PROGRESS TRIOUGNIROWLEDCE

A SIMPLE SCHEDULING HEURISTICS FOR HETEROGENEOUS
ENVIRONMENTS

A PROJECT REPORT

Submitted by

S.PREM SAGAR 71205104034

R.RAJA 71205104037

in partial fulfillment for the award of the degree of
BACHELOR OF ENGINEERING
in

COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE
ANNA UNIVERSITY, CHENNAI-600 025
MAY 2009

BONAFIDE CERTIFICATE

Certified that this project report entitled “A Simple Scheduling Heuristics For
Heterogeneous Environments” is the bonafide work of §. Prem Sagar and R. Raja,
who carried out the research under my supervision. Certified also, that to the best of my
knowledge the work reported herein does not form part of any other project report or
dissertation on the basis of which a degree or award was conferred on an earlier

occasion on this or any other candidate.

?1.;]%# /- Aot

SIGNATURE " SIGNATURE
Dr.S.Thangasamy, PhD Mrs.P.Devaki
Head Of the Department Asst.Professor

Department of
Computer Science & Engineering,
Kumaraguru College of Technology,
Coimbatore -641006.

The candidates with University Register Nos. 71205104034 and 71205104037

were examined by us in the project viva-voce examination held on __ 22 04 2009

TERNAL EXAMlNER EXTERNAL EXAMINER

DECLARATION

We hereby declare that the project entitled " A Simple Scheduling Heuristics
For Heterogeneous Environments” is a record of original work done by us and to the
best of our knowledge, a simiiar work has not been submitted to Anna University or any

Institutions, for fulfillment of the requirement of the course study.

The report is submitted in partial fulfilment of the requirement for the award of
the Degree of Bachelor of Computer Science and Engineering of Anna University,

Chennai.

Place: Coimbatore

Date:

S- Gl

(S.Prem Sagar)

N FVpry
(R.Raja)

ACKNOWLEDGEMENT

We extend our sincere thanks to our Vice Principal, Prof. R.Annamalai, M.E.,
Kumaraguru College of Technology, Coimbatore, for being a constant source of

inspiration and providing us with the necessary facility to work on this project.

We would like to make a special acknowledgement and thanks to Dr. S.
Thangasamy, Ph.D., Dean, Professor and Head of Department of Computer Science

&Engineering. for his support and encouragement throughout the project.

We express deep gratitude and gratefulness to our Guide Mrs.P.Devaki (M.E)
Department of Computer Science &Engineering, for her supervision, enduring patience,

active involvement and guidance.

We wouid like to convey our honest thanks to all Faculties of the Department for

their enthusiasm and wealth of experience from which we have greatly benefited.

We also thank our friends and family who helped us to complete this project

fruitfully.

Abstract

Efficient task scheduling of computationally intensive applications is one of the
most essential and difficult issues when aiming at high performance in heterogeneous
computing environments. The application scheduling problem has been shown to be
NP-complete in general cases. Although a large number of scheduling heuristics have
been presentad in the literature, most of them target only homogeneous computing
systems. In this project Heterogeneous Task Scheduling (HTS), we present a simple
Job Scheduling algerithm for any number of dependent tasks which finds the better
makespan than the existing algorithms[1][2][4][5]. The analysis and experiments have
shown that HTS provides comparable or even better results together with low
complexity. In order to provide a robust and unbiased comparison with the existing
algorithms, a parametric graph generator was designed to generate weighted directed
acyclic graphs with various characteristics [1]. The weight matrix is generated using
simulation model [3]. The comparison study, based on the above said randomly
generated graphs. The parametric study involves speedup, frequency of best results,

and average make span.

TABLE OF CONTENTS
CHAPTER - |

1. Overview of Grid Computing

1.1 Introduction

1. 2. Grid Construction

1.3 Grid Components

1.4 Grid Computing Lexicon

1.5 Types of Grids

1.6. Key benefits of the Grid Computing Model
1.7 Characteristics and Capabilities

1.8 Grid computing Vs Cluster computing
1.9 Disfributed vs. Grid Computing

1.10 Grid Concepts and Components
1.11 Job Scheduling

1.12. Issues in Grid Computing

1.13 The Grid Taxonomy and Grid Architecture

10

11

12

14

16

19

20

CHAPTER i

2. Overview of Job Scheduling

2.1 Job Scheduling in Grid Computers
2.2 Classification of Static task-Scheduling algorithms
2.3 Job Scheduling in a Heterogeneous Grid Environment

