage of this approach is that it allows a Java
application to run on any system that implements the JVM. This is useful not
only for the networks but also for single system software distribution. With
the multiple flavors of Windows 95 and Windows NT on the PC and the
new PowerPC Machintosh, it is becoming increasingly difficult to produce
software that runs on all platforms.

e Java is portable. -

' The portability actually comes from architecture-neutrality.
But Java goes even further by explicitly specifying the size of each of the
primitive data types to eliminate implementation dependence. The Java
system itself 1s quite portable. The Java compiler is written i9n Java, while
the Java run-time system is written in ANSI C with a clean portability
boundary.

e Java is interpreted.

The Java compiler generates byte-codes. The Java interpreter
executes the translated byte codes directly on system that implements the
Java Virtual Machine. Java’s linking phase is only a process of loading
classes into the environment.

e Java is high performance.

Compared to those high-level, fully interpreted scripting
languages, Java is high-performance. If the just-in-time compilers are used,
Sun claims that the performance of byte-codes converted to machine code ae
nearly as good as native C or C++. Java however, was designed to perform
well on very low-power CPUs.

e Java is multithreaded.

Java provides support for multiple threads of execution that can
handle different tasks with a Thread class in the java.lang Package. The
thread class supports methods to start a thread, run a thread, stop a thread
and check on the status of the thread. This makes programming in Java with
threads much easier than programming in the conventional single-threaded C
and C++ style.

e Java is dynamic.
Java language was designed to adapt to an evolving environment.
It is a more dynamic language than C or C++. Java loads in classes, as they
are needed, even from across the network. This makes the software much
easier and effectively. With the compiler, first we translate a program into an
intermediate language called byte-codes, the platform-independent codes
interpreted on the Java platform.
The intérpreter parses and runs each Java bytecode instruction on the
computer. Compilation happens just once; interpretation occurs each time
the program is being executed.

The Java Platform :

A vplatform is the hardware or software environment in which a
program runs. Most platforms can be described as a combination of the
operating system and hardware. The Java platform differs from most other
platforms in that it’s software only platform that runs on top of other
hardware-based platforms.

The Java platform has two components:

1. The Java Virtual Machine(JVM).

2. The Java Application Programming Interface(Java API).

The JVM is the base for the Java platform and is ported onto various
hardware-based platforms.

The Java API is a large collection of ready-made software
components that provides many useful capabilities, such as GUI, the Java
API is grouped into libraries of related classes and interfaces; these libraries
are known as packages.

NetBeans IDE:

The NetBeans IDE is an open source integrated development
environment written entirely in java using the NetBeans platform.NetBeans
IDE supports development of all Java application types out of the
box.Among other features are an Ant-based project system,version control
and refactoring,.

Modularity: All the functions of the IDE are provided by modules. Each
module provides a well-defined function,such as support for the Java
language,editing, or support for the CVS versioning system. NetBeans
contains all the modules needed for Java development in a single download,
allowing the user to start working immediately. Modules also allow
NetBeans to be extended. New features, such as support for other
programming languages, can be added by installing additional modules. For
instance, Sun Studio, Sun Java Studio Enterprise, and Sun Java Studio
Creator from Sun Microsystems are all based on thé NetBeans IDE.

NetBeans Profiler:

The NetBeans Profiler is a tool for optimization of Java applications. It
helps you find memory leaks and optimize speed. Formerly downloaded
separately, it is integrated into the core IDE since version 6.0.

The Profiler is based on a Sun Laborites research project that was named
JFluid. That research uncovered specific techniques that can be used to
lower the overhead of profiling a Java application. One of those techniques
is dynamic byte code instrumentation, which is particularly useful for
profiling large Java applications. Using dynamic byte code instrumentation
and additional algorithms, the NetBeans Profiler is able to obtain runtime
information on applications that are too large or complex for other profilers.
NetBeans also support Profiling Points that let you profile precise points of
execution and measure execution time.

GUI design tool:

Formerly known as project Matisse, the GUI design-tool allows to
prototype and Swing GUIs by dragging and positioning GUI components.
The GUI builder has also built-in support for JSR 296 and JSR 295.

