TEST-COST SENSITIVE CLASSIFICATION ON DATA WITH
MISSING VALUES
By
K.R.BASKARAN
Reg. No. 71206805001

of
KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE - 641 006

A PROJECT REPORT
Submitted to the
FACULTY OF INFORMATION AND COMMUNICATION ENGINEERING

In partial fulfillment of the requirements
for the award of the degree
of
MASTER OF ENGINEERING
iN

COMPUTER SCIENCE AND ENGINEERING
JULY 2009

BONAFIDE CERTIFICATE

Certified that this project report titled entitted “TEST-COST SENSITIVE
CLASSIFICATION ON DATA WITH MISSING VALUES” is the bonafide work of
Mr.K.R.BASKARAN, who carried out the research under my supervision. Certified
further, that to the best of my knowledge the work reported herein does not form part of
any other project report or dissertation on the basis of which a degree or award was

conferred on an earlier occasion on this or any other candidate.

S

SIGNATURE OF THE GUIDE HEAD OF THE DEPﬁéTMg@/
Mr.M.Nageswara Guptha, M.E., Dr. S.Thangasamy,

Senior Lecturer, Dean & HOD

Department of Computer Science & Department of Computer Science
Engineering & Engineering

The candidate with University Register No. 71206805001 was examined by

. . . s ¢ O
us in the project viva-voce examination held on 6 L 0}

\N\,&V/N\c"’\ i

INTERNAL EXAMINER : EXTERNAL EXAMINER

ABSTRACT

While classifying the data, the source data might have some missing values.
In such cases, the total cost incurred in classification of data will be the sum of
misclassification cost (cost incurred by misclassification errors) and test cost (cost

incurred for obtaining missing attribute values).

Several methods are employed in predicting the missing values. The CPU
time taken for predicting the various attributes of a record by each one of these
prediction methods is tabulated. The efficiency (how correctly the missing value is
predicted) of each one of these methods is also tabulated. The efficiency and processor
time are in different units. Both of these values are converted into some constant value.
The sum of these two values will be the total test cost for the missing value prediction. A
comparison is made for the total test cost by each one of these methods for each one of
the atiributes of the database and the best prediction method (having least total test
cost) is chosen for predicting the missing value attribute in a given input record for

classification.

11

SIS S S(HSSLD
gpalemen aumslL(hSSeneulsy, epag STelefleo Hev HULSEN
Uegluihesend. eusurm Splilen STe| eaumsli(hds HpEW Wngs biFee|, FHeumw
awemsluhsSedst Glaey (Famw asmsliLbhisselsrmew gohulbd GlFea]) hayb
Gangenesrd OFevey (Feoul UewT WHOLSEHT GQuDLLhigons ghub CFeel)

ShFwenaUiles Fal (NSoIGTenHUN6ET 6T QY HS G-
ol WwIEILGenen (PpeT Hesll&He Ly (PEOMEBET LtesTL(hSHSHULIL L 60T.
UsbBaumy LisoTLsemen (petT Sewllss Guhenmiu speulleun(n (pedt el (penpuiegid
BgemeuiL(ND soWWE GFWes GRIWD LI gL 1L &).speubleui(h (6ot Sessfiiiy (penmuileo
QEwhmpenwld (61hS5 Hemey Glevelwions Seumw WHLLEET (1per SessllSHUL(hS e)
Ll guwielll LUl gy, Qewmhrinesowgbd sowwé Gswens GrIaph GeusuGaum enmeusaiien
TGS BT 60T Qeuai(m LS SBERLD (1 5] 6060LLIT 63T WL
WAHOHU- L& @eiel(p bHAULsefsn Fal (H&0sTanalu Seumlu WHISET (pei
sefiiudnDenes CWNss Gensemend GFUN@GHD. FTUSSHMSI el speubleuTh UGRTLIMEHD
Gohsamiu (pempseT dansamilen Cngs GsnHenssrd GlFeveyd spUAftii(h),
Qanhidauuhn 2 eef(hasmer amslUGSHAL Cgmait(hbd Seumw WLHOLLW

LIGESTLI&6WETT (63T Geunil&s Cihelg(hidsLLhgssrme)

v

ACKNOWLEDGEMENT

| express my profound gratitude to our esteemed Chairman Arutselvar Dr.
N. Mahalingam, B.Sc., F.l.E., and Vice Chairman Dr.K.Arumugam, B.E. {(Hons), M.§
(USA), ML.LE., for giving this great opportunity to pursue this course.

I thank Prof. M.Annamalai, Vice-Principal, Kumaraguru College of
Technology, Coimbatore, for providing me with the necessary facilites and

Infrastructure to work on this project.

| express my sincere thanks to Dr.S.Thangasamy, Ph.D., Professor and
Dean, Department of Computer Science and Engineering, for being my greatest of

inspiration and for embedding the quest for innovative ideas.

| record my thanks to the Internal guide Mr.M_Nageswara Guptha, M.E., Senior
Lecturer in Depariment of Computer Science and Engineering , and Ms.M.S.Hema,
M.E., Senior Lecturer in Department of Computer Science and Engineering who have

helped me to a great extent towards the successful implementation of this project.

| express my deep sense of gratitude and gratefulness to project cocrdinator
Mrs.V.Vanitha, M.E, Asst. Professor, Department of Computer science and
Engineering, for her supervision, tremendous patience, active involvement and

guidance.

| would also like to convey my honest thanks to all teaching staff members

and non-teaching staiff members of the department for their support.

CHAPTER
NO.

TABLE OF CONTENTS

TITLE

ABSTRACT
ABSTRACT (TAMIL)
LIST OF TABLES
LIST OF FIGURES

LIST ABBREVIATIONS

INTRODUCTION

1.1 Problem Definition.
1.2 Prediction of Missing Values.
1.3 Classification and Prediction.

1.4 Preparing the Data for Classification and
Prediction

PAGE
NO.

ix

Xi

BN =

vi

2

Literature Survey
2.1 Cost of Misclassification errors.
2.1.1 Constant Error Cost.
2.1.2 Conditional Error Cost
2.1.2.1 Error Cost Conditional on Individual
Case.
2.1.2.2 Error Cost Conditional on Time of
Classification.
2.1.2.3 Error Cost Conditional on
Classification of other Cases.
2.1.2.4 Error Cost Conditional on Feature
Value.
2.3 Cost of Tests.
2.3.1 Constant Test Cost.
2.3.2 Conditional Test Cost.
2.3.2.1 Test Cost Conditional on Prior Test
Selection.
2.3.2.2 Test Cost Conditional on Prior Test
Results.
2.3.2.3 Test Cost Conditional on True Class
of Case.
2.3.2.4 Test Cost Conditional on Test Side-
Effects.

2.3.2.5 Test Cost Conditional on Time of Test.

2.3 Building Decision Tree with Minimal Costs.

o o~ o~

Vil

PETAILS OF PROPOSED METHODOLOGY

3.1 Cilassification by Decision Tree Induction.

3.2 Decision tree Induction.
3.3 Adttribute Selection Measure.
RESULTS AND DISCUSSICN

4.1 Performance Evaluation

CONCLUSION AND FUTURE WORK

APPENDICES

SCREEN SHOTS

REFERENCES

13
13
13
15
17
17

21

23

52

55

viii

LIST OF TABLES

TABLE PAGE
TABLE NAME
NO. NO.
2.0 Three different sets of attribute costs . 11
4.0 Equivalence of CPU time 17
4.1 Mean method 17
4.2 18

Median method

4.3 K-Nearest Neighbor method 18

4.4 Highest Information Gain method 19

LIST OF FIGURES

FIGURE PAGE
FIGURE NAME
NO. NO.
1.0 a) Learning. >
1.0b) Classification. 3
2.0 Three different decision trees built with different test 11
costs
2.1 Three different decision trees built with three different
12
test costs as in Table 2.0.
4.1 Mean method. 17
4.2 Median method. 18
43 K-Nearest Neighbor method. 19
4.4 Highest Information Gain method. 20
4.5 Comparison of four methods.