2.4 Job Scheduling Policy for High Throughput

CHAPTER il

3. Problem Overview

3.1 Problem Definition
3.2 Task Graph Representation
3.3 Application Representation using Task Graph
3.4 Representation of Weight Matrix
3.5 Existing Algorithms taken up for comparison
3.5.1 Critical Path On a Processor (CPOP)
3.5.2 Heterogeneous Critical Parent Trees (HCPT)

3.6 Proposed Algorithm (HTS)

26

26

27

28

28

29

29

29

30

30

31

31

33

35

CHAPTER IV

4. Implementation
4.1 Input weight matrix generation

4.2 Graph construction

CHAPTER V

5. Experimental Results and Discussion

5.1. Comparison Metrics

CHAPTER VI

6. Comparison Graphs

6.1 Makespan Comparison
6.2 Speedup Comparison

6.3 Number of favorable cases for 1000 trails
6.4 Conclusion

6.5 References

37

37

40

41

41

42

42

46

50

54

54

Abbreviations:

HTS
HCPT
CPOP
AEST
ALST
EEFT
ETC
CCR
QoS
OGSA
GRAM
MDS
GRIS
GIIS
GASS

Heterogeneous Task Scheduling
Heterogeneous Critical Parent Trees
Critical Path on a Processor
Average Earliest Start Time

Average Latest Start Time

Earliest Execution Finish Time
Expected Time to Compute
Communication fo Computation Ratio
Quality of Service

Open Grid Service Architecture

Grid Resource Allocation Manager
Monitoring and Directory Service
Grid Resource Information Service
Global Index Information Service

Global Access to Secondary Storage

CHAPTER - |
1. Overview of Grid Computing
1.1 Introduction

1.1.1 Grid Computing

Grid computing is a form of distributed computing that involves coordinating and
sharing computing, application, data, storage, or network resources across dynamic and
geographically dispersed organizations. Grid technologies promise to change the way

organizations tackie complex computational problems.

Grid computing enables the virtualization of distributed computing and data
resources such as processing, network bandwidth and storage capacity to create a single

system image, granting users and applications seamless access to vast [T capabilities.

Grid computing is based on an open set of standards and protocols — e.g., Open
Grid Services Architecture (OGSA) — that enable communication across heterogeneous,

geographically dispersed environments
1.1.2 What is Grid Computing?

"A Grid is a collection of distributed computing resources available over a local or
wide area network that appears to an end user or application as one large virtual computing

system." — IBM

"Conceptually, a grid is quite simple. It is a collection of computing resources that
perform tasks. In its simplest form, a grid appears to users as a large system that provides

a single point of access to powerful distributed resources.” - Sun

"Grid computing is computing as a utility - you do not care where data resides, or
what computer processes your requests. Analogous to the way utilities work, clients
request information or computation and have it delivered - as much as they want, and

whenever they want." - Oracle

Grid computing represents an enabling technology that permits the dynamic
coupling of geographically dispersed resources (machines, networks, data storage,
visualization devices, software and scientific instruments) for performance-oriented
distributed applications in science, engineering, medicine and e-commerce. However, itis a
difficult task to agree on a concrete definition of Grid Computing, as different commercial
and academic implementations use the word for a fairly wide spectrum of architectures. It is
generally agreed in the literature that there are two important goals which are the driving

force behind grid computing.

The first goal is to build up a computational and networking infrastructure that is
designed to provide pervasive, uniform and reliable access to data, computational and
human resources distributed over wide area environments. So a grid should bring together
a diverse collaction of different hardware and software technologies, different corporations,

people and procedures do build a shared pool of resources.

The second and more distant goal behind grid computing is the delivery of
computing power as a utility, like the electrical system. Actually the name ‘Grid’ comes
from an analogy from power grids that supply electricity. When somebody needs electricity,
he plugs in a device to the system which uses as much resources as it needs. The end
user is not concerned with the details like which power plant is supplying the electricity at
that moment or lack of power if he buys a hi-fi system. By analogy the home computer in
the future will consist only Human Computer Interface (HCI) and the computing power will
be provided by the grid. If the user will use a word processor, it will draw 1 MIPS and if he
needs to do an elaborate scientific calculation it will draw 100 MIPS. People will pay as

much as they use, just like the electricity or the water system.

