@/zb%/‘b/

TASK SCHEDULING IN GRID ENVIRONNIENT

By
p. DEVAKI

Reg. No. : 71206805002

of

KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE — 641 006

|
A PROJECT REPORT

Submitted to the

OI\IINIUNICATION ENGINEERING

FACULTY OF INFORNIATION AND C

*\ In partial fulfill

for the award O

ment of the requirements

f the degre€

of

MASTER OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING

MAY 2009

BONAFIDE CERTIFICATE

Certified that this project report titled “Task Scheduling in Grid Environment’ s
the bonafide work of Ms. P. Devaki (71 206805002) who carried out the project work under

ny supervision. Certified further, that to the best of my knowledge the work reported herein

—

does not form part of any other project report of dissertation on the basis of which a degree

or award was conferred on an earlier occasion on this or any other candidate.

Iy

SIGNATURE OF THE GUIDE . HEAD OF THE DEPARTMENT
Mr. M. Nageswara Guptha M.E., Dr.S.Thangasamy Ph.D.,
Senior Lecturer, Professor and Dean,
Department of Computer Department of Computer
Science and Engineering Science and Engineering

The candidate with University Register No. 71206805002 was examined by us in
Project Viva-Voce examination held on _ ©6 072009

e B

Internal Examiner External Examiner

nacjusvoly WY

anyndmoD) pue 5000510
L't

£S0]0ugoa], UOHE

il

ACKNO\NLEDGENIENT

elvar Dr.

anks to our Chairman Padmabhushan Aruts
their support

ndent Shri. Balasubramanian for all

| express my sincere th

F.LE and Correspo
Thanikal, Ph.D.,

N.Mahalingam B.Sc,
gsary facilities to

ke to begin by thanking 0 pr. Joseph V.
ce

Vice-Principal for providing the ne

ncipal and prof. R. Annamalai ,

Pri
ork.

compiete my project W
| express My deep

d Dean, Head of the de
d encou

Ph.D.,

r. S. Thangasamy.,
g for his

sense of gratitude to D
nd Engineerin

partment of Computer Science a
ghout the project.

Professor an
Ph.D.), Assistant

valuable sugd

gestions, support an ragement throu
s. V. Vanitha, M.E. (

pecial thanks to M
and Engineeirng whi

{ tender my S
riment of

oordinator, Depa
project successfully.

Computer Science

Professor and Project C

support 10 complete the
| express My heariiest thanks to MYy Project Guide Mr M. Nageswara
r Department of Computer Science and Engineering,
k extremely

(Ph.D.); Senior Lecturer,
ble guidance

Guptha M.E.
erform my project WO

red his valua and support to p

who rende

well.
teaching staff of our Department for

| also thank the teaching and non

providing the technical support in the duration of my project.
lete

| also thank my friends W

ho have supporied me and helped Mmée to comp

the project work.

ABSTRACT

TASK SCHEDULING IN GRID ENVIRONMENT

Efficient task scheduling of computationally intensive applications is one of the most
essential and difficult issues when aiming at high performance in agrd environment which
is highly dynamic and heterogeneous. Grid computing is an emerging technology for
enabling resource gharing and coordinated problem solving in dynamic multi-institutional
vitual organizations. The resource matching problem in the grid involves assigning

resources to tasks in order to satisfy task requirements and resource policies.

In this project work, algorithms for a Grid resource manager which is responsible for
resource brokering and scheduling in Grids have been implemented. The broker selects
computing resources based on the actual job requirements and the criteria in identifying the

available resources, which minimizes the overall completion time (Makespan) of tasks.

This work involves Task Scheduling for dependent and independent tasks to the
available poo! of resources. Although a large number of scheduling heuristics have been
presented in the literature, most of them target only homogeneous computing systems. For

Dependent task scheduling, a simple heuristic algorithm for efficient Heterogeneous Task

Scheduling (HTS) has been presented. The experiments have shown that HTS provides
- comparable or even petter results for consistent, inconsistent and partially consistent

environments.

For Independent task scheduling, QoS Based Heterogeneous Task Scheduling
(QBHTS) which aims to satisfy QoS requirements of tasks has been implemented. Task is
scheduled on 2 resource only when the resource satisfies the task’s requirements.
Experiment results show that the Makespan does not increase much if scheduling is

performed pased on QoS satisfaction.

LY S(H&HSID
gz Qehel WIS Gewe1 8 (N BV GgeneuHiD LiwsesTLn (pisserflev Smetii@ Beusmeol!
Irad(igeo eTesTLIS S5 LWeDIn) B EHTEDLDETNLIS H(HSH N QEne() eusneNEF (FE0EAHE
E7OMEUT D) Gulg EUEMLDLILIG) Sead (PEHSNIDNTEST DD DI Hig.EuLON ST LiessflLm(GiD. SIenevs
(L peuTETT S 24Hmes SHS WHmID Lo mIud gemepLowjenitl @O SEMIDLILIM(GLD. QUEDeY sr6uTLIG
(I eueiha aumL RO SaL_L_eOWLILITGLD. QLPEVIBIGHENETL L (RS0 WwHHID B maehis e es

QwsoLIn(p Q(mrais enessTLL] GuinesTD GFwsUnHiGeTer aIeney (P& Lo & TSI

RLPEUIRISEOEN: seTQELLD SHew e [Haefien cuUEnEITETT S PLPBVBISEDET SSHHS LeTsAHEHES
Sef SO Geuspevuisy Liesshigeriest GE U6 WHmID gLpeuralg 6t 6ot @IS JENR:N Ly
H(HSH 0 Qane(H QewsLHADS!-

Bihs L6l auene RLPEIIRISH 66T EOBILIM(EH S| SHHTEVT Qe (pemnuLibiwl allen&He S0
SIeAULSDHSHNS Qan(H&SLIIL_HeTeT S @5 PEUEISEET EOSWITEHSHV LHMID L (Higev
Gunetp LiessN&enarT QaLAeTngl. BhSH LBEISH (LPEODLITETT S giHGLmenSILl LewhS BSHemausen
wHmIDd pLpeurkigs 65T Gory GeudenDd H(HSL 60 QanaT(H (SmuHU GeVSS|6V N Y 1
Lisssh Hememuld (pig &S VLY (LPEDDEDLDWITET S pLpevralgerf 68T @ muenL QuUNHSF FTILOD
whHmid HelSS GeusmevFHeiest GeusneuL it (HHEDETE Qedems). GLID LsoGeum) Gealemen
LifSsefsH@D (pEOMSENSTL L Sl eT &N HEBD Qam(HEHIIL(HeTeTeor. Beudniev
GILI(THDLITEVETTEMEL lEh Lom g winest GANEVEY sevst &S (HSemeuGLl S(HSH0 QST GESTL_6TT 6UTT &
BT S 6TTDETT - <3}, EUTTEV Q&SI (hoTeT (pEODEmL gaiubHo Geuensu& et 63T LM SSMEHS
LW SHmesndlS QI FWISH(LPEDID el enSHHSHNS QEfafiS seTHEABHSH (GPRGS 63 DIDEUT M)
QUGS EDSI-

Eo(penm pbHfiu u@uunulmaa@fn, QELI(PEDSHEDHD, @ Hement SLL_6MLDLILITET, Si_L_EODLILINM

Wwhpb LGS S _L_emLDLILINEST (Gsipeomafiaid BetT GlswevmensT 2 Mig QLI 6TINETT .

gniLhp Geuemeols ur@geis QoS gnihg Geumii-t- Geugpeol! LS HISEBD LT

Gl (heerS). Gauemeull UBRSL TS QLPEVIBISEIT Beusmevsafiest CFHEMEUGERE 1 6mme

Qb GurmHE® SuhiinHE Q@SS EITDETT -

CONTENTS

. ABSTRACT (ENGLISH)
\ ABSTRACT (TAMIL)

