USING UML DIAGRAMS FOR GENERATING
AUTOMATIC TEST CASES

by
G.S.NANDAKUMAR
Reg.No0.71206805003
of

kUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE — 641006

A PROJECT REPORT

Submitted to the
FACULTY OF INFORMATION AND COMMUNICATION ENGINEERING
In partial fulfillment of the requirements
for the award of the degree
of
MASTER OF ENGINEERING
IN

COMPUTER SCIENCE AND ENGINEERING

| JULY 2009

1

BONAFIDE CERTIFICATE

Certified ’j¢hat this project report entitled "USING UML DIAGRAMS FOR
GENERATING! AUTOMATIC TEST CASES” is the bonafide work of
G.S.NANDAKLPMAR, who carried out the research under my supervision. Certified
further, that to *he best of my knowledge the work reported herein does not form any

!
other project r%port or dissertation on the basis of which a degree or award was

conferred on a+ earlier occasion on this or any other candidate

GUIDE HEAD OF THE DEPARTME

The candidate with University Register No. 71206805003 was examined by

us in the project viva — voce examination held on o(,\ o7 \ 6) 009

P
"\
A\ 78 A
INTERNAL E#AMINER EXTERNAL EXAMINER

. wemeweiqqug NSId.

1o 95UL10]
ASorouyoa], Sunndwo) pue SIOUSIS uoneuioyu] 10y K191908
»

111
ABSTRACT

Due to the increasing complexity and size of software applications, more
emphasis is beihg placed on object oriented design strategy to reduce software cost
and enhance s‘ ftware usability. The usage of Object Orientation for design and
implementation ‘brings about new issues in software testing. One significant step is to
generate test ¢ ‘ses from UML models. This helps to generate test cases early in the
development process which can be used to find out many problems in the design
phase even before the coding is initiated. This reduces the cost of software
development. This work presents an approach to generate test cases from UML

Sequence Diagrams and has been implemented in C.

A Sequence Diagram (SD) shows how a sequence of message is intended to
service a sin&j@le user input or an external event. The Sequence Diagram is
transformed into a graph known as Sequence Diagram Graph (SDG). The nodes in
the SDG are!populated with necessary data from Class Diagrams, Use Case

Diagrams & data Dictionary. The SDG is then traversed to generate test cases

which can be used to detect scenario faults and faulty interaction among objects.

v
LG FH(HESHD

Qmsin@unqibm LwessLT(HiGefiss lemeb, Blq 6515 S6016NOU|D SiHsM5515
V8511657 () su@tb] @Yo QuTmeT ENhS s L eowlsefen 1516 SISO
gug)\&,lﬂéaﬂshgpgu.i @566 QLPEVLDIS Qo esTELIT (H 6T SH6rfl 65T &Nl em6VEMILGGMMSHSHD LDHMID
>__u(8u_rrraa§>g,6iﬂmu‘) LA WaDenn 2 WiSSad (PG HDSHI

Qmsisr@un&sh&mm qulg QIEHLLLILGHENES CQUNHET ST SETEHIDEDUI 2 LGWTHUILIG)
TETLG) LIS eulpsa (hsenen QusTALTmHETEHmeT LIMGETSLLISHSNS (petT DUSH TSI
He R GSOULIL_5565 aufl(peopwns QIHULS! Gengewen Hevevsener UML
mng‘,]rﬁ&smsrr Qanesi(h) 2 (HaNSGHeag) sTTTUSTGD. Q& Gongemen HEDELEEDENT
HLL_epULIILIGSILI (PesTe SNeHGe) 2 (HEUTHGHUSDHEGWD IS UPEIDNS LIS S|
sriesst Geaueiurig LIfFAMETSHEDH@G 6igeuenipliiles GuUNGs IeubmiesT eUEBIRY
Qg,n@uq&,mmilym SlUBIGDpes Siiasneu 2 SaHngl. 23l GUD6BT QI (TH6TT

Sal Lo CFaa|sHmens GOIIL_5558 ol6Tey (SODSHETDS).

|

Q@ EseT, 6T & QLI Seeueonens Hell vwestedla6rfl 60T
:»_drah_'_lq.[b@&;rrﬁ DG @M UD HepasGen Bgemel QELATDG 6T6ITLIDSS
S (DTG | QST _TBisHe AUEDITLIL_RIS6MITS mngbg)DQLC@ Lesteorii QGm_fi
QUEHTLILAISET 6T6mTmemp&alpslsmpes. QFm_i QUEDIUL_RISeM6H SHEDISS6T, auGLILL
LILBIGET, LIIGSTIH6DeVL] LIL BIGET 1HmID 556160 Qun@em_é;&u) Qeneusefled (HHSI
QUDUILIHID BSHEPANLITES SSHAIEVSAN eLpEVLD 2 (HEUMSSL LIRS TTDETT. Gl GH5S ST
QUETUL BIGET LIMGETSHEm68 Heneusenert 2_(Heund@HetTmerT. @& LiionHpLd DHMID Hlewev

LIemLp&:en6rs & 6507 LML IwIesTL(HISM S

ACKNOWLEDGEMENT

I sincereli& thank our Chairman Arulselvar .Dr. N. Mahalingam, Vice

Chairman Dr. KL Arumugam & Correspondent Mr. M.Balasubramaniam for giving

me an opportuniky to pursue the M.E course.

| thank, Prof. R. Annamalai, Vice Principal, Kumaraguru College of
Technology, Caimbatore for providing me with the necessary facility to work on this

project.

| wholeheartedly express my deep sense of gratitude to my mentor and guide
Dr. S. Thangasamy, Dean, Department of Computer Science and Engineering for

his constant source of inspiration and guidance.

| thank Ms. V. Vanitha, Assistant Professor & Project Coordinator,
Department of Computer Science and Engineering for her valuable suggestions and

guidance.

My sincere thanks to the Faculty of the Department and other friends for their

help and support throughout the course.