20

FP

FN

LIST OF ABBREVIATIONS

False Positive.

False Negative.

xi

uriueweiqqng N'SId weegorunIy ' d'AId ._ eAQNN N T J0id
A1e10109g WNO 1030011

UO SOUSIRJUOD _anoﬁm Z.EEH

A3ojourps], Sunndwo)) pue $90USIOS UOLBUIIOIU] JOF 4101008
- .
ASojouyo9], uonewIolu] JO JusuUIIeda(

CHAPTER 1

i. INTRODUCTION

1.1. PROBLEM DEFINTION

Classification technique is used for classification of data. In this technique a model is
constructed based on sample data and this model is used to classify the unknown data. During
model construction process, the sample data is taken from the source data. The source data
might have some missing values which will build a decision tree with misclassification and
test cost. In the area of classification of data, only the cost of misclassification was
predominantly considered earlier. It is equally important to consider how to handle the test
costs associated with the querying of missing values.

Test cost is the cost associated with the finding of missing values through physical
tests. In this project missing data is predicted using four different methods. The efficiency and
CPU time for each one of these methods for predicting each one of the attributes of a record is
computed. For each one of the attributes, the best method is predicted based on the minimum

total cost.

1.2. PREDICTION OF MISSING VALUES

In this project emphasis is given for the minimization of combined test cost and

misclassification cost. Test cost is the cost involved in prediction of missing values.

There are many methods for predicting missing values. Some of the popular methods
are described below.
a. Ignore the tuple: This is usually done when the class label is missing (assuming the
mining task involves classification or description) [3]. This method is not very effective,
unless the tuple contains several attributes with missing values. It is especially poor when the
percentage of missing values per attribute varies considerably.
b. Filling the missing value manually: In general, this approach is time-consuming and may
not be feasible given a large data set with many missing values.
c. Use a global constant to fill in the missing value: replace all missing attribute values by
the same constant, such as a label like “Unknown” or - . If missing values are replaced by,

say, “Unknown”, then the mining program may mistakenly think that they form an interesting

1

concept, since they all have a value in common — that or “Unknown”. Hence, although this
method is simple, it is not recommended.

d. Use the attribute mean to fill in the missing value:; Calculate the average value of an
attribute from a database. Use this average value to fill in a missing value for this attribute.

e. Use the attribute mean for all samples belonging to the same class as the given tuple:
For example, if classifying customers according to credit risk, replace the missing value with
the average income value for customers in same credit risk category as that of the given tuple.
f. Use the most probable value to fill in the missing value: This may be determined with
regression, inference-based tools using a Bayesian formalism, or decision tree induction.

1.3. CLASSIFICATION AND PREDICTION

Classification and prediction are two forms of data analysis that can be used to
extract models describing important data classes or to predict future data trends. Whereas
classification predicts categorical labels, prediction models continuous-valued functions. For
example, a classification model may be built to categorize bank loan applications as either safe
or risky, while a prediction model may be built to predict the expenditures of potential

customers on computer equipment given their income and occupation.

Data classification is a two-step process (Figure 1.0). In the first step, a model 1s built

describing a predetermined set of data classes or concepts.

Classification

Training Data

Alglorithm
NAME AGE INCOMB CREDIT RATING Classification
Rules
John <=30 LOW Fair
E
Lee 31..40 HIGH xcellent i age="31....40" and
Ashok >40 MEDIUM Fair income=high

then
credit rating=excelilent

Fig. 1.0 (a) - Leamning: Training data analyzed by a classification algorithm. Here, the class
label attribute is credit rating, and the learned model or classifier is represented in the form of

classtfication rules.

Classification

Test Data S
name age income | Credit_ rating
Fran >40 high Fair New Data
Arvind| 31.40 HIGH Excellent
(John Henri,31...40,high,)\
Prem >40 MEDIUM Fair Credit Rating ?

Excellent

Fig 1.0 (b) Classification: Test data are used to estimate the accuracy of the classification
rules. If the accuracy is considered acceptable, the rules can be applied to the classification of

new data tuples.

The model is constructed by analyzing database tuples described by attributes. Each tuple 1s
assumed to belong to a predefined class, as determined by one of the attributes, called the class
label attribute. In the context of classification, data tuples are also referred to as samples, or
objects. The data tuples analyzed to build the model collectively form the training data set.
The individual tuples making up the training set are referred to as training samples and are
randomly selected from the sample population. Since the class label of each training sample is
provided, this step is also known as supervised learning. It contrasts with unsupervised
learning, in which the class label of each training sample is not known, and the number or set
of classes to be learned may not be known in advance.

Typically, the learned model is represented in the form of classification rules, decision
trees, or mathematical formulae. For example, given a database of customer credit information,
classification rules can be learned to identify customers as having either excellent or fair credit
ratings. The rules can be used to categorize future data samples, as well as provide a better
understanding of the database contents.

In the second step, the model is used for classification. First, the predictive accuracy of
the model is estimated. The holdout method is a simple technique that uses a test set of class-
Jabeled samples. These samples are randomly selected and are independent of the training

samples. The accuracy of a model on a given test set is the percentage of test set samples that

arc correctly classified by the model. For each test sample, the known class label is compared
with the leammed model’s class prediction for that sample. If the accuracy of the model were
estimated based on the training data set, this estimate could be optimistic since the learned
model tends to over fit the data. Therefore, a test set 15 used.

if the accuracy of the model is considered acceptable, the model can be used to classify
future data tuples or objects for which the class label 1s not known.

Prediction can be viewed as the construction and use of a model to assess the class of
an unlabeled sample, or to assess the value or value ranges of an attribute that a given sample
is likely to have. Classification is used to predict discrete or nominal values, while regression
is used to predict continuous or ordered values. We refer to the use of prediction to predict
class labels as classification, and the use of prediction to predict continuous values.

Classification and prediction have numerous applications including credit approval,

medical diagnosis, performance prediction, and selective marketing.

1.4. PREPARING THE DATA FOR CLASSIFICATION AND PREDICTION

The following preprocessing steps may be applied to the data in order to help improve
the accuracy, efficiency, and scalability of the classification or prediction process.

o Data cleaning: This refers to the preprocessing of data in order to remove or reduce
noise and the treatment of missing values. This step can help reduce confuston during learning.

s Relevance analysis: Many of the attributes in the data may be irrelevant to the
classification or prediction task. Hence, relevance analysis may be performed on the data with
the aim of removing any irrelevant or redundant attributes from the learning process.

» Data transformation: The data can be generalized to higher-level concepts. Concept
hierarchies may be used for this purpose. This is particularly useful for continuous-valued
attributes. For example, numeric values for the attribute ‘income’ may be generalized to
discrete ranges such as low, medium, and high. Similarly, nominal-valued attributes, like

‘street’, can be generalized to higher-level concepts, like ‘city”.