\ LIST OF FIGURES

(ST OF TABLES

. |NSTOF ABBREVIATIONS

L. INTRODUCTION

4.1 PROJECT OUTLINE

1.2 PROBLEM DEFINITION '

L 1.2.1 Problem Definition for
1.2.2 Problem Definition for
2. LITERATURE SURVEY

241 Introduction
2.1.2 Grid Architecture
2.4.3 Grid Construction

TABLE OF CONTENTS

Dependent Task Scheduling
independent Task Scheduling

2.4 OVERVIEW OF GRID COMPUTING

2.1.4 Key penefits of the Grid Computing Model

2.15.J0b gcheduling in Girds

2.1.6. Issues in Grid Computing

2.4.7.Grid Management

2 1.8 Limitations of Grid Computing

2.2 JOB SCHEDULING

2.2.1 Job gcheduling in Grid Computers

222 Classification of Static Task-Scheduling algorithms

| 2.2.3. Job gcheduling in 2 Heterogeneous Grid Environment

2.2.4 Job Scheduling Policy for High Throughput

vi

PAGE NO.

v

viil

01

03
03

04
05
07
07
08
08
08
09

09
10
1C

3. DETAILS OF METHODOLOG!ES

4.1 Application Representation for dependent jobs

3.2 Existing Algorithms taken up for comparison

3 3 Drawbacks of existing algorithms

3 4 Proposed method - Heterogeneous Task Scheduling (HTS)

3 5. Application Representation for Independent jobs

3.6 Existing Algorithms taken up for comparison

3.7 Drawbacks of existing algorithms

2 8 Proposed method - QoS Based Heterogeneous Task Scheduling (QBHTS)
3.9 lmplementation Detail

4. EXPERIMENTAL RESULTS

41 Experimental Results and Discussions for Dependent jobs

4.2 Experimental Results and Discussions for independent jobs

5. CONCLUSION AND FUTURE ENHANCEMENTS

APPENDIX

REFERENCES

Vil

12
13
13
14
15
16
16
16
18

19
32
38
39
56

2.1

22

31

32

4110412

413104.24

4.25%0 4.36

FIGURE NO.

LIST OF FIGURES

NAME

A layered grid architecture and its relationship to the

Internet protocol architecture.

Classification of Static task-Scheduling algorithms
Task Graph Representation

Makespan Comparison

Makespan Comparison — Dependent Jobs
Speedup Comparison - Dependent jobs

Makespan Comparison — Independent Jobs

vill

PAGE NO.

10

12

14

20

24

32

TABLE NO.

31

41t04.12

LIST OF TABLES

NAME

Weight matrix representation

Number of Favorable Cases for 1000

Trials

PAGE NO.

13

28

LIST OF ABBREVIATIONS

ABBREVIATION EXPANSION

QoS Quality of Service

DAG Directed Acyclic Graph

QBHTS QoS Based Task Scheduling

OGSA Open Grid Services Architecture

AP! | Application Provider Interface

cOTS Commercial off-the-shelf

GRAM Grid Resource Allocation Manager
MDS ‘Monitoring and Directory Service
GRIS _ Grid Resource Information Service
GlIS Global Index Information Service
‘GASS Giobal Access 10 Secondary Storageé
LDAP Light—Weighted Directory Access Protocol
CPOP Critical Path on a Processor

HCPT Heterogeneous Critical Parent Trees
HTS Heterogeneous Task Scheduling
ETC Expected Time to Compuie

CCR Communication 1o Computation Ratio

CHAPTER1

INTRODUCTION
1.1 PROJECT OUTLINE

Recent developments in high-speed digital communication have made it
possible to connect a distributed suite of different high performance machines in order to
provide a powerful computing platform called a heterogeneous computing system. This
platform is utilized to execute computationally intensive applications that have diverse
computation requirements. This has resulted in the ability to form loosely coupled, high-
performance computational environment comprising nUMerous scalable, fault tolerant, and
platform-independent services across the entire Internet. The grid infrastructure provides a
way to execute applications over autonomous, distributed and heterogeneous nodes by
secure resource sharing among individuals and institutions. Typically, a user can submit
jobs to a grid without necessarily knowing (or even caring) where it will be executed. It is
the responsibility of the grid resource management system to distribute such jobs among a
heterogeneous pool of servers, trying to optimize the resource usagé and provide the best

possible quality of service.

This project deals with the applications with dependent and independent tasks.
The performance of parallel applications on such systems is highly dependent on the
scheduling of the application tasks onto these machines. The main objective of the
scheduling mechanism is to map tasks onto machines and order their executions so that
precedence requirements are satisfied and minimum overall completion time is achieved
(Makespan). When the structure of the parallel application in terms of its task execution
times, task dependencies and size of communicated data is known a priori, the application
is represented with the static model, and scheduling can be accomplished statically at
compile time. In the general form of static task scheduling, the application is represented by
the directed acyclic graph (DAG), in which the nodes represent application tasks and the
edges represent inter-task data dependencies. Each node is labeled by the computation
cost (expected computation time) of the task and each edge is labeled by the

communication cost (expected communication time). HTS aims to reduce the Makespan.

2
For independent tasks, the QoS Based Task Scheduling (QBHTS) provides

management for quality of service on different types of resources, including networks,
CPUs, and disks. It also encourages Grid customers o specify their quality of service
needs based on their actual requirements. The main goal of this system is 10 provide
seamless access to users for submitting jobs to @ pool of heterogeneous resources, and at
the same time, dynamically scheduling in multi policy mode and monitoring the resource

requirements for execution of applications.

1.2 PROBLEM DEFINITION
121 PROBLEM DEFINITION FOR DEPENDENT TASK SCHEDULING

o determine the assignment of Tasks (N) of a given application 1o a given
machine set P (P < N) such that

e The scheduling fength (Makespan — overall completion time) is to be minimized
o All precedence constraints are to be satisfied for dependent jobs.
. The applicationis represented by the Task Graph

« The Resources are scheduled in Batch Mode, where the jobs and resources are

collected and mapped at prescheduled time.

1.2.2 PROBLEM DEFINITION FOR INDEPENDENT TASK SCHEDULING

The resource matching problem in the Grid involves assigning P resources to N tasks
where P<N, in order to satisfy task requirements and resource policies. The broker selects
computing resources based on actual task requirements and a number of criteria identifying
the available resources, with the aim to minimize the turnaround time for the individual
application. The problem is to match the resources for the required tasks in grid
environment. The Resources are scheduled in Batch Mode, where the jobs and resources

are coliected and mapped at prescheduled time.

CHAPTER 2
LITERATURE SURVEY
2.4. OVERVIEW OF GRID COMPUTING
2.11. INTRODUCTION

Grid computing is @ form of distributed computing that involves coordinating and sharing
computing, application, data, storage, oOf network resources across dynamic and
geographically dispersed organizations [5] 61 Grid technologies promise 10 change the
way organizations tackie complex computational problems. Grid computing enables the
virtualization of distributed computing and data resources such as processing, network
bandwidth and storage capacity to create a single system image, granting users and

applications seamiless access 0 vast IT capabilities.

Grid computing is based on an open set of standards and protocols — €.9-, Open Grid
Services Architecture (OGSA) — that enable communication across heterogeneous,

geographically dispersed environments.

“A Grid is a collection of distributed computing resources available over a local or wide
area network that appears to an end user of application as one large virtual computing
system.” Another definition is "Grid computing is computing as a utility - you do not care
where data resides, or what computer processes Your requests. Analogous to the way
utilities work, clients request information or computation and have it delivered - as much as

they want, and whenever they want.”

Grid computing represents an enabling technology that permits the dynamic coupling of
geographically dispersed resources (machines, networks, data storage, visualization
devices, software and scientific instruments) for perfon"nance-oriented distributed

applications in science, engineering, medicine and e-commerce.

The first goal is 10 build up a computational and networking infrastructure that is
designed 1o provide pervasive, uniform and reliable access o data, computational and

human resources distributed over wide area environments. So @ grid should bring together

5
a diverse collection of different hardware and software technologies, different corporations,

eople and procedures do build a shared poo! of resources.

b i

The second and more distant goal pehind grid computing is the delivery of computing
power as 2 utitity, like the electrical system. Actually the name ‘Grid’ comes from an
analogy from power grids that supply electricity. When somebody needs electricity, he
plugs in @ device to the system which uses as much resources as it needs. The end usel i5

not concerned with the details like which power plant is supplying the electricity at that

Applicoﬁon

Figure 24 A layered grid architecture and its relationship to the Internet protocol

moment.

2.1.2 GRID ARCHITECTURE

internet protocol Archi’fec’ture

o
2
0
L
=
O
S
<«
©
Q
o]
°
g
o
a
%
O

architecture.