TABLE OF CONTENTS
Title
Abstract}
Abstract (Tamil)
Acknowledgement
Table of Contents
List of Figures
List of Abbreviations
INTRODUCTION
1.1 TESTING ARTIFACTS

1.1.1 Test Case

1.1.2 Test Script
4.1 .3 Test Data
11.1 .4 Test Suite

.1.5 Test Plan
1.2 METHODS OF SOFTWARE TESTING

.2.1 Manual Testing

1.2.2 Automated Software Testing

1.3 UNIFIED MODELING LANGUAGE (UML)
1.4 ADVANTAGES OF USING UML FOR TESTING
1.4.1 Use Cases
1.4.2 Sequence Diagram
1.5 PROBLEM STATEMENT
1.6 CURRENT STATUS OF THE PROBLEM TAKEN UP

1.7 RELEVANCE AND IMPORTANCE OF THE TOPIC

i

Page No

vi

vili

e S S S T - R

T N W
o U b~ WO N

-
~

METHODOLOGY

3.1 DETAILS OF THE METHODOLOGY

3.2 TRA?NSFORMATION OF AN SD INTO AN SDG

3(2.1 Definition of SDG

3,2 .2 Methodology to transform an SD into an SDG
3.2.3 Creation of SDG

3 2.4 Information to be stored in the SDG

IMPLEIYIENTATION
4.1 TEéT CASE GENERATION
4.1 1 Algorithm TestSetGeneration

CONC#USION AND FUTURE WORK
APPEI*DlX

Sample Input

Sample Output
REFERENCES

25
25
34
35
35
36
38
40
40
41
43

Vil

vill

LIST OF FIGURES

Figure Title Page No.
3.1 | Sequence Diagram for ATM PIN Authentication 27
3.2 | Block Diagram ‘ 33
3.3 | Schematic Representation 34
3.4 Five Operation Scenarios represented in the form of 37

Quadruples
3.5 | Sequence Diagram Graph (SDG) 38

LIST OF ABBREVIATIONS

SD Sequence Diagram

SDG | Sequence Diagram Graph
OCL | Object Cénstraint Language
UML

Unified Modeling Language

RUP

Rational Unified Process

X

CHAPTER 1

INTRODUCTION

This chapter gives an introduction to software testing, the artefacts of

testin%, different types of testing and UML.

The purpose of software engineering is to build high quality software.
Testing is the most important way of assuring (or controlling) the quality of
software. Good practices throughout the development process contribute to
the quality of the final product, but only testing can demonstrate that quality
has been achieved and identify the problems and the risks that remain. The
objective of software testing is to find problems and fix them to improve

quality. Software testing typically represents 40% of a software development
budget. '

|

Software testing is a predominant role in software development life cycle.
Software testing is an empirical investigation conducted to provide
stakeholders with information about the quality of the product or service
under test, with respect to the context in which it is intended to operate. This
includes, but is not limited to, the process of executing a program or
application with the intent of finding software bugs. A primary purpose for
testing is to detect software failures so that defects may be uncovered and
corrected. Testing cannot establish that a product functions properly under all
conditions but can only establish that it does not function properly under

spe#ific conditions. The scope of software testing often includes examination

of c{j)de as well as execution of that code in various environments and
cont#itions as well as examining the aspects of code: does it do what it is
sup;%osed to do and do what it needs to do. Information derived from
software testing may be used to correct the process by which the software is
de’\:j/loped.

!

|

‘ oftware organizations spend considerable portion of their budget in
testing related activities. Software testing is important to reveal errors in the
software and to ensure that it fulfills its requirements. A well tested software
system will be validated by the customer before acceptance. The
effectiveness of this verification and validation process depends upon the
number of errors found and rectified before releasing the system. This in turn
depends upon the quality of test cases generated. Software testing is
conducted not only to check if the software meets the functional, technical
and| security requirements but also to break the software with negative inputs

or by incorrect usage.

1.1 TESTING ARTIFACTS

Software testing process can produce several artifacts which are
given below.

1.1,1 Test Case
|
A test case in software engineering normally consists of a unique

identifier, requirement references from a design specification, preconditions,

evenFs, a series of steps (also known as actions) to follow, input, output,
expeFted result, and actual result. Clinically defined a test case is an input
and Pn expected result. This can be as pragmatic as ‘for condition x the
derived result is y', whereas other test cases described in more detail the
input scenario and what results might be expected. It can occasionally be a
seri S of steps (but often steps are contained in a separate test procedure
that kan be exercised against multiple test cases, as a matter of economy)
but with one expected result or expected outcome. The optional fields are a
test case ID, test step or order of execution number, related requirement(s),
depth, test category, author, and check boxes for whether the test is
automatable and has been automated. Larger test cases may also contain
prerequisite states or steps, and descriptions. A test case should also contain
a place for the actual result. These steps can be stored in a word processor
document, spreadsheet, database, or other common repository. In a
database system, the user may also be able to see past test results and who
generated. the results and the system configuration used to generate those

results. These past results would usually be stored in a separate table.

A test case is a description of a test, independent of the way a given
system is designed. Test cases can be mapped directly to, and derived from
Use| Cases. Test cases can also be derived from system requirements. One
of the advantages of producing test cases from specifications and design is
that|they can be created earlier in the development life cycle and be ready for
use before the programs are constructed. Additionally, when the test cases
are generated early, Software Engineers can often find inconsistencies and
ambiguities in the requirements specification and design documents. This will

definitely bring down the cost of building the software systems as errors are

eliminated early during the life cycle.

1.1.2|Test Script

test

The test script is the combination of a test case, test procedure, and

data. Initially the term was derived from the product of work created by

automated regression test tools. Today, test scripts can be manual,

automated, or a combination of both.

1.1.3 Test Data

The most common testing done is retesting and regression testing, In

most cases, multiple sets of values or data are used to test the same

functionality of a particular feature. All the test values and changeable

environmental components are collected in separate files and stored as test

data. It is also useful to provide this data to the client and with the product or

a project.

1.1 L Test Suite

The
colle
iden
may

folla

The most common term for a collection of test cases is a test suite.
test suite often also contains more detailed instructions or goals for each
sction of test cases. It definitely contains a section where the tester
tifies the system configuration used during testing. A group of test cases

also contain prerequisite states or steps, and descriptions of the

wing tests.

1.1.5Test Plan

A test specification is called a test plan. The developers are well
awar1 what test plans will be executed and this information is made available
to the developers. This makes the developers more cautious when
developing their code. This ensures that the developers code is not passed

throQgh any surprise test case or test plans.

1.2 METHODS OF SOFTWARE TESTING

here are two basic methods of performing .software testing:

-

1. Manual testing

2. Automated testing

1.2.1 Manual Testing

Manual software testing is the process of an individual or individuals

manually testing software. This can take the form of navigating user
interfaces, submitting information, or even trying to hack the software or
underlying database. As one might presume, manual software testing is
labar-intensive and slow. There are some things for which manual software

testing is appropriate, including:

9‘ User interface or Usability testing.

|

o Exploratory / ad hoc testing (where testers do not follow a ‘script’, but
|

} rather testers ‘explore’ the application and use their instincts to find
|

!

bugs).

o Testing the areas of the application which experience a lot of change.

o\ User acceptance testing (often, this can also be automated).

he time commitment involved with manual software testing is one of its

most significant drawbacks. The time needed to fully test the system will
typically range from weeks to months. Manual test processes are often
tedious and error prone, and fail to provide the required level of quality.
Variability of results depending on who is performing the tests can also be a
problem. For these reasons, mahy companies look for automation as a
means of accelerating the software testing process while minimizing the
variability of results. In practice, 80 to 95% of tests should be able to be
automated. To cut down cost of manual testing and to increase reliability of it,
researchers have tried to automate it. One of the important activity in testing
environment is automatic test case generation - description of a test,

independent of the way a given software system is.