NetBeans JavaScript Editor:

NetBeans JavaScript Editor provides extended support for JavaScript and

CSS.

Features:

1.JavaScript editor:
o Syntax highlighting,
o Code completion for native objects and functions,
o All NetBeans editor’s features,
o Generation of JavaScript class skeleton,

2. CSS editor extension:

o Code completion for styles names,
Quick navigation through the navigator panel,
Display CSS rule declaration in a List View,
Display file structure in a Tree View,
Sort the outline view by name, type or declaration
order,
Create rule declaration
o Refractor a part of a rule name.

O O O ¢

QO

The NetBeans IDE allows developers to:

Create J2EE applications, automatically add EJB modules and web
modules, and deploy the applications.

Create EJBs from existing source, from scratch, or from an existing
database.

Automatically generate EJB business methods, database calls, and
calls to EJBs.

Create a web module for deployment to the freely avaijlable
Application Server PE 8 or Tomcat.

Add multiple source folders to an EJB module or web module and
create unit tests as part of the project.

Edit deployment descriptors in a graphical editor that is automatically
synchronized with the underlying XML.

Create,register,and test web services.

Import our existing J2EE projects.

NetBeans Key Features:

The NetBeans IDE features significant new development including EJB
Components and web services. It has over 15 modules for developing J2EE
applications and services. The 3 key features are:

Creating EJB Modules, Session Beans, Entity Beans and Message
Driven Beans:

The NetBeans 1DE guides the user through the process to easily
learn how to write an EJB as well as deploy, package, and test
applications.

A GUI 1s available to select an EJB and perform tasks such as
adding business methods and editing deployment descriptors.
All EJB infrastructure methods are generated automatically and are
hiden in a power code fold. _

The resulting EJB module can be easily added to a J2EE
application. '

Entity Beans can be created using an existing database schema.
The NetBeans project structure matches J2EE Java BluePrints
Standards and relies on the ANT Open Standard for the build
system.

Calling EJBs

¢ Using the “Call EJB” feature from within a Servlet, JSP, or web

service saves the user the head ache of writing the INDI lookup
code and required exception handling. It will even work with your
existing ServiceLocator class.

Develop and Test WebServices:

Developers can create, modify, package, deploy and test web
services from the IDE.

Web services can be created from scratch, existing code, and /or
WSDL.

Once created, the web service can be registered with the IDE,
which creates an internal client for testing the web services.

DETAILS OF THE METHODOLOGY EMPLOYED

3. DETAILS OF THE METHODOLOGY EMPLOYED:

TREE-BASED GROUP DIFFIE-HELLMAN PROTOCOL.:

To efficiently maintain the group key in a dynamic peer group with
more than two members, we use the Tree-Based Group Diffie-Hellman
(TGDH) protocol proposed in. Each member maintains a set of keys, which
are arranged in a hierarchical binary tree. We assign a node ID _ to every
tree node. For a given node v. We associate a secret (or private) key K, and
a blinded (or public) key BK, . All arithmetic operations are performed in a
cyclic group of prime order p with the generator « . Therefore, the blinded
key of node v can be generated by

BK, =" mod p..ccoooviivneniiiinieeeeiein. (1)

Each leaf node in the tree corresponds to the individual secret and blinded
keys of a group member M; . Every member holds all the secret keys along
its key path starting from its associated leaf node up to the root node.
Therefore, the secret

key held by the root node is shared by all the members and is regarded as the
group key. Fig. 1 illustrates a possible key tree with six members M; to M .
For example, member M, holds the keys at nodes 7, 3, 1, and 0. The secret
key at node

0 is the group key of this peer group.

M, M, M, M
Fig. 1. A key tree used in the Tree-Based Group Diffie-Hellman protocol.