Figure 2.1 Wustrates the component tayers of the architecture with specific capabilities at
each layer. £ach layer shares the pehavior of the component 1ayers. Each of thes€
component layers is compared with their corresponding internet protocol Layers, fo

purposes of providing more clarity in their capabilities.

rface to Local Resources

s the resources that can pe shared. This coul
d other system resources.

alogs an
by nature. Example for logical resource

abric Layer: Inte
d include computational

These resources

1|

This define
ata storage, networks, cat
| resources

fesources, d
s are

can be physical resources of logica
distributed file systems, computer clusters etc.,

Basic capabilities aré
gainst its own

mechanism whereby it allows for the discovery @

1. Provide an “inquiry”
d state of operations.

resource capabilities, structure an
ment’ capabilities to control the QoS the grid

priate wregource manage

2 Provide appro
ntracted to deliver.

solution promises of has been CO

ty Layer: Manages Communications
This defines the core communication and authentic:
tions. It includes networ

cific networking services transac
be considered are Single sign on, Delegation, User-

Connectivi
ation protocol required for grid-

spe king transport, routing and
naming. Characteristics to Based trust
relationships and Data Security.

aring of a Single Resource

Resource Layer: Sh
d by the networking

d security protocol define
n, mon
dividual resources.

the communication an
itoring, metering,

This utilizes
s layer, 1o control the se

sharing

cure negotiation, initiatio

communication
of operations across in

and payment involving the

accounting,
g Multiple Resources

resource, the Collective
jlection of

ective Layer: Coordinatin

The Coll
layer 15

r manages an individual
nd interaction with a co

ation, Scheduling and

Services efc.,

While the Resource laye
resource

are Discovery Se
d Diagnostic Services, Data

management a
rvices, Co alloc

Replication

responsible for all global

resources. Collective services

Brokering Services, Monitoring an

Application Layer: User- Defined Grid Applications

2.1.3 GRID CONSTRUCTION

Heterogeneity

distances.

resource failing is naturally high.

shared by multiple applications.

Servers)

resources in the data center, making the resources

application sittingon a single physical server.

These are user applications, which are constructed by utilizing the services defined at
each lower layer. Such an application can directly access the resource, or can access the

resource through the Collective service interface APls (Application Provider Interface)

There are three main issues that characterize computational grids:

- A grid involves a multiplicity of resources that are heterogeneous in

nature and might span numerous administrative domains across wide geographical

Scalability: A grid might grow from few resources to millions.

Dynamicity of Adaptability: With so many resources in a Grid, the probability of some

2.1.4. KEY BENEFITS OF THE GRID COMPUTING MODEL

Consolidation: Consolidation is @ key benefit of the Grid computing model, especially in
the data center. Consolidation not only minimizes the infrastructure necessary to meet an
enterprise’s business demands, but aiso reduces costs by migrating from proprietary of

single-use systems 0 commercial off-the-shelf (COTS)—based systems that can be

Modular Computing: Modular computing, especially in the data center, minimizes and
simplifies the infrastructure using building blocks that address higher density, lower power,

lower thermals, simplified cabling, and easé of upgrading and management. (Blade

Virtualization : BY creating pools of resources enabled by highly automated management

capabilities, yirtualization can enable an 1T system administrator to utilize far more of the

accessible to more than a single

8

Utility Computing - Utility Computing allows an infrastructure 10 be managed
analogously to an electric utility, applying a pay-per-use model, thereby optimizing and
balancing the computing needs of an enterprise, and allowing it to run at maximum

efficiency.
2.1.5 Job Scheduling in Grids [4]

The job scheduling system is responsible to select best suitable machines in a grid for user
jobs. The management and scheduling system generates job schedules for each machine
in the grid by taking static restrictions and dynamic parameters of jobs and machines into

consideration.
2.1.6. Issues in Grid Computing [1]

A grid is a distributed and heterogeneous environment. Being heterogeneous
inherently contains the problem of managing multiple technologies and administrative
domains. In Grid, security is a main issue. The users who submit their tasks and their data
to the grid wish to make sure that their programs and data is not stolen or altered by the
computer in which it is running. Another important issue is scheduling. Scheduling a task
to the correct resourceé requires considerable effort. The picture is further complicated when

we consider the need to access the data.

2.1.7 Grid Management [10]

One of the major problems in grid computing is to be able to schedule jobs and data to
a suitable resource. As a grid may contain many different hardware and software
configurations, a standard has to be agreed upon. The most widely used product for
managing a grid is called Globus Toolkit. Supported by many large vendors, Globus offers
all the functionality needed to manage a grid system.

Grid Resource Allocation Manager (GRAM) allows users to select a specific resource
in the grid to run their jobs on. It has a client side module that allows User to schedule jobs
at a specific server in the grid and a gatekeeper module that is running in each server to
schedule arriving jobs. GRAM makes use of Monitoring and Directory Service (MDS).
MDS manages a directory of local and global resources. Grid Resource information

Service (GRIS) collects local resource information. Global index Information Service

9
(GIIS) collects GRIS information from all servers and provides a centralized resource

Jirectory for the whole grid. The movement of data in the grid is managed by Global
Access to Secondary Storage (GASS).

Apart from these basic services, Globus provides security functions and packaging tools
to deploy software in a format that would work in any server. The reason behind the
success of Globus is the open source approach and use of standards. For example,
Globus uses SSL for securé data transfer, Light-Weighted Directory Access Protocol
(LDAP) for directory information. By using these standard protocols it ensures that it is

compatible with many operation environments.
2.1.8 Limitations of Grid Computing

Not every application is suitable or enabled for running on a grid. For example some kinds
of applications simply cannot be parallefized. For others, it can take a large amount of work
to modify them to achieve faster throughput. The configuration of a grid can greatly affect

the performance, reliability, and security of an organization’s computing infrastructure.
2.2 JOB SCHEDULING
2.2 1 Job Scheduling in Grid Computers [11]

Distributed computing utilizes a network of many computers, each accomplishing a portion
of an overail task, to achieve a computational result much more quickly than with a single
computer. In distributed computing the task is split up into smaller chunks and performed
by the many computers owned by the general public. The key issue here is that we are
using computing power that we don't own. These computers are owned and controlied by

other people, who you would not necessarily trust.

Grid computing is a form of distributed computing that coordinates and shares computation,
application, and data storage or network resources across dynamic and geographically
dispersed organizations. One primary issue associated with the efficient utilization of
heterogeneous resources in a grid is grid scheduling. Grid scheduling is a challenge
because the capability and availability of resources vary dynamically. The complexity of
scheduling problem increases with the size of the grid and becomes difficult to solve

effectively. Challenging tasks are, searching for resources in the collection of

10
eographically distributed heterogeneous computing systems and making scheduling

(o]

decisions, taking into consideration quality of service. Grid scheduler does not have full
tontrol over the grid. The grid scheduler can not assume that it has a global view of the

yrid.

2.2. 2 Classification of Static Task-Scheduling algorithms [2]

\ static Task-Scheduling Algorithms j

| il

Heuristic Based J rGuided Random Search Based I

Genetic algorithms
Simulated Annealing
| ocalSearchTechnique

[|

List Scheduling Heuristics \ \'Tosk Duplication Heurisﬁcs]
Modified Critical Path Critical path Fast Duplication
Dynamic Critical Path Duplication scheduling Heuristic
Dynamic Level Scheduling Bottom-up Top-Down Heuristic
Mapping Heuristic Duplication First and Reduction Next

r Clustering Heuristics]

Mobility Directed
Dominant Sequence Clustering
Linear Clustering

Figure 2.2 Classification of Static task-Scheduling algorithms

2.2.3. Job Scheduling in a Heterogeneous Grid Environment [1 0]

Computational grids have the potential for solving large-scale scientific problems using

heterogeneous and geographically distributed resources. However, a number of major

11

technical hurdies must be overcome before this potential can be realized. One problem that

One of the primary goals of grid computing is to share

oal is realized, including the ability to execute

is critical to effective utilization of computational grids is the efficient scheduling of jobs.

access to geographically distributed

eterogeneous resources in a transparent manner. There will be many penefits when this

applications whose computational

quirements exceed local resources and the reduction of job turnaround time through

orkload balancing across multiple computing facilities. The development of computational

rids and the associated middleware has therefore been actively pursued in recent years.

architectures, the problem of scheduling jobs in @

fundamentally different.