1 .2.% Automated Software Testing

Automated software testing is the process of creating test scripts that
can| then be run automatically, repetitively, and through many iterations.
Done properly, automated software testing can help to minimize the
variability of results, speed up the testing process, increase test coverage
(the] number of different things tested), and ultimately provide greater
confidence in the quality of the software being tested. Automated testing is
best used for tests which are explicit and repetitive. In today's environment,

where resources are limited but quality software is in high demand, one

am

|
cannot compromise on quality. The results of the automatic tests are seen as
asure of the current quality of the software.

The Software Testing Life Cycle is the road map to automation
success. It consists of a set of phases that define what testing activities to do
and when to do them. It also enables communication and synchronization

between the various groups that have input to the overall testing process.

The advantages of automated testing are given below:

] Low Running Cost: Running an automated test script before each

release of a new version, patch or bug fix is a lot cheaper than a

manual test.

? Better Quality: Especially for individual developers and small

companies who would not employ a tester and will perform all testing

themselves.

3 Consistency: The test script will perform the same checks every time it
is run. A manual test will be affected by human error and it will tend to

skip certain areas believed to be stable.

4 Speed: A script will execute many times faster than a manual test,

giving a full report on the quality of the product in a few minutes.

5/ Compactness: A full compatibility check will be performed by simply

copying the application together with the test scripts on all the
platforms where it should work. It can give the confirmation that all

functionality works indeed as expected.

' Automated tests are not meant to completely replace manual testing.

They cannot answer questions regarding the program'’s ease-of-use or user
experience, and they cannot be used on small components during
development. However they are far superior when it comes to Regression

and Functional Testing.

develop efficient automated methods to achieve higher product quality at

or these reasons, it is of critical importance for the software industry to
lower testing costs.

1.3 FNIFIED MODELING LANGUAGE (UML)

UML is a standardized general-purpose modeling language in the field
of software engineering. UML includes a set of graphical notation techniques
to create abstract models of specific systems. It is a set of techniques for
specification, visualization and documentation. The language is based
primarily upon object oriented methodology. UML provides capability to
explore static and dynamic behavior and physical deployment of a system.

UML has become the de facto language of software development.
|

A very specific benefit of using UML is that it provides a powerful
com‘ unication vehicle. It is an industry standard, managed by a third party
organization. Testers can work on UML diagrams with minimal introduction.
The| use of UML also allows testers to participate early in the software
development process. It provides the ability to improve the test coverage by
mapping typical UML assets like Use Cases, Class Diagrams, and Sequence
Diagrams to test activities like test cases, test designs, and test

implementations.

In UML specification, requirements analysis and testing are usually
done using diagrams.UML 2.0 has 13 types of diagrams divided into three
categories: Six diagram types represent the structure application, three
represent general types of behavior, and four represent different aspects of

interactions. These diagrams can be categorized as shown below:

i) Structure Diagrams

Structure diagrams emphasize what things must be in the system
being modeled:

1 Class Diagram describes the structure of a system by showing the

-system's classes, their attributes, and the relationships among the

classes.

10

Component Diagram depicts how a software system is split up into

components and shows the dependencies among these

components.

Composite Structure Diagram describes the internal structure of a

class and the collaborations that this structure makes possible.

Deployment Diagram serves to model the hardware used in

system implementations, the components deployed on the

hardware, and the associations among those components.

Object Diagram shows a complete or partial view of the structure

of a modeled system at a specific time.

Package Diagram depicts how a system is split up into logical

groupings by showing the dependencies among these groupings.

ii) Behavior Diagrams

modeled:

1

Behavior diagrams emphasize what must happen in the system being

Activity Diagram represents the business and operational step-by-

step workflows of components in a system. An activity diagram

iii) Int

11

shows the overall flow of control.

State Diagram is a standardized notation to describe many

o

systems, from computer programs {o business processes.

3 Use Case Diagram shows the functionality provided by a system in

terms of actors, their goals represented as Use Cases, and any

dependencies among those Use Cases.

eraction Diagrams

interaction diagrams, a subset of behavior diagrams, emphasize the

flow of control and data among the things in the system being modeled:

Communication Diagram shows the interactions between objects or

parts in terms of sequenced messages. They represent a combination
of information taken from Class, Sequence, and Use Case Diagrams

describing both the static structure and dynamic behavior of a system.

Interaction Overview Diagram a type of activity diagram in which the

nodes represent interaction diagrams.

12

3 quuence Diagram shows how objects communicate with each other

in terms of a sequence of messages. Also indicates the lifespans of

objects relative to those messages.
i

|
|
4 'Ihminq Diagram is a specific type of interaction diagram, where the

chus is on timing constraints.

1.4 A#VANTAGES OF USING UML FOR TESTING

F)ne fundamental problem in the current software development
environment is that testing is not begun early enough in the development
process. Also generating test cases from program source code for the
complex applications is very difficult and ineffective. The reason is that
design aspects are very difficult to extract from the code. One significant
approach is the generation of test cases from UML models. UML models are
an importance source of information for test design. The main advantage
with this approach is that it can address the challenges posed by object-
oriented paradigms such as encapsulation, inheritance, polymorphism,
dynamic binding etc, which create several testing problems and bug hazards.
Moreover, test cases can be generated early in the development process
and thus it helps in finding out many problems in design if any, even before
the program is implemented. This early defect discovery occurs as the
specification is exposed to early scrutiny. The defects detected at an early

stage of the development are much cheaper to fix.

13

dommunlcatlon problems between developers and testers are

notonoqs for delaying and derailing projects. Since UML is a powerful

communication vehicle, testers can work on UML diagrams and derive
benefit from them. The use of UML allows testers to participate early‘ in the
software development process. Test teams can use UML diagrams and
extensions to describe their requirements. Test teams can help architects
and developers design test points into their applications, which will trim the
test cycle bottleneck and speed up the overall project. Another significant,
benefit of using UML is that it gives the ability to improve test coverage by
mapping typical UML assets like Use Cases, Class Diagrams, and Sequence
Diagrams to test activities like test cases, test designs, and test

imple

Use Case Diagrams and Sequence Diagrams can be used as a

source of test case generation.

1.4.1 Use Cases

Use cases are a popular mechanism for capturing functional and
business requirements. Use cases are developed based on the user's
perspective since the user is going to use the system. Use cases are a good

means to communicate with a customer. They are the unit of work in

incremental object oriented software processes like the Rational Unified
Process (RUP). They are a good basis for systematic testing. Rumbaugh et
al defines uses cases as “The specification of sequence of actions, including
variant sequences and error sequences that a system, subsystem or class

can perform by interacting with outside actors”. In Use Case Diagram, two

14

impo‘k'tant factors are used to describe the requirements of the system. They
are tbe actors and Use Cases. Actors are the external entities that interact
with ‘the system and Use Cases are the behavior of the system. The Use
Cas#s are used to define the requirements of the system. Mostly each Use
Cas ‘ is converted into a function representing the task of the system. Each
of the Use Case can be converted into one or many test cases. In order to
make sure that the system does the requirements as it is supposed to do, the

test case have to designed according to the tester’s perspective.

|
1 .4% Sequence Diagrams

Sequence Diagrams are used to model the logic of usage scenarios.
A usage scenario is exactly what its name indicates - the description of a
potential way the system is used. Sequence Diagrams (Interaction
diagrams) are used to formalize single scenarios contained in Use Cases. A
Sequence Diagram shows what the actor is doing, what components he is

interacting with, and what parameters are getting passed.

