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ABSTRACT

TASK SCHEDULING IN GRID ENVIRONMENT

Efficient task scheduling of computationally intensive applications is one of the most
essential and difficult issues when aiming at high performance in agrd environment which
is highly dynamic and heterogeneous. Grid computing is an emerging technology for
enabling resource gharing and coordinated problem solving in dynamic multi-institutional
vitual organizations. The resource matching problem in the grid involves assigning

resources to tasks in order to satisfy task requirements and resource policies.

In this project work, algorithms for a Grid resource manager which is responsible for
resource brokering and scheduling in Grids have been implemented. The broker selects
computing resources based on the actual job requirements and the criteria in identifying the

available resources, which minimizes the overall completion time (Makespan) of tasks.

This work involves Task Scheduling for dependent and independent tasks to the
available poo! of resources. Although a large number of scheduling heuristics have been
presented in the literature, most of them target only homogeneous computing systems. For

Dependent task scheduling, a simple heuristic algorithm for efficient Heterogeneous Task

Scheduling (HTS) has been presented. The experiments have shown that HTS provides
- comparable or even petter results for consistent, inconsistent and partially consistent

environments.

For Independent task scheduling, QoS Based Heterogeneous Task Scheduling
(QBHTS) which aims to satisfy QoS requirements of tasks has been implemented. Task is
scheduled on 2 resource only when the resource satisfies the task’s requirements.
Experiment results show that the Makespan does not increase much if scheduling is

performed pased on QoS satisfaction.
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CHAPTER1

INTRODUCTION
1.1 PROJECT OUTLINE

Recent developments in high-speed digital communication have made it
possible to connect a distributed suite of different high performance machines in order to
provide a powerful computing platform called a heterogeneous computing system. This
platform is utilized to execute computationally intensive applications that have diverse
computation requirements. This has resulted in the ability to form loosely coupled, high-
performance computational environment comprising nUMerous scalable, fault tolerant, and
platform-independent services across the entire Internet. The grid infrastructure provides a
way to execute applications over autonomous, distributed and heterogeneous nodes by
secure resource sharing among individuals and institutions. Typically, a user can submit
jobs to a grid without necessarily knowing (or even caring) where it will be executed. It is
the responsibility of the grid resource management system to distribute such jobs among a
heterogeneous pool of servers, trying to optimize the resource usagé and provide the best

possible quality of service.

This project deals with the applications with dependent and independent tasks.
The performance of parallel applications on such systems is highly dependent on the
scheduling of the application tasks onto these machines. The main objective of the
scheduling mechanism is to map tasks onto machines and order their executions so that
precedence requirements are satisfied and minimum overall completion time is achieved
( Makespan). When the structure of the parallel application in terms of its task execution
times, task dependencies and size of communicated data is known a priori, the application
is represented with the static model, and scheduling can be accomplished statically at
compile time. In the general form of static task scheduling, the application is represented by
the directed acyclic graph (DAG), in which the nodes represent application tasks and the
edges represent inter-task data dependencies. Each node is labeled by the computation
cost (expected computation time) of the task and each edge is labeled by the

communication cost (expected communication time). HTS aims to reduce the Makespan.
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For independent tasks, the QoS Based Task Scheduling (QBHTS) provides

management for quality of service on different types of resources, including networks,
CPUs, and disks. It also encourages Grid customers o specify their quality of service
needs based on their actual requirements. The main goal of this system is 10 provide
seamless access to users for submitting jobs to @ pool of heterogeneous resources, and at
the same time, dynamically scheduling in multi policy mode and monitoring the resource

requirements for execution of applications.




1.2 PROBLEM DEFINITION
121 PROBLEM DEFINITION FOR DEPENDENT TASK SCHEDULING

o determine the assignment of Tasks (N) of a given application 1o a given
machine set P (P < N) such that

e The scheduling fength ( Makespan — overall completion time) is to be minimized
o All precedence constraints are to be satisfied for dependent jobs.
. The applicationis represented by the Task Graph

« The Resources are scheduled in Batch Mode, where the jobs and resources are

collected and mapped at prescheduled time.

1.2.2 PROBLEM DEFINITION FOR INDEPENDENT TASK SCHEDULING

The resource matching problem in the Grid involves assigning P resources to N tasks
where P<N, in order to satisfy task requirements and resource policies. The broker selects
computing resources based on actual task requirements and a number of criteria identifying
the available resources, with the aim to minimize the turnaround time for the individual
application. The problem is to match the resources for the required tasks in grid
environment. The Resources are scheduled in Batch Mode, where the jobs and resources

are coliected and mapped at prescheduled time.




CHAPTER 2
LITERATURE SURVEY
2.4. OVERVIEW OF GRID COMPUTING
2.11. INTRODUCTION

Grid computing is @ form of distributed computing that involves coordinating and sharing
computing, application, data, storage, oOf network resources across dynamic and
geographically dispersed organizations [5] 61 Grid technologies promise 10 change the
way organizations tackie complex computational problems. Grid computing enables the
virtualization of distributed computing and data resources such as processing, network
bandwidth and storage capacity to create a single system image, granting users and

applications seamiless access 0 vast IT capabilities.

Grid computing is based on an open set of standards and protocols — €.9-, Open Grid
Services Architecture (OGSA) — that enable communication across heterogeneous,

geographically dispersed environments.