2.2.4 Job Scheduling Policy for High Throughput

The growing computational power requirements of grand

However, many major technical (and political) hurdles stand in the way of realizing these

benefits. Although numerous researchers have proposed scheduling algorithms for parallel

heterogeneous grid environment is

challenge applications has promoted

| thie need for merging high throughput computing and grid Computing principles to harness com

pytational resources distributed across muitiple organizations.First of all there is a lot of

4]

<

-

architectures.

ery large global grid systems.Secondly, the hardware ve

Ltivity to bring standards to the field. Globus is a big step forward towards the formation of

ndors are rushing to deliver the right

ind of hardware for this new architecture. Blade servers will make it possible in the future that
henever we have a job, there will be an available server somewhere to execute it. Software

lendors like Oracle are also delivering products that take advantage of these new

12

CHAPTER 3

DETAILS OF METHODOLOGIES

4 APPLICATION REPRESENTATION FOR DEPENDENT JOBS

[]

3.4.1 Task Graph Representation

> Directed Acyclic Graph: G(V,E)

e Vis the setof v nodes, each node Vi € \ represents an application Task, which is a

isequence of instructions that must be executed serially on the same machine.

« Eis the setof communication edges. The directed edge €ij joins nodes Vi and v, where

node vi is called the parent node and node v; is called child node. This also implies that v;

cannot start until i finishes and sends its data to v;.

e Ciisthe communication cost from the node n; fo the node nj.

| 3.1.2 Application Representation using Task Graph

2N

Figure 3.1 Task graph representation

13

tation of Weight Matrix

2.4.3 Represen

KEN UP FOR COMPARISON

ALGORITHMS TA
d Critical Path on a P

Trees (HCPT) 1] an
n. The weight matrix has

rocessor (CPOP)

3.2. EXISTING
been generated

eous Critical pParent

Heterogen
p for the compariso

{2} algorithms are taken U
g simutation modet [31.

F EXISTING ALGO

most 50% of its total execution

ulation, & ready Queue is
with its children if th

usin
RITHMS

time for computing listing phase
dynamica\ly maintained. After
ey become ready

33 DRA\NBACKS o

{11 12} in ord

executing a patﬂcular task, ready
de is available in ready

e. Select the node
the ready

tasks.
om the entry node. initially the entry no
eady queu

ty take the task
on time at machine M and remove from
eue by @ ks which are

(makespan) is calcul

The algorithm starts fr
of the nodesin '

queue. Until the queue is emp

(let task t) which has earliest completi
ate the task ti pdate the ready qu

ti completion. The

in m;. U dding the tas
ated.

queue. Alloc
overall completion time

ready due 10

14

ENEOUS TASK SCHEDULING (HTS)

POSED METHOD - HETEROG

Queue (RQ) is calculated after sC

3\4. PRO
heduling each task.

ih this method dynamic Ready

Algorithm

e Ready queue (RQ) with the entry task

kin RQdo

Initialize th

While there is an unscheduled tas

essor pj which minimizes the EEFT (ni,pi)

Assign the task n; to proc
ome ready tasks

Update RQ with the successors of ni, if they bec

End while
P1 P2 P3

P1 P2 P3 P1 P2 P3

10

=)

(a) (b) (c)
graph in the figure with: (a) HTS(makespan=75)

scheduling of the task
=76) (¢) CPOP(makespan=86)

(b)HCPT(makespan

Figure 3.2 Makespan comparison

3(5 APPLICATION REPRESENTATION FOR INDEPENDENT JOBS

Following model explains the problem:

.

The problem input

4. A set of resources with their capabilities

b. A set of tasks with their requirements

2. The problem output: Matching the best resource for each task
3. The problem purpose: Minimizing turnaround time

The following parameters are considered:

n: the task number

m: the resource number

k: the number of QoS parameters
q :Resource Capability

" task requirement

The vector @ which gives the capabilities of resource is as follows:

o =g a0) @

15

The requirements of a resource are given by the vector with QoS parameters and weights

for the parameters are given in the following equations.
wsk __ | ask task task
q "'(ql :qz 3---=Qk > (2)

K
Wy Wy W 0= W< Swi=1 &
i=1

The satisfy operator is introduced. Ri m Tj means that the resource Rj can satisfy the

task Tj and guarantees QoS parameters.

tas i

q;

k qu:S_,-
riwTi= (O~ % w)z1)
=1 ¢,

(k = the number of QoS parameters) (4)

(2]

- |

6 EXISTING ALGORITHM TAKE

fask Requirement and its satisfa

3.7. DRAWBACKS OF EXISTING ALGORITHMS

(QBHTS)

(7) for resource capabilities.

reducing the makespan but they

is W+ matrix given by (6) for weight

The existing independent job schedul

There are three matrices, one is T

These matrices are shown in below.

tasky

d,

task,

T = q,
#k —_ -

n

task,
41

faSk;

W

task
wy

Lw‘rask,,
1

rask,

task,

q-

rask,,
q>
asky

W,
- task;y
y

Jasky
Vs

of requireme

dx

1asky

fask,
-4

fask,

dx

Jasky
1’1-"' E

task,

Jgasky,

he existing algorithm Min-Min Algorithm [8] has been ta

ction are not considered.

(3

5

N UP FOR COMPARISON

ing algorithms are mostly €O
are not concentration on satisfying
task. in this method the requirements are unit less given by the

to these tasks only when the machine satisfies the requirements.

(6)

16

ken up for comparison in which

ncentrating only on
the requirements of

tasks. Machines aré allotted

3.8 PROPOSED METHOD - QOS BASED HETEROGENEOUS TASK SCHEDULING

.« matrix given by (5) for task requirements, another

nts, and the other is Rim matrix given by

- res. res, res, |
4, 4 SRR ot
res, resa Fes,y,
g 4, @
Rk”‘m = - - - - (7)
?"QS]_ T'QSE ?‘eﬁm
qr 0 9 T q; "

Defined the matrix WdT.~ as below:

W rashky 1Vra:k] “,11257
i ¥ . Yk ;
PM' ?A’L';T ;T-
q |] 1 | q !
“‘m.sk: ‘H‘Iﬁk: JasR:
| Y ‘ . ; '
wiT. = /o i

14!{“7 w‘;“"‘y Wi l
! task, sk, sk, |
| d, q, d:

So, equation (4) is based on multiplying WdTn« matrix to Riem matrix and the result is Viem

—_

g
-
TE

(8)

s
-
e
B
3 .

matrix given by (9) and (10).

V., =Wdl* Ry O

| n

k 4 .-M B = N :le Hl
rztﬂ’_l_*qfh]‘ ill_sa'ﬂ 1 st"f_i___l_*g'ﬁ.. \5(10)

Sl) e at LR A

£ \ L {wh 3 { 3

i ¥ o P i * 0 ! * i g |

7, = g™ | i \ D I

I"'n g{ qut A ‘-.q;) ! [X [{]:mk' ?!

ﬂw’m‘*q’“‘\ S g - 3 Tt

i wak, ! i T '

e) e g™

V;; shows the value of (4) for assigning resource jtotask i. If Vij = 1, the resource j exactly

will provide the task i requirements. If Vi < 1, the resource j will be weaker than task i

requirements. If Vij > 1, the resource j will be stronger than task i requirements.

18
Algorithm

¢ The Vn*m matrixis generated.

Depending on the vélue of Vn*m matrix resource matching is done as follows:
The Max Mp-3 matrix is generated using the following steps

e In Vn*m matrix first 16 tasks are taken and repeat the following for 512 tasks.

« Maximum satisfaction factor is selected for the first row and allocated to the respective
machine.

e« Then the maximum satisfaction factor in the next row is selected and checked whether
the corresponding machine is aiready allocated or not.

o If allocated then the next maximum satisfaction is selected from the same row and
check for the availability of the respective machine. If not available, proceed with the next
maximum until the task is assigned to the idle machine.

o This process is repeated until all the machines aré allocated to some tasks.

39 IMPLEMENTATION DETAIL
3.9.1 Input Weight Matrix Generation

Input Weight Matrix is generated using the simulation model [3]. This is also known as

ETC — Expected Time to Compute Matrix.

3.9.2 Graph Construction

The random graph generator was implemented to generate application graphs with

various characteristics. The generator requires the foliowing input parameters:

» number of tasks in the graph v,
« The computation cost wi for each task tiis generated using the simulation model.