They are mainly used to describe dynamic system properties by
means of messages and corresponding responses of interacting system
components. They describe in detail the activities for Use Cases. So they
can| also be applied for generating the correct test cases. Sequence
Diagrams are a great way to understand and to explain to other people how
the objects in a system interrelate as a function of time. A Sequence Diagram
unfolds message paths in the time dimension, which provides a useful

representation for conceptualizing how collaboration will be accomplished.

The utility of Sequence Diagrams is incredible for at least three reasons:

15

1 Allows developers to really understand the time-sequenced

interaction between system objects.

2 Allows technically oriented customers to get a better understanding

of how the system will function.

3 Allows developers to identify” failure points” and facilitates setting
up test cases.

Sequence Diagrams are a great asset for testers. They provide
exactly the kind of information that testers typically never get to see, because
they detail a layer that is rarely accessible by testers. Fundamentally, these

diagrams provide a picture of what the testers must test and validate.

1.5 PROBLEM STATEMENT

This research work proposes generation of test cases automatically
using UML models. This approach advocates a methodology that begins as
sooh as the software functional specification is available. This enables us to
develop test cases in parallel with the software and facilitates defect
detection even before code is written. Use Case Diagrams and Sequence
Diagrams are used as a source of test case generation. The test suite aims
to cover operational, Use Case dependency faults, various interaction and

scenario faults.

A Sequence Diagram represents various interactions possible among
different objects during an operation. Faults such as incorrect response to a
message, correct message passed to a wrong object, message invocation
with improper or incorrect arguments, message passes to yet to be

instantiated objects, incorrect or missing output may occur during an

inte—;{raction. These are known as Interaction faults.

.~ Also a Sequence Diagram may depict several operation scenarios.
ani:h scenario corresponds to a different sequence of message path in the
Se@uence Diagram. For a given operation scenario, the sequence of
me\ssage may not follow the desired path due to incorrect condition
ev#luatlon abnormal termination etc. These are termed as Scenario faults.

|

|
1d CURRENT STATUS OF THE PROBLEM TAKEN UP

' several research attempts have been reported on scenario coverage

bated system testing These attempts are basically black box approaches
and do not take into consideration the structural and behavioral design into
col'lsideration. For testing different aspects of object interaction, several
re%earchers have proposed different technique based on UML interaction
di%grams (sequence and collaboration diagram) Bertolino and Basanieri [18]
proposed a method to generate test cases using the UML Use Case and
Interaction diagrams (specifically, the Message Sequence diagram). It
basically aims at integration testing to verify that the pre-tested system
components interact correctly. They use category partiton method and
generate test cases manually following the sequences of messages between
components over the Sequence Diagram. In another interesting work,
Basanieri et al. [16] describe the CowSuite approach which provides a
method to derive the test suites and a strategy for test prioritization and
selection. This approach constructs a graph which is a mapping of the project

architecture by analyzing the Use Case Diagrams and Sequence Diagrams.

17

Thi$ graph is then traversed using a modified version of the depth-first
se#rch algorithm and use category partition method for generating tests
ma}pually. The approach proposed in [17] generates test cases based on
UM}L Sequence Diagram that are reverse engineered from the code under

tes{z.

1.7 RELEVANCE AND IMPORTANCE OF THE TOPIC

This approach constructs a graph which is a mapping of the project
architecture by analyzing the Use Case diagrams and Sequence Diagrams.
This graph is then traversed using a modified version of the breadth-first
search algorithm to generate test cases. The approach does not require any
modification in the UML models or manual intervention to set input/output
etc. to compute test cases. Hence, it provides a tool that straightway can be
used to automate a part of testing process. A graph based methodology is
followed and run-time complexity to enumerate all paths is O(n?) in the worst
case for a graph of n nodes. This implies that the approach can handle a

large design efficiently.

18

CHAPTER 2

LITERATURE SURVEY

This chapter gives a brief overview of the work that has been done by

i
res?archers in generating automatic test cases.

Au ‘omatic Test Case Generation from UML Sequence Diagrams [UML
MoLels (1] & [2]

i - The authors have proposed a novel approach of generating test cases
froﬂn UML design diagrams. They have used Use Case and Sequence
Di#grams for the test generation scheme. Their approach consists of
trahsforming the UML diagrams into XML code and then generating Use
Case Diagram Graph (UDG) and Sequence Diagram Graph (SDG). The
Graphs are then integrated to form System Testing Graph (STG). The STG is

then traversed to generate the test cases.

A %urvey on Automatic Test Case Generation [3]
\

i A variety of approaches have been proposed for software testing and
there has been a constant research on generating test cases based on
sdecification and design models. A comparative analysis has been done and
th? authors have concluded that model based testing is more valuable than
otjher testing techniques. Models are simple to modify, generate innumerable
te‘st sequences and allow the testers to get more testing accomplished in

shﬁorter time. Still research is being carried out to optimize the generation of

19

tes}t cases with minimum human effort.

Model Based Testing of System Requirements using UML Use Case
Models [4]

This paper discusses a model based testing approach for creating test
cases from UML Use Case models. The Use Case model is supported by
Activity Diagram, Sequence Diagrams and Data Variation Equivalence
Classes. The authors have used tool support to generate a test suite from
thit model that covers the alternative variations of each Use Case and the
dta variations used in each scenario. This approach has been developed in
S

iemens and used in a medical project.
1

Using UML for Automatic Test Generation [7] & [13]

As software systems are extremely complex, the amount of information
contained in a system implementation is hard to comprehend in its entirety.
Testing cannot be done without first understanding what the implementation
is| supposed to do; there should be a way to manage this complexity. The
authors have created a suitable model of the system. The authors have
presented an architecture for model-based testing using a profile of the UML.
Class, Object, and State diagrams are used to define essential models and
descriptions that characterize the entire range of possible behaviors are
expressed in terms of the actions and events of the model. Object and State
diagrams have been used to introduce test directives. Models written in this

profile are compiled into a tool language: the Intermediate Format (IF).

Descriptions written in IF are animated, verified, and used to generate tests.

20

Tﬁe paper also illustrates the adopted testing tool, defines the profile for
UIML, explains testing directives, the basis of the compilation into IF and of

thé test generation process, and reports upon the problems encountered.