“A Grid is a collection of distributed computing resources available over a local or wide
area network that appears to an end user of application as one large virtual computing
system.” Another definition is "Grid computing is computing as a utility - you do not care
where data resides, or what computer processes Your requests. Analogous to the way
utilities work, clients request information or computation and have it delivered - as much as

they want, and whenever they want.”

Grid computing represents an enabling technology that permits the dynamic coupling of
geographically dispersed resources (machines, networks, data storage, visualization
devices, software and scientific instruments) for perfon"nance-oriented distributed

applications in science, engineering, medicine and e-commerce.

The first goal is 10 build up a computational and networking infrastructure that is
designed 1o provide pervasive, uniform and reliable access o data, computational and

human resources distributed over wide area environments. So @ grid should bring together
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a diverse collection of different hardware and software technologies, different corporations,

eople and procedures do build a shared poo! of resources.

b i

The second and more distant goal pehind grid computing is the delivery of computing
power as 2 utitity, like the electrical system. Actually the name ‘Grid’ comes from an
analogy from power grids that supply electricity. When somebody needs electricity, he
plugs in @ device to the system which uses as much resources as it needs. The end usel i5

not concerned with the details like which power plant is supplying the electricity at that

Applicoﬁon

Figure 24 A layered grid architecture and its relationship to the Internet protocol

moment.

2.1.2 GRID ARCHITECTURE

internet protocol Archi’fec’ture

o
2
0
L
=
O
S
<«
©
Q
o]
°
g
o
a
%
O

architecture.

Figure 2.1 Wustrates the component tayers of the architecture with specific capabilities at
each layer. £ach layer shares the pehavior of the component 1ayers. Each of thes€
component layers is compared with their corresponding internet protocol Layers, fo

purposes of providing more clarity in their capabilities.
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Application Layer: User- Defined Grid Applications

2.1.3 GRID CONSTRUCTION

Heterogeneity

distances.

resource failing is naturally high.

shared by multiple applications.

Servers)

resources in the data center, making the resources

application sittingon a single physical server.

These are user applications, which are constructed by utilizing the services defined at
each lower layer. Such an application can directly access the resource, or can access the

resource through the Collective service interface APls (Application Provider Interface)

There are three main issues that characterize computational grids:

- A grid involves a multiplicity of resources that are heterogeneous in

nature and might span numerous administrative domains across wide geographical

Scalability: A grid might grow from few resources to millions.

Dynamicity of Adaptability: With so many resources in a Grid, the probability of some

2.1.4. KEY BENEFITS OF THE GRID COMPUTING MODEL

Consolidation: Consolidation is @ key benefit of the Grid computing model, especially in
the data center. Consolidation not only minimizes the infrastructure necessary to meet an
enterprise’s business demands, but aiso reduces costs by migrating from proprietary of

single-use systems 0 commercial off-the-shelf (COTS)—based systems that can be

Modular Computing: Modular computing, especially in the data center, minimizes and
simplifies the infrastructure using building blocks that address higher density, lower power,

lower thermals, simplified cabling, and easé of upgrading and management. ( Blade

Virtualization : BY creating pools of resources enabled by highly automated management

capabilities, yirtualization can enable an 1T system administrator to utilize far more of the

accessible to more than a single



8

Utility Computing - Utility Computing allows an infrastructure 10 be managed
analogously to an electric utility, applying a pay-per-use model, thereby optimizing and
balancing the computing needs of an enterprise, and allowing it to run at maximum

efficiency.
2.1.5 Job Scheduling in Grids [4]

The job scheduling system is responsible to select best suitable machines in a grid for user
jobs. The management and scheduling system generates job schedules for each machine
in the grid by taking static restrictions and dynamic parameters of jobs and machines into

consideration.
2.1.6. Issues in Grid Computing [ 1]

A grid is a distributed and heterogeneous environment. Being heterogeneous
inherently contains the problem of managing multiple technologies and administrative
domains. In Grid, security is a main issue. The users who submit their tasks and their data
to the grid wish to make sure that their programs and data is not stolen or altered by the
computer in which it is running. Another important issue is scheduling. Scheduling a task
to the correct resourceé requires considerable effort. The picture is further complicated when

we consider the need to access the data.

2.1.7 Grid Management [10]

One of the major problems in grid computing is to be able to schedule jobs and data to
a suitable resource. As a grid may contain many different hardware and software
configurations, a standard has to be agreed upon. The most widely used product for
managing a grid is called Globus Toolkit. Supported by many large vendors, Globus offers
all the functionality needed to manage a grid system.

Grid Resource Allocation Manager (GRAM) allows users to select a specific resource
in the grid to run their jobs on. It has a client side module that allows User to schedule jobs
at a specific server in the grid and a gatekeeper module that is running in each server to
schedule arriving jobs. GRAM makes use of Monitoring and Directory Service (MDS).
MDS manages a directory of local and global resources. Grid Resource information

Service (GRIS) collects local resource information. Global index Information Service
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(GIIS ) collects GRIS information from all servers and provides a centralized resource

Jirectory for the whole grid. The movement of data in the grid is managed by Global
Access to Secondary Storage (GASS).