CHAPTER 2

2. LITERATURE SURVEY

Inductive learning techniques, such as the naive Bayesian and decision tree
algorithms, have met great success in building classification models with an aim to minimize
the classification errors. However, previous inductive learning research has only focused on
how to minimize classification costs such as the cost of false positive (FP) and the cost of false
negative (FN)[1]. The classification errors are useful in deciding whether a learned model
tends to make correct decisions on assigning class labels for new cases and is useful for
dealing with data with unbalanced classes. However, misclassification costs are not the only
costs to consider in practice. When performing classification on a new case, values for some
attributes may be missing. In such a case, one may have the option of performing additional
tests in order to obtain a value for these attributes. However, performing these additional tests
may incur more costs, where some costs are in the form of lengthy waiting time and others
include monetary payment. Still, some tests are worthwhile to perform because having the
additional values might greatly increase the classification accuracy. Thus, one must often
consider the “test cost” when missing values must be obtained through physical “tests” which
incur costs themselves. These costs are often as important as the misclassification costs. As an
example, consider the task of a medical practice that examines incoming patients for a certain
iliness. Suppose that the doctors’ previous experience has been compiled into a classification
model such as a naive Bayesian classifier. When dealing with an incoming patient, it 1s often
the case that certain information for this patent may not yet be known; for example, the blood
tests or the X-ray test may not have been done yet. At this point, the doctor (that is, the
classification model) must exercise its judgment appropriately: Performing these tests will
incur certain extra costs, but some tests may provide usefu! informational benefits toward
reduci-ng the classification costs. In the end, it is the balancing act of the two types of costs—
namely, the classification costs and the test costs —that will determine which tests will be
done. Tasks that incur both misclassification and test costs associated with missing values
abound in industrial practice ranging from medical diagnosis to scientific research and to drug
design. In the past, inductive learning methods that consider a varety of costs are often
referred to as cost-sensitive learning. In this project both misclassification cost and test cost for

prediction of missing values are considered.

2.1. COST OF MISCLASSIFICATION ERRORS

Suppose there are C classes. In general, we may have a C x C matrix, where the
clement in row i and column j specifies the cost of assigning a case to class 7, when it actually
belongs in class j [2]. Typically (but not necessarily) the cost is zero when 7 equalsj. In a
minor variation on this approach, one may have a rectangular matrix, where there is an extra

row for the cost of assigning a case to the unknown (or “too-difficult-for-this-learner”) class.

2.1.1 Constant exror cost

The cost of a certain type of error (the value of a cell in the cost matrix) may be a
constant (the same value for all cases). This is the most commonly investigated type of cost. If
the cost is zero if i equals j and one otherwise, then our cost measure is the familiar error-rate
measure. If the cost is one if i equals j and zero otherwise, then our cost measure is the familiar

accuracy measure.
2.1.2 Conditional error cost

The cost of a certain type of error may be conditional on the circumstances.
2.1.2.1 Error cost conditional on individual case

The cost of a classification error may depend on the nature of the particular case. For
example, in detection of fraud, the cost of missing a particular case of fraud will depend on the
amount of money involved in that particular case. Similarly, the cost of a certain kind of
mistaken medical diagnosis may be conditional on the particular patient who is misdiagnosed.
For example, the misdiagnosis may be more costly in elderly patients. It may be possible to
represent this situation with a constant error cost by distinguishing sub-classes. For example,
instead of two classes, “sick” and “healthy”, there could be three classes, “sick-and-young”,
“sick-and elderly”, and “healthy”. This is an imperfect solution when the cost varies

continuously, rather than discretely.
2.1.2.2. Error cost conditional on time of classification

In a time-series application, the cost of a classification error may depend on the timing.
Consider a classifier that monitors sensors that measure a complex system, such as a
manufacturing process or a medical device. Suppose that the classifier is intended to signal an

alam if a problem has occurred or will soon occur. The sensor readings must be classified as

~cither “alarm” or “no alarm”. The cost of the classification depends on whether the

classification is correct and also on the timeliness of the classification. The alarm is not useful

unless there is sufficient time for an adequate response to the alarm. Again, it may be possible

to represent this situation with a constant error cost by distinguishing sub-classes. Instead of

two classes, “alarm” and “no-alarm”, there could be “alarm-with-lots-of-time”, “alarm-with-a-
» o«

little-time”, “alarm-with-no-time”, and “no-alarm”. Again, this is an imperfect solution when

the cost varies continuously as a function of the timeliness of the alarm.

2.1.2.3. Error cost conditional on classification of other cases

In some applications, the cost of making a classification error with one case may depend on
whether errors have been made with other cases. The familiar precision and recall measures,
widely used in the information retrieval literature, may be scen as cost measures of this type.
For example, consider an information retrieval task, where one is searching for a document on
a certain topic. Suppose that he/she would be happy if he/she could find even one document on
this topic. If we are given a collection of documents to classify as “relevant” or “not-relevant”
for the given topic, then the cost of mistakenly assigning a relevant document to the not
relevant class depends on whether there are any other relevant documents that one has
correctly classified. As another example, in activity monitoring, if one issues an alarm twice in
succession for the same problem, the benefit of the second alarm is less than the benefit of the

first alarm, assuming both alarms are correct classifications.

2.1.2.4. Error cost conditional on feature value

The cost of making a classification error with a particular case may depend on the value of one

or more features of the case
2.2. COST OF TESTS

Each test (i.e., attribute, measurement, and feature) may have an associated cost. For example,
in medical diagnosis, a blood test has a cost. One can only rationally determine whether 1t 1s
worthwhile to pay the cost of a test when he/she knows the cost of misclassification errors. [f
the cost of misclassification errors is much greater than the cost of tests, then it is rational to
purchase all tests that seem to have some predictive value. If the cost of misclassification

errors is much less than the cost of tests, then it is not rational to purchase any tests.

2.2.1 Constant test cost

The cost of performing a certain test may be a constant. Each test has a different cost, but the
cost of a given test is the same for all cases.

2.2.2 Conditional test cost

The cost of performing a certain test may be conditional on the circumstances surrounding the
test.

2.2.2.1 Test cost conditional on prior test selection

The cost of performing a certain test on a given patient may be conditional on the previous
tests that have been chosen for the patient. For example, a group of blood tests ordered
together may be cheaper than the sum of the costs of each test considered by it, since the tests

share common costs, such as the cost of collecting blood from the patient.

2.2.2.2 Test cost conditional on prior test results

The cost of performing a certain test on a patient may be conditional on the results of previous
tests. For example, the cost of a blood test is conditional on the patient's age. Thus a blood test

must be preceded by a “patient-age” test, which determines the cost of the blood test.

2.2.2.3. Test cost conditional on true class of case

The cost of performing a certain test on a patient may be conditional on the correct diagnosis
of the patient. For example, the cost of an exercise stress test on a patient may be conditional
on whether the patient has heart disease. The stress test could cause heart failure, which adds

to the total cost of the test.
2.2.2.4 Test cost conditional on test side-effects

The cost of performing a certain test on a patient may be conditional on possible side-effects of
the test. For example, some patients are allergic to the dies that are used in certain radiological
procedures. One side-effect of such a radiological test is an allergic reaction, which may
increase the cost of the test.

2.2.2.5 Test cost conditional on time of test

The cost of performing a certain test may depend on the timing of the test.

2.3. BUILDING DECISION TREE WITH MINIMAL COSTS

One assumes that the training data may consist of missing values (whose values cannot be
obtained) {4]. A static cost structure is also assumed where the cost is not a function of time or
cases. Further, it is assumed that the test cost and the misclassification cost have been defined

on the same cost scale, such as the dollar cost incwrred in a medical diagnosis.

The new decision-tree Jearning algorithm is quite simple. One considers discrete attribute and
binary class labels; extensions to other cases can also be made. It is also assumed that kP is the
cost of one false positive example, and FN is the cost of one false negative example. The
algorithm uses a new splitting criterion of minimal total cost on training data, instead of
minimal entropy, to build decision trees. At each step, rather than choosing an attribute that
minimizes the entropy, the algorithm chooses an attribute that reduces and minimizes the total
cost, the sum of the test cost and the misclassification cost, for the split. Then, the algorithm
chooses a locally optimal attribute without backtracking. Thus the resuiting tree may not be
globally optimal. However, the efficiency of the tree-building algorithm is generally high.

