7-2589
DATABASE ENCODING AND AN
ANTI-APRIORI ALGORITHM FOR

ASSOCIATION RULES MINING

A PROJECT REPORT
Submirted by
M.PRADEEP VISWANATH 71205205035
K.RAJAMUTHU 71205205041
C.R.SHESH BABU 71205205055

in partial fulfilment for the award of the degree
of
BACHELOR OF TECHNOLOGY

IN

INFORMATION TECHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE

ANNA UNIVERSITY: CHENNAI 600 025

APRIL 2009

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “DATABASE ENCODING AND AN
ANTI-APRIORI ALGORITHM FOR ASSOCIATION RULES MINING” is the
bonafide work of “M.PRADEEP VISWANATH, K.RAJAMUTHU and

C.R.SHESH BABU” who carried out the project work under my supervision.

S

,\z}; g.jL._%h a/

SIGNATURE SIGNATURE

Mrs.N.Rajathi MLE., Dr.S.Thangasamy, B.E(Hons)., Ph.D.,
SUPERVISOR, DEAN,

Dept of Information Technology, Dept of Computer Science and Engineering,

Kumaraguru College of Technology, Kumaraguru Coliege of Technology,

Coimbatore - 641 006. Coimbatore — 641 006.

The candidates with University Register No 71205205035,
71205205041 and 71205205055 were examined by us in the project viva-voce

<
examination held on .%3. Y+

A -
NN TS

INTERN XAMINER EXTERNAL EXAMINER

ACKNOWLEDGEMENT

We express our profound gratitude to our Chairman Padmabhushan
Arutselvar Dr. N. Mahalingam B.Sc., F.L.E., for giving this great opportunity to

pursue this course.

We would like to thank Vice Chairman Dr.K. Arumugam B.E., M.S.,
ML.LE., Correspondent, Shri.M.Balasubramaniam and Joint Correspondent

Dr.A.Selvakumar for providing the necessary facilities to complete our project.

We are immensely grateful to our Vice Principal Prof R.Annamalai,

for his invaluable support to the outcome of this project.

We are deeply obliged to Dr.S.Thangasamy, Dean, Department of
Computer Science and Engineering for his valuable guidance and useful suggestions

during the course of this project.

We also extend our heartfelt thanks to our project co-ordinator,
Ms. L.S Jayashree MLE., (Ph.D.), Associate Professor, Department of Information
Technology for providing us her support which really helped us.

We are indebted to our project guide and extend our gratitude towards
Mrs.N.Rajathi M.E., Assistant Professor, Department of Information Technology for

his helpful gumidance and valuable support given to us throughout this project.

We thank the teaching and non-teaching staffs of our department for
providing us the technical support during the course of this project. We also thank all

of our friends who helped us to complete this project successfully.

ABSTRACT

Association rule mining seeks to discover associations among
transactions encoded in a database. An association rule takes the form
A=>B where A (the antecedent) and B (the consequent) are sets of
predicates. Discovering association rules in these algorithms are usually
done in two phases. In the first phase, the frequent itemset are generated and
in the second phase, the interesting rules are extracted from these frequent
itemset. The task of discovering all frequent itemset 1s quite challenging
especially in the large database because the database may be massive,
containing millions of transactions. An established algorithm called Apriori
generates (k+1)-candidates by joining frequent k-itemset. So all subset of
every itemset must be generated for finding superior frequent itemset,
although many of them may be not useful and may be not exploited for
finding association rules because some of them have no interesting
antecedent or consequent in the rules. This process takes a long time and it
requires thousands of times of database scan. To handle these problems, we
use a method for encoding database. Here, a record 1s denoted by only one
binary number and so the size of the database is reduced sharply. If the
database-encoding algorithm is used into some known modified algorithms,
the efficiency will be improved remarkably. A new algorithm, anti-Aprior,
which based on the proposed encoding method is Introduced either. By
using some properties of numbers, the itemsets of the database can be
transformed into numerical fields. Different from the Aprion algorithm, the
new one discovers the association rules from the largest frequent itemset at
first, and then all sub itemset, which are also frequent, will be gained

without any farther calculation, and all the other small frequent itemset that

Vil

must be generated in the Apriori be omitted, and the times of the database

scan 1s also reduced.

Vil

CONTENTS

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.
ABSTRACT vi
LIST OF TABLES 1X
LIST OF FIGURES X
1. INTRODUCTION
1.1 INTRODUCTION TO DATA 1
MINING
1.2 ASSOCIATION RULE MINING 4
1.3 PROBLEM DEFINITION 6

~1

1.4 OBJECTIVE OF THE PROJECT

2. LITERATURE REVIEW
2.1 CURRENT STATUS OF THE 8
PROBLEM
2.2 PROPOSED SYSTEM AND 9
ADVANTAGES
2.3 HARDWARE REQUIREMENTS 10
2.4 SOFTWARE REQUIREMENTS 10

2.5 SOFTWARE OVERVIEW il

3. DETAILS OF METHODOLOGY
EMPLOYED

3.1 DATABASE ENCODING

3.2 APRIORI IMPLEMENTATION

3.3 ANTI-APRIORI IMPLEMENTATION
3.4 FREQUENT ITEMSET MINING

3.5 ASSOCIATION RULES MINING

4. PERFORMANCE EVALUATION
5. CONCLUSION

6. FUTURE ENHANCEMENTS

7. APPENDIX

7.1 SOURCE CODE
7.2 SCREEN SHOTS

8. REFERENCES

13

16

20

21

21

23

24

25

26

47

%!