Apart from these basic services, Globus provides security functions and packaging tools
to deploy software in a format that would work in any server. The reason behind the
success of Globus is the open source approach and use of standards. For example,
Globus uses SSL for securé data transfer, Light-Weighted Directory Access Protocol
(LDAP) for directory information. By using these standard protocols it ensures that it is

compatible with many operation environments.
2.1.8 Limitations of Grid Computing

Not every application is suitable or enabled for running on a grid. For example some kinds
of applications simply cannot be parallefized. For others, it can take a large amount of work
to modify them to achieve faster throughput. The configuration of a grid can greatly affect

the performance, reliability, and security of an organization’s computing infrastructure.
2.2 JOB SCHEDULING
2.2 1 Job Scheduling in Grid Computers [11]

Distributed computing utilizes a network of many computers, each accomplishing a portion
of an overail task, to achieve a computational result much more quickly than with a single
computer. In distributed computing the task is split up into smaller chunks and performed
by the many computers owned by the general public. The key issue here is that we are
using computing power that we don't own. These computers are owned and controlied by

other people, who you would not necessarily trust.

Grid computing is a form of distributed computing that coordinates and shares computation,
application, and data storage or network resources across dynamic and geographically
dispersed organizations. One primary issue associated with the efficient utilization of
heterogeneous resources in a grid is grid scheduling. Grid scheduling is a challenge
because the capability and availability of resources vary dynamically. The complexity of
scheduling problem increases with the size of the grid and becomes difficult to solve

effectively. Challenging tasks are, searching for resources in the collection of
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eographically distributed heterogeneous computing systems and making scheduling

(o]

decisions, taking into consideration quality of service. Grid scheduler does not have full
tontrol over the grid. The grid scheduler can not assume that it has a global view of the

yrid.

2.2. 2 Classification of Static Task-Scheduling algorithms [2]

\ static Task-Scheduling Algorithms j

| il

Heuristic Based J rGuided Random Search Based I

Genetic algorithms
Simulated Annealing
| ocalSearchTechnique

[ |

List Scheduling Heuristics \ \'Tosk Duplication Heurisﬁcs]
Modified Critical Path Critical path Fast Duplication
Dynamic Critical Path Duplication scheduling Heuristic
Dynamic Level Scheduling Bottom-up Top-Down Heuristic
Mapping Heuristic Duplication First and Reduction Next

r Clustering Heuristics ]

Mobility Directed
Dominant Sequence Clustering
Linear Clustering

Figure 2.2 Classification of Static task-Scheduling algorithms

2.2.3. Job Scheduling in a Heterogeneous Grid Environment [1 0]

Computational grids have the potential for solving large-scale scientific problems using

heterogeneous and geographically distributed resources. However, a number of major
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technical hurdies must be overcome before this potential can be realized. One problem that

One of the primary goals of grid computing is to share

oal is realized, including the ability to execute

is critical to effective utilization of computational grids is the efficient scheduling of jobs.

access to geographically distributed

eterogeneous resources in a transparent manner. There will be many penefits when this

applications whose computational

quirements exceed local resources and the reduction of job turnaround time through

orkload balancing across multiple computing facilities. The development of computational

rids and the associated middleware has therefore been actively pursued in recent years.

architectures, the problem of scheduling jobs in @

fundamentally different.

2.2.4 Job Scheduling Policy for High Throughput

The growing computational power requirements of grand

However, many major technical (and political) hurdles stand in the way of realizing these

benefits. Although numerous researchers have proposed scheduling algorithms for parallel

heterogeneous grid environment is

challenge applications has promoted

| thie need for merging high throughput computing and grid Computing principles to harness com

pytational resources distributed across muitiple organizations.First of all there is a lot of

4]

<

-

architectures.

ery large global grid systems.Secondly, the hardware ve

Ltivity to bring standards to the field. Globus is a big step forward towards the formation of

ndors are rushing to deliver the right

ind of hardware for this new architecture. Blade servers will make it possible in the future that
henever we have a job, there will be an available server somewhere to execute it. Software

lendors like Oracle are also delivering products that take advantage of these new
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CHAPTER 3

DETAILS OF METHODOLOGIES

4 APPLICATION REPRESENTATION FOR DEPENDENT JOBS

[ ]

3.4.1 Task Graph Representation

> Directed Acyclic Graph: G(V,E)

e Vis the setof v nodes, each node Vi € \ represents an application Task, which is a

isequence of instructions that must be executed serially on the same machine.

« Eis the setof communication edges. The directed edge €ij joins nodes Vi and v, where

node vi is called the parent node and node v; is called child node. This also implies that v;

cannot start until i finishes and sends its data to v;.

e Ciisthe communication cost from the node n; fo the node nj.

| 3.1.2 Application Representation using Task Graph

2N

Figure 3.1 Task graph representation
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3(5 APPLICATION REPRESENTATION FOR INDEPENDENT JOBS

Following model explains the problem:

.