. In many variations of decision tree algorithms, the unknown value is treated as an
ordinary value. However, in this work, the strategy is that all unknown values (“?”) are treated
as a special “value™ no leaf or sub-tree will be built for examples with the “?” value. This 1s
because it is unrealistic to assume the unknown values would be as useful for classification as
the known values. In addition, when a test example is stopped at an attribute whose value is
unknown, if the attribute has a “?” branch, it is impossible to decide whether the test should be
performed by the tree. Therefore, the examples with unknown attribute values are not grouped
together as a leaf, or built into a sub-tree; instead, they are “gathered” inside the node that
represents that attribute. One then calculates the ratio of the positive and negative examples in

the internal node. The second test algorithm will incorporate such ratios in making predictions.

Another important point is how the leaves are labeled. In traditional decision tree algorithms,
the majority class is used to label the leaf node. In our case, as the decision tree is used to
make predictions to minimize the total cost, the leaves are labeled also to minimize the total
cost. That is, at each leaf, the algorithm labels the leaf as either positive or negative (in a
binary decision case) by minimizing the misclassification cost. Suppose that the leaf has P
positive examples, and N negative examples. If PxFN > NxFP (i.e., the cost of predicting
negative is greater than the cost of predicting positive), then the leaf is labeled as positive;
otherwise it is labeled as negative. Therefore, the label of a leaf does not just depend on the

majority class of the leaf, but also on the cost of misclassification.

Let us look at a concrete example. Assume that during the tree building process, there is a set
of P and N positive and negative examples respectively to be further classified by possibly
building a sub-tree. If we assume that PxFN > NxFP, then, if no sub-tree is built, the set would
be labeled as positive, and thus, the total misclassification cost is T = NxFP. Suppose that an
attribute A with a test cost C is considered for a potential splitting attribute. Assume that A has
two values, and there are P1 and N1 positive and negative examples with the first value, P2
and N2 positive and negative examples with the second value, and PO and NO positive and
negative examples with A’s value unknown. Then the total test cost would be
(P1+N1+P2+N2) xC (i.e., cases with unknown attribute values do not incur test costs).
Assume that the first branch is labeled positive (as P1xFN > N1xFP), and the second branch is
labeled negative, then the total misclassification cost of the two branches is N1xFP+P2xFN.
As we have discussed carlier in this section, examples with the unknown value of A stay with
the attribute A, and we have assumed that the original set of examples is labeled as positive.
Thus, the misclassification cost of the unknowns is NOxFP. The total cost of choosing A as a
splitting attribute would be:
TA = (P1+N1+P2+N2) xC + NIxFP + P2xFN + NOxFP

If TA < T, where T = NxFP, then splitting on A would reduce the total cost of the original set,
and we would then choose an attribute with the minimal total cost as a splitiing attribute. One
then applies this process recursively on examples falling into branches of this attribute. If TA >
T for all remaining attributes, then no further sub-tree will be built, and the set would become

a leaf, with a positive label.

Finally, as the tree attempts to minimize the total cost, it may also overfit the training dataset.
Aimed at minimizing the total cost of test and misclassification, the new decision-tree
algorithm has several desirable features. This dataset, after pre-processing, has 332 labeled
examples, which are described by six attributes. The numerical attributes are first discretized
using the minimal entropy method, as this tree building algorithm can only accept discrete
attributes (but it is straightforward to extend this algorithm to accept continuous attributes).

The attribute values are renamed as 1, 2, 3, and so on.

The first property is that the relative difference between misclassification and test costs can
affect the tree dramatically. If the former is less than the latter, then no test should be
performed, and the decision tree would be simply a one-node leaf. On the other hand, if the
former is much larger than the latter, then all tests should be done, as long as they are relevant;
i.e., they can improve the predictive accuracy. This can be seen clearly from the “Ecoli”

dataset. Indeed, if the misclassification cost is set to 200 for both FP and FN, and all test cost 1s

10

set to 300, then the algorithm returns a one-leaf node as shown in Figure 3.0 (a). On the other
hand, when all test costs are set to zero, then the tree is the “largest™; in this case, the tree has
13 nodes in total, and can be seen in Figure 2.0(c). As an “intermediate” case, if all test costs
are set to 20, then the decision tree with the-minimal cost has six nodes in total, and the tree

can be seen in Figure 2.0 (b).

:

a Al test costs are

300

c. All test costs are O

Fig.2.0. Three different decision trees built with different test costs.

The second important and desirable property is that for attributes with different test costs, this
new algorithm is likely to choose an attribute with zero or the smallest cost at the top (or root)
of the tree. This is because the attribute at the root will be tested by all examples, and thus the
total attribute cost would be relatively high. Choosing an attribute with zero or the smallest
cost helps reduce the total cost. Of course attribute selection also depends on the distribution of

attribute values and class labels of the training examples.

Table 2.0 - Three different sets of attribute costs.

COST Al A2 A3 Ad AS Ab

Tree#1 20 20 20 20 20 20
Tree# 2 200 20 100 100 200 200
Tree#3 200 100 100 100 20 200

11

by Trea 52 {cy Tree 3

Fig. 2.1 - Three different deciston trees built with three different test

costs as in Table 2.0.
Table 2.0 shows three cases in which attribute costs are different. In the first case (the
baseline), all attribute costs are set to 20. In the second and third cases attribute costs are set
differently. The misclassification cost is set at 800 for both FP and FN. As we can seg, in the
second case, the attribute A2 has the smallest test cost, and it is indeed chosen as the root of
the tree as shown in Figure 2.1(b). In the third case, attribute A5 has the smallest test cost, and

it is chosen as the root (Figure 2.1{c)).

The third property, related to the second one, is that when the test cost of an attribute is
increased, that test attribute will be “pushed” down in the tree, until it “falls out” of the tree
(when the test cost becomes too large). If the test cost of Al is set to 20, 50, and 80,
respectively, while other costs are fixed, we obtain trees (not shown here) with Al at the root
(similar to Figure 2.1(a)), in the middle of the tree (similar to Figure 2.1 (b)), and not in the

tree, respectively

12

CHAPTER 3

3. DETAILS OF PROPOSED METHODOLOGY
3.1 CLASSIFICATION BY BECISION TREE INDUCTION

A decision tree is a flow - chart like structure, where each internal node
denotes a test on an attribute, each branch represents an outcome of the test, and leaf nodes
represent classes or class distributions [3]. The topmost node in a tree 1s the root node. Internal
nodes are denoted by rectangles, and leaf nodes are denoted by ovals.

In order to classify an unknown sample, the attribute values of the sample are
tested against the decision tree. A path is traced from the root to a leaf node that holds the class

prediction for that sample. Decision trees can easily be converted to classification rules.

Basic algorithm for inducing a decision tree from training samples

a. Create anode N;

b. If samples are all of the same class, C then

¢. Return N as a leaf node labeled with the class C;

d. If attribute-list is empty then

e. Return N as a leaf node labeled with the most common class in samples;
£ Select test-atiribute, the attribute among attribute-list with the highest information
gain;

g. Label node N with test-attnibute;

h. For each known value a; of test-attribute

1. Grow a branch from node N for the condition test-attribute= a;;

j. Let s; be the set of samples in samples for which test-attribute = a;;

k. Ifsiis empty then

. Attach a leaf labeled with the most common class in samples;

m. Else attach the node

3.2 DECISION TREE INDUCTION
The basic algorithm for decision tree induction is a greedy algorithm that constructs decision

trees in a top-down recursive divide and conquer manner. The basic strategy is as follows

. The tree starts as a single node representing the training samples

13

. If the samples are all of the same class, then the node becomes a leaf and is Jabeled with
that class

. Otherwise, the algorithm uses an entropy based measure known as information gain as a
heuristic for selecting the attribute that will best separate the samples into individual classes.
This attribute becomes the “test” or”decision” attribute at the node. In this version of the
algorithm, all attributes are categorical, that is discrete-valued. Continuous-valued attributes
must be discretized.