LIST OF TABLES

S.NO. TITLE PAGE NO.
3.1.1 Vertical database layout 14
3.1.2 Prime number assignment 15
3.13 Final encoded table 15
3.3.1 Frequent Itemset Presentation 20
4.1 Time taken w.r.t Support values 23

1x

LIST OF FIGURES

S.NO. TITLE PAGE NO.
3.2.1 | Possible Subsets 17
3.2.2 i Aprior Process 18
4.1 Graph - Time Taken W.R.T Support Values 23

INTRODUCTION

LAINTRODUCTION

1.1 INTRODUCTION TO DATA MINING

Data mining (sometimes called data or knowledge discovery) is the
process of analyzing data from different perspectives and summarizing it
into useful information — information that can be used to increase revenue,
cut costs or both. Data mining software is one of a number of analytical
tools for analyzing data. It allows users to analyze data from many different
dimenstons or angles, categorize it, and summarize the relationships
identified. Technically, data mining is the process of finding correlations or

patterns among dozens of fields in large relational databases.
Data

Data are any facts, numbers, or text that can be processed by a
computer. Today, organizations are accumulating vast and growing amounts
of data in different formats and different databases. This includes:
operational or transactional data such as cost, inventory, payroll, and
accounting and Meta data - data about the data itself, such as logical

database design or data dictionary definitions
Information

The patterns, associations, or relationships among all this data can
provide information. For example, analysis of retail point of sale transaction

data can yield information on which products are selling and when.
Knowledge

Information can be converted into knowledge about historical patterns

and future trends. For example, summary information on retail supermarket

i

sales can be analyzed in light of promotional efforts to provide knowledge
of consumer buying behavior. Thus a manufacturer or retailer could

determine which items are most susceptible to promoﬁonal etforts.
Data Warehouses:

Dramatic advances in data capture, processing power, data
transmission, and storage capabilitics are enabling organizations to integrate
their various databases into data warehouses. Data warehousing is defined
as a process of centralized data management and retrieval. Data
warehousing, like data mining, is a relatively new term although the concept
itself has been around for years Data warehousing represents an ideal vision
of maintaining a central repository of all organizational data. Centralization
of data is needed to maximize user access and analysis. Dramatic
technological advances are making this vision a reality for many companies
and equally dramatic advances in data analysis software are allowing users

to access this data freely.
Elements
Data mining consists of five major elements:

1. Extract, transform, and load transaction data onto the data warehouse

system.
2. Store and manage data in a multidimensional database system.

3. Provide data access to business analysis and information technology

professional.
4. Analyze the data by application software

5. Present the data in a useful format, such as a graph or table.

[N

Data mining benefits

Data mining is primarily used today by companies with a strong
consumer focus - retail, financial, communication and marketing
organization. is primarily motivated by decision support problems faced by
most business organizations and is described as an important area of
research [6], [7] It enables these companies to determine relationships
among "internal” factors such as price, product positioning or staff skalls,
and "external" factors such as economic indicators, competition, and
customer demographics. And it enables them to determine the impact on
sales, customer satisfaction and corporate profits. Finally it enables them to

"drill down" into the summary information to view detail transactional data.

With data mining, a retailer could use point of sale record of customer
purchases to send targeted promotions based on individual's purchase
history. By mining demographic data from comment or warranty cards, the
retailer could develop products and promotions to appeal to specific

customer segments.

W]

1.2 ASSOCIATION RULE MINING

In data mining, tinding or learning association rules is a popular and
well researched method for discovering relations between variables in large
databases. One of the reasons behind maintaining any database is to enable
the user to find interesting patterns and trends in the data. For example, in a
supermarket, the user can figure out which items are being sold most
frequently. But this is not the only type of ‘trend” which one can possibly
think of. The goal of database mining is to automat this process of finding
interesting patterns and trends. Once this information 1s available, we can
perhaps get rid of the onginal database. The output of the data mining
process should be a “summary” of the database. The goal is difficult to
achieve due to the vagueness associated with the term “interesting”. The
solution is to define various types of trends and to look for only those trends

in the database. One such type constitutes the association rule.

In the present context, an association rule tells us about the
association between two.or more items. For example: In 80% of all the
cases when people buy bread they also buy milk. This tells us of the

association between bread and milk. We represent it as:
Bread => Milk | 80%
This should be read as “Bread means or implies milk, 80% of the time” .

An association rule has two numbers that express the degree of uncertainty
about the rule. In association analysis the antecedent and consequent are sets
of items (called itemsets) that are disjoint (do not have any items in

common).

The first number is called the support for the rule. The support is

simply the number of transactions that include all items in the antecedent

4

and consequent parts of the rule. (The support 15 sometimes expressed as a

percentage of the total number of records in the database.)

The other number 1s known as the confidence of the rule. Confidence
1s the ratio of the number of transactions that include all items in the
consequent as well as the antecedent (namely, the support) to the number of

transactions that include all items in the antecedent.
Bread => Milk | 80%
Here 80% 1s the “confidence factor” of the rule.
Association rules can be between more than two items. For example:
Bread, Milk => Jam | 80%
Bread => Milk, Jam | 80%
Given any rule, we can easily find its confidence. For example for the rule:
Bread, Milk => Jam

We count the number say n, records that contain bread and milk. Of these
how many contain jam as well? Let this be n, Then required confidence is

ny/ nj.

This means that the user has to guess which rule is interesting and ask for its
confidence. But our goal was to “automatically” find all interesting rules.
This is going to be difficult because the database is bound to be very large.
We might have to go through the entire database many times to find all the

interesting rules.

tn

1.3 PROBLEM DEFINITION
Association rule mining is done in two phases
1. Frequent itemset extraction
2. Discovery of strong rules

Extracting frequent itemsets is very difficult in large databases. Also, the
existing algorithm Apriori uses a top-down approach where it generates
candidate item sets of length k from item sets of length k - 1. So all subset
of every itemset must be generated for finding superior frequent itemset,
although many of them may be not useful. This process takes a long time
and 1t also requires thousands of times of database scan. Additionally, the
size of database is the main problem of this algorithm. Some modified
algorithms of Apriorl are proposed to solve this problem but these

algorithms also have the database size problem [3].

4]

1.4 OBJECTIVE OF THE PROJECT

To overcome the limitations and address the shortcomings of the
current association rules mining algorithms, we propose a way to encode the
database [2] where using some properties of numbers; the itemsets of the
database can be converted into numerical fields. By this way the size of the
database is greatly reduced. When a known modified algorithm is applied in
the encoded database, the efficiency is seen to be greatly improved. Also a
new algorithm is also proposed that discovers the association rules from the
largest frequent itemset at first, and then all subitemsets, which are also
frequent, will be found without any calculation and all the other small
frequent itemset that must be generated in the Apriori be omitted, and the
times of the database scan is also reduced. Test results show the new
algorithm based on the encoding database has a lower

complexity of time and space.