The problem input

4. A set of resources with their capabilities

b. A set of tasks with their requirements

2. The problem output: Matching the best resource for each task
3. The problem purpose: Minimizing turnaround time

The following parameters are considered:

n: the task number

m: the resource number

k: the number of QoS parameters
q :Resource Capability

" task requirement

The vector @ which gives the capabilities of resource is as follows:

o =g a0 ) @
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The requirements of a resource are given by the vector with QoS parameters and weights

for the parameters are given in the following equations.
wsk __ | ask task task
q "'(ql :qz 3---=Qk > (2)

K
Wy Wy W 0= W< Swi=1 &
i=1

The satisfy operator is introduced. Ri m Tj means that the resource Rj can satisfy the

task Tj and guarantees QoS parameters.

tas i

q;

k qu:S_,-
riwTi= (O~ % w)z1)
=1 ¢,

(k = the number of QoS parameters) (4)



(2]

- |

6 EXISTING ALGORITHM TAKE

fask Requirement and its satisfa

3.7. DRAWBACKS OF EXISTING ALGORITHMS

(QBHTS)

(7) for resource capabilities.

reducing the makespan but they

is W+ matrix given by (6) for weight

The existing independent job schedul

There are three matrices, one is T

These matrices are shown in below.

tasky

d,

task,

T = q,
#k —_ -

n

task,
41

faSk;

W

task
wy

Lw‘rask,,
1

rask,

task,

q-

rask,,
q>
asky

W,
- task;y
y

Jasky
Vs

of requireme

dx

1asky

fask,
-4

fask,

dx

Jasky
1’1-"' E

task,

Jgasky,

he existing algorithm Min-Min Algorithm [8] has been ta

ction are not considered.

(3

5

N UP FOR COMPARISON

ing algorithms are mostly €O
are not concentration on satisfying
task. in this method the requirements are unit less given by the

to these tasks only when the machine satisfies the requirements.

(6)
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ken up for comparison in which

ncentrating only on
the requirements of

tasks. Machines aré allotted

3.8 PROPOSED METHOD - QOS BASED HETEROGENEOUS TASK SCHEDULING

.« matrix given by (5) for task requirements, another

nts, and the other is Rim matrix given by



- res. res, res, |
4, 4 SRR ot
res, resa Fes,y,
g 4, @
Rk”‘m = - - - - (7)
?"QS]_ T'QSE ?‘eﬁm
qr 0 9 T q; "

Defined the matrix WdT.~ as below:

W rashky 1Vra:k] “,11257
i ¥ . Yk ;
PM' ?A’L';T ;T-
q | ] 1 | q !
“‘m.sk: ‘H‘Iﬁk: JasR:
| Y ‘ . ; '
wiT. = /o i

14!{“7 w‘;“"‘y Wi l
! task, sk, sk, |
| d, q, d:

So, equation (4) is based on multiplying WdTn« matrix to Riem matrix and the result is Viem

—_

g
-
TE

(8)

s
-
e
B
3 .

matrix given by (9) and (10).

V., =Wdl* Ry O

| n

k 4 .-M B = N :le Hl
rztﬂ’_l_*qfh ]‘ ill_sa'ﬂ 1 st"f_i___l_*g'ﬁ.. \5(10)

Sl ) e at LR A

£ \ L {wh 3 { 3

i ¥ o P i * 0 ! * i g |

7, = g™ | i \ D I

I"'n g{ qut A ‘-.q; ) ! [X [ {]:mk' ?!

ﬂw’m‘*q’“‘\ S g - 3 Tt

i wak, ! i T '

e ) e g™

V;; shows the value of (4) for assigning resource jtotask i. If Vij = 1, the resource j exactly

will provide the task i requirements. If Vi < 1, the resource j will be weaker than task i

requirements. If Vij > 1, the resource j will be stronger than task i requirements.



18
Algorithm

¢ The Vn*m matrixis generated.

Depending on the vélue of Vn*m matrix resource matching is done as follows:
The Max Mp-3 matrix is generated using the following steps

e In Vn*m matrix first 16 tasks are taken and repeat the following for 512 tasks.

« Maximum satisfaction factor is selected for the first row and allocated to the respective
machine.

e« Then the maximum satisfaction factor in the next row is selected and checked whether
the corresponding machine is aiready allocated or not.

o If allocated then the next maximum satisfaction is selected from the same row and
check for the availability of the respective machine. If not available, proceed with the next
maximum until the task is assigned to the idle machine.

o This process is repeated until all the machines aré allocated to some tasks.

39 IMPLEMENTATION DETAIL
3.9.1 Input Weight Matrix Generation

Input Weight Matrix is generated using the simulation model [3]. This is also known as

ETC — Expected Time to Compute Matrix.

3.9.2 Graph Construction

The random graph generator was implemented to generate application graphs with

various characteristics. The generator requires the foliowing input parameters:

» number of tasks in the graph v,
« The computation cost wi for each task tiis generated using the simulation model.

= Communication to Computation Ratio (CCRY), which is defined as the ratio of the

average communication cost to the average computation cost.

= Each node in the level li has half the number of nodes in the level li-1 as parents.
In all experiments

« Only graphs with a single entry and a single exit node were considered.

o Graph levels 1=5.
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CHAPTER 4
EXPERIMENTAL RESULTS

4.1 Experimental Results and Discussions for Dependent jobs

This section presents performances comparison of the proposed algorithm with the

 existing CPOP and HCPT algorithms.

4.1.1 Comparison Metrics

The comparisons of the algorithms are based on the following metrics:

4.1.1.1 Makespan

The makespan, or scheduling length, is defined as:

Makespan = FT(Vexit) »

Where FT (Vext) is the finishing time of the scheduled exit node.