. A branch is created for each known value of the test attribute, and the samples are
partitioned accordingly.

. The algorithm uses the same process recursively to form a decision tree for the samples
at each partition. Once an attribute has occurred at a node, it need not be considered in any of
- the node’s descendents.

e The recursive partitioning stops only when any one of the following conditions is true:

a. All samples for a given node belong to the same class, or

b. There are no remaining attributes on which the samples may be further partitioned. In
this case, majority voting is employed. This involves converting the given node into a
leaf and labeling it with the class in majority among samples. Alternatively, the class
distribution of the node samples may be stored.

¢. There are no samples for the branch test-attribute = a;. In this case, a leaf is created with

the majority class in samples.

3.3 ATTRIBUTE SELECTION MEASURE

The information gain measure is used to select the test attribute at each node in
the tree. Such a measure is referred to as an attribute selection measure or a measure of the
goodness of split. The attribute with the highest information gain is chosen as the test attribute
for the current node. This attribute minimizes the information needed to classify the samples in
the resulting partitions and reflects the least randomness or “impurity” in these partitions. Such
an information- theoretic approach minimizes the expected number of tests needed to classify

an object and guarantees that a simple tree is found.

Let S be a set consisting of's’ data samples. Suppose the class label attribute

has ‘m’ distinct values defining ‘m’ distinct classes, C; (for i= 1,...,m). Let s; be the number of

14

samples of S in class Ci. The expected information needed to classify a given sample 1s given
by

m
1(S1,52,+ . -»Sm) = 'Z_Pi loga(pi)

=1

Where pi is the probability that an arbitrary sample belongs to class Cj and is
estimated by si/s.

L et attribute A have v distinct values {a,,a, ...,ay}. Attribute A can be used to
partition S into v subsets, {Si, S2, ...S,}, where §; contains those samples in S that have value
a; of A. If A were selected as the test attribute, then these subsets would correspond to the
branches grown from the node containing the set S. Let s;; be the number of samples of class C;

in a subset S;. The entropy, or expected information based on the partitioning into subsets by

A, is given by
v
E(A) =3 Sjjt ...+ Spy
Nl T I (Sjs---» Smy)
S

The term sij+ ... + Sy acts as the weight of the jth subset and is the

number of samples in S. The smaller the entropy value, the greater the purity of the subset

partitions. For a given subset §;,

m
I (s1j, S2j, -+-» Smj) = -2 Pjj loga(pip)
=1

where pjj=s;; and is the probability that a sample in s; belongs to class ¢
sil
The encoding information that would be gained by branching on A is

Gain(A) =1 (s, s2,..., Sm) — E(A)

In other words, Gain (A) is the expected reduction in entropy caused by

knowing the value of attribute A,

15

The algorithm computes the information gain of each attribute. The attribute with the
highest information gain is chosen as the test attnbute for the given set S. A node 1s created
and labeled with the attribute, branches are created for each value of the attribute, and the

samples are partitioned accordingly.

16

CHAPTER 4

4. PERFORMANCE EVALUATION

EQUIVALENCE OF CPU TIME:

CPU Time Range Equivalence cost{assumption)
0~0.025 10
0.026~0.030 15
0.031~0.040 20
0.041~0.050 25
>0.051 30

Tab 4.0 Equivalence of CPU time

Methodl —Using Mean method to find the missing value:

Attributes Cost
al(Age) 30
aZ2(student) 30
a3(Credit Rating) 25
a4(Income) 30

Tab 4.1 Methodl —Using Mean method to find the missing value

21 -
30 ~
29 -
28 -
27

I I |

26
25 -
24
23
22 e

Lo+ I)

al

Cost

= Cost

a2 a3 ad
Atrtributes

Fig 4.1 Methodl- Using Mean method to find the missing value

17

Method2- Using Median method to find the missing value:

Attributes Cost
al(Age) 15
aZ(student) 20
a3(Credit Rating) 15
ad4(Income} 15

Tab 4.2 Method2 — Using Median method to find the missing value

0 MO =

Lo B T = B o]

30 -

25 4

20 -

15

10 -

Cost

25

W Cost

al

az

a3
Attributes

ad

Fig 4.2 Method2 —Using Median method to find the missing value

Method3 — Using K-Nearest Neichbor method to find the missing value:

In this method the missing value for an attribute is computed by taking the mean value

of the last ten tuples (in general last n tuples) for that attribute from the database

Attributes Cost
al{Age) 5
a2(student) 10
a3(CreditRating) 15
a4(Income) 20

Tab 4.3 Method3- Using K-Nearest Neighbor method to find the missing value

18

P I
)
[t=3
&

Lo A T = B o

w Cost

al a2 23 agd
Attri_?utes

Fig 4.3 Method3- Using K-Nearest Neighbor method to find the missing value

Method 4 - Based on highest information gain of remaining attributes:

Select the attribute that has the highest Information gain excluding the attribute that has

missing value. Find the value of that highest information gain attribute. From the data base

find the maximum occurrence value for the missing value attribute that corresponds to the

value of the selected attribute having highest information gain.

Attributes Cost
al(Age) 10
a2(student) 15
a3(Credit Rating) 20
ad4(Income) 25

Tab 4.4 Method 4 - Based on highest information gain of remaining attributes:

19

Cost

- @ —f

BCost

~ w00

Attributes

Fig 4.4 Method 4- Based on highest information gain of remaining attributes:

COMPARISON OF TOTAL COST USING THE ABOYE FOUR METHODS OF
PREDICTION OF MISSING VALUES.

BMethod 1
BiMethod 2
mhethod 3
OMethod 4

a1 a2 Altributes a3 a4

Fig 4.5 Comparison of total test cost of four methods of mssing value prediction.

20

CHAPTER 5

5. CONCLUSION

In our Application,

For Age attribute,Method4 i¢., Based on highest information gain of remaining attributes
incurs low total cost when compared to all the other three methods.

For Student attribute Method2 ie., Median value of that attribute incurs low total cost
when compared to all the other three methods.

For Credit rating attribute, Method4 ie., Based on highest information gain of remaining
attributes incurs low total cost when compared to all the other three methods.

For Income attribute, Method4 ie., Based on highest information gain of remaining attributes

incurs low total cost when compared to all the other three methods.

21

FUTURE ENHANCEMENTS

Presently, we have focused on single missing value in a tuple. But if there are more than one
missing value in a single tuple, then the concept of Threshold factor can be introduced.
Threshold factor is the maximum limit up to which the test cost can be incurred. When the
total cost goes beyond the threshold fixed value, there will be no gain in further prediction of
missing value. If two or more attributes have missing values in a tuple, attributes are predicted
in order of their Information Gain value up to the fixed threshold for test cost. For the
remaining missing attributes, value is guessed based on the number of tuples classified
according to a particular value for that attribute. In the future, one can also do the classification
of missing data using Naive -Bayesian algorithm and make a comparison between the two

methods.