= Communication to Computation Ratio (CCRY), which is defined as the ratio of the

average communication cost to the average computation cost.

= Each node in the level li has half the number of nodes in the level li-1 as parents.
In all experiments

« Only graphs with a single entry and a single exit node were considered.

o Graph levels 1=5.

19

CHAPTER 4
EXPERIMENTAL RESULTS

4.1 Experimental Results and Discussions for Dependent jobs

This section presents performances comparison of the proposed algorithm with the

 existing CPOP and HCPT algorithms.

4.1.1 Comparison Metrics

The comparisons of the algorithms are based on the following metrics:

4.1.1.1 Makespan

The makespan, or scheduling length, is defined as:

Makespan = FT(Vexit) »

Where FT (Vext) is the finishing time of the scheduled exit node.

4.1.1.2 Speedup
al execution time (i.e.,

ue is defined as the ratio of the sequenti
he

parallel execution time (i.e., 1
d by assigning all tasks to a single

The speedup val

cumulative computation costs of all tasks) to the

). Thé sequential execution time is compute

makespan
omputation costs.

machine, which minimizes the cumulation of the ¢

SpeedUp = (mi“pj€Q{Zni€Vwi,j}) { makespan

1.1 2 Comparison Graphs

1.2.1 Makespan Compatison —

AVERAGE MAKESPAN

AVERAGE MAKESPAN

20

Dependent Jobs

Low Task Heterogeneity LowW Machine Heterogeneity

——

AVERAGE MAKESPAN

\ NO. OF TASKS

|
DRI SRS I
'121.002\ ‘g
|- -
17081

Figure 4.3

21

-

low Task Heterogeneity High Machine Heterogeneity

|
INCONSISTENT CONSISTENT |

= |
= \ = |
< a0 | a 0y o
w | L w ! |
x "501 | % 100 4 |
< ‘ | = |
| = 100 - ! o | ‘
5 T 50 1 .
< 50 [| =X | [
o©
o \ [
£ o s o 1
=z 7 = !

2.040101.972,102.24| 1096 |

5

__WTS 1 473/126.51/134.11

T OPT [98.929]112.42]125.39(130.01]153.59 165.01

35 706198, 632/108.73/118.62 130.51/138.85
NO. OF TASKS

| oor 86 32 |04 805 11137 124.011134.83| |

OO e T e
592 182.997|95.071 105.39/113.93] ‘I

‘ Figure 4.4 Figure 4.5

PARTIALLYCONSISTENT

150 i |

AVERAGE MAKESPAN

NO. OF TASKS

Figure 4.6

-

AVERAGE MAKESPAN

e —

AVERAGE MAKESPAN

22

ligh Task Heterogeneity Low Machine Heterogeneity

rf/ff——rf_r—,,_!r_,H

CONSISTENT |

100 -
| |

| |

50 ";
| ‘.
J,,ﬁ/f ‘

65 m\ 105 ||
\ HTS 142 851551 203\53162\53 972\62144\ ﬂ_ﬂ f,
! »—-‘—HCPT Ms 549 57. 999\ 61,57 171 268\75 514588 035‘ ‘:
|___cPoP 42.623/51.166153. eaa\so §76/64. 205(74. 883 ',
NO. OF TASKS w

80-\ oo

' - \

60 -1| e

Figure 4.9

23

High Task Heterogeneity High Machine Heterogeneity

| INCONSISTENT *\ B

AVERAGE MAKESPAN
AVERAGE MAKESPAN

122 32\509 29| 555 |e12)
|
| 4B STATS 285747, |

PARTIALLYCONSISTENT l|

Z |
& 600 o

o ‘ e ,

\ > 400 4 //""’ g |
\ E: | = |
o 200 - |
= |
ul 0 \I
z = 185 | 95 | 105
\ | _—HTS |28 . . 561422.17| 461.4 |
\ \f—f HCPT 399 81%83 13 414 §9§E§ 5?‘?;7?“ ‘.‘

0. OF TASKS [

| " ‘a

Figure 4.12

AVERAGE SPEEDUP

4.1.2.2 Speedup Comparison - Depe

INCONSISTENT | |

o
=2
[a]
w
w
o
7
w
<o
bt
[+4
w
-]
<

24

ndent Jobs

Low Task Heterogeneity Low Machine Heterogeneity

CONSISTENT I‘.
o |
2 2 } |
u‘ i
o. | = T T
o 1 |
w |
E osﬂ |
o |
w |
= |
< \

714l 305813626 1312 | 1382
1396 |1.4636(1.5731 1 554111.6486) |

Figure 4.15

25

i | ow Task Heterogeneity High Machine Heterogeneity

e

/’//‘—\/

— 1
|

\ INCONSISTENT o CONSISTENT t_
| I '
\ % 0.6 \ I‘| 5
{ [=] |]
| X I
o | 5
N : | @
® " ®
2 | %

I
PARTIALLYCONSISTENT |

g |
. \ a 0.4 ‘|‘
| il i
pow 03 il
S — |
wi 02 |
g |
= 0.1
w
>
L4

e —

Figure 418

26

High Task Heterogeneity Low Machine Heterogqpeity

r’_,_,’/,Il”,————*‘_e—e‘__—"_l
1 ! CONSISTENT '1

o
w

AVERAGE SPEEDUP
AVERAGE SPEEDUP

AVERAGE SPEEDUP

Figure 4.21

27

High Task Heterogeneity High Machine Heterogeneity

| INCONSISTENT CONSISTENT :i

AVERAGE SPEEDUP

4
1295(0.1384{0. 1425\0 1503 0. 1532\

0.4237 o 1215\0 1277\ 0.127 w

PARTIALLYCONSISTENT

0.15 1 |

0141 & T |

AVERAGE SPEEDUFP

4.1.3 Number of Favor

4.1.3.1 Low Task Heterogenei

inconsistent

able Cases for 1000 Trials
ty Low Machine Heterogeneity

28

4.1.3.2 Low Task He

Inconsistent

terogeneity High Machine Heterogeneity

Table 4.6

29

4.1.3.3 High Tas

K Heterogeneity Low Machine Heterogeneity

30

4.1.3.4 High Task Heterogene

ity High Machine Heterogeneity

31

32
4.2 EXPERIMENTAL RESULTS AND DISCUSSIONS FOR INDEPENDENT JOBS

This section presents performances comparison of the proposed algorithm with the

existing CPOP and HCPT algorithms.
4.2.1. Makespan Comparison — independent Jobs

Low Task Heterogeneity Low Machine Heterogeneity

consistent

Makespan

No.of Tasks

Figure 4.25

Inconsistent

Makespan

Mo.of Tasks

Figure 4.26

partially Consistent
38 .ﬂ___,,._w_.ﬂ.u.._.n,u___.ﬂu._,._,,‘..‘.m.‘.“.__....,_,.._,u.....-,N.....w.-,,.,m._._.,,‘....N...,u._,,.W...,M,.. T ————
25
£ :
e 2 :
- e :
x 15
= ;
! ‘
a5
] 0 :
100 200 300 400 500
e QBHT S Q.46 1.03 1.6% 248 313
—yTPR YT} 04 067 108 132 | 151
No.of Tasks
i Figure 4.27
|
\
]’\
\ Low Task Heterogeneity High Machine Heterogeneity
Consistent
40 DR
s
30 A
5 25
a
- 20 1 ;
x ,
= 15 1 i
! 10
5 4
0 1
160 200 w0 | o0 | 500
[—oBrTs] 881 952 Zo0s | 2845 | S
[——MinMn| 358 REE wes | 1598 | 1829
No.of Tasks

Figure 4.28

33

Maokespan

Makaspan

5 E
it
100 200 300 400 £00
e QBHT S 572 15.4 1717 25 4 3618
e DAY 349 695 Poonle 15 21 1604
No.of Tasks
Figure 4.29
partially Consi stent
35 I ;
20 i
;
25 E\
20 E
15 a\
10

No.of Tasks

Figure 4.30

34

High Task Heterogeneity Low Machine Heterogeneity

Makespan

Makespan

Consistent
40 ‘] 1
35 A
30 1 |
25 1
20 : a
15 1
10 -
5 g
0
100 200 1 300 400 | 500
—QBHTS 4.21 1053 | 1938 2691 | 3409
e MIP-MiIN 2.9 781 | 118 wre | et |
No.of Tagks
Figure 4.31
Inconsistent
30]
H
1
25 |
20 1
!
- |
1
10 1 !
i
5 z
0 i
100 200 200 400 500
——QBHTS 523 11.97 1607 2054 IYRL,
massre I 21 B i1 4.24 7.05 9.98 13.05 19.05
No.of Tasks