The node ID of the root node is set to 0. Each non-leaf node v consists of
two child nodes whose node IDs are given by 2,+ 1 and 2,+ 2. Based on the
Diffie -Hellman protocol [6], the secret key of a non-leaf node v can be

generated by the secret key of one child node of v and the blinded key of
- _another child node of v. Mathematically, we have
K, = (BKsv 1) mod p

_ (Bszz)szl mod p

K2v+1K2v+2
= v

Unlike the keys at non-leaf nodes, the secret key at a leaf node is
selected by its corresponding group member through a secure pseudo
random number generator,

Since the blinded keys are publicly known, every member can
compute the keys along its key path to the root node based on its individual
secret key. To illustrate, consider the key tree in Fig. 1. Every member M;
generates its own secret key and all the secret keys along the path to the root
- riode. For example, member M, generates the secret key K, and it can

request the blinded key BKg from M,, BK, from M; and BK, from either M,,
"‘Ms or Mg. Given M,’s secret key K;, and the blinded key BKjg, M, can
~generate the secret key K; according to Eq. 2. Given the blinded key BK,.

and the newly generated secret key K; , M, can generate the secret key K,

based on Eq. 2. Given the secret key K; and the blinded key BK,, M, can
generate the secret key K , at the root. From that point on, any
communication in the group can be encrypted based on the secret key (or

group key) K,.

To provide both backward confidentiality (i.e., joined members
cannot access previous communication data) and forward confidentiality
(i.e., left members cannot access future communication data), rekeying,
which means renewing the keys associated with the nodes of the key tree, is
performed whenever there is any group membership change including any
new member joining or any existing member leaving the group. Let us first
consider individual rekeying, meaning that rekeying is performed after every
single join or leave event. Before the group membership is changed, a
special member called the sponsor is elected to be responsible for updating
the keys held by the new member (in the join case) or departed member (in
the leave case). We use the convention that the rightmost member under the
subtree rooted at the sibling of the join and leave nodes will take the sponsor
role. Note that the existence of a sponsor does not violate the decentralized
requirement of the group key generation since the sponsor does not add extra
contribution to the group key.

B ORONO/NO

| r—
£ My (Moo K%
47 H\?rj T L) (14)
H-:"' 1 2 H: o,
Fig. 20 Tlustration of the rekeying operation after a sinale leave.

Fig. 2 depicts a member leave event. Suppose that member M; leaves
the system. Node 11 is then promoted to node 5,and nodes 2 and 0 become
renewed nodes, defined as-the non-leaf nodes whose associated keys in the
key tree are renewed.

Also, member M, becomes the sponsor. It renews the secret keys K,
and K, and broadcasts the blinded keys BK, and BK;s to all the members.
Members M, , M,, and M; , upon receiving the blinded key BK, , compute
the new group key K. Similarly, members Mg and M, , upon receiving
BKs , can compute K, and then the new group key K.

PSEUDOCODE FOR INDIVIDUAL REKEYING(T)

{

if (a new member joins){

if (T==NULL) /* no new members in T*/

create a new tree _ with the only one new member;
Else /* there are members in T */

find the insertion node;

add the new member to T;

elect the rightmost member under the subtree rooted at the sibling of
the joining node to be the sponsor;

rekey renewed nodes;

)

If(a member wishes to leave)

Remove leaving nodes and promote their siblings;
‘rekey renewed nodes;

}

Fig. 3 illustrates a new member My - that wishes to join the group.
M;- has to first determine the insertion node under which My - can be
inserted. To add a node, say v’ to the insertion node, a new node, say n’, is
first created. Then the subtree rooted at the insertion node becomes the left
child of the node n’ , and the node v’ becomes the right child of the node n’.
The node n” will replace the original location of the insertion node. The
insertion node is either the rightmost shallowest position such that the join
does not increase the tree height, or the root node if the tree is initially well
balanced (in this case, the height of the resulting tree will be increased by 1).
Fig. 3 illustrates this concept.

The insertion node is node 7 and the sponsor is My . Mg - then
broadcasts its blinded key BK, upon insertion. Given BKjs,, M, renews K,
K5 and K, and then broadcasts the blinded keys BKs and BK, to all members
in the group. After receiving the blinded keys from M, all remaining
members can rekey all the nodes along their key paths and compitte the new
group key K.

! M

Fig. 3. Illustration of the rekeying operation after a single join.

Based on the above leave and join events in Figs. 2 and 3, we find that
we can reduce one rekeying operation if we can simply change the
association of node 12 from M; to M.