22

APPENDICES
APPENDIX
#include<stdio.h>
#include<string.h>
#inchude<conio.h>
FILE *in,*out,*inl;
void main()
{
char str[500],*str1="";
int cnt=0,ta=5,
in=fopen("miss.c","t");
int=fopen("ip2.c","r");
out=fopen("in5.c","w"),
while(!feof(inl))
{

if{cnt==ta)
{
fprintf{out,"%s\n" strl);
cnt=(;
}
fscanf(inl,"%s",str);
cnt++;
if(stremp(str,”*")==0)
{
printf("%s",str);
fscanf(in,"%s",str);
fprintf{out,"%s ",str);
!
else
{
printf("%os ",str);
// fscanf(inl,"%s" str);

fprintf(out,"%s " ,str);

23

1

}
fclose(in);
felose(inl);
fclose(out);

}

#include<stdio.h>
#include<conio.h>
#include<process.h>

#include<errno.h>

main()

{

int s;

char *str[10],str1[10]="ind.c";
clrser();

strepy(str[1],strl);

printf("SFSE");

getch();

lexecv("tree(2).exe" str);
spawnv(P_WAIT, "tree(2).exe", sir);
printf("gszfg");

Hprintf("%d".s);

/fperror("exec error’);

Hexit(1);
//execlp("tree(2).exe","tree(2).ex‘e","in4.c","in5.c“);

}

#include<stdio.h>
#include<conio.h>
#include<process.h>

#include<errno.h>

24

main()
{
int s;

char *str[10],str1[10]="in4.c";

FILE #in,*out,*po;
void fun{);
int ta=0,ca=0,fa=0,1=0,b=0,5=0;
char str1{100];
void main()
{
char str[200];
clrser();
in=fopen("input.c","r");
po=fopen("in3.c”,"w"}),
fge_ts(str,BOO,in);
while(str[i]!="n")
{
/1 printf("%c" strfi]):
if(str[1]==32)
i
tat++;
while(str[1]==32)
i+
}
i+,
}
felose(in);
out=fopen("input.c","r");
fprintf(po,"%din",ta);
while(fa<ta)
{
fscanf(out,"%0s" strl}),

et{s].index=s;

strepy(et[s++].atname,strl);

fat++;

}

fscanf(out,"%s”,s_‘ul X
/f printf("%s", strl);
=0

s=0;

fun();

m=1;
for(k=1;k<=b;k++)
{
pl=cal[k].cy+cal[k].cn;
p=(double)cal[k].cy/pl;
pn=(double)cal(k].cn/pl;
/ printf("%d %d %d %f %f".callk].cy,cal[k].cn,pl.p.pn);
if(p==0)
=1
if(pn==0)
pn=1;
st[m].ig=3.32% ((-1* p *logl0 (p))+(-1*pn*log10(pn)));

/1 printf("--% of %f %f\n",st{m].ig,log10(p).logi0(pn));
m++;

}

for(k=1:k<=m:k-++)

{

p=(double){calfk].cy+cal[k].cn)/14;
f=(double)p*st[k].ig;

/f printf("-@--%f %f %fin" p,st[k].ig.f);
et[s].g+=t;

j

printf("\ninformation gain-%f %d".et[s}.g,s);

26

getch();

for(k=0;k<=b;k++)

{
calfk].cy=calfk].cn=0;
strepy(cal[k].name,"");

}

b=0:1=0;

s+

cat+;

fclose(out);

out=fopen("input.c","r");
fscanf(out,"%s" strl);
fa=0;

while(fa<ta)

{
fscanf{out,"%s",str1);
fat++;

h

/prntf("%s",strl);

/lexit(0);

}
out=fopen{"input.c","r");
fscanf{out,"%s" strl);
fa=0;
while(fa<ta)

{

fscanf(out,"%s",strl);

fat++;

}

fa=0;

while(!feof(out))

{
while(fa<ta)

{

fscanf(out,"%s",strl);

27

fat+;
h
fscanf(out,"%s",strl);
if(stremp(strl,"yes")==0)
cy++;
else
ent+;
/f printf("%s\n" strl);
fa=0;
b
p=(double)cy/14;
pn=(double)cn/14;
pn=3.32* ((-1* p *log10 (p))+(-1*pn*log10(pn)));

printf("\ntotal entropy value =%f{",pn);

for(i=0;i<ta;i++)
{
et[1}.fi=pn-et[i].g;
printf("\n%-15s %-15s %-15f %15f\n",et[i].atname,et{i}.atype[1].et[i].g,et[i].11);
¥
swap();

for(i=0;1<ta;i++)
prntf("\n%-15s %-15s %-15f %15f\n" et[i].atname, et[i].atype[1].et[i].g,et[1].fi);

fclose{out);

files();

¥

int getindex()

{

nt j;

for(j=0;j<=bzj++)
if(stremp(calfj].name,strl1)==0)

return j;

b=++1;

return b;

int swap(}

{

fprintf{po,"%s'\n","no™);

non

out=fopen("input.c","t");

fscanf(out,"%s",strl);
while(ca<ta)

{
fscanf(out,"%s",str1);

cat+;

}

/f printf("%s" strl);

fscanf{out,"%s",strl);
while(!feof(out))
{

ca=0;

while(ca<=ta)

{

strepy(a[ca],strl);
fscanf(out,"%s",strl);
catt;

}
for(m=0;m<ta;m++)
{

n=ct[m].index;
fprintf(po,"%s ",a[n]);
b

fprintf(po,"%s\n",afta]);

}

29

return 1;

}

age income student credit_rating cla
<=30 h no fair no

<=30 h no excellent' no

31-40h no fair yes
>40 m no fair yes
>40 1 yes fair yes

>40 1 yes excellent no

31-401 yes excellent yes

<=30 m no fair no
<=30 1 yes fair yes
>40 m yes fair yes

<=30 m yes excellent yes
31-40h yes fair yes

>40 m no excellent no

4

age 3 <=3031-40>40
student 2 yes no
credit 2 fair excellent

income 3hml

cla2 yesno

<=30 no fair h no
<=30 no excellent h no
31-40 no fair h yes
>40 no fair m yes
>40 yes fair I yes
>40 yes excellent 1 no
31-40 yes excellent 1 yes
<=30 no fair m no
<=30 yes fair 1 yes

30

>40 yes fair
<=30 yes excellent

31-40 yes fair

>40 no excellent
31-40 no fair
=40 no fair

<=30 yes fair | yes

>40 yes fair m yes

<=30 yes excellent m yes
31-40 no excellent m yes
31-40 yes fair h yes

>40 no excellent m yes

<=30 no fair h no

>4() yes fair h no

<=30 no fair m yes
31-40 no fair m yes
<=30 no fair | yes

>40 yes excellent 1 no
31-40 no excellent | yes
<=30 no fair m no
<=30 no fair 1 yes

>40 yes fair h yes
31-40 no excellent h yes
>40 yes excellent h no
>40 yes fair h yes

>40 yes fair m yes

Yes

m yes
m yes
h yes
m no
h yes
m yes

age income student credit_rating cla

<=3{ h no fair

<=30 h no excellent

31-40 h no fair

>4 m no fair

no
no
yes

yes

31

>40 1 yes fair ves
>40 1 yes excellent no

31-401 yes excellent yes

<=30 m no fair no
<=30 1 yes fair yes
>40 m yes fair yes

<=30 m yes excellent yes
31-40m no excellent yes
31-40h yes fair yes

>40 m no excellent no

* no far h no

* no fair h no

* no fair m yes
* no fair m yes

* yes fair 1 yes

* yes excellent 1 no
* ves excellent | yes

* yes fair m no
* yes fair 1 yes

* yes fair h yes

* yes excellent h yes

* no excellent m no
* no fair h yes

* no fair m yes

* no fair h no
<=30 * fair h no
>40 * fair h no
<=30 * fair m yes
31-40 * fair m yes
<=30 * fair] yes
>40 * excellent I no
31-40 * excellent I yes
<=30 * fair m no