4.1.1.2 Speedup
al execution time (i.e.,

ue is defined as the ratio of the sequenti
he

parallel execution time (i.e., 1
d by assigning all tasks to a single

The speedup val

cumulative computation costs of all tasks) to the

). Thé sequential execution time is compute

makespan
omputation costs.

machine, which minimizes the cumulation of the ¢

SpeedUp = (mi“pj€Q{Zni€Vwi,j}) { makespan
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4.2 EXPERIMENTAL RESULTS AND DISCUSSIONS FOR INDEPENDENT JOBS

This section presents performances comparison of the proposed algorithm with the

existing CPOP and HCPT algorithms.
4.2.1. Makespan Comparison — independent Jobs

Low Task Heterogeneity Low Machine Heterogeneity

consistent

Makespan

No.of Tasks

Figure 4.25

Inconsistent

Makespan

Mo.of Tasks

Figure 4.26
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CHAPTER §

CONCLUSION AND FUTURE ENHANCEMENTS

In this project, the Heterogeneous Task Scheduling (HTS) algorithm for
scheduling tasks onto any number of heterogeneous machines is presented. Based on the
experimental study using a large set (60K) of randomly generated application graphs with
various characteristics, the HTS outperformed the other algorithms in terms of
performance, complexity , running time and cost metrics including speedup, frequency of
best results and average Makespan. Because of its robust performance, low running time, and
the ability to give stable performance over a wide range of graph structures, the HTS algorithm is
a viable solution for the DAG scheduling problem with higher number of nodes, on

heterogeneous systems.

This work also studied of the QoS Based Heterogeneous Task Scheduling
(QBHTS) algorithm which shows better resource matching and requirement satisfaction.
Even though the Makespan is higher in our work, the graph shows that the increase in
Makespan does not increase much for all the combinations of Task and Machine
heterogeneity. For further work, this work can be improved to decrease the Makespan by
considering the sufferage values [12].



APPENDIX

Code for HTS

e e =

/IAVERAGE WEIGHT CALCULATION
for(i=0;i<nodes_count;i++)

for('|=0;j<machine_count;j++)
totfil+=weightfilii};
avgfil=tot{ilymachine_count;

for(i=0;i<nodes_count;i++)

for(j=0;j<parent_|ength[i];j++)
comm_cost[i][j]=(avg[i]+avg[parent[i][i]])12;

for(i=0;i<nodes_count;i++)

for(j=0;j<children_length[i];j++)
comm_cost_child[i][i]=(avg[i]+avg[chi|dren[i][j]])lZ;

}

min=weight[0][C];

for(i=0;i<2;i++)

{ if(weight[0][i+1]<min)
{

min=weight{0]{i+1];
current_machine=i+1;

}

available_time[current_machine]=(int)min;
parent_ﬁnishtime[0]=(int)min;
max_parent[0]=0; machine[0]=2;
for(i=0;i<chi|dren__|ength[0];i++)
list.add(chiidren[O](il);

while(Vlist.isEmpty())

list1.addAll(list);
while(!list1.isEmpty()

{

39



in1=(Integer)list1.get(0);
n=in1.intValue();
cu rrent_machine=(int)machine[m ax_parent[n}];
for(j=0;j<machine_count;j++)
{
x=(int)available_timel[j];
flag=1;
if(parent_lengthin}==1)
{
k=0;
if(machine[parent[n][O]]==j)
flag=0;
else
flag=1;

temp_var1 [k]=parent_ﬁnishtime[parent[n][k]]+(ﬂag*(int)comm_cost[n][k]);
temp_varfk]=Math .max(x,temp_var1 [k])+(intyweightin](i];
if(parent_length[n]>1)

{
for(k=0;k<parent_length[n];k++)
{
if(machine[parent[n][k]]==j)
flag=0;
else
flag=1;

temp_var1 [k]=parent_ﬁnishtime[parent[n][k]]+(flag*(int)comm_cost[n][k]);
temp_var[k]=Math.max(x,temp_var1 [K])+(intyweight[n]{i};

}

flag=0;

max=temp_var{0];

index1=0;
for(k=0;k<parent_|ength[n]—1 k++)

if(temp_varfk+1]>max)
max=temp_var{k+1];

index1=k+1;

}

temp_eeftjl=(int)ymax;
max_parent[n]=index1,

40



index=0;

m=0;

min=temp_eeft[0};
for(l=0;l<machine_count;l++)

if(temp_eeft{lj<min)

{
min=temp_eeft{l];
index=l;
m=index;

}

}
list_temp1.add(index);
list_temp.add({intymin);
list1.remove(0);

index=0; m=0;
in1 =(lnteger)list_temp.get(O);
min=in1.intValue();
for(i=0;i<list_temp.size();i++)
{
in1 =(lnteger)list__temp.get(i);
tmp=in1.intValue();
if(tmp<min)

min=tmp,
index=i;
m=index;

}

}

in=(Integer)list_temp1 get(index);
mac=in.intValue();
current_machine=mac;
in=(Integer)list.get(index);
task=in.intValue();
machine[task]=current_machine;
in=(|nteger)list_temp.get(index);
time=in.intValue(),
EEFT[task]=time;
available_time[current_machine]=time;
parent_ﬁnishtime[task]=time;
I=list.indexOf(task);
list.remove(l);
ready_list.add(task);

flag=0;

for(j=0;j<children_length[task];j++)
{
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for(k=0;k<parent,length[children[task][i]];k++)

if(ready__list.contains(parent[child ren[task][j]][k]))

countt++;