LITERATURE REVIEW

2. LITERATURE REVIEW

2.1 CURRENT STATUS OF THE PROBLEM

The current system of datamining takes care of the simply datamining
of information based on classification goals like frequent item sets or
classification constraints. Data mining especially association rule discovery
tries to find interesting patterns from databases that represent the
meaningful relationships between products and customers or other
relationships in some other applications. Discovering association rules in
these algorithms are usually done in two phases. In the first phase, the
frequent itemsets are generated and in the second phase, the interesting rules
are extracted from these frequent itemsets. If the support and confidence of
a rule 1s above the minimum threshold, the rule will be interesting. The task
of discovering all frequent itemsets 1s quite challenging especially in the
Jarge database because the database may be massive, containing millions of

transactions.

A famous algorithm, called Apriori, is proposed in reference [1].
Apriori uses a "bottom up" approach, where frequent subsets are extended
one ltem at a time. It generates (k+1) candidates by joining frequent k-
itemset. So, all the subsets of every itemset must be generated in order to the
find superior frequent itemset. Many of them may be not useful and not
exploited to find association rules, because some of them have no
interesting antecedents or consequents i the rules. This process takes a long
time. And it also requires thousands of times of database scan. The
complexity of the calculation increases exponentially. Additionally, the size

of database is the main problem of this algorithm.

2.2 PROPOSED SYSTEM AND ADVANTAGES

This project uses a method to encode database. Here a record is
denoted by only one binary number, so the size of the database is reduced
sharply. If some known modified algorithms are used on the database
encoded, the efficiency will be improved significantly. Also, a new
algorithm based on the proposed encoding method is introduced too. By
using some properties of numbers, the itemsets of the database can be
converted into numerical fields. Different from the Apriori, the new
algorithm called anti-Aprion algorithm uses a "top down" approach, by
which it discovers the association rules from the largest frequent itemset at
first, and then all subitemsets, which are also frequent will be gotten without
any calculation, and all the other small none-frequent itemsets that must be
generated 1n the Apriori will be omitted, and the scan times of the database
are also reduced. Test results show the new algonthm based on the encoding

database has a lower complexity of time and space.

2.3 HARDWARE REQUIREMENTS

Processor

Speed

RAM capacity
Floppy disk dnive
Hard disk drive
Key Board
Mouse

CD Writer
Printer
Motherboard

Monitor

2.4 SOFTWARE REQUIREMENTS

Operating System
Front end used

Back End

Pentium 1V

Above 500 MHz

128 MB

1.44 MB

20 GB

Samsung 108 keys
Logitech Optical Mouse
52x LG

DeskJet HP

Intel

177 Samsung

Windows XP
Java

SQL Server 2000

2.5 SOFTWARE OVERVIEW

Java:

Java is a high-level, object-oriented programming language that is
portable, platform-independent, robust and secure. It derives much of its
syntax from C and C++ but has a simpler object model and fewer low-level
facilities. Java solves the problem of platform-independence by using byte
code. The Java compiler does not produce native executable code for a
particular machine like a C compiler would. Instead it produces a special
format called byte code. Java was designed from the ground up to allow for
secure execution of code across a network, even when the source of that
code was untrusted and possibly malicious. This required the elimination of
many features of C and C++. Most notably there are no pointers in Java.
Java programs cannot access arbitrary addresses in memory. All memory
access i1s handled behind the scenes by the (presumably) trusted runtime
environment. Furthermore Java has strong typing. Variables must be
declared, and variables do not change types when you aren't looking. Casts
are strictly limited to casts between types that make sense. Thus you can
cast an int to a long or a byte to a short but not a long to a Boolean or an int
to a String. Java implements a robust exception handling mechanism to deal
with both expected and unexpected errors. The worst that an applet can do
to a host system 1s to bring down the runtime environment. It cannot bring
down the entire system. Java byte codes can be compiled on the fly to code
that rivals C++ in speed using a "just-in-time compiler.”" Several companies
are also working on native-machine-architecture compilers for Java. These
will produce executable code that does not require a separate interpreter,

and that 1s indistinguishable in speed from C++.

SQL:

SQL 1s a database computer language designed for the retrieval and
managément of data in relational database management systems (RDBMS),
database schema creation and modification, and database object access
control management. SQL is used as a querying language for querying and
modifying data and managing databases. It allows the retrieval, insertion,
updating, and deletion of data. It is a set-based, declarative query language,
not an imperative language such as C or BASIC. However, there are
extensions to Standard SQL which add procedural programming language
functionality, such as control-of-flow constructs, They are - PL/SQL, T-
SQL, SQL/PSM etc. In addition to the standard SQL/PSM extensions and
proprietary ~ SQL extensions, procedural and object-oriented
programmability is available on many SQL platforms via DBMS integration

with other languages.

DETAILS OF METHODOLOGY EMPLOYED

3. DETAILS OF METHGDOLOGY

3.1 DATABASE ENCODING

The presentation of database is an important consideration in almost
all algorithms. The most commonly used layout is the horizontal database
layout and vertical database layout {8]. In both layouts, the sizes of the
database are very large. A large database to be transformed into a smaller
onc with all properties of its original layout is expected. Database encoding
can reduce the size of database and improve the efficiency of algorithms.
Instead of maintaining a large table in the transaction database, one table is
created with only two columns. The first one is the transaction identifier and
another is for the entire items that occur in the transaction. All items in one
transaction are converted into only one number that has all properties of
these items. By this way the new database is much smaller than the previous
one and can be loaded into memory easily. So the cost of memory is
reduced. According to the assumption that only one number represents an
itemset, when converting an itemset into a number, a measure attribute is
defined, which i1s a numerical attribute associated with every item in each
transaction in the database layout. A binary number expresses a numerical
attribute, that 1s, those items that are occurring in one transaction are
depicted with 1 and all the other items are represented with 0. The
transaction measure value, denoted as tmv (Ip,T,)is a value of a measure
attribute related to an item /, in a transaction 7,. Tmv (1p,T,)=0 means item
Ip does not occur in the transaction T,, while tmv (Ip,T,)=1 means item I
occurs in the transaction T,. In table I, for example, tmv (1, T)) is equals to
. Any item I in the set of items is encoded as one prime number, denoted

as E (I,). Prime numbers are used because any number except | and

13

themselves cannot divide them. For any item Ip in the transaction T, a new
measure that denoted as M (I,,, T) 1s equal to the product of tmv (I,, T,) and
its encoding number E (1) 1s assigned. This value 1s gotten by equation 2.
After this step, for all Ip and T, if M (I, T,) equal to 0, then convert M (I,
T,) into 1. This operation is described in equation 3. For any transactions,
the value MT, is equal to the multiplication of all M (I,, T,) . The value of