32

>40 no * m

31-40 no *
>40 no *

<=30 no *

<=30 yes fair
>40 no fair
<=30 no fair

31-40 no fair

<=30 yes fair
>40 yes excellent
31-40 no excellent
<=30 yes fair

<=30 yes fair

>40 yes fair
31-40 yes fair

>40 no excellent
>40 no fair

>40 no fair

#include<stdio.h>
#include<conio.h>
#include<string.h>
#include<dos.h>
struct sen

{

char atype[40];
int cnt;
}sef30],temp;

int ta=4,b=0,t=0;
char str[500],str1{500];

1 vyes
h ves
no
h ves
m yes
h no
* no
* no
* yes
* yes
* yes
* no
* yes
* no
* yes
* yes
* yes
* no
* yes
* yes

33

FILE *in,*inl,*out,*in3;
char* method2(int ca,int t1);//median
char* method3(int ca,int ti);//last 10
void method4(int ca,int ti);//high ig
char* method5(int ca,int ti};//average
char* method1(int ca,int ti)//average
{
int ac=0,k,j,1;
in=fopen("base.c","r");
while(!feof(in))
{
fscanf(in,"%s",str);
act+;
while(acl=ca)
{
if{feof(in))
goto sd;
fscanf(in,"%s",str);

ac++;

intj;
for(j=0;j<=b;j++)
if(stremp(sefj]-atype,str)==0)
retumn j;
b=++t;
return b;
} int getindex()

{

void main()
char* method3(int ca,int t1)
{

int cnt=-1,s,t,ac=0,k.j,i;;

in=fopen("base.c","r");

34

out:fop_en("tmp.C","W");

while(!feof(in))

{

cnt++;

fgets(str,500,in);

}

fclose(in);

s=cnt-10;

in=fopen("base.c","r");

t=0;

while(t<s)

{
fgets(str,500,1n);
t++;

3

while(!feof(in))

{
fgets(str,500,in);
fputs(str,out);

}

fclose(in);

fclose(out);

in=fopen("tmp.c","r");
while(!feof(in))
{
fscanf(in,"%s" str);
act++;
while(ac!=ca)
{
if(feof(in})

temp=se[k];
sefk]=selil];
se[jl=temp;

35

import java.io.*;
import java.util.*;
import java.util.Calendar;
class sen
{
String atype;
int cnt;

}

class module2 {

public static void main (String{] args)

{

int ca=0,ti=1,ta=4,rs=0,me=0;

String dbRecord = null;

DatalnputStream dis = null;

try
{
module2 obj =new module2();
File f = new File("ip4.c");
FileInputStream fis = new FileInputStream(f);
BufferedInputStream bis = new BufferedInputStream(fis);
dis = new DatalnputStream(bis);
Calendar cal = Calendar.getInstance();
long tn1=System.nanoTime();
System.out.println("Current miiliseconds are :"
+ cal.getTimeInMillis()+"nanoseconds"+tn1);

while { (dbRecord = dis.readLine()) = null)
{

StringTokenizer st = new StringTokenizer(dbRecord, " ");
while(st.hasMoreTokens())
{
String str=st.nextToken();
cat+t;
if(str.compareTo("*")==0)
{
System.out.println("missing value is "+obj.method1(ca,ti,str)+" "Hi);
if{me==0)
{
me=1;
1$=Ca;
}
h
if(ca==ta+1)
{
ca=(;ti++;

}

}

long tn2=System.nanoTime();
System.out.print!in("Current milliseconds are :"
+ cal.getTimeInMillis(}+"nanoseconds"+in2);
long sx=tn2-tnl;
double sum={double)sx/1600000000;
System.out.println("difference "+(tn2-tn1)+" cost "+((tn2-tn1)/1000000)+" "+sum);
int tnp=obj.costfix(sum);
System.out.println("final testcost "+tmp);

obj.wr(tmp,"method 1", rs);

}
catch (I0Exception e)

{

/1 catch 1o errors from FileInputStream or readLine()

37

/! System.out.printin("Uh oh, got an [OException error: * + ¢.getMessage());

h
finally

{
// if the file opened okay, make sure we close it
if (dis != null} {
try {
dis.close();
} catch (IOException 10€) {
//System.out.println("IOException error trying to close the file: " +

/' e.getMessage());

} // end if

} // end finally
}

public String method1(int ca,int ti,String str)
{
String rstr=null;
senf} se = new sen{20];
for (int 1 = 0; i < se.length; i++)
{
se[i] = new sen();
ki
sen temp=new sen(}.
/fmodule2 obj =new module2();
int ac=0,ta=4k).1.jt,flag=0;
String dbRecord = null;
DatalnputStream dis = null;
iry
{
File f = new File("base.c™);

FileInputStream fis = new FilelnputStream(f);

BufferedInputStream bis = new BufferedInputStream(fis);
dis = new DatalnpuiStream(bis);

for(i=0;1<10;1++)

{

se[i].atype=null;

se[i].cnt=0;

}

while ((dbRecord = dis.readLine()) != nuil)
{

String Tokentzer st = new StringTokenizer(dbRecord, " ");
while(st.hasMoreTokens())
{
String strl1=st.nextToken();
ac++;
while(ac!=ca)

f
1

if(st.hasMoreTokens()}
{

strl=st.nextToken();

act++;

b

else

break;

//System.out.printin("hai"+str1+""+se[1].atype);
for(jt=1jt<10;jt++)
{

if{se[jt].atype==null && flag!=1)
{

//System.out.printin("hai");

39

else if{se[jt].atype!=null)
{
if((strl.compareTo(se[jt].atype)==0) && flag!=1)
{
//System.out.printIn("hai");
i=jt;
flag=1;
t
}

flag=0;
//i=obj.getindex(stri);

se[i].atype=stri;
sefi].cnt++;
while(ac<=ta)
{
if(st.hasMoreTokens())
{
strl=st.nextToken();
ac++;
}
else-
break;
}
ac=0;

}

}
for(k=1;k<=10:k++)
for(j=1;j<=10;3++)

40

if(se[k}.cnt>se[j}.cnt)
{
temp=se[k];
se[k]=se[j];
se[j]=temp;
}
rstr=se[1].atype;
for(i=0;i1<10;1++)
{
se[1].atype=null;
se[i].cnt=0;
}

return rstr;

}

catch (IOException €)
¢ |
J/ catch io errors from FileInputStream or readLine()

// System.out.printin("Uh oh, got an IOException error: " + e.getMessage());

3
finally

{

// if the file opened okay, make sure we close it
if (dis = null) {
try {

dis.close();

} catch (JOException ioe) {

//System.out.println("[OException error trying to close the file: " +~

il e.getMessage()):

}/lend if

} // end tinally

41

return rstr;

}

int costfix(double sum}
{
if(sum >0 && sum <0.025)
return 10;
else if(sum> 0.026 && sum < 0.030)
return 15;
else if(sum >0.031 && sum<0.040)
return 20;
else if(sum >0.041 && sum<0.050)

return 25;

else
return 30;
}
void wr(int mus,String str,int rs)
{
try{
// Create file
FileWriter fstream = new FileWriter("out.txt" true);
Buffered Writer out = new Buffered Writer(fstream);
System.out.println("----"+mus);
out.newLine();

out.write(str+" "+rs+" "+mus);

out.flush();

//Close the output stream

out.close();

jcatch (Exception e){//Catch exception if any

System.err.printin("Error: " -+ e.getMessage()):

}

42

import java.io.*;
import java.util.*;
import java.uiil.Calendar;
class sen
{
String atype;
int cnt;
public String m22(int ca,int ti,String str)
{
String rstr=null;
String strl=null;
sen[] se = new sen{20];
for (int 1 = 0; i < se.length; 1++)
{
se[1] = new sen();
}
sen temp=new sen();
int ac=0,ta=4 k j,1,cnt=0,jt,flag=0;
String dbRecord = null;
DatalnputStream dis = null;
try
{