}
if(n!=nodes_count—1)

if(count==parent_length[children[task][i]])
list.add(children[task]ﬁ])',

count=0;

}
list_temp.clear();
list_temp’ clear();

Code for HCPT

Loae TV 2 =~

[IAVERAGE WEIGHT CALCULATION

for(i=0;i<nodes__count;i++)
for(j=0;j<mach'me__count;j++)
tot[i]+=weight[i]['|];
avg[i]=tot[i]lmachine__count;

}
for(i=0;i<nodes__count',i++)

for(j=0;j<parent_length[i];1++)
comm__cost[i][i]=(avg[i]+avg[parent[i][i]])lz;

for(i=0;i<nodes_count;i++)

for(]=0;j<children_length[i];j++)
comm_cost child[i][]]=(avg[i]+avg[children[i][j]])IZ;

}
//STEP 1:CALCULATE AEST

for(i=1 ;i<nodes_count;i++)
for(j=0;j<parent_length[i];j++)

x=parent[i][i]',
temp[j]=AEST[x]+avg[x]+comm__cost[i][j]',
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}
max=temp{C};
for(|=0',|<parent_length[i];l++)

if(temp[l]>max)
max=templl};

AEST[++Kl=max;
max=0.0f;

}
/ISTEP 2:CALCULATE ALST

ALST[nodes__count-1]=AEST[nodes_count-1];

k=nodes_count-1;
for(i=nodes__count—2',i>=0;i--)

for(j=0',j<children_length[i];j++)

x=children{illi

minimumU]=ALST[x]—comm_cost_child[i]U];

}

min=minimum{O};
for(l=0',I<children_length[i]',l++)
if(minimum[l]<min)
min=minimumfl};

ALST[—-k]f(min-avg[i]);

}
ALST[0}=0;
for(i=0;i<nodes__count;i++)',
IIIISystem.out.println(ALST[i]);
/ISTEP 3:LISTING PHASE

k=0;
pe+pUSHING THE CRITICAL NODES ON THE STACK*****/
for(i=nodes_count—1 [i>=0;i-)

if((double)ALST[i]==(double)AEST[i])

HSystem.out.println(i);
critical_nodes.push(i);

}
}
Iist.add(0,critical_nodes.peek());

s WHILE STACK IS NOT EMPTY*™***/

while(!critical_nodes.empty())

count=0;
i=critical__nodes.peek().intValue();
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for(j=0;]<(parent_length[i]);j++)

{
jress|F THERE IS AN UNLISTED PAR

if(!list.contains(parent[i][i]))
critical__nodes.push(parent[i][]]);

ENT OF TOS***/

count=0;
i=crit'|cal_nodes.peek().intValue();
for(k=0',k<parent_length[i];k++)

if(list.contains(parent[i][k]))
count++,

}
if(count==parent_length[i])

Iist.add(critical__nodes.pop());
count=0,

}

peere+pOP THE TOS AND ENQUEUE IT IN THE LIST=*"/

iist.remove(0);

p+QUTPUT OF LISTING PHASE™™™*/

for(i=0‘,i<list.size()',i++);
IIIISystem.out.println(list.get(i));

ASSIGNMENT PHASE™
m=0;
min=weight{0]{0};
for(i=0;i<machine_count—1 i)

if(weight]O]fi+1}<min)

{
min=weight{0}[i+1];
m=i+1;

}

}

availab|e_time[m]=(int)min;
parent_finishtime[0]=(int)min;
for(i=1 ;i<Iist.size();i++)

{
in=(lnteger)list.get(i);
n=in.intVatue();
for(]=0;i<machine_count;}++)

flag=0;
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if(m==j)
flag=0;
else
flag=1;

x=(int)available_time[j];
for(k=0;k<parent_length[n];k++)

if(parent__length[n]>1)

{
if(machine[parent[n][k]]==j)
flag=0;
else
flag=1;

}
temp_varl [k]=parent__ﬁnishtime[parent[n][k]]+(flag*(int)comm__cost[n][k]);
temp_var[k]=Math.max(x,temp_var1 [k])+(int)weight[n][i];

flag=0;

max=temp_var{0l;

index1=0;
for(k=0;k<parent_length[n]-1 “K++)

if(temp__var[k+1]>max)

max=temp_var{k+1];

index1=k+1;
}
}
temp__eeft[i]=(double)max;
afjl=indexi;
index=0; m=0;

min=temp_eeft{0};
for(|=0;I<machine_count—1 ‘)

if(temp_eeft[|+1 J<min)

min=temp_eeft{i+1];
index=1+1;
m=index;

¥

machine[n}=m;
available_time[index]=(int)min;
EEFT[n]=(doub|e)min;
parent__ﬁnishtime[n]=(int)min;



Code for CPOP
JAVERAGE WEIGHT CALCULATION
for(i=0;i<nodes__count;i++)
for(j=0;j<machin‘e_count',j++)

tot[i]+=weight[i][j];
avg[i]=tot[i]lmachine_count;

}

for(i=0;i<nodes__count;i++)

for(j=0;j<parent_length[i];j++)
comm_cost[i][j]=(avg[i]+avg[parent[i][j]])IZ;