INTERVAL-BASED DISTRIBUTED REKEYING:

The Queue-batch algorithm is divided into two phases, namely the
Queue-subtree phase and the Queue-merge phase. The first phase occurs
whenever a new member joins the communication group during the rekeying
interval. The thresholds for the completion of the queue-subtree phase are
fixed number (say 15) of join requests, fixed number (say 5) of leave
requests and fixed idle rekeying interval (say 2000 ms). In this case, we
append this new member in a temporary key tree T'. The second phase
occurs at the beginning of every rekeying interval and we merge the
temporary tree T' (which contains all newly joining members) to the existing
key tree T . The pseudo-codes of the Queue-subtree phase and the Queue-
merge phase are illustrated below.

Queue-subtree 'T%;

b, if (a new member joins) {

2. if (¥ == NULL) /* no new members in T’ */

3. create a new lree T with the only one new member:

4. else { /* there are new members in T' */

5. find the insertion node:

6. add the new member 1o T¥:

7. elect the rightmost member under the subtree rooted at
the sibling of the joining node to be the sponsor:

8. if (sponsor) /% sponsor’s responsibility */

9. rekey renewed nodes and broadeast new blinded kevs;

T }}

Quenc-merge 1. T, AL L

|, iftL==01] /% there 1s no leave */

2. add T 1o either the shaltowest noade cwhich nesd not ke the
beal nodey of 7 such that the merge will not inerease e
resulting tree heioht. or the root node of TP i the meroe Lo
any locations will increase the resulting tree height:

3. lelse [/* there are leaves ¥/

4. add T o the highest leave position ol the kew tree T

3. remove rematning L — 1 leaving keal nodes and promote

V their siblings:

.

£ elect members to be sponsors if they are the rightmost members
of the subtree rooted at the sibling nodes of the departed leaf
nodes in 77 or they are the rightmost member of 7

8. if (sponsor) /* sponsor's responsibility */

4. rekey renewed nodes and breadeast new blinded kevs:

The Queue-batch algorithm is illustrated in Fig. 4, where members
Mg, My and M, wish to join the communication group, while M, and M,
wish to leave. Then the rekeying process is as follows: (i) In the Queue-
subtree phase, the three new members Mg My and My, first form a tree T’ .
M, in this case, is elected to be the sponsor. (ii) In the Queue-merge phase,
the tree T' is added at the highest departed position, which is at node 6. Also,
the blinded key of the root node of T', which is BKg , is broadcast by My,.
(iii) The sponsors M; , M , and My, are elected. M; renews the secret key
K, and broadcasts the blinded key BKy. Mg renews the secret key K, and
broadcasts the blinded key BKg. (iv) Finally, all members can compute the

group key.

Fig. 4 Example of the Queue-merge phase.

PERFORMANCE EVALUATION

3. PERFORMANCE EVALUATION

We compare the individual rekeying’s processing efficiency
against that of Queue-Batch rekeying. Here a graph is plotted with the
number of requests processed by individual rekeying and that of Queue-
Batch rekeying for a fixed time (in milliseconds) and is compared.

Testing is a critical element of software quality and assurance
and represents the ultimate review of specification design and coding, It is a
vital activity that has to be enforced in the development of any system.this
could be done in parallel during all phases of system development. The
feedback received from these texts can be used for further enchancement of
the system under consideration. The testing phase conducts test using the
software requirement specification as a reference and with the goal to see
whether system satisfies the specified requirements.

Standard procedure have been followed in testing our system.
Test cases are generated for each screen. These test cases will cover every
possibility which could result in both positive and negative results. These

test plans are maintained for any further testing done on the system.

4.1 UNIT TESTING:

A series of stand-alone tests are conducted during unit testing.
A unit test is also called a module test because it tests the individual units of
code that comprise the application. Unit tests focus on functionality and
reliability, unit testing is done in a test environment prior to system

integration.

4.2 INTEGRATION TESTING:

Integration testing examines all the components and modules
that are new, changed, affected by a change, or needed to form a complete
system. It 1s the testing performed to detect errors on interconnection

between modules.

4.3 SYSTEM TESTING
7 The system 1s tested against the system requirements to see if
all the requirements are met and if the system performs as per the specified

requirements.the system is tested as a whole for its functionality.