File f= new File("base.c");
FileInputStream fis = new FileInputStream({);
BufferedInputStream bis = new BufferedInputStream(fis);
dis = new DatalnputStream(bis);

while ((dbRecord = dis.readLine()) != null)

{

cnitt;

catch (IOException €)
{

// catch io errors from FileInputStream or readLine()

// System.out.println("Uh oh, got an IOException error: "+ e.getMessage());

3
finally

{

// if the file opened okay, make sure we close it
if (dis = nulil) {
try {
dis.close(};
} catch (IOException ioe) {
//System.out.println("IOException error trying to close the file: " +

/I e.getMessage());

} //end if

} // end finally

try

File f = new File("base.c™);

FileInputSiream fis = new FilelnputStream(f);
BufferedinputStream bis = new BufferedInputStream(fis};
dis = new DatalnputStream(bis);

for(i=0;i1<10;1++)

{

44

selil.atype=null;
sefi}.cnt=0;
3
System.out.printin("count vahie "+cnt);
int s=cnt/2 t=1;
while(t<s)
{
dis.readLine();
t++;
}

ac=0;

dbRecord=dis.readLine();

StringTokenizer st = new StringTokenizer(dbRecord, " ");

while (ac<ca && st.hasMoreTokens())
{

strl=st.nextToken();

ac++;

}

System.out.println{"count value "+s);

rstr=sirl;

retum rstr;

}

catch (IOException e)
{

/f catch 10 errors from FilelnputStream or readLine().

45

// System.out.printin{"Uh oh, got an 10Exception error: " + e.getMessage(});

}
finally

{

/f if the file opened okay, make sure we close it
if (dis 1= null) {
try {
dis.close();
} catch (IOException ioe) {
//System.out.println("IOException error trying to close the file: " +

/I e.getMessage());

}// end if

} // end finally
J e e e e

import java.io.*;
tmport java.util. *;
import java.util.Calendar;
class sen
{
String atype;
int cnt;
~ public String m4(int ca,int 11,String str,String prev)
{
String rstr=null;
String strl=null;
sen[] se = new sen[20];
for (int 1= 0; i1 < se.length; i++)
| "
se[i] = new sen();

}

46

sen temp=new sen();
int ac=0,ta=4 k j.i,cnt=0.jt,flag=0,fla=0;
String dbRecord = null;
DatalnputStream dis = null;
ry
{
File f = new File("base.c");
FileInputStream fis = new FilelnputStream(f);
BufferedInputStream bis = new BufferedInputStream(fis);
dis = new DatalnputStream(bis);
for(i=0;i<10;1++)
{
se[i}.atype=null;

sef[i).cnt=0;

}
//System.out.printin("count value "t+cnt);
if(cal=1)
{
while ((dbRecord = dis.readLine()) != null)
{

StringTokenizer st = new StringTokenizer(dbRecord, " ");
while(st.hasMoreTokens(}))
{
strl=st.nextToken();
if(str1.compareTo(prev)==0)
fla=1;
act++;
while(ac!=ca)
{
if(st.hasMoreTokens())
{
strl=st.nextToken();

ac++;

}

47

else

break;

//System.out.println("hai"+str1+""+se[1].atype);
if(fla==1)

{
fla=0;
for(jt=1;jt<10;jt++)
{
flag=0;
/fi=obj.getindex(strl);
se[i].atype=strl;
se[i}.cnt++;
}
while{ac<=ta)
{
if(st.hasMoreTokens())
{
strl=st.nextToken();
ac++;
}
else
break;
]
ac=0;
}
)
¥

for(k=1;k<=10k++)
for(G=1;<=10;)++)

48

if{sefk}.cnt>se[j].cnt)
{
temp=se[k};
se[k]=se[3];
se[j]=temp:
b
rstr=se{1].atype,
for(i=0;i<10;1++)
{
sefi].atype=null;
sefi].cnt=0;

}

try

File f= new File("ip2.c");

FileInputStream fis = new FileInputStream(f);
BufferedInputStream bis = new BufferedInputStream(fis);
dis = new DatalnputStream(bis);

Calendar cal = Calendar.getInstance();

long tn1=System.nanoTime();

System.out.println("---—--------- method 4-- ")

System.out.printIn("Current milliseconds are :"
+ cal.getTimeInMillis()+"nanoseconds"+tnl),
while ((dbRecord = dis.readLine()) != null)
{

String Tokenizer st = new StringTokenizer(dbRecord, " ");

while(st.hasMoreTokens(})
{

str=st.nextToken();

if(ca==0)

prev=str;
cat+;
if(str.compareTo("*")==0)
(
System.out.printin("missing value is "+objl.m4(ca,tl,str.prev)t” "Hi);
if(me==0)
{
me=1;
15=Ca;
}
b
if(ca==ta+1)
{
ca=0;ti++;

}

E
long tn2=System.nanoTime();
System.out.println("Current milliseconds are :"

+ cal.getTimeInMillis()+"nanoseconds"+tn2);

long sx=tn2-tnl;

double sum=(double)sx/1000000000;

System.out.println("difference "+(tn2-tn1)+" cost "+((tn2-tn1)/1000000)+" "+sum);
int tmp=obj1.costfix(sum);

System.out.println("final testcost "+tmp);

obj1.wr(tmp, "method4",rs);

}
catch (IOException ¢)

{

j/ catch io errors from FileInputStream or readLine()

// System.out.println("Uh oh, got an IOException error: "+ e.getMessage());

}
finally
{

50

/7 if the file opened okay, make sure we close it
if (dis !=null) {
try {
dis.close();
} catch (IOException ioe) {

//System.out.println("TOException error trying to close the file: " +

/il e.getMessage());

} // end

51

SCREEN SHOTS

INFORMATION GAIN: .

ey,

%
i
§]

MISSING VALUE:

52

TEST COST

30

TN PR IS P
b
(A

Yt g dr & &) W LRI LI I

Sved S
P L dat Loy
R

oA S = S Y

PERE N
£

b

4#)

g
ey |

53

QA : [w] Q._.. 5 Bl
) ccnccnccncc
i S Riw%wwﬁﬂ%&&m%??g&ﬁ%%

54

REFERENCES

[1] Qiang Yang, Charles Ling, Xiaoyong Chai, and Rong Pan,” Test-Cost Sensitive
Classification on Data with Missing Values”,IEEE Transactions on Knowledge and Data
Engineering, Vol. 18, No. 5, May 2006

(2] P.D. Tumney, “Types of Cost in Inductive Concept Learning” Proceeding Workshop Cost-
Sensitive Learning at the 17th Int’1 Conf. Machine Learning, 2000.

[3] Jiawei Han, Micheline Kamber. “Data Mining Concepts and Techniques”, Morgan
Kaufmann Publishers,2001.

[4]C. Ling, Q. Yang, J. Wang, and S. Zhang, “Decision Trees with Minimal Costs,”
Proceedings of the 21st International Conference on Machine Learning (ICML), Banff,
Canada, 2004

[5] P. Domingos, “Metacost: A General Method for Making Classifiers Cost-Sensitive,”
Knowledge Discovery and Data Mining, pp- 155-164, 1999.

[6] M.T. Kai, “Inducing Cost-Sensitive Trees Via Instance Weighting” Principles of Data
Mining and Knowledge Discovery, Second European Symposium., pp. 139-147, 1998.

[7} M. Nunez, “The Use of Background Knowledge in Decision Tree Induction” Machine
Learning, vol. 6, pp. 231-250, 1991.

25