S%DiTeC - Testing Based on Sequence Diagrams [12]

|
| This paper describes an approach to testing that uses UML Sequence

D*agrams as test specification. The authors have presented a concept for
aq]tomated testing of object-oriented applications and a tool called SeDiTeC
th‘at implements these concepts for Java applications. SeDiTeC uses UML
Sequence Diagrams that are complemented by test case data sets
consisting of parameters and return values for the method calls, as test
specification and therefore .can easily be integrated into the development
plrocess as soon as the design phase starts. SeDiTeC supports specification
of several test case data sets for each Sequence Diagram as well as to
c#:mbine several Sequence Diagrams to so-called combined Sequence
Diagrams thus reducing the number of diagrams needed. For classes and
their methods whose behavior is specified in Sequence Diagrams and the
corresponding test case data sets SeDiTeC can automatically generate test
stubs thus enabling testing right from the beginning of the implementation
phase. Validation is not restricted to comparing the test case data sets with
tﬁe observed data, but can also include validation of pre- and post
c?nditions.

21

UIML based Test Generation and Execution [11]

: The authors have presented an overview of an .ongoing research &
d?velopment project at Siemens Corporate Research in which UML based
mpdels are being used to improve the testing. They have developed effective
tek:hniques and tools for generating a set of black box conformance tests that
c:%n be used to validate a component, subsystem or application under test.

They have used category partition method which identifies behavioral

equivalence classes within a structure of a system under test.

Rpgression Testing based on UML Design Models [17]
|

In this paper a methodology for identifying changes and test case
selection based on the UML designs of the system have been presented.
UML class diagram and Sequence Diagrams are used to generate an
extended concurrent control flow graph (ECCFG) which is further used for
regression testing. They have shown that their approach selects a precise
set of test cases from an existing test suite.

|

|
4 UML-Based Approach to System Testing [10]

§ The goal of this paper is to support the derivation of functional system
tést requirements, which will be transformed into test cases, test oracles, and
t#st drivers once we have detailed design information. In this paper, the
a!uthors have described a methodology to address testability and automation

i.%sues, as the ultimate goal is to fully support system testing activities with
|

high-capability tools.

22

Software Testing and the UML [14]

The possibility of using UML for software testing has been addressed
in] this paper. UML has received a great deal of attention (both positive and
n%gative) from the software design and development communities. UML
miodels are built extensively for Object oriented software systems. Class
diagrams, State diagrams, Object Modeling Technique (OMT) and Unified
process are used to test Object oriented systems. The focus of this paper is
primarily on the behavioral diagrams. This is because most of the activities in
software testing seek to discover defects that arise during the execution of a
software system, and these defects are generally dynamic (behavioral) in
nature. The author has provided a framework highlighting which diagrams
are suitable for each phase of testing.

Automatic Test Case Generation using Unified Modeling Language
UML) State Diagrams [15]

—

1 UML is widely accepted and used by industry for modeling and design
o‘ software systems. A novel method to automatically generate test cases
based on UML State models is presented. In the present approach, the
control and data flow logic available in the UML State Diagram to generate
t#st data are exploited. The state machine graph is traversed and the
c*onditional predicates on every transition are selected. Then these
conditional predicates are transformed and function minimization technique is
aﬁplied to generate test cases. The present test data generation scheme is

f¢lly automatic and the generated test cases satisfy transition path coverage

23

cr;ﬁteria. The generated test cases can be used to test class as well as
cluster-level state-dependent behaviors.

Cbmparative Evaluation of Tests Generated from Different UML

Diagrams [8]

; This paper presents data comparing the use of State Charts and
SFquence Diagrams for unit and integration software testing. A single project
e*periment on the fault revealing capabilities of model-based test sets was
conducted. The tests are generated from UML State Charts and UML
Skquence Diagrams. Their experiment has shown that the State Chart test
s%ts did better at revealing unit level faults than the Sequence Diagram test
s;#ts, and the Sequence Diagram test sets did better at revealing integration
Idyel faults than the State Chart test sets. The State Charts also resulted in

ore test cases than the Sequence Diagrams. The results show that model-
based testing can be used to systematically generate test data and indicates

that different UML models can play different roles in testing.

Automated Test Case Generation from Dynamic Models [5]

| The paper outlines how test suites with a given coverage level can be
aptomatically generated from the State Charts. All the elements of a typical
L{se Case document are mapped to a UML State machine. Based on this
siate machine, artificial intelligence planning methods are applied to derive
t%st suites with a given coverage. The application of the state of the art
pﬁanning tool graph plan yields the different test cases as solutions to a

24

p|4nning problem. The test cases (sequences of messages plus test data)

cah be used for automated or manual software testing on system level.

UI*IIL-Based Statistical Test Case Generation [16]

i This paper introduces an approach for generating system-level test
ca‘ses based on Use Case models and refined by State Diagrams. It allows
for the systematic transformation of a Use Case model of a software system
into a usage model which describes both system behavior and usage. The
method is intended for integration into an iterative software development
process model. The resulti‘ng test cases are suited to be carried out in
co[nventional ways, i.e., either manually or using test tools. The method is
supported by an XML-based tool for model transformation. Furthermore, the
use of UML models for purposes of generation encourages more extensive
modeling. The information described in these models is of great use to
requirements specification as well. The result is a threefold benefit:
generating test cases with high efficiency and quality, more detailed
information for requirements engineering, and — motivated by the more
intense exploitation of the models — an encouragement for developers
towards more in-depth modeling and precise maintenance of models. It aims
at statistical (reliability) testing rather than fault detection.

au

25

CHAPTER 3

METHODOLOGY

This chapter discusses in detail the process of generating test cases

tomatically from the Sequence Diagrams.

3.1 DETAILS OF THE METHODOLOGY

A Sequence Diagram (SD) shows how a sequence of message is

intended to service a single user input or an external event. A path is a

sequence of transitions. The path begins with an externally generated event

and ends with the production of a response that satisfies this event. A

scenario is one path through a Sequence Diagram. A Sequence Diagram

typically includes many scenarios, each of which should be tested. Each

scenario corresponds to a different path through the Sequence Diagram.

Each object or subsystem interface that participates in the scenario must be

ph
re

ysically correct and must provide a correct implementation of its

sponsibilities. In addition, the overall design to produce the response must

be correct. Interaction and Scenario faults can occur in a Sequence Diagram.

Such faults will be found on any path through the Sequence Diagram. Hence

al

the paths have to be traced on the Sequence Diagram Graph (SDG).

Tracing the flows on the SD can be a visual mess. So the information

the SD can be transformed into a SDG, which is a highly testable model.

26

Draﬁwing a SDG will probably reveal the ambiguities and omissions in the SD.

Th¢j SDG is then traversed to generate the test cases.

The proposed method was applied and tested with an ATM simulation
sytem. The ATM system simulates an automated teller machine (ATM). An
AT‘

defbosit, transfer and checking the balance, without havihg to go to the bank.

allows its users to perform basic banking operations like withdrawal,

In ian ATM, the user inserts an ATM card, enters a PIN (a Personal
Id%ntification Number), selects a transaction to be performed and provides
tht necessary input for the transaction, e.g. amount and type of account in
case of withdrawal. In response to the user’s actions, the ATM reads and

validates the card, and the PIN, processes the transaction, prints the receipt
and ejects the card at the end of the session.