4.4 VALIDATION TESTING
This test is done to check for the validity of the entered input.
The user inputs to the corresponding application input fields are verified

before updating in the database

CONCLUSION

CONCLUSION: e

Thus we have implemented distributed collaborative key
agreement protocols for mobile ad-hoc networks. The key agreement setting
is performed in which there is no centralized key server to maintain or
distribute the group key. We show that one can use the TGDH protocol to
achieve such distributive and collaborative key agreement. Individual
rekeying algorithm is implemented, where for every join/leave event,
rekeying is performed. A certain amount of computational overhead occurs
with the Individual rekeying . To reduce the rekeying complexity, we use an
interval-based approach to carry out rekeying for multiple join and leave
requests at the same time. In particular, we show that the Queue-batch
algorithm can significantly reduce both computation and communication

costs when there exist highly frequent membership events.

FUTURE ENHANCEMENTS

5. FUTURE ENHANCEMENTS:

In this section, the Authenticated scheme of Tree-Based Group Diffie-
Hellman (A-TGDH) protocol can be used that provides key authentication
for our interval-based algorithms, with a trade-off between security and
performance in mobile ad-hoc networks. The idea is to couple the session-
based group key with the certified permanent private components of the
group members. Each member holds two types of keys: short-term secret
and blinded keys as well as long-term private and public keys. Short-term
keys are randomly generated when a member joins the group and become
expired when the member leaves, while long-term keys remain permanent
across many sessions and are certified by a trusted C-A. The '-proto-édl seéks

to satisfy several requirements that are crucial for key establishment :

(i) perfect forward secrecy (i.e., the compromise of long-term keys
does not degrade the secrecy of past short-term keys),

(if) known-key security (i.e., the compromise of past short-term keys
does not degrade the secrecy of future short-term keys), and

(111) key authentication (i.e., all group members are assured that no
outsiders can identify the group key). Also, the protocol can be
implemented in a way that satisfies key confirmation (i.e., all group

members are assured that every other member holds the same

group key).

APPENDICES

5. APPENDICES:
APPENDIX 1:
SOURCE CODE:
Main class definition:

static class binaryNode
{
int memid,
int nodeid;
int ht;
double Bk;
double k;
binaryNode left;
binaryNode right;
binaryNode parent;
binaryNode sibling;

public binaryNode(int value)
{

this.memid = value;
}
!

To find the node for inserting a new member:

public binaryNode insert(binaryNode rootnode)
{
binaryNode checkingNode=new binaryNode(0);
binaryNode node=new binaryNode(0);
binaryNode nodesib=new binaryNode(0);
binaryNode temp=new binaryNode(0);
binaryNode par=new binaryNode(0);
binaryNode tempright=new binaryNode(0);
int checkht=0,ht=0;
temp=rootnode;
tempright=temp.right;

while(tempright!=null}

B!
[§

if(temp.right!=null)
temp=temp.right;
else
break;

!

//setting the right most node as insertion node
checkht=temp.ht;
checkingNode=temp;
node=temp;
for(;;)
{
if(node.nodeid==0)
{
return checkingNode;
// the correct insertion node ie the shallowest node from right

b
else
{
par=temp.parent;
if(par.nodeid==0)
{
return checkingNode;
}
else
{

node=temp.parent;
temp=temp.parent;
nodesib=temp.sibling;
if(nodesib.nodeid<node.nodeid)
{
temp=nodesib;
while(temp.right!=null)
temp=temp.right;
ht=temp.ht;
// comparing height to get the shallowest node

if{ht<checkht)

f
1

checkht=ht;

checkingNode=temp;
v
!

}

else
node=node.parent; // to traverse to the complete tree

}
j

}

Hash function:

public double hash{double n)

{
n=((3*n)+1)%127;
return n;

}

To join the new node to the tree at the insertion node:

public void join(binaryNode insertionNode, binaryNode newNode)

{
binaryNode temp=new binaryNode(0);
binaryNode sibling=new binaryNode(0);
binaryNode sponsor=new binaryNode(0);

if{(insertionNode.nodeid=—0 && insertionNode.memid==0)

{

insertionNode.memid=newNode.memid;
insertionNode.k=hash(insertionNode.nodeid);

insertionNode.Bk=Math.pow(3,insertionNode.k)%151;