MT, 1s represented in equation 4.
M (I, T,) = tmv(,, T,) E(I,) (2)

For all (I, To) If M (I, T) =0 =>M (L,, T,) =1 (3)

M= [[M7,.1,) (4)

for any itemset I=(1,,1, I, ..., L,n), there is one value denoted as MI is equal
to the multiplication of all E(1,) if its Ip occur in I, as described in equation
5. The value M, shows the number corresponds to itemset 1. And then this

number can be used to instead of itemset 1.

A
R

vi= [[£G) (3

SIped

With this encoding, instead of maintaining all tmv(l,,, T,) for every item and

transaction, the value M; can be stored for every transaction.

Tip I I, I3 14
l] 0 0 1
2 0 0 0]
3] I 1 0
4 0 0 1 1

Table 3.1.1: Convert Vertical Database Layout

Ip | Ep
I, 7
I, 5
I3 3
I 2

Table 3.1.2: Prime number assignment

Tip M
} 14
2
3 105
4 6

Table 3.1.3: Final encoded table

The database has been represented in table 3.1.1. There is one column for
T.4 and four columns for items. In table 3.1.2, the set of items in the left
column, and prime numbers correspoﬁd to them in the right column. By
applying equations 2,3,4, the table 3.1.3 has only two columns and for every
transaction, MT;y has replaced some binary numbers for itemset. Under this
situation if it wants to know, for example, whether the itemset [={12, I3} is
in 3™ transaction, as for MT:-=105 can be divided by M; =5*3=13, it can
say that the itemset I has occurred in transaction (T;:=3). This means for
verifying any itemset Ip presence in transaction T,, dividing the value MT,
by MI, is sufficient. By using this encoding method, the efficiency of some
known modified algorithms such as Apriori [4] can be 1mproved

significantly.

3.2 APRIORI IMPLEMENTATION:

In data mining, Apriori is a classic algorithm - for discovering
association rules. Apriori is designed to operate on databases containing
transactions (for example, collections of items bought by customers, or
details of a website frequentation). Other algorithms are designed for
finding association rules in data having no transactions, or having no

timestamps.

As is common in association rule mining, given a set of itemsets, the
algorithm attempts to find subsets which are common to at least a minimum
number C of the itemsets. Apriori uses a "bottom up" approach, where
frequent subsets are extended one item at a time (a step known as candidate
generation), and groups of candidates are tested against the data. The

algorithm terminates when no further successful extensions are found.

Apriori uses breadth-first search and a hash tree structure to count
candidate item sets efficiently. It generates candidate item sets of length
from item sets of length & - 1. Then it prunes the candidates which have an
infrequent sub pattern. According to the downward closure lemma, the
candidate set contains all frequent k-length item sets. After that, it scans the
transaction database to determine frequent item sets among the candidates.
For determining frequent items quickly, the algorithm uses a hash tree to
store candidate itemsets. This hash tree has item sets at the Jeaves and hash
tables at internal nodes. Note that this is not the same kind of hash tree used

1n for instance p2p systems

o

Frequent Itemset Generation: Apriori

Given an itemset [= {a, b, ¢, d, e}.If an item set is frequent, then all of its

subsets must also be frequent and vice-versa.

B
ol
S

— o~
T \
o /{;‘\, - ?)
e o
N i "“‘\\\\\ -
P ~ s
\ - ™, \‘_
@ BC) [BD BE cD O
S = S = 7
2 o . N 4 TN
Rl ‘%.» S
acoy (ace ADE) cOY {BCEY @oe} (CDE)

G
. — e
T e
. L
e

Fig 3.2.1 Possible subsets of itemset I = {a, b, ¢, d, ¢}

Process

o Determine large I-itemsets.

e Repeat until no new large I-itemsets are identified.

e Generate (k+1) length candidate itemsets from length k large
itemsets.

e Prune candidate itemsets that are not large.

o Count the support of each candidate itemset.

o Fliminate candidate itemsets that are small.

TID ftems ltemset Sup. [temset Sup.
10 134 {13 2 I {1} 2
20 | 235 . 2} SO e {21 3
30 1235 1-itemset ii; R | Pruning 131 3

R I 12
40 25 {5} 3 v {5} 3

ltemset ltemset Sup. ltemset
{235} -m 235F | 2 [> {235)

Fig 3.2.2 Apriori process
Apriori Property

e Ifan itemset 7 does not satisfy the minimum support threshold,

min_sup, the I 1s not frequent, that is, P (/) < min_sup

e Ifanitem A is added to the itemset /, then the resulting itemset (i.e.,
IUA) cannot occur more frequently than /. Therefore, I U A 1s not

frequent either, that 1s, P (1 U A) < min_sup.

Example:

This example suggests the process of selecting or generating a list of
likely ordered serial candidate item sets. The technique's goal is to construct
a set of k node ordered serial item sets from k - 1 length item sets. For

example, with k = 4, suppose there are two such sets of length k—1...

A—-B—-C, and A— B— D
Two candidate item sets are generated, namely
A-wB—-C—=D and A—B—D-—C(C,

Algorithm:

Association rule mining is to find out association rules that satisfy
the predefined minimum support and confidence from a given database. The
problem is usually decomposed into two sub problems. One is to find those
itemsets whose occurrences exceed a predefined threshold in the database;
those itemsets are called frequent or large itemsets. The second problem 1s
to generate association rules from those large itemsets with the constraints

of minimal confidence. Apriori algorithm:

. First pass: counts item occurrences to determine the large 1-itemsets.
« 2nd and subsequent passes:
for (k=2; L., not empty; k++)
o C, = apriori-gen(L_); // (New candidates)
« forall transactions t in D do
» C, = subset(C,,t) // (Candidates contained 1in t)
forall candidates ¢ in C, do
c.count++

» Ly= {cin Cy | c.count >= minsupport |

19

« Answer = Untony (L)

In apriori, candidate itemsets to be counted are generated using only
itemsets found large in the previous pass, without considering the

transaction that is in the database.