Figure 4.32

35

Kaksspan

35 A
30
25
20
15 1
10 1
5 4

0 1-

partially Consistent

0

100

200 \ w0 | 400

500

743

aw | 7 | e

3359

———— QBHT S
e MDA

362

e T

l_}_.L_Jﬂ,JT_ e

1712

Mo.of Tasks

Figure 4.33

High Task Heterogeneify High Machine Heterogeneity

Makespan

Consistent
350 1
200 4
250 E
m E
150 -
100

50 -

° 100 200 w0 | e | 50 |
——QBHTS 7773 937 oo | 2313 | 80888]
——Mir-Min 4231 7765 sie2 | ieeos | 19959]

No. of tasks

Figure 4.34

Makespan

Makespan

Inconsistent

380 ..11..,......«.....~.m...~....mm......mm.......,..,.....m o— po— e T g e A T m,
250
50
) |
wo | 60 30 | 400 I B

[—oerrs| 5782 S e | w4 | 26847

|=—MnMin| 3328 | s2% e | iess | W

No.of Tasks
Figure 4.35
Partially Consistent
350 s
o0
150 - z
100 -
il
|
g]
100 200 o] e | 59
——QBHTS 3503 916 Tors | mer2 | 7S
[——Min-bain 2344 7043 ne2 | tesoe | 1988
No.of Tasks
Figure 4.36

37

38
CHAPTER §

CONCLUSION AND FUTURE ENHANCEMENTS

In this project, the Heterogeneous Task Scheduling (HTS) algorithm for
scheduling tasks onto any number of heterogeneous machines is presented. Based on the
experimental study using a large set (60K) of randomly generated application graphs with
various characteristics, the HTS outperformed the other algorithms in terms of
performance, complexity , running time and cost metrics including speedup, frequency of
best results and average Makespan. Because of its robust performance, low running time, and
the ability to give stable performance over a wide range of graph structures, the HTS algorithm is
a viable solution for the DAG scheduling problem with higher number of nodes, on

heterogeneous systems.

This work also studied of the QoS Based Heterogeneous Task Scheduling
(QBHTS) algorithm which shows better resource matching and requirement satisfaction.
Even though the Makespan is higher in our work, the graph shows that the increase in
Makespan does not increase much for all the combinations of Task and Machine
heterogeneity. For further work, this work can be improved to decrease the Makespan by
considering the sufferage values [12].

APPENDIX

Code for HTS

e e =

/IAVERAGE WEIGHT CALCULATION
for(i=0;i<nodes_count;i++)

for('|=0;j<machine_count;j++)
totfil+=weightfilii};
avgfil=tot{ilymachine_count;

for(i=0;i<nodes_count;i++)

for(j=0;j<parent_|ength[i];j++)
comm_cost[i][j]=(avg[i]+avg[parent[i][i]])12;

for(i=0;i<nodes_count;i++)

for(j=0;j<children_length[i];j++)
comm_cost_child[i][i]=(avg[i]+avg[chi|dren[i][j]])lZ;

}

min=weight[0][C];

for(i=0;i<2;i++)

{ if(weight[0][i+1]<min)
{

min=weight{0]{i+1];
current_machine=i+1;

}

available_time[current_machine]=(int)min;
parent_ﬁnishtime[0]=(int)min;
max_parent[0]=0; machine[0]=2;
for(i=0;i<chi|dren__|ength[0];i++)
list.add(chiidren[O](il);

while(Vlist.isEmpty())

list1.addAll(list);
while(!list1.isEmpty()

{

39

in1=(Integer)list1.get(0);
n=in1.intValue();
cu rrent_machine=(int)machine[m ax_parent[n}];
for(j=0;j<machine_count;j++)
{
x=(int)available_timel[j];
flag=1;
if(parent_lengthin}==1)
{
k=0;
if(machine[parent[n][O]]==j)
flag=0;
else
flag=1;

temp_var1 [k]=parent_ﬁnishtime[parent[n][k]]+(ﬂag*(int)comm_cost[n][k]);
temp_varfk]=Math .max(x,temp_var1 [k])+(intyweightin](i];
if(parent_length[n]>1)

{
for(k=0;k<parent_length[n];k++)
{
if(machine[parent[n][k]]==j)
flag=0;
else
flag=1;

temp_var1 [k]=parent_ﬁnishtime[parent[n][k]]+(flag*(int)comm_cost[n][k]);
temp_var[k]=Math.max(x,temp_var1 [K])+(intyweight[n]{i};

}

flag=0;

max=temp_var{0];

index1=0;
for(k=0;k<parent_|ength[n]—1 k++)

if(temp_varfk+1]>max)
max=temp_var{k+1];

index1=k+1;

}

temp_eeftjl=(int)ymax;
max_parent[n]=index1,

40

index=0;

m=0;

min=temp_eeft[0};
for(l=0;l<machine_count;l++)

if(temp_eeft{lj<min)

{
min=temp_eeft{l];
index=l;
m=index;

}

}
list_temp1.add(index);
list_temp.add({intymin);
list1.remove(0);

index=0; m=0;
in1 =(lnteger)list_temp.get(O);
min=in1.intValue();
for(i=0;i<list_temp.size();i++)
{
in1 =(lnteger)list__temp.get(i);
tmp=in1.intValue();
if(tmp<min)

min=tmp,
index=i;
m=index;

}

}

in=(Integer)list_temp1 get(index);
mac=in.intValue();
current_machine=mac;
in=(Integer)list.get(index);
task=in.intValue();
machine[task]=current_machine;
in=(|nteger)list_temp.get(index);
time=in.intValue(),
EEFT[task]=time;
available_time[current_machine]=time;
parent_ﬁnishtime[task]=time;
I=list.indexOf(task);
list.remove(l);
ready_list.add(task);

flag=0;

for(j=0;j<children_length[task];j++)
{

42
for(k=0;k<parent,length[children[task][i]];k++)

if(ready__list.contains(parent[child ren[task][j]][k]))

countt++;

}
if(n!=nodes_count—1)

if(count==parent_length[children[task][i]])
list.add(children[task]ﬁ])',

count=0;

}
list_temp.clear();
list_temp’ clear();

Code for HCPT

Loae TV 2 =~

[IAVERAGE WEIGHT CALCULATION

for(i=0;i<nodes__count;i++)
for(j=0;j<mach'me__count;j++)
tot[i]+=weight[i]['|];
avg[i]=tot[i]lmachine__count;

}
for(i=0;i<nodes__count',i++)

for(j=0;j<parent_length[i];1++)
comm__cost[i][i]=(avg[i]+avg[parent[i][i]])lz;

for(i=0;i<nodes_count;i++)

for(]=0;j<children_length[i];j++)
comm_cost child[i][]]=(avg[i]+avg[children[i][j]])IZ;

}
//STEP 1:CALCULATE AEST

for(i=1 ;i<nodes_count;i++)
for(j=0;j<parent_length[i];j++)

x=parent[i][i]',
temp[j]=AEST[x]+avg[x]+comm__cost[i][j]',

43

}
max=temp{C};
for(|=0',|<parent_length[i];l++)

if(temp[l]>max)
max=templl};

AEST[++Kl=max;
max=0.0f;

}
/ISTEP 2:CALCULATE ALST

ALST[nodes__count-1]=AEST[nodes_count-1];

k=nodes_count-1;
for(i=nodes__count—2',i>=0;i--)

for(j=0',j<children_length[i];j++)

x=children{illi

minimumU]=ALST[x]—comm_cost_child[i]U];

}

min=minimum{O};
for(l=0',I<children_length[i]',l++)
if(minimum[l]<min)
min=minimumfl};

ALST[—-k]f(min-avg[i]);

}
ALST[0}=0;
for(i=0;i<nodes__count;i++)',
IIIISystem.out.println(ALST[i]);
/ISTEP 3:LISTING PHASE

k=0;
pe+pUSHING THE CRITICAL NODES ON THE STACK*****/
for(i=nodes_count—1 [i>=0;i-)

if((double)ALST[i]==(double)AEST[i])

HSystem.out.println(i);
critical_nodes.push(i);