Computational Grid is a collection of distributed, possibly heterogeneous resources

which can be used as an ensemble to execute large-scale applications.
Grid applications include,

¢ Distributed Supercomputing
o Distributed Supercomputing applications couple multiple computational

resources — supercomputers and/or workstations

e High-Throughput Applications
o Grid used to schedule large numbers of independent or loosely coupled tasks
with the goal of putting unused cycles to work. High-throughput applications

include RSA key cracking, detection of exira-terrestrial communication.
» Data-Intensive Applications
o Focus is on synthesizing new information from large amounts of physically
distributed data. Examples include NILE (distributed system for high energy
physics experiments using data from CLEQO), SAR/SRB applications, digital

library applications

1. 2. Grid Construction
There are three main issues that characterize computational grids:
Heterogeneity

A grid involves a multiplicity of resources that are heterogeneous in nature and might

span numerous administrative domains across wide geographical distances.
Scalability

A grid might grow from few resources to millions.
Dynamicity or Adaptability

With so many resources in a Grid, the probability of some resource failing is

naturally high.
The steps necessary to realize a computational grid include:

« The integration of individual software and hardware components into a
combined networked resource.

+ The implementation of middleware to provide a transparent view of the

resources available.

» The development of tools that allows management and control of grid

applications and infrastructure.

1.3 Grid Components
1.3.1 Grid Fabric

It comprises all the resources geographically distributed and accessible from
anywhere on the Internet. They could be computers, clusters, storage devices, databases,

and special scientific instruments such as a radio telescope.
1.3.2 Grid Middleware

It offers core services such as remote process management, co-allocation of
resources, storage access, information, security, authentication, and Quality of Service

(QoS) such as resource reservation and trading.

_ A Grid Middleware Component is a piece of software integrated in one or more grid
middleware distributions which provides a service, implements protocols and algorithms

with the objective of allowing users access to the grid's distributed resources.
1.3.2.1 Categories of Grid Middleware Components

. List of Security Infrastructure Grid Middleware components
. List of Information System Grid Middleware components

. List of Computing Element Grid Middleware components

. List of Job Management Grid Middleware components

. List of Data Management Grid Middleware components

. List of Monitoring Grid Middleware components

. List of Accounting Grid Middleware components

. List of other Grid Middleware components

1.3.3 Grid Development Environments and Tools

brokers that act as user agents that can manage or schedule computations across global

These offer high-level services that allow programmers to develop applications and

resources.

1.3.3.1 Sharing Resources

set of rules called protocols to make it easier to set up grid computing environments. It's
possible to create a grid computing system right now and several already exist. But what's
missing is an agreed-upon approach. That means that two different grid computing systems

may not be compatible with one another, because each is working with a unique set of

Several companies and organizations are working together to create a standardized

protocols and tools.

In general, a grid computing system requires:

At least one computer, usually a server, which handles all the administrative
duties for the system. Many people refer to this kind of computer as a control
node. Other application and Web servers (both physical and virtual) provide
specific services to the system.

A network of computers running special grid computing network software. These
computers act both as a point of interface for the user and as the resources the
system will tap into for different applications. Grid computing systems can either
include several computers of the same make running on the same operating
system (called a homogeneous system) or a hodgepodge of different computers
running on every operating system imaginable (a heterogeneous system). The
network can be anything from a hardwired system where every computer
connects to the system with physical wires to an open system where computers
connect with each other over the Internet.

A collection of computer software called middleware. The purpose of middleware
is to allow different computers to run a process or application across the entire
network of machines. Middleware is the workhorse of the grid computing system.
Without it, communication across the system would be impossible. Like software

in general, there's no single format for middleware.

g

1.3.4 Grid Applications and Portal

They are developed using grid-enabled languages such as HPC++, and message-
passing systems such as MPI. Applications, such as parameter simulations and grand-

challenge server they are accessing on a UNIX or NT platform.

1.4 Grid Computing Lexicon

Terms involved in Grid Computing

e« Cluster

A group of networked computers sharing the same set of resources.

+ Extensible Markup Language (XML)

A computer language that describes other data and is readable by
computers. Control nodes (a node is any device connected to a network that can
transmit, receive and reroute data) rely on XML languages like the Web Services
Description Language (WSDL). The information in these languages tells the

control node how to handle data and applications.

+ Integrated Development Environment (IDE)
The tools and facilities computer programmers need to create applications

for a platform .The term for an application testing ground is sandbox.

- Interoperability
The ability for software to operate within completely different environments.
For example, a computer network might include both PCs and
Macintosh computers. Without interoperable software, these computers wouldn't
be able to work together because of their different operating systems and

architecture.

Open standards

A technique of creating publically available standards. Unlike proprietary
standards, which can belong exclusively to a single entity, anyone can adopt and
use an open standard. Applications based on the same open standards are

easier to integrate than ones built on different proprietary standards.

Parallel processing
Using multiple CPUs to solve a single computational problem. This is
closely related to shared computing, which leverages untapped resources on a

network to achieve a task.