3.3 ANTI-APRIORI ALGORITHM:

In Apriori algorithm, itemset mining starts from finding frequent |-itemset.
Here, finding frequent itemset is done in bottom to up manner. Different
from this algorithm, a new algorithm is called as anti-Apriori is proposed, in
which the discovery of frequent itemset 1s done in top-down style. It means
that the large frequent itemset are found at first and then all of their subsets
(that are certainly frequent) are extracted [5]. In this technique, 1t IS
supposed that any frequent itemset must be at least one time occurs 1n the
transactions lonely (without any other items that are not member of that
itemset). In other words, if itemset (11, 12, 12) 1s frequent, the itemset at least

in one transaction without any other items, such as shown 1n table 3.3.1

I I, o
Tip 1 1] 0000000000

Table 3.3.1 : Frequent [temset Presentation

It has two stages:
1. Frequent Itemset Mining

2. Asscociation Rules Mining

34 FREQUENT ITEMSET MINING

In this method for every transaction T, the GCD (greatest common
divisors) between MT, and My correspond to other transactions are
computed and frequency of these greatest common divisors are stored In
GCD-set. GCD-set is the candidate for frequent set. For any GCD 1 GCD-
set, if its frequency is above the required (frequent GCD itemset). For every
transaction is maintained, a set is denoted as GCD T4, composed of GCDs
and frequency of any GCD. For example, if GCD-set and frequency
between first transaction and other transactions is equal to GCD1={(42,3),
(6,8), (21,2), (15,4), (105,1)} and the required threshold for support is equal
to 7 and then the set (6,8) has a frequency 1s equal to 8§, greater than 7, and
then 6 is inserted into FGCD-set. The itemset mining schema of this
algorithm is given in Algorithm 1. Notation M{i] is used to represent the
value M for i transaction and s is the required threshold for the support.
The candidates are gotten from the GCD-set and their frequency compose
the set CF. Any GCDs in CF having a frequency greater or equal to s are

appended into FGCD-set.

3.5 ASSOCIATION RULES MINING

Discovering association rules based on all FGCD, which has been
found in the previous phase. Measure M corresponds to any frequent itemset
is maintained in FGCD-set. Every measure M in FGCD-set 1s decomposed
into the multiplication of prime number and each prime number corresponds
to one item. The itemset that correspond to M is identical and frequent, and
all subset of it must be request. Every M in FGCD-set is decomposed 1nto a
candidate head Y and a body X=M/Y. This algorithm iteratively generates
candidate heads Cyyy of kH size, starting with k=1. If the head and the body

are interesting and valuable, the confidence C of the rule X=>Y is computed

21

as the quotient of the supports for the itemset. C =Support (M)/Support(X)
Support(X) is computed by counting the number of MT;y that can be
divided by X). If any rule has a C greater than or equal to the given
threshold for confidence, the rule will be appended into association rules.
The association rules mining schema of this algorithm is given in Algorithm
2. Notation M[i] is used to represent the value M for i™ member in FGCD-

set and ? for the required threshold for the confidence.

[
o

PERFORMANCE EVALUATION

4, PERFORMANCE EVALUATION

The performance of the data mining is studied in this module. The
efficiency and time taken to complete data mining operations are taken into
the consideration and studied. The scalability problem with respect to
growing number of transactions in the database are carefully studied and
evaluated. Implementation on Food mart dataset shows that by applying this
encoding method, the size of database can be reduced at least half. At the
meantime, experiment shows that the speed of the algorithm by using this
encoding method has been increased especially in the sparse databases. The
improvement for the speed of discovering association rules 1s at least 25%.
Although the efficiency of this algorithm is achieved at the cost of losing
about 5% of the association rules, the bottleneck for the frequent patterns
discovery in the large database is overcome. Under some condition, the
efficiency for discovering of association rules is more important than the

accuracy, and this algorithm has a lower complexity of time and space.

Time
Support | Apriori | Anti-Apriori : Graph- Time w.rt SuPport
1 100 100 - 20
2 90 85 -
S 80
3 88 80 g 50
4 85 74 5 a0 e ApTiG
5 80 70 E 20 e A1 AL
6 75 63 3 °
£ 1234567 3910111213
7 72 62 =
g 67 33 Support Vaiues
9 52 42
10 48 18 Fieg 4.1 Graph — Time w.r.t Support values
11 45 37
12 42 30
13 38 26

Table 4.1 Time Vs. Support

[
[¥8]

CONCLUSION

5. CONCLUSION

The speed of the anti-Apriori algornithm by using this encoding
method is found to be increased especially in the sparse databases. The
improvement for the speed of discovering association rules is at least 25%.
The comparison with this algorithm to the Apriori is shown. Although the
efficiency of this algorithm 1s achieved at the cost of losing about 5% of the
association rules, the bottleneck for the frequent patterns discovery in the

large database is overcome.

FUTURE ENHANCEMENTS

6. FUTURE ENHANCEMENTS

Although the efficiency of anti-Apriori algonthm is achieved at
the cost of losing about 5% of the association rules, the bottleneck for the
frequent patterns discovery in the large database is overcome. Under some
condition, the efficiency for discovering of association rules is more
important than the accuracy, and this algorithm has a lower complexity of
time and space. So, in Future there must be good blend of compromise in
efficiency and accuracy of discovering of association rules mining so that

required quality of service threshold can be adhered to.