The example SD considered is associated with the Use Case PIN
authentication in a usual ATM system which is shown in Fig 3.1. The system
validates the ATM card to determine that the expiration date has not passed;
that the user-entered PIN matches the PIN maintained by the system, and
that the card is not lost or stolen. The customer is allowed three attempts to
enter the correct PIN; the card is confiscated if the third attempt fails. Cards
that have been reported lost or stolen are also confiscated. This leads to five
p(#ssible scenarios which are given below.

27

a: cardReader b : sessionMagr ¢ : displayMar d: keyReader e : aBank
: H \
—— ™

- cardnlo(}
begin -
Jession

checkCard()

at m3()
status
‘ Istatus.isStolenf § 1
() | . H
md() retain()y]
!
3y gatus.closeAccount])
I . i 0
3y oject() i) : !
i]
M v alidPIN && - L]) E
reguestPENG ;
]
ms() !
read PINO N‘
| w valucIN mo()
|
verifVPING)) L
30y | feemtitid i) j m7() - ;
" m2¢) et X X

S |

\

i &
v
X

Fig. 3.1 Sequence Diagram for ATM PIN Authentication

Precondition : ATM is idle Iand displaying a welcome message. (for all five

scenarios)
Scenario 1: ATM card is Invalid.

1) The ATM Customer actor inserts the ATM card into the Card Reader. The
card input is read by the Card Reader Interface object.

28

2. ﬂhe Card Reader Interface object sends the card input data, containing

card id and expiration date to the Session Manager object.

3. The Session Manager object verifies the card input data with the Bank

|
object and finds it is not a valid card.

\
4, $ystem displays Invalid Card message.

5. $ystem ejects card.

6. #System requests the customer to take card.

7. The customer takes the card.

Pastcondition : ATM is idle and displaying a welcome message.

Scenario 2: ATM card is stolen.

1. The ATM Customer actor inserts the ATM card into the Card Reader. The
card input is read by the Card Reader Interface object.

2/ The Card Reader Interface object sends the card input data, containing

card id and expiration date to the Session Manager object.

29

3. TFFe Session Manager object verifies the card input data with the Bank ‘

oﬁject and finds that the card is reported as stolen.

4. SJ/stem displays Stolen Card message.
|

5.System displays that the card will be permanently retained by the machine.

Postcondition : ATM is idle and displaying a welcome message.

Scenario 3: ATM card whose account is closed in the bank

1. The ATM Customer actor inserts the ATM card into the Card Reader. The

card input is read by the Card Reader Interface object.

2. The Card Reader Interface object sends the Card input data containing

(]

ard id and expiration date to the Session Manager object.

3. The Session Manager object verifies the card input data with the Bank

30

odject and finds that the account has been closed.

4. S)‘(stem displays 'Account Closed’ message.

5. S{(stem ejects card.

|
6. S#Istem requests the customer to take card.
7. Tﬂ'ne customer takes the card.

Postcondition: ATM is idle and displaying a welcome message.

Scenario 4: Invalid PIN

1. The ATM Customer actor inserts the ATM card into the Card Reader. The
card input is read by the Card Reader Interface object.

2. The Card Reader Interface object sends the Card input data, containing

card id and expiration date to the Session Manager object.

3. The Session Manager object verifies the card input data with the Bank

Q

bject.

4. $ystem requests to enter PIN.

31

5. User enters PIN.
6. The Key reader reads the PIN.

7. Th;s Session Manager verifies the PIN with the Bank object and finds it
invalid.

8. System displays invalid PIN message.
9. System requests to enter PIN.

10. User enters PIN.

11. TLtme Session Manager verifies the PIN with the Bank object and finds it
invalid.

12. El;»ystem displays invalid PIN message.

13. éystem requests to enter PIN.
|

14. User enters PIN.

15. The Session Manager verifies the PIN with the Bank object and finds it

nvalid.

16. System displays invalid PIN message.

32

17. System requests to enter PIN.
18. U#er enters PIN.

19. The Session Manager verifies the PIN with the Bank object and finds it
invalid.

20. S‘ystem displays that the card will be permanently retained by the
rpachine.

PostLondition - ATM is idle and displaying a welcome message.
|
|
|

Scenario 5: Valid PIN

1. The ATM Customer actor inserts the ATM card into the Card Reader. The
rd input is read by the Card Reader Interface object.

o
o

2 The Card Reader Interface object sends the card input data, containing

card id and expiration date to the Session Manager object.

3. The Session Manager object verifies the card input data with the Bank

object.

4. System requests to enter PIN.

5. L{ser enters PIN.

33

6. The Key reader reads the PIN.

7. Thé Session Manager verifies the PIN with the Bank object and finds it

valid.

Postqﬁondition: Display menu for transaction

|

} Each node in the SDG stores the necessary information for test case
gene&ation. This information is collected from the Use Case template class
diagréms, and data dictionary. The SDG is then traversed and test cases are
generated based on coverage criteria. The block diagram and the schematic

repre%entation of this approach are shown in Fig.3.2 & 3.3 respectively.
\

User

. Use Case

Requirements Diagram
Generate Sequence
Test Cases |<mmmm| Diagram < S&guc::;e
Graph 9
(SDG)

Fig. 3.2 - Block diagram

34

® Range of values

Data for all attributes
Dictionary
A
Sequence Sequence Diagram Test Case
Diagram (SD) [—>| Graph (SDG) *| Generation
Use Case Class
Template Diagram

® Pre and Post

o . .
conditions Attributes of corresponding

objects at that state
* Arguments in the method
® Guard conditions (if any)

Fig. 3.3 - Schematic Representation

3.2 TRANSFORMATION OF AN SD INTO AN SDG
|

In this section, first the definiton of SDG and subsequently the

methodology to transform a SD into an SDG are given.

35

3.2.1 Definition of SDG

A S(#quence Diagram Graph (SDG) is defined as

‘ SDG={Sspc ¥spc, 90spc, Fspc } where

= Sspg - is the set of all nodes representing various
states of operation scenarios; Each node basically

represents an event.

Tspe - is the set of edges representing transitions from

one state to another.

= qOspg . is the initial node representing a state from

which an operation begins.

» Fspe - is the set of final nodes representing states
where an operation terminates.

3.2.2 Methodology to Transform a SD Into a SDG

in order to formulate a methodology, an operation scenario is defined

as a quadruple, aOpnScn: <Scnid; StartState; MessageSet; NextState>. A

unigue number called ScnlD identifies each operation scenario. Here,
Staertate is a starting point of the Scnld, that is, where a scenario starts.
MessageSet denotes the set of all events that occur in an operation scenario.
NextState is the state that a system enters after the completion of a scenario.