}

else

{

//creating sibling of the newNode

temp.nodeid=(2*insertionNode.nodeid)+1;
temp.memid=insertionNode.memid;
temp.ht=insertionNode.ht+1;
temp.parent=insertionNode;
temp.sibling=newNode;
temp.k=hash{temp.nodeid);
temp.Bk=Math.pow(3,temp.k)%127;

//joining newNode to the tree
newNode.nodeid=(2*insertionNode.nodeid)+2;
newNode.ht=insertionNode.ht+1;

* newNode parent=insertionNode;
newNode.sibling=temp;

- //updating parent node

insertionNode.memid=0;
insertionNode. left=temp;
insertionNode.right=newNode;

}

sponsor=newNode;
rekey(sponsor);

}

Rekeying operation:
void rekey(binaryNode node)
{

binaryNode temp=new binaryNode(0);
binaryNode sib=new binaryNode(0);
binaryNode par=new binaryNode(0);
node.k=hash(node.nodeid);
node.Bk=Math.pow(3,node k)%127;
temp=node;

while(temp.nodeid!=0)

{

sib=temp.sibling;
par=temp.parent;
par.k=Math.pow(sib.Bk,temp. k)%l’)7
temp=par,

1
J

repaint();

}

To find the member wishing to leave the group:

void findLeave(binaryNode root,int mem) throws IOException //to find the
member wishing to leave the group
{ .
binaryNode temp=new binaryNode(0);
binaryNode tempsib=new binaryNode(0);
binaryNode tempright=new binaryNode(0);

int a;
temp=root;
for(;;)
¢
tempright=temp.right;
while(tempright!=null)
{
if(temp.right!=null)
temp=temp.right;
else
break;
}
if(temp.memid==mem)
{
delNode(temp);//the node of the leaving member
break;
}
else
{

if(temp.nodeid!=0)
temp=temp.sibling;

if(temp.memid==mem)

——

delNode(temp);//the node of the leaving member
break;

i
j
a=0;
do{
if(temp.nodeid!=0)
temp=temp.parent;
if{temp.nodeid==0)
{
System.out.println("member"+ mem +" not in group");
lo.printIn("member"+ mem +" not in group");
return;
}
tempsib=temp:sibling;
if(temp.nodeid>tempsib.nodeid)
{
temp=tempsib;
a=l;
}
twhile(al=1);
}
}

To delete the node details:

void delNode(binaryNode t)throws [OException
{ _ |
binaryNode sponsor=new binaryNode(0);
binaryNode leaving=new binaryNode(0);
binaryNode leavingSib=new binaryNode(0);
binaryNode parent=new binaryNode(0);
binaryNode temp=new binaryNode(0);
binaryNode sponsorright=new binaryNode(0);
leaving=t;
leavingSib=t.sibling;
temp=parent=t.parent;

leaving=null;

parent.memid=leavingSib.memid,;

parent.left=leavingSib.left;

parent.right=leavingSib.right;

leavingSib=leavingSib.left;
if(leavingSib!=null)
update(parent);

sponsor=parent,
sponsorright=sponsor.right;
while(sponsorright!=null)

{
//System.out.println(sponsor.memid);
if(sponsor.right!=null)
sponsor=sponsor.right;
else
break;
}

System.out.println("member "+t.memid+" left successfully");
lo.println("member "-+t.memid+" left successfully");
rekey(sponsor);

To update the node details after join/leave event:

void update(binaryNode sponsor)
{
binaryNode temp=new binaryNode(0);
binaryNode templeft=new binaryNode(0);
binaryNode parent=new binaryNode(0);
binaryNode sibling=new binaryNode(0);
int label,labela,labelp;
temp=sponsor;
do{
label=0;
templefi=temp.left;
while(templeft!=null)
{
if(temp.left!=null)
{

temp=temp.lefi;

parent=temp.parent;
temp.nodeid=(2*parent.nodeid)+1;

1
S

else
break;

do{
labela=0;
sibling=temp.sibling;
if(Math.abs(sibling.nodeid-temp.nodeid)==1)
{
if(temp.nodeid==sponsor.nodeid)
return;
else
temp=sibling.parent;
labela=1;