I~
tn

APPENDICES

7. APPENDIX

7.1 Sample Code: .
import java.io.*;

import java.util.*;
import java.awt.”;
import java.awt.event.®;
import javax.swing.*;
import java.sql.*;

import packl.*;

class AntiApriorimdProcess extends JInternalFrame implements
ActionlListener

{
JLabel 11,12,13,14,15,16,17;
JComboBox cl,c2,c3,c4,c5;
JTextField t1,12;
JButton b,bl;
static JTextArea ta;
JScrollPane sp;

LR

String driver,query="",1d,name;
Connection cn;
Statement st stl_st2;

ResultSet rs,rsl,rs2;

Boolean rec,recl;

cenier ¢,

int y=0,r=0,5=0,d=0;

String br="";

private final int HT=1; // state of tree node (hash table or
private final int 1L=2; // itemset list)
int N=0; // total item #

int M=0; // total transaction #
Vector largeitemset=new Vector();
Vector candidate=new Vector();
Hashtable ht;

int minsup;

String fullitemset;

String configfile="config.txt";
String transafile="transa.txt",
String time="";

Iterator iter;

Iterator iterl;

TreeMap tree;//=new TreeMap();
String obj="";

ArrayList frequent,columnname;
long diff;

public AntiApriorimdProcess()

{

super("AntiApriori Algorithm" true, true,true,true);

c=new center();

{1=new JLabel("Year");

12=new JLabel("Date");

13=new JLabel("Region");

14=new JLabel("Store");

15=new JLabel("Brand Name");

l6=new JLabel("Minsup");

17=new JLabel(""Table name");

cl=new JComboBox();

cl.addItem("Select the Year");
cl.addltem("1997");

cl.addltem("1998"};

c2=new JComboBox();

c2.addltem("All Date");
c2.setSelectedindex(0);

c3=new JComboBox();

cd=new JComboBox();

c4.additem("All Store");
c2.setSelectedIndex(0);

cS=new JComboBox();

cl.setFont(new Font("Courier New",1,12));
c2.setFont(new Font("Couner New",1,12));
c3.setFont(new Font("Courier New",1,12));

c4.setFont(new Font("Courier New",1,12));

c5.setFont(new Font("Courier New",1,12));
t1=new JTextField(14);

t2=new JTextField(14),

t1.setFont(new Font("Courier New",1,12));
t2.setFont(new Font("Courier New",1,12));
b=new JButton("Submit"};
b.setMnemonic('S');

bl=new JButton("Graph");
bl.setMnemonic('G');

sp=new JScrollPane();

ta=new JTextArea();

JPanel p=new JPanel();

p.setLayout(new GridLayout(8,2));
p.add(ll); p.add(cl);

p.add(12); p.add(c2);

p.add(13); p.add(c3);

p.add(14); p.add(c4);

p.add(15); p.add(cS);

p-add(16); p.add(tl);

/lp.add(17); p.add(12);

frequent=new ArraylList();
columnname=new ArrayList();
getContentPane().setLayout(null);

getContentPane().add(p);

getContentPane().add(b); getContentPane().add(bl);

getContentPane().add(sp);

p.setBounds(20,10,300,170);

b.setBounds(100,180,90,25); bl.setBounds(200,1 80,90,25);

connection();

regionload();

brandload();

b.addActionListener(this);

bl.addActionListener(this);

cl.addltemListener(new java.awt.event.ItemListener()4

public void itemStateChanged(java.awt.event.ltemEvent ie){
clitemstatechanged(); (SN

¢2.addltemListener(new java.awt.event.ItemListencr(){

public void itemStateChanged(java.awt.event.ltemEvent 1e){
c2itemstatechanged();)

c3.addltemListener(new java.awt.event.ltemListener(){

public void itemStateChanged(java.awt.event.JtemEvent 1e){
c3itemstatechanged(); IE3H

c4.addltemListener{new java.awt.cvent.ItemListener(){

public void itemStateChanged(java.awt.event.ItemEvent 1e){
c4itemstatechanged(); [E 3N

c5.addltemListener(new java.awt.event.ItemListener(}{

public void itemStateChanged(java.awt.event.ItemEvent ie) {

cSitemstatechanged(); I3

sp.setBounds(2,220,348,225);

setSize(360,500);

public void actionPerformed(ActionEvent ac)

{

if(ae.getSource()==b)

{

j

try{

submit(};

process();

genAssoRulel r=new genAssoRulel();
r.genAssoRulel (frequent);

b

catch(Exception e){}

sp.setViewportView(ta);

if(ae.getSource()==bl)

{

Enumeration name;
name=ht.keys();

int size=ht.size();

String f[J=new String[size];

String va[]=new String[size];

int val{}=new int[size];
int 1=0;

while(name.hasMoreElements())

{
f[i]=(String)name.nextElement();
va[i]=(String)ht.get(f[i]);
val{i]=Integer.parselnt(vali]);
1++;

}

(new ChartPanel(val,f,time)).display();

-

public void connection()
{
driver="Jdbc:Odbc:pattern”;
try
{
Class.forName("sun.jdbc.odbc.JdbcOdbeDriver");

H HH).

cn=DriverManager.getConnection(driver,"","");

st=cn.createStatement{ResultSet. TYPE SCROLL _SENSITIVE,
ResultSe . CONCUR_UPDATABLE);

(W8]
I~

stl=cn.createStatement(ResultSet. TYPE SCROLL_SENSITIVE,
ResultSet. CONCUR _UPDATABLE);

st2=cn.createStatement(ResultSet. TYPE _SCROLL_ SENSITIVE,
ResultSet. CONCUR _UPDATABLE);

;

catch(Exception €)

{

System.out.println("Error "+¢);

}
public void regionload()
{

try

query="select region_id,sales city from region";
ResultSet rs1=st.executeQuery(query);
rec=rs].first();
¢3.addItem("Select region”);
while(rec)
{
id=rst.getString(1);
name=rs}.getString(2);
int I=6-1d.length();

String idname=td+c.space(l)+"* "+name;

c3.addltem(idrame);

rec=rs!.nexti();

}

catch(Exception ee){

System.out.println{"Error reg "+ee);

public void brandload()
{

try

query="select distinct(brand name) from product”;
rs=st.executeQuery(query);
rec=rs.first();
c5.addItem("Select the Brand");
while(rec)
{
id=rs.getString(1);
c5.additem(id);

rec=rs.next(};

—t

catch{Exception ee){

System.out.println("Errorl "+ee);