This is the end state of an activity or a Use Case. An SDG has a single start
|

36

state énd one or more end states depending on different operation scenarios.

An event in a MessageSet is denoted by a tuple,

aEvent: <messageName; fromObject; toObject [/guard]>

where, messageName is the name of the message with its signature,

fromObiject is the sender of the message and toObject is the receiver of the

message and the optional part /guard is the guard condition subject to which

the a'LEvent will take place. An aEvent with * indicates it is an iterative event.
p

aOpnScn and aEvent is illustrated in the following example.

\
|
1
Individual aOpnScn of the Sequence Diagram (Fig 3.1) is shown in
Fig. ?.4. Here, s; (i = 1...10) denotes a state corresponding to a message m G
= 1.].8) between two objects with a guard condition c, if any. The StartState
for the different scenarios as shown in Fig. 3.4 is StateX and the two different
Next States are StateY (for scni ...vscn4) and StateZ (for scn5). An operation
starts with a starting state and undergoes a number of intermediate states
due | to occurrence of various events. For example, in operation scenario
scni, there are three transitions: from StateX to s1, s1 to s2 and s2 to
StateY.

|
3.2.# Creation of SDG

1 To create the SDG for any Sequence Diagram, first identify OpnScn,
the iEet of all operation scenarios where

OpnScn = {aOpnScn4, aOpnScny, ..

o}

37

" For each aOpnScn; ? OpnScn, identify set of all aEvent. Initially SDG

contains only the start state i.e StartState. Then add each aEvent of all

aOpnScn; ? OpnScn, followed by its corresponding NextState, and remove

duplicates, if any. The various events in a loop (iteration) are shown with
cyclic# edge. The SDG of SD in Fig. 3.1 is shown in Fig. 3.5

s1:(n:11,a,b)

sZ:(r*-»Z,b,a)lc

<scn2
StateX
s1:(m1,a,b)
s3:(m3,b,e)
s4:(m4,b,a)lc

StateY>

<scn3
StateX
s1:(m1,a,b)
s3:(m3,b,e)
s5:(m2,b,a)lc

StateY>

<scn4

StateX
s1:(m1,a,b)
s3:(m3,b,e)
$6:(m5,b,c)|c4”
s7:(m6,b,d)|c4*
$8:(m7,b,e)|c4*
s9:(m2,b,a)|cd

StateY>

<scnb

StateX
s1:(m1,a,b)
s3:(m3,b,e)
$6:(mb,b,c)jc4*
s7:(m6,b,d)|c4*
s8:(m7,b,e)|c4*
s10:(m8,b,c)

StateZ>

Fig 3.4 Five Operation Scenarios represented in the form of Quadruples

38

v

StateY
6 @ StateZ

)

tateX
2

Fig 3.5 Sequence Diagram Graph (SDG)

3.2.4 Information to be stored in the SDG

SDG plays an important role in the automatic test case generation
scheme. For this, SDG should contain certain necessary information for test

case generation. It is evident that each node in the SDG is mapped to an

interaction with or without a guard between two objects o; and o; through a
message mg. Information regarding this need to be stored in its
corresponding node in the SDG. The following data need to be stored:
attributes of the corresponding objects at that state, arguments in the
method, and predicate of the guard if any, involved in the interaction. A guard

is a predicate expression associated with an event. In addition to this, a node
|

39

also {stores range of values of all attributes of the objects at the state.
Furth%ar, a node stores the expected results for an occurrence of an event.
For e%ample, consider a method m; of an object ok invoked by another object
0} wITich results in resetting some member elements di, dz, .., dy, of the
objecr o« then all these resultant values of d4, d, .., di, would be stored in the
node4] This information is collected from constraints (such as pre and post
condi}tions expressed in Object Constraint Language - OCL) specified in the
corre%ponding method in the Class Diagram and from the Use Case
template. Finally, suppose, the SDG under consideration represents three
scenarios scni, scn2, and scn3 and iy, iz, and i3 are the set of data which
trigger these three scenarios, respectively. Then the StateX node should
store all possible values for the set of data i, i, and is. These input and

corresponding expected outputs are obtained from the Use Case template.
\
1
|

Once the SDG is created, it is then traversed to generate the required

test cases.

test

40

CHAPTER 4

IMPLEMENTATION

i This chapter explains in detail the algorithm used for generating the
Jfases from the SDG.

A sequence diagram represents various interactions possible among

|
4.1 *’est Case Generation
|

different objects during an operation. A test set is therefore necessary to

detect faults if any when an object invokes a method of another object and

whether the right sequence of message passing is followed to accomplish an

operation. From the SDG it is evident that covering all paths from the start

node to a final node would eventually cover all interactions as well as all

message sequence paths.

D;
To

The coverage criterion is “Given a test set T and a Sequence Diagram
T must cause each sequence of message path exercise at least once”.

generate test cases that satisfy the criteria, first all the possible paths

from the start node to a final node in the SDG have to be enumerated. Each

pat
sat
det

h is then visited to generate test cases. The algorithm to generate test set

sfying the coverage criterion is given below. Every test strategy targets to

ect certain categories of faults called the fauit model .This test strategy is

based on the discovering interaction and scenario faults.

41

411 Wgorithm TestSetGeneration

Input: Sequence diagram graph SDG

Output: Test suite T

1. Enumerate all paths P= {Py, P, P3... P,} from the start node to a final

node in SDG.

2. For each path P€ P;do

3. nx=nj /I n jis the current node; start with n,, the start node

4. preC; is the precondition of the scenario corresponding to scn;stored in ny

5.t € F /I The test case for the scenario scn;, initially empty

6. nj =ny /I Move to the first node of the scenario scn;

7.While(n; < >n_,) do /I n, being a final node

8. ej={m,a,b, c}/ The event corresponding to the node n; and m(...)

is invoked with a set of arguments a;, az,...,a

9. If ¢ =null then //\f thereis no guard condition

10. Select test case t = { preC, | (a1, az,....a), O(d1, da,...dm), postC }
where preC = precondition of the method m
| (a1, az,....a)) = setof input values for the method m(...)from
fromObject
O(d, da,...dm) = set of resultant values in the toObject when
the method m¥...) is executed

_ postC = the postcondition of the method m(...)

11. Add t to the testsett, thatist; = t ;U t

12.| Endif

13. [fc<>A, then /fmethod m is under guard condition

14. c(v) = (¢, Cz,.... G) /I The set of value of clauses on the path Pi

15.

16.
17.
18.

19

20.
21.
22.
23.
24.
25.
26.

42

. Selecttest case t={preC, | (a4, ay,....ai), O(d1,da,...dm),, c(v), postC}
where preC = precondition of the method m
| (a1, @ ,....ai) = set of input values for the method m(...)
obtained from fromObject
O (d4, da,... dm) = set of resultant values in the toObject
when the method my(...) is executed
postC = the postcondition of the method m(...)