}
for(i=0;i<nodes_count;i++)
{
for(j=0;j<children_length[i];j++)
comm_cost_child[i][i]=(avg[i]+avg[children[i][i]])lz;
}
for(i=1 ;i<nodes_count;i++)
{

for(j=0;j<parent_length[i];j++)
{
x=parent[il{il;
temp[i]=down_rank[x]+avg[x]+comm_cost[i][j];
}
max=tempf{0};
for(l=0;I<parent_length[i];I++)
if(temp[l]>max)
max=templ{ll;
down_rank[++k]=max;
max=0.0f;
}
up__rank[nodes_count—1 ]=avg[nodes_cou nt-11;
k=nodes_count-1;
for(i=nodes_count-2;i>=0;i--)

for(j=0',j<children_length[i];]++)
{




x=children[il{};
maximum[j]=up__rank[x]+comm_cost_child[i][j];

}
max=maximum{0};
for(|=0;l<children_length[i];I++)
if(maximum(l}>max)
max=maximum(l};
up_rank[-—k]=(max+avg[i]);

for(i=0;i<nodes_count;i++)

priority[i]=up_rank[i]+down__rank[i];
}
i=0;
critical_path{0]=0;
while(critical_path[i]!=nodes_count-1)

{

max=priority[critical_path[i]];
index=children[critical _path[il]{0];
for(j=0',j<children_Iength[critical__path[i]];]++)

if(priority[children[critical _path(illfi]]>=max)
{

index=childrenicritical _path[i]liil;
}

critical_path[++i]=index;

}
/Iselecting cpp

for(i=0;i<machine__count;i++)

tmp=0;
for(j=0;j<critical _path.length;j++)
tmp=tmp+(int)weight[critical _path{jlIlil;

templil=tmp;

min=temp[0];
for(i=0;i<machine_count;i++)

- if(templil<min)

{

min=templi];
cpp=i;
}

}
list.add(0,0),

max=priority[children[critical _path{il]ill
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m=cpp,
availabIe_time[m]=(int)weight[O][cpp];
parent_ﬁnishtime[0]=(int)weight[0][cpp];
EEFT[0]=(int)weight[O][cpp];
while(llist.isEmpty())

{

in=(Integer)list.get(0);
tmp=in.intValue();
max=priority[tmp];
index=tmp;
for(i=0;i<list.size();i++)

{

in=(Integern)list.get(i);
tmp=in.intValue();
if(priority[tmp]>=max)
{
max=priority[tmp];
index=i;

}

}
in=(Integer)list.get(index);
n=in.intValue(};

if(n!=0)

{

for((=0;j<machine_count;++)

{

flag=0;
if(m==j)
flag=0;
else
flag=1;

x=available_time[j];
for(k=0;k<parent_|ength[n];k++)

if(parent_length[n]>1)

if(machine[parentin][k]l==})

flag=0;
else
flag=1;
}

temp_var1[kj=parent_fi nishtime[parent[n][k]]+(f|ag*(int)comm_cost[n][k]);
temp_varfk]=Math.max(x,tem p_var1[k]}+(int)weig ht[n][];

}
flag=0;
max=temp_var[0];
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index1=0;
for(k=0;k<parent_|ength[n]—1 K++)
if(temp_var[k+1]>max)

max=temp_var{k+1];

index1=k+1;
}
temp_eeftfjl=(int)max;
afj]=index1;
}
flag=0;

for(j=0;j<critical _path.length;j++)

if(n==critical_path[j])
flag=1;

}

if(flag==1)

{
m=Ccpp,
min=temp_eeft{cpp];
machine[n}=m;
avai|ab|e_time[m]=(int)min;
EEFT[n]=(int)min;
parent_finishtime[n]=(int)min;

}
else
{
index=0;
m=0;
min=temp_eeft{0];
for(l=0;I<machine_count;l++)
{
if(temp_eeft[l]<min)
min=temp_eeft{l];
index=l;
m=index;
1
machine[nl=m;
availab!e_time[index]=(int)min;
EEFT[n]=(int)min;
parent__ﬁnishtime[n]=(int)min;
}



I=list.indexOf(n);

list.remove(l);
ready_list.add(n);

flag=0;
for(j=0;j<children__length[n];j++)

for(k=0',k<parent_length[chi!dren[n][]]];k++)

if(ready_list.contains(parent[children[n][j]][k]))
count++,

if(n!=nodes__count-1)

if(count==parent_length[chiIdren[n][i]])
list.add(children[n]{il):

count=0;
}
}

Code for QoS based scheduling

s Makespan calculation far QBHTS Algorithm......... *f
for(int i=0’i<task;i++)
{

op=(int)mmat[i][1];

switch(op)

case O:
m[0]=ob.makespan(m[O],i,O,cstmat);
break;

case 1:

m[1 ]=ob.make5pan(m[1],i, 1,cstmat);
break;

case 2.
m[2]=ob.makespan(m[2],i,2,cstmat);
break;

case 3:
m[3]=ob.makespan(m[3],i,3,cstmat);
break;

case 4.
m[4]=ob.makespan(m[4],i,4,cstmat);
break;

case 5.
m[5]=0b.makespan(m[5],i,5,cstmat);
break;

case 6:
m[6]=ob.make5pan(m[6],i,6,cstmat);
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break;

case 7.
m[7]=ob.makespan(m[7],i,7,cstmat);
break;

case 8.
m[8]=cb makespan(m{8l.i,8 .cstmat);
break;

case 9
m[9]=ob.makespan(m[9],i,9,cstmat);
break;

case 10:
m[1 0]=ob.makespan(m[1 0],i,10,cstmat);
break;

case 11.
mi1 1]=ob.makespan(m[1 11,i,11,cstmat);
break;

case 12:
m[1 2]=ob.makespan(m[1 2],i,12,cstmat);
break;

case 13
m[1 3]=ob.makespan(m[1 3).i,13,cstmat);
break;

case 14:
m[14]=ob.makespan(m[14],i,14,cstmat);
break;

case 15:
m[1 5]=ob.makespan(m[1 5),i,15,cstmat);
break;