;
}
public void clitemstatechanged()
{

try

{

java.text.SimpleDateFormat sf = new
java.text.SimpleDateFormat{"dd-MMM-yyyy");

String year=c}.getSelecteditem().toString();
if(!year.startsWith("Select"))
{
y=Integer.parselnt(year);
c2.removeAllltems();
query = "select time_id,the date from time_by day where the_year in ("
)
rs=st.executeQuery(query);
rec=rs.first();
tf{rec) c2.addltem("All Date");
while(rec)
{
1d=rs.getString(1);
int 1=6-1d.length():

String idname=id+c.space(l)+"* "+sf.format(rs.getDate(2)});

Lad
Ln

c2.addltem{idname);

rec=rs.next();

}
rs.close(};
3
;
catch(Exception ee)
{
System.out.printin("C1Error "+ee);
}
}
public void c2itemstatechanged()
{
try

{ String str=c2.getSelectedltem().toString();

if(!str.starts With("All"))

Strlng SS[]:Str-Sth("* ");
str=ss[0].trim();

d=Integer.parselnt(str);

——

catch(Exception ee)

{
}
}
public void c3itemstatechanged()
d
try
{

String str=c3.getSelectedItem().toString();
String ss{}=str.sphit("\W*");
str=ss[0].trim();
r=Integer.parselnt(str);
query="select store_id,store_name from store where region_id in (" +r+")
rs=st.executeQuery(query);
rec=rs.{irst();
c4.removeAllltems();

c4.additem("All Store");

while(rec)

{
id=rs.getString(1);
name=rs.getString(2);
int 1=6-1d.length();

String idname=id+c.space(l)*"* "+name;

",
3

c4.addltem(idname);

rec=rs.next();

j
rs.close();
}
catch(Exception ee)
{
}
3
public void c4itemstatechanged()
{
try
{
String str=c4.getSelecteditem().toString();
H(!str.startsWith("All"))
{
String ss[]=str.split("*");
str=ss[{0].trim();
s=Integer.parselnt(str);
j
i catch(Exception ee){}
}

public void c5itemstatechanged()

{

String str=c5.getSelectedtem().toString();

br=str;

public void submit()

{

try

if(d==0)
{

query="select a.product_id,b.product_name,a.time_id,a.store_id from
sales fact " +y+ " a,product b where a.product_id=b.product_id and
a.store_id=" +s*+ " and b.brand_name="" +br+"";

3
else

{

query="select a.product_id,b.product_name,a.time_id,a.store_id from
sales_fact "-+y+ " a,product b where a.product_id=b.product_id and
a.store_id="+s+ " and b.brand_name=""+br+ "' and a.time id="+d+ "";

}

st.executeUpdate("delete tempmart"),
rs=st.executeQuery(query);
rec=rs.first();

while(rec)

{

query="lnsert into tempmart(pid,pname,tid,sid) values(" +rs.getInt{1)+ "™
+rs.getString(2)+ ", +rs.getlnt(3)y+ ™" +rs.getString(4)+)"

stl.executeUpdate(query);
rec=rs.next();
b
query="delete from temporary",
st2.executeUpdate(query);
//System.out.println("temporary ");
query="truncate table transactdata”;
st2.executeUpdate(query);
query="select distinct(pname) from tempmart”;
rs=st.executeQuery(query);
rs.]ast();
int setitem=rs.getRow();
rs.first();
String checkfull="";
tree=new TreeMap();

TreeSet ts=new TreeSet();

mt val;

int k1;

while(true){
val=Numbers();

for(k1=2; k1 < val ;k1++)

f
1

40

int n = val%kl!;

if (n==0)
{
break;
}
}
if(k1 == val)
{
ts.add(val);
3
if(ts.size()==sctitem)
break;
}//end of while

Iterator iter=ts.terator();

while(rs.next()&&iter.hasNext(})

{
int cross=Integer.parselnt(iter.next().toString());
String name=rs.getString(1);
query="insert into temporary values('"+name+"","+cross+")";
st}.executeUpdate(query);
tree.put(name,val);

}//end of while

rs=st.executeQuery("'select distinct(pname) from tempmart");

rs.}ast();

N=rs.getRow(};
rec=rs.first();
1f(rec)
{
//st].executeUpdate("drop table transact");
/*query="create table transact(";
while(rec)
{
query=query+nullspace(rs.getString(1))+" numeric(2) default 0";

rec=rs.next();

",

if(rec) query=query+",";
}

query=query+")";

st.executeUpdate(query);*/
rs=st.executeQuery("select tid,sid from tempmart group by tid,sid");

rs.1ast();

M=rs.getRow();

System.out.println("Row "+M);

rec=rs.first();

while(rec)

{

query="select distinct{(pname) from tempmart where tid=" +rs.getInt(1)+ "
and sid=" +rs.getInt(2);

rsl=stl.executeQuery(query);

recl=rst. first(};
ArrayList al=new ArrayList(};
//System.out.print!n("lengthfirst ");
while(recl)
{
al.add(nullspace(rsl.getString(1)));
recl=rsl .next();
}
[terator itr=al .iterator();
//query="1Insert into transact";
String field="(";
//String val=" values(";
while(itr.hasNext())
{
field=field+itr.next().toString();
{fval=val+"1";
if{itr. hasNext())
{
field=field+".";

//val=va]+",";

clse

field=field+")";

/val=val+")";

!
//query=query-+field+val;
//st].executeUpdate(query);
//System.out.printin(field);
field=field.replace("(","");
field=field.replace(")","");
Set set=tree.entrySect();
int itemvalue=1;
if{field.contains(","))
{
String fieldspl[J=field.split(",");
for(int k=0;k<fieldspl.length;k++)
{
iter=set.1terator();

String values=fieldspl[k];

while(iter.haSNext())
{
Map.Entry me=(Map.Entry)iter.next();
String keyvalue=me.getKey().toString();

keyvalue=keyvalue.replaceAN(" ","");

b b

if{ vatues.equals(keyvalue))
44

int temp=Integer.parselnt{me.getValue().toString(});

itemvalue=temp*itemvalue;
//System.out.printin("1f "+itemvalue);
t//end of 1f
}//end of while
}//end of for
query="insert into transactdata(transactvalue) values("+itemvalue+")";
st!.executeUpdate(query);
tiend of 1f
else
{
iter=set.iterator();
while(iter.hasNext(}))
{
Map.Entry me=(Map.Entry)iter.next();
String keyvalue=me.getKey().toString();

keyvalue=keyvalue.replaceAll(" ","");