}
}
Iist.add(0,critical_nodes.peek());

s WHILE STACK IS NOT EMPTY*™***/

while(!critical_nodes.empty())

count=0;
i=critical__nodes.peek().intValue();

44

for(j=0;]<(parent_length[i]);j++)

{
jress|F THERE IS AN UNLISTED PAR

if(!list.contains(parent[i][i]))
critical__nodes.push(parent[i][]]);

ENT OF TOS***/

count=0;
i=crit'|cal_nodes.peek().intValue();
for(k=0',k<parent_length[i];k++)

if(list.contains(parent[i][k]))
count++,

}
if(count==parent_length[i])

Iist.add(critical__nodes.pop());
count=0,

}

peere+pOP THE TOS AND ENQUEUE IT IN THE LIST=*"/

iist.remove(0);

p+QUTPUT OF LISTING PHASE™™™*/

for(i=0‘,i<list.size()',i++);
IIIISystem.out.println(list.get(i));

ASSIGNMENT PHASE™
m=0;
min=weight{0]{0};
for(i=0;i<machine_count—1 i)

if(weight]O]fi+1}<min)

{
min=weight{0}[i+1];
m=i+1;

}

}

availab|e_time[m]=(int)min;
parent_finishtime[0]=(int)min;
for(i=1 ;i<Iist.size();i++)

{
in=(lnteger)list.get(i);
n=in.intVatue();
for(]=0;i<machine_count;}++)

flag=0;

45

if(m==j)
flag=0;
else
flag=1;

x=(int)available_time[j];
for(k=0;k<parent_length[n];k++)

if(parent__length[n]>1)

{
if(machine[parent[n][k]]==j)
flag=0;
else
flag=1;

}
temp_varl [k]=parent__ﬁnishtime[parent[n][k]]+(flag*(int)comm__cost[n][k]);
temp_var[k]=Math.max(x,temp_var1 [k])+(int)weight[n][i];

flag=0;

max=temp_var{0l;

index1=0;
for(k=0;k<parent_length[n]-1 “K++)

if(temp__var[k+1]>max)

max=temp_var{k+1];

index1=k+1;
}
}
temp__eeft[i]=(double)max;
afjl=indexi;
index=0; m=0;

min=temp_eeft{0};
for(|=0;I<machine_count—1 ‘)

if(temp_eeft[|+1 J<min)

min=temp_eeft{i+1];
index=1+1;
m=index;

¥

machine[n}=m;
available_time[index]=(int)min;
EEFT[n]=(doub|e)min;
parent__ﬁnishtime[n]=(int)min;

Code for CPOP
JAVERAGE WEIGHT CALCULATION
for(i=0;i<nodes__count;i++)
for(j=0;j<machin‘e_count',j++)

tot[i]+=weight[i][j];
avg[i]=tot[i]lmachine_count;

}

for(i=0;i<nodes__count;i++)

for(j=0;j<parent_length[i];j++)
comm_cost[i][j]=(avg[i]+avg[parent[i][j]])IZ;

}
for(i=0;i<nodes_count;i++)
{
for(j=0;j<children_length[i];j++)
comm_cost_child[i][i]=(avg[i]+avg[children[i][i]])lz;
}
for(i=1 ;i<nodes_count;i++)
{

for(j=0;j<parent_length[i];j++)
{
x=parent[il{il;
temp[i]=down_rank[x]+avg[x]+comm_cost[i][j];
}
max=tempf{0};
for(l=0;I<parent_length[i];I++)
if(temp[l]>max)
max=templ{ll;
down_rank[++k]=max;
max=0.0f;
}
up__rank[nodes_count—1]=avg[nodes_cou nt-11;
k=nodes_count-1;
for(i=nodes_count-2;i>=0;i--)

for(j=0',j<children_length[i];]++)
{

x=children[il{};
maximum[j]=up__rank[x]+comm_cost_child[i][j];

}
max=maximum{0};
for(|=0;l<children_length[i];I++)
if(maximum(l}>max)
max=maximum(l};
up_rank[-—k]=(max+avg[i]);

for(i=0;i<nodes_count;i++)

priority[i]=up_rank[i]+down__rank[i];
}
i=0;
critical_path{0]=0;
while(critical_path[i]!=nodes_count-1)

{

max=priority[critical_path[i]];
index=children[critical _path[il]{0];
for(j=0',j<children_Iength[critical__path[i]];]++)

if(priority[children[critical _path(illfi]]>=max)
{

index=childrenicritical _path[i]liil;
}

critical_path[++i]=index;

}
/Iselecting cpp

for(i=0;i<machine__count;i++)

tmp=0;
for(j=0;j<critical _path.length;j++)
tmp=tmp+(int)weight[critical _path{jlIlil;

templil=tmp;

min=temp[0];
for(i=0;i<machine_count;i++)

- if(templil<min)

{

min=templi];
cpp=i;
}

}
list.add(0,0),

max=priority[children[critical _path{il]ill

47

m=cpp,
availabIe_time[m]=(int)weight[O][cpp];
parent_ﬁnishtime[0]=(int)weight[0][cpp];
EEFT[0]=(int)weight[O][cpp];
while(llist.isEmpty())

{

in=(Integer)list.get(0);
tmp=in.intValue();
max=priority[tmp];
index=tmp;
for(i=0;i<list.size();i++)

{

in=(Integern)list.get(i);
tmp=in.intValue();
if(priority[tmp]>=max)
{
max=priority[tmp];
index=i;

}

}
in=(Integer)list.get(index);
n=in.intValue(};

if(n!=0)

{

for((=0;j<machine_count;++)

{

flag=0;
if(m==j)
flag=0;
else
flag=1;

x=available_time[j];
for(k=0;k<parent_|ength[n];k++)

if(parent_length[n]>1)

if(machine[parentin][k]l==})

flag=0;
else
flag=1;
}

temp_var1[kj=parent_fi nishtime[parent[n][k]]+(f|ag*(int)comm_cost[n][k]);
temp_varfk]=Math.max(x,tem p_var1[k]}+(int)weig ht[n][];

}
flag=0;
max=temp_var[0];

48

index1=0;
for(k=0;k<parent_|ength[n]—1 K++)
if(temp_var[k+1]>max)

max=temp_var{k+1];

index1=k+1;
}
temp_eeftfjl=(int)max;
afj]=index1;
}
flag=0;

for(j=0;j<critical _path.length;j++)

if(n==critical_path[j])
flag=1;

}

if(flag==1)

{
m=Ccpp,
min=temp_eeft{cpp];
machine[n}=m;
avai|ab|e_time[m]=(int)min;
EEFT[n]=(int)min;
parent_finishtime[n]=(int)min;

}
else
{
index=0;
m=0;
min=temp_eeft{0];
for(l=0;I<machine_count;l++)
{
if(temp_eeft[l]<min)
min=temp_eeft{l];
index=l;
m=index;
1
machine[nl=m;
availab!e_time[index]=(int)min;
EEFT[n]=(int)min;
parent__ﬁnishtime[n]=(int)min;
}

I=list.indexOf(n);

list.remove(l);
ready_list.add(n);

flag=0;
for(j=0;j<children__length[n];j++)

for(k=0',k<parent_length[chi!dren[n][]]];k++)

if(ready_list.contains(parent[children[n][j]][k]))
count++,

if(n!=nodes__count-1)

if(count==parent_length[chiIdren[n][i]])
list.add(children[n]{il):

count=0;
}
}

Code for QoS based scheduling

s Makespan calculation far QBHTS Algorithm......... *f
for(int i=0’i<task;i++)
{

op=(int)mmat[i][1];

switch(op)

case O:
m[0]=ob.makespan(m[O],i,O,cstmat);
break;

case 1:

m[1]=ob.make5pan(m[1],i, 1,cstmat);
break;

case 2.
m[2]=ob.makespan(m[2],i,2,cstmat);
break;

case 3:
m[3]=ob.makespan(m[3],i,3,cstmat);
break;

case 4.
m[4]=ob.makespan(m[4],i,4,cstmat);
break;

case 5.
m[5]=0b.makespan(m[5],i,5,cstmat);
break;

case 6:
m[6]=ob.make5pan(m[6],i,6,cstmat);