3
ywhile(labela==1);

if(temp.nodeid%2==1)
sibling.nodetd=temp.nodeid+1;

else
sibling.nodeid=temp.nodeid-1;

if(sibling.left!=nuil)
temp=sibling;

else
{
do{
labelp=0;
if(temp.nodeid==sponsor.nodeid)
return;
else
temp=sibling.parent;
sibling=temp.sibling;
if(Math.abs(sibling.nodeid-temp.nodeid)==1)
labelp=1;
t while(labelp=1);

temp=sibling;

parent=temp.parent;
if(temp==parent.left)
temp.nodeid=(2*parent.nodeid)+1;
else
temp.nodeid=(2*parent.nodeid)+2;
}
label=1;
twhile(label==1);

}

- To perform Individual Rekeying:

private void jrunActionPerformed(java.awt.event. ActionEvent evt) {

try{
Random randomGenerator = new Random();

int m1 = randomGenerator.nextInt(50);
int first=0;//for counter operation
long startTime=0;
long estimatedTime;
int m,ck=0,iterator=1;
startTime = System.currentTimeMillis();

System.out.printIn("Building tree with rootvalue " +
rootnode.nodeid+";"+rootnode. memid);
jrun.setVisible(false);
jexit.setVisible(false);

while(iterator—1)
{
int n= randomGenerator.nextInt(2);
switch(n)
{
case 1:

m = randomGenerator.nextInt(50)-+1;
System.out.printin("member "+m+" going to join");

lo.println("member "+m+" going to join");
System.out.println("the value of ck is:"+ck);
ck=check(rootnode,m);
System.out.printIn("the value of ck is:"+ck);
if{ck==0)
{
binaryNode insertion=insert(rootnode);
binaryNode newNode=new binaryNode(m);
join(insertion,newNode);
System.out.println("member "+m+" joined successfully™);
lo.println("member "+m+" joined successfully™);
printinOrder(rootnode);

repaint();

}

else
{
checker=0;
System.out.println("member"+m+" already in group™);
lo.println("member"+m+" already in group");

}

break;
case (:
m = randomGenerator.nextInt(50)+1;
System.out.println("member "+m+" going to leave™);
lo.printIn("member "+m+" going to leave");
findLeave(rootnode,m);
printInOrder(rootnode};

repaint();

break;
default:
System.out.println("enter the appropriate choice");

}

estimatedTime = System.currentTimeMillis() - startTime;
if{estimated Time<=1000)
iterator=1;

else
¥
v
iterator=0;

jOptionPanel.showMessageDialog(null,"Processing
Finished");

repaint();
Jjrun.setVisible(true);
jexit.setVisible(true);
}
}

h
catch(Exception e){}

}
To view all the members in the group:

private void jviewallActionPerformed(java.awt.event. ActionEvent evt) {
try {
Jrun.setVisible(true);
JInternalFramel .setVisible(false);
s=""
printInOrder{rootnode);
JOptionPane2.showMessageDialog(null,"Members "+ s);

}

catch(Exception €){}

}

INDIVIDUAL REKEYING

View

RUN

L EXIT

2 Individual Rekeying

1
3
S
9
14
a5 24
27
28
29
a0
az
25
a6
38 :
40
a4z
aa
48
a8 b
s0 R
EXIT |

QUEUE BATCH REKEYING

o} Queue Batch

view

i Make SubTree

Merge

Queuc Batch

10

14

20

21
32

38

41
42

46
48 4

PERFORMANCE COMPARISON

5] Comparing Requests Processed for fixed time

Individual Rekeying e Qiuse Bateh

TIME {FiXED) ”
R
E
Q
u
E
8
T
8

Y
BACK

LOG FILE

File Edit

£ myfile - Notepad

Format Wiew Help

Node
Node
riode
Node
MNode
Mode
Node
Node
nNode
Node
Node
member

member
member
Nocle
MNode
Node
Node
Node
mode
Node
Node
Noce
Node
Moce
Node
Node

Detail
Detail
betail
Detail
Detail
Detail
Detail
Detail
Detail
Detail
Detail
44 goin

7 going
7 joine
petatl
Derail
petail
Detail
Detail
betail
Detail
Detail
Detail
Detail
Detail
betail
Cetail