? 2

if(field.equals{keyvalue))
{

int temp=Integer.parselnt(me.getValue().toString(});

itemvalue=itemvalue*temp;

//System.out.println("else "titemvalue}),

45

query="insert into transactdata(transactvalue)
values("+itemvalue+")";

stl.executeUpdate(query);

b

¥

rec=rs.next();

}
//field=field.substring(field.lastindexOf(field.length));

//System.out.println("field "+field);

;
h
catch{(Exception €)
{
System.out.printIn("Errorrs "+e);
|

46

7.2 SAMPLE SCREENSHOTS

7.2.1 APRIORI IMPLEMENTATION

) £ SEGUENCE PATTER® -
. Agorithm Exit

™1 batahaseEndcoding Algotithin

Year BRETTTE .
Date . All Date i
. Region .23 . Salem t-
T Store 13 » Store 13 |w

BramtName - Blue Modal’ L
Minsup 2

e

Nawasse Encoding & New Algenttin For Azsocistior Rule
1

i
tnput corfinyiatine: 5 dems, 35 rars adtions reinsun = 2%

I
Frequent 1 derneets

suent -iernoets

[!
urstitute, Blue Medst Lade Browm Egus B f

47

7.2.2 ANTI-APRIORI IMPLEMENTATION

& SEQUENCE PATTERN -, -
. Algoritm. Exit

A
P e
Year (1997 P
: e ;
Date X A1l Date iwi
Region 43 * Salem iw
. -
Sinre 13 * Store 13 | w
Brand Hore ix

Kinsup

(Giraph

[Execution lirne is. 65 mifiseconds P
iiEn:i i
\Strony Rules i
(Bize Medai Egy Substivies>=Blus Meda st
{iBiue Medel Epa Subst »Blug Medai Egn Supelinte &
YBlue Medst Eag & *Rlue keds tte B

B Medai
Blie Mg

Y =T .

ot B

?‘([Blue_MQda? £ya Sub
WiBlue KMedat Egg EBub
([Biue Medai £50 Subst =Bl Meta
Eue KMegal Egu Substtute=r =Blue Madal
{[Blue Medal Egg SubsttutesrxBluz Meda
Blue Wedal Ega Substte==»Blug Medai &
!flfJigp@ﬁe.dal,En'ﬂBuh_ﬁj. e 27 RILe biral
I —

oW
;oW e

48

7.2.3 TRANSACTION DATABASE

i

" Ble Meda'Smdl Brown Eggs
Bhye Medal Smal Srown Egas

"_Bue Medal Smaf Brown E0a5
;vewanEggsl .
ge BrownEqgs

' B‘k.-e Medal| Large Brown Eqgs
Eogs

. BheMeddSmalEggs e e

Blus Medal SmaliEgas

“Bhe Medd SmellEgos 4

Ehze Medal Sl Eggs
Blue Medal Smal Eqgs

. Ele pedal Small £095
.. Bhue Medal Large Eggs
" Bhue Medd Large Tngs
Blue Medzl Large Eggs -
Ehue Meda_l Large Eggs
Blue Medal Egg Substitute
Eis Medal Egy Substitute

Shye Medal Eq SU:SU_EI_‘_EQ_ .

Blue Medsl Eqy Substitute
Elue Medal Egg Substitute
Blue Medal Egg Substitute
Bhoe Madd Foo Substitute
Elue Medal Egg Substitute
Bhue Medsd Eag Sub

"Blue Medal Small Erown Cogs
Eglue Medal Smadl Brovn Euns
. Blue Medal Lerge Brown Eggs.

"y Medal Large Brovn Eggs.

Elue Medal Small Eqggs
Bl Medal Srmall €905
Ehe Meds Small Eggs
Blue Medd Large Eags
. Blue Medal Large Eq3s
Ehue Medal Egq Substd

49

7.2.4 PRIME NUMBER ASSIGNMENT

7.2.5 FINAL ENCODED TABLE

Transactvakie

)
47
47
17
47
¥
47 :
47 .
el ;
47
47
47

m_mﬂm_

——————
S —— A
1

8.REFERENCES

[1] Agrawal R., Imielinski T., Swami A. (1993): Mining association rules
between sets of items inlarge databases. | Proc. ACM SIGMOD Int. Conf.
Management of Data, Washington, pp.207216.

[2] Tong Wang, Pilian He, “Database Encoding And An Anti-apriort
Algorithm For Association Rules Mining”, in Proceedings of the Fifth

International Conference on Machine Learning and Cybernetics IEEE, 2006.

[3] R. Agrawal, H. Mannila, R. Snkant, H. Toivonen, and A. Inken
Verkamo. Fast Discovery of Association Rules in Large Databases. In

Advances in Knowledge Discovery and Data Mining, pages 307{328.
AAAI Press, 1996.

[4] Margaret H Dunham, Data Mining Introductory and Advanced Topics,

Tsinghua University Press, Beijing, 2003.

[5] C.L. Blake and C.J. Merz, UCI Repository of machine leamning
databases, University of California, Irvine, Dept. of Information and

Computer Sciences, http://www.ics.uci.edu/~mlearn/ MLRepository.htmi,

1998.

{6] S. Tsur. Data dedging. IEEE Data Engineering Bulletin, 13(4):58-63,
December 1990.

[71J. T-L. Wang, G-W. Chirn, T. G. Marr, B. Shapiro, D. Shasha, and L.
Zhang. Cobinatorial pattern discovery for scientific data: some preliminary
results. In Proceedings of the 1994 ACM SIGMOD International

Conference on Management of Data, pages 115-125, Minneapolis, MN,
May 24-27 1994.

[8] M.J. Zaki. Scalable algorithms for association miming . IEEE
transactions of knowledge and data engineering, 12(3):372-390, May/june

2000