}

}
for(int i=0;i<16;i++)

System.out.println(“Machine it s Amfi]);

e Finding Maximum Makespan......... *

max=m[0];
for(int i=1;i<16;i++)

if(mli]>max)

max=m[i];

System.out.println("Make span for QBHTS "+max);
for(int i=0;i<16;i++)

m[il=0;
e Makespan calculation for Min-Min Algorithm......... *f
for(int i=0;i<task;i++)

{

op=(intymimatfij{1];
switch(op)

case O:
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m[0]=ob.makespan(m[0],i,O .cstmat);
break;

case 1.
m[1]=ob.makespan(m[1],i,1 ,cstmat);
break;

case 2:
m[2]=ob.makespan(m[2],i,2,cstmat);
break;

case 3
m[3]=ob.makespan(m[3],i,3 .cstmat);
break;

case 4.
m[4]=ob.makespan(m[4],i 4 cstmat);
break;

case 5:
m[5]=ob.makespan(m[5] i,5,cstmat);
break;

case 6:
m[6]=ob.makespan(m[6],i,6,cstmat)',
break;

case 7.
m[7]=ob.makespan(m[7],i,7,cstmat);
break;

case 8:
m[8]=ob.makespan(m[8],i 8, cstmat);
break;

case 9:
m[9]=ob.makespan(m[Q],i,9,cstmat);
break;

case 10:
mi1 0]=ob.makespan(m[1 0],i,10,cstmat);
break;

case 11:
m{1 1]=ob.makespan(m[1 1],i,11,cstmat);
break;

case 12:
m[1 2]=ob.makespan(m[1 2].i,12,cstmat);
break;

case 13:
m[1 3]=ob.makespan(m[1 3],i,13,cstmat);
break;

case 14:
m[14]=ob.makespan(m[1 4),i,14,cstmat);
break;

case 15:
mi1 5]=ob.makespan(m[1 5],i,15,cstmat);
break;
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}
for(int i=0;i<16;i++)
System.out.println(“Machine "+ " +mli]);

[ Finding Maximum Makespan......... */
max=m[0];
for(int i=0;i<16;i++)
if(m[i}>max)
max=m{il;
System.out.println(“Make span for Min-Min +max);

}
for(int i=0;i<16;i++)
mfi]=0;
}
}

T Finding Maximum and Minimum For the Given Input Sorted Matrix ...... *
public doublef]l] minmax(doublef]{} smat,double[][] imat,int task)

double tmp,ind;
int flag=0,1=0,n0=5;
double[]{] temp=new double[task][16];
double[] arr= new double[16];
for(int y=0;y<16;y++)
arrfy}=25;
for(int i=0;i<task;i++)

for(int j=0;j<16;j++)

tmp=smatfi]fj}; ind=imatfili;
for(int k=0;k<15:k++}
if(ind==arr{kl)
flag=1;
if(flag!=1)
{

templi][C]=tmp; templ[i][1]=ind; templil[2)=0;
arr{i++}=ind;

break;
}
else
{
flag=0; continue;
}
if(i==no)

{
no=no+16; 1=0;
for(int y=0;y<16;y++)




arrly]=25; flag=0;

}
else
continue,
return temp;
}
P FOR FINDING MAXIMUM IN A ROW

doubie(l} sort(doublef][] mat,int task)

double tmp;
double[l[] temp=new doubleftask]{16];
for(int i=0;i<task;i++)
for(int j=0;j<16;j++)
tempfiljl=mat[illil
I SORTING THE MATRIX
for(int i=0;i<task;i++)
for(int j=0;j<16;j++)
for(int k=j+1;k<16:k++)

iftempfiljl <templillk])
tmp=templillil

templil[jl=templil[K];
templi][k]=tmp;

}
}
return temp;
}
T For Finding Minimum in @ row .............

double]f] sort1(doublefl(] mat,int task)

double tmp;
double([]] temp=new double[task][16];
for(int i=0;i<task;i++)
for(int j=0;j<16:j++)
tempfillj}=matfilli};
) SORTING THE MATRIX
for(int i=0;i<task;i++)
for(int j=0;j<16;j++)
for(int k=j+1;k<16;k++)

if(temp(i][i}>templillk]}

tmp=temp[i][i];
templillj]=templiliKI;
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temp[i][k]=tmp;

}

return temp;

double][] search(double(if} mat,double[l[] mmat,int task)

/ISEARCHING THE INDEX
doubie[][] temp=new double[task][16];
double tmp;
int tmp1=0;
for(int i=0;i<task;i++)

for(int j=0;j<16;j++)

{
tmp=mmat{illj);
for(int k=0;k<16:k++)
iftmp==matfi}{k])
tmp1=k;
break;
}
else
continue;
}
templi]fjl=tmp1;
}
return temp;
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