Nodeidlls;Memid2l; Height6; Privatexey-101.0; PublickeyS7.0 A
NodeTd&;MemidQ; Height2; Privatekey-120.¢; Publickeyl2. o =
Nodeid59;memidi7; Height5; Privatekey-51. 0; Publicrayl. O
NudeidZQ;memidO;Heig t4; Privatexey-93.0; Publickey86. 0
nodeid121;memid8; Helght6; Privatekey-110. 0; Publickey3. ¢
Nodeida0;Memid0; Height 5; Privatexkey-10. 0; PubTicKeyld. o
Nodeidl22;Memid23;Haighte; Privatekey-113. 0; Publickeylo. 0
Nodeidl4;memid0;HeightE;PrivateKey—l.0;Pub1icKey83.0
Nodeidl23;Memidd6; Height6; Privatekey-116.0; Pub1ickey0. 0
NDdeidBO;MemidD;Height4;PrivateKey~98.0;Pub1icKey10?.0
Nodeidl24;mMemidd; HeTght6; Privatexey-119. 0; Publickey66. 0

to join

memberdd already in group

to join

d successTully: -
NDdEidBl;Memid44;HeiﬁhtS;Priuatexey—94.D;Pub1icxey10?.0
Nodeidl3;Memid0; Heightd; Privatekey-100.0; PublicKey42.0
Nodeid32;Memid5; Height 5; Privatexey-97. 0; PublickeyR5. 0
NDdEid?;MemidO;HeigﬁtB;PrivateKey—104.0;Pub1icKey?O.D
Nodetd33;Memid4l; Height5; Privatekey-100. 0; Publickey70. 0
NDdEile;MemidO;Heig t4; Privatekey-47.0; Publickeyl1l3. 0
Nodeid34;Memidl0; Helght5; PrivateKey-103.0; Publickeylls. 0
Nodeid3;Memid0; Height2; Privatexkay-73. 0;Publickeyl2l. 0
Nodeid37;Memidld; Hedight5; Privatekey-112.0; Publickey3. 0
Nodeid8; Memid0; Height3; Privatekey-73.0;Publickayll2. 0
Nodeid38;Memidls; Height5; Privatekey-115. 0; PublicKey 0. 0
Nodeidl; Memid0; Heightl; Privatexey-58. 0; Publickay8l. 0
Nodeid4l;Memid36; HeightS; Privatekey-124. 0;Publickeyln3. o .,

REFERENCES

7. REFERENCES : -

e P.P.C. Lee J.C.S Lu,and D. K. Y. Yau. Distributed Collaborative
Key Agreement and Authentication Protocols for Dynamic Peer
Groups. Networking, IEEE/ACM Transactions on Volume 14, Issue
2, April 2006

e Zhang Liu,Lou and Fang. Securing Mobile Ad Hoc Networks with
Certificateless Public Keys, Dependable and Secure Computing, IEEE
Transactions Oct.-Dec. 2006. Volume: 3, Issue:4

e Y.Kim, A. Perrig, and G. Tsudik. Tree-Based Group Key Agreement.
ACM Trans. on Information and System Security, 7(1):60-96, Feb
2004. o

e P. Lee. Distributed and Collaborative Key Agreement Protocols with
Authentication and Implementation for Dynamic Peer Groups. MPhil
Thesis, The Chinese University of Hong Kong, June 2003.

e P.P.C.Lee J. C S Luiand D. K. Y. Yau. Distributed Collaborative
Key Agreement and Authentication Protocols for Dynamic Peer
Groups.
CS&E Technical Report, The Chinese University of Hong Kong, Jul
2005.

e Y.Kim, A. Perrig, and G. Tsudik. Communication-Efficient Group
Key Agreement. In Proceedings of the 17th International Information
Security Conference IFIP SEC’01, Nov 2001.

e M. Steiner, G. Tsudik, and M. Waidner. Key Agreement in Dynamic
Peer Groups. IEEE Transactions on Parallel and Distributed Systems,
11(8):769-780, Aug 2000.

e http://roseindia.com Dated Jan 2009

¢ http://java.sun.com Dated Jan 2009