Add t to the test set t;, thatist; = t; U t

Endif
nj = ng /I Move to the next node i on the path P;
TE€ TUL,

EndWhile

Determine the final output O; and postC; for the scn; stored in n;
t = { preC;, }, O;, postC;}
Add the test case t to the test case T, thatis, T € TUt
EndFor
Return (T)
Stop

43

CHAPTER 5

CONCLUSION AND FUTURE WORK

\ An approach to automatically generate test cases from Sequence
Diag}ams has been implemented in C. The approach does not require any
modjpcation in the UML models; it provides a tool that can be used to
auto#nate the testing process. The traversal of SDG is done using breadth
first iearch and the time complexity is O(nz) in the worst case for a graph of

‘n' nodes.

! The work could be extended further by using different traversal
algorithms for generating the test cases and doing a comparative analysis on

the time complexity. Also, methods could be devised for detecting faults

other than Interaction and Scenario faults.

APPENDIX

SAMPLE INPUT

0,1,0,0,0,0,0,0,0,0,0,0,0
0,0,1,1,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,1,0
0,0,0,0,1,1,1,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,1,0,0,0,0,0
0,0,0,0,0,0,0,0,1,0,0,0,0
0,0,0,0,0,0,1,0,0,1,1,0,0
0,0,0,0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,0,0,0,0, 1
0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0

Fig A.1 Adjacency Matrix Representation of the SDG

44

Precondition: ATM is idle and displaying a welcome message. User
inserts a card.+0

Read card info.+0

Card = "Not ATM"+0

Card = "ATM"+0

Status = "Stolen"+0

Account = "Closed"+0

Status = "Okay" Account = "Open"+0

Enter PIN+0

PIN = "Invalid” Message "Invalid PIN: Try Again”| PIN =
"Valid"+1+3+6

"Try Later"+0

Display "Hello"+0

Eject card. Postcondition: Display Weicome Message+0
Eject card.+0

Fig A.2 Message Inputs for the SDG

45

46

SAMPLE OUTPUT

Tes# case Scenario 1

Prec%ndition . ATM is idle and displaying a welcome message. User inserts a card.

Read card info.
Card = "Not ATM"
Eject card.

Postcondition : Display Welcome Message

Test case Scenario 2

Precondition : ATM is idle and displaying a welcome message. User inserts a card.
Read card info.

Card = "ATM"

Status = "Stolen”

Eject card.

Postcondition: Display Welcome Message

Test case Scenario 3

Precondition: ATM is idle and displaying a welcome message. User inserts a card.
Read card info.

Card = "ATM"

Account = "Closed”

Eject card.

Postcondition: Display Welcome Message

Test #ase Scenario 4

Precc{ndition . ATM is idle and displaying a welcome message. User inserts a card.
| Read card info.

; Card = "ATM"
Status = "Okay” Account = "Open”
Enter PIN
PIN = "Invalid” Message "Invalid PIN : Try Again”
PIN = "Valid" Status = "Okay" Account = "Open”
Enter PIN
PIN = "Invalid" Message "Invalid PIN : Try Again”
PIN = "Valid" Status = "Okay" Account = "Open”
Enter PIN
PIN = "Invalid” Message "Invalid PIN : Try Again”
PIN = "Valid" Status = "Okay” Account = "Open”
Enter PIN
Try : 0 "Try Later”
Eject card.

Post{:ondition: Display Welcome Message
|
\

Tes* case Scenario 5

Pre#ondition: ATM is idle and displaying a welcome message. User inserts a card.

i Read card info.
| Card = "ATM"
! Status = "Okay” Account = "Open”
1 Enter PIN
| PIN = "Valid" Display "Hello”
Pos+

condition: Display Menu for Transaction
|
|
\

48

REFERENCES

[1] Monalisa Sarma, Debasish Kundu, Rajib Mall, “Automatic Test Case
Generation from UML Sequence Diagrams’, International Conference on
Advanced Computing and Communications, 2007

[2] Monalisa Sarma, Rajib Mall, «Automatic Test Case Generation from UML
Models”, International Conference on Information Technology, 2007

[3] M|Prasanna, S N Sivanandam, R Venkatesan, R Sundarrajan, “A Survey
on Automatic Test Case Generation”, ACAD Journal, 2005

[4] Bill Hasling, Helmut Goetz, Klaus Beetz, “Model Based Testing of System
Requirements using UML Use Case Models”, International Conference on
Software Testing, Verification and Validation, 2008

[5] Peter Frohiich, Johannes Link, “Automated Test Case Generation from
Dynamic Models”, LNCS 1850, Springer, 2000

[6] Noraida Ismail, Rosziati Ibrahim, Noraini Ibrahim, “Automatic Generation
of Test Case from Use Case Diagram”, International Conference on
Electrical Engineering and Informatics, 2007

[7] Alessandra Cavarra, Jim Davies, Thierry Jeron, Laurent Mounier, Alan
Hartman, Sergey Olvovsky “Using UML for Automatic Test Generation”,
Automated Software Engineering Conference, 2001

Comparative Evaluation of Tests Generated from Different UML
Diagrams”, International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, 2008

(8] iupapern Kansomkeat, Jeff Offutt, Aynur Abdurazik, Andrea Baldini, “A

[9] Dehla Sokenou, “Generating Test Sequences from UML Sequence
Diagrams and State Diagrams”, G| Jahrestagung, 2006

49

[10] Lionel Briand, Yvan Labiche, “A UML-Based Approach to System
Testing”, International Conference on the Unified Modeling Language,
Modeling languages, Concepts and Tools, 2001

[t1] Jean Hartmann, Marlon Vieira, Herb Foster, Axel Ruder, “UML-based
Test Generation and Execution’, International Conference on the Unified
Modeling Language, Modeling languages, Concepts and Tools, 2001

[12] Falk Fraikin, Thomas Leonhardt, “SeDiTeC - Testing Based on
Sequence Diagrams’, International conference on Automated Software
Engineering, 2002

Automatic Test Generation”, Automated Software Engineering
Conference, 2001

[14] Clay E. Williams, »Software Testing and the UML”, International
Symposium on Software Reliability Engineering, 1999

[13] %harles Crichton, Alessandra Cavarra, and Jim Davies, “Using UML for

[15] P.Samuel, R. Mall, A.K.Bothra, »Automatic Test Case Generation using
Unified Modeling Language (UML) State Diagrams”, IET Software, 2008

[16] F. Basanieri, A. Bertolino, and E. Marchetti, “The Cow Suite Approach to
Planning and deriving Test Suites in UML projects”, International
Conference on the UML, LNCS, 2002

[17]/ P. Tonella, and Potrich, A. “Reverse Engineering of the Interaction
Diagrams from C++ Code’, IEEE International Conference on Software
Maintenance, 2003

[18] A.Bertolino, and F.Basanieri, “A Practical Approach to UML-based
Derivation of Integration Tests”, International Software Quality Week
Europe, Brussels, Belgium, 2000.