50

break;

case 7.
m[7]=ob.makespan(m[7],i,7,cstmat);
break;

case 8.
m[8]=cb makespan(m{8l.i,8 .cstmat);
break;

case 9
m[9]=ob.makespan(m[9],i,9,cstmat);
break;

case 10:
m[1 0]=ob.makespan(m[1 0],i,10,cstmat);
break;

case 11.
mi1 1]=ob.makespan(m[1 11,i,11,cstmat);
break;

case 12:
m[1 2]=ob.makespan(m[1 2],i,12,cstmat);
break;

case 13
m[1 3]=ob.makespan(m[1 3).i,13,cstmat);
break;

case 14:
m[14]=ob.makespan(m[14],i,14,cstmat);
break;

case 15:
m[1 5]=ob.makespan(m[1 5),i,15,cstmat);
break;

}

}
for(int i=0;i<16;i++)

System.out.println(“Machine it s Amfi]);

e Finding Maximum Makespan......... *

max=m[0];
for(int i=1;i<16;i++)

if(mli]>max)

max=m[i];

System.out.println("Make span for QBHTS "+max);
for(int i=0;i<16;i++)

m[il=0;
e Makespan calculation for Min-Min Algorithm......... *f
for(int i=0;i<task;i++)

{

op=(intymimatfij{1];
switch(op)

case O:

51

m[0]=ob.makespan(m[0],i,O .cstmat);
break;

case 1.
m[1]=ob.makespan(m[1],i,1 ,cstmat);
break;

case 2:
m[2]=ob.makespan(m[2],i,2,cstmat);
break;

case 3
m[3]=ob.makespan(m[3],i,3 .cstmat);
break;

case 4.
m[4]=ob.makespan(m[4],i 4 cstmat);
break;

case 5:
m[5]=ob.makespan(m[5] i,5,cstmat);
break;

case 6:
m[6]=ob.makespan(m[6],i,6,cstmat)',
break;

case 7.
m[7]=ob.makespan(m[7],i,7,cstmat);
break;

case 8:
m[8]=ob.makespan(m[8],i 8, cstmat);
break;

case 9:
m[9]=ob.makespan(m[Q],i,9,cstmat);
break;

case 10:
mi1 0]=ob.makespan(m[1 0],i,10,cstmat);
break;

case 11:
m{1 1]=ob.makespan(m[1 1],i,11,cstmat);
break;

case 12:
m[1 2]=ob.makespan(m[1 2].i,12,cstmat);
break;

case 13:
m[1 3]=ob.makespan(m[1 3],i,13,cstmat);
break;

case 14:
m[14]=ob.makespan(m[1 4),i,14,cstmat);
break;

case 15:
mi1 5]=ob.makespan(m[1 5],i,15,cstmat);
break;

52

53

}
for(int i=0;i<16;i++)
System.out.println(“Machine "+ " +mli]);

[Finding Maximum Makespan......... */
max=m[0];
for(int i=0;i<16;i++)
if(m[i}>max)
max=m{il;
System.out.println(“Make span for Min-Min +max);

}
for(int i=0;i<16;i++)
mfi]=0;
}
}

T Finding Maximum and Minimum For the Given Input Sorted Matrix *
public doublef]l] minmax(doublef]{} smat,double[][] imat,int task)

double tmp,ind;
int flag=0,1=0,n0=5;
double[]{] temp=new double[task][16];
double[] arr= new double[16];
for(int y=0;y<16;y++)
arrfy}=25;
for(int i=0;i<task;i++)

for(int j=0;j<16;j++)

tmp=smatfi]fj}; ind=imatfili;
for(int k=0;k<15:k++}
if(ind==arr{kl)
flag=1;
if(flag!=1)
{

templi][C]=tmp; templ[i][1]=ind; templil[2)=0;
arr{i++}=ind;

break;
}
else
{
flag=0; continue;
}
if(i==no)

{
no=no+16; 1=0;
for(int y=0;y<16;y++)

arrly]=25; flag=0;

}
else
continue,
return temp;
}
P FOR FINDING MAXIMUM IN A ROW

doubie(l} sort(doublef][] mat,int task)

double tmp;
double[l[] temp=new doubleftask]{16];
for(int i=0;i<task;i++)
for(int j=0;j<16;j++)
tempfiljl=mat[illil
I SORTING THE MATRIX
for(int i=0;i<task;i++)
for(int j=0;j<16;j++)
for(int k=j+1;k<16:k++)

iftempfiljl <templillk])
tmp=templillil

templil[jl=templil[K];
templi][k]=tmp;

}
}
return temp;
}
T For Finding Minimum in @ row

double]f] sort1(doublefl(] mat,int task)

double tmp;
double([]] temp=new double[task][16];
for(int i=0;i<task;i++)
for(int j=0;j<16:j++)
tempfillj}=matfilli};
) SORTING THE MATRIX
for(int i=0;i<task;i++)
for(int j=0;j<16;j++)
for(int k=j+1;k<16;k++)

if(temp(i][i}>templillk]}

tmp=temp[i][i];
templillj]=templiliKI;

54

temp[i][k]=tmp;

}

return temp;

double][] search(double(if} mat,double[l[] mmat,int task)

/ISEARCHING THE INDEX
doubie[][] temp=new double[task][16];
double tmp;
int tmp1=0;
for(int i=0;i<task;i++)

for(int j=0;j<16;j++)

{
tmp=mmat{illj);
for(int k=0;k<16:k++)
iftmp==matfi}{k])
tmp1=k;
break;
}
else
continue;
}
templi]fjl=tmp1;
}
return temp;

55

56

REFERENCES

[1] Tarek Hagras, Jan Jane'cek, ”A Simple Scheduling Heuristic for Heterogeneous
Computing Environments,” Proceedings of the Second international Symposium on Parallel
and Distributed Computing (ISPDC,03), 2003.

[2] Haluk Topcuoglu, Salim Hariri, Min-You Wu, "Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing”, IEEE Transaction on Parallel
and Distributed Systems, Vol. 13, No. 3, pp.260-274, March 2002.

[3] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson,
M. Theys, B. Yao, D. Hensgen, and R. Freund. “A comparison study of static mapping
heuristics for a class of meta tasks on heterogeneous computing systems”, 8th |IEEE
Heterogeneous Computing Workshop (HCW'99), pp 15-29, April 1999.

[4] G.Sih, and E.Lee, "A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogenéous Processor Architectures”, 1IEEE Transaction in Parallel and
Distributed Systems, Vol.4, pp.75-87, 1993.

[5] A.Radulescu, and A.an Gemund, "Fast and Effective Task Scheduling In
Heterogeneous Systems”, 9th Heterogeneous Computing Workshop, pp.229-238, 2000.

[6] |. Foster and C. Kesselman. The GRID: Biueprint for a New Computing
Infrastructure, 2nd Edition, Morgan- Kaufmann, San Mateo, CA, 2004.

[7]1 M. Analoui and L. Mohammad Khanli “Grid_JQA: A QoS Guided Scheduling
Algorithm for Grid Computing”, Proceedings of Sixth International Symposium on Parallel
and distributed Systems, 2007.

[8] Yin-Yun Shen, Xiao-Ping Li,Qian Wang,Ying-Chun Yuan., “A Hybrid QoS- Based
Algorithm for Independent Tasks Scheduling in Grid” supported by National Natural
Science Foundation Of China under Grants, 2006.

57

[9] Buyya R, Abramson D, Giddy J, Stockinger H, “Economic Models for Resource

anagement and Scheduling in Grid Computing”. Concurrency and Computation: Practice

nd Experience Journal (Special Issue on Grid Computing Environments) 14 (13-15): 1507-
1542, 2002

[10] Buyya R, Murshed M, Abramson D. A “Deadline and Budget constrained Cost-Time
Optimization Algorithm for Scheduling Task Farming Applications on Global Grids[A]",
Proceeding of the 2002 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA '02)[C],2002.

[11] Lijuan Xiao, Yanmin Zhu, Lionei M. Ni and Zhiwei Xu, “Incentive — Based
Scheduling for Market — Like Computational Grids”, |IEEE Transactions on Paraliel and
Distributed Systems, vo! 19, No 7, pp. 903-913, July 2008

[12] Zhang Jinquan, Ni Lina, Jiang Changjun. “A Heuristic Scheduling Strategy for
Independent Tasks on Grid”, Proceedings of the Eighth International Conference on High-
Performance Computing in Asia-Pacific Region (HPCASIA '05), 2005.