Server virtualization

A technique in which a software application divides a single physical
server into muitiple exclusive server platforms (the virtual servers). Each virtual
server can run its own operating system independently of the other virtual servers.
The operating systems don't have to be the same system -- in other words, a
single machine could have a virtual server acting as a Linux server and another
one running a Windows platform. It works because most of the time, servers aren't
running anywhere close to full capacity. Grid computing systems need lots of
servers to handle various tasks and virtual servers help cut down on hardware

costs.

Service

In grid computing, a service is any software system that allows computers

to interact with one another over a network.

Simple Object Access Protocol (SOAP)

A set of rules for exchanging messages written in XML across a

network. Microsoft is responsible for developing the protocol.

1.5 Types of Grids

1.5.1 National-Grids

This will provide a strategic "computing reserve" and wil! allow substantial computing
resources to be applied to large problems in times of crisis, such as to plan responses to g
major environmental disaster, earthquake, or terrorist attack. Furthermore, such a Grid wil
act as a "national collaborators", supporting collaborative investigations of complex
scientific and engineering problems, such as global climate change, space station design

and environmental cleanup.
1.5.2 Private-Grids

Private Grids can be useful in many institutions (hospitals, corporations, small firms,
etc). They are characterized by a relatively small scale, centrai management and commor
purpose and, in most cases; they will probably need to integrate low-cost commodity

technologies.
1.5.3 Project-Grids

Project Grids will likely be created to meet the needs of a variety of multi-institutiona
research groups and multi-company "virtual teams”, to pursue short- or medium-term
projects (scientific collaborations, engineering projects). A Project Grid will typically be buill

ad hoc from shared resources for a limited time, and focus on a specific goal.
1.5.4 Goodwill-Grids

Goodwill Grids are for anyone owning a computer at home who wants to donate

some computer capacity to a good cause.

1.5.5 Peer-to-peer-Grids

Peer-to-peer technology depends on people sharing data between their computers

The name peer-to-peer suggests that there is no central control.

8

1.5.6 Consumer Grids

In a Consumer Grid, resources are shared on a commercial basis, rather than on the
basis of goodwill or mutual self-interest. A big issue in such Grids will be "resource
marketing": a user has to find the resources needed to solve his particular problem, and the

supplier must make potential users aware of the resources he has to offer.

1.6. Key benefits of the Grid Computing Model

1.6.1 Consolidation

From servers to applications to whole sites, consolidation is a key benefit of the Grid
computing model, especially in the data center. Consolidation not only minimizes the
infrastructure necessary to meet an enterprise’s business demands, but also reduces costs
by migrating from proprietary or single-use systems to commercial off-the-shelf (COTS)-

based systems that can be shared by multiple applications.
1.6.2 Modular Computing

Modular computing, especially in the data center, minimizes and simplifies the
infrastructure using building biocks that address higher density, lower power, lower
thermals, simplified cabling, and ease of upgrading and management. Blade servers are ar

excellent example of modularity.
1.6.3 Virtualization

By creating pools of resources enabled by highly automated managemen
capabilities, virtualization can enable an IT system administrator to utilize far more of the
resources in the data center, making the resources accessible to more than a single

application sitting on a single physical server.
1.6.4 Utility Computing

Utility Computing allows an infrastructure to be managed analogously to an electric
utility, applying a pay-per-use model, thereby optimizing and balancing the computing

needs of an enterprise, and allowing it to run at maximum efficiency.

1.7 Characteristics and Capabilities

A grid is created by installing software services, or middleware on a set of
networked computers. The middleware provides facilities such as hardware and software

resource location, user authentication, and distributed scheduling of resources and tasks.
1.7.1 Smart Grid

A smart grid delivers electricity from suppliers to consumers using digital technology
to save energy, reduce cost and increase reliability. Such a modernized electricity
network is being promoted by many governments as a way of addressing energy

independence or global warming issues.

Basic functions of Smart Grid are to:

+ Be able to heal itself

» Motivate consumers to actively participate in operations of the grid

» Resist aftack

» Provide higher quality power that will save money wasted from outages
« Accommodate all generation and storage options

+ Enable electricity markets to flourish

¢ Run more efficiently

1.7.2 Wireless Grid

Wireless grids are wireless computer networks consisting of different types of
electronic devices with the ability to share their resources with any other device in the
network in an ad-hoc manner. A definition of the wireless grid can be given as: "Ad-hoc,

distributed resource-sharing networks between heterogeneous wireless devices".

10

The following are the key characteristics.

 No centralized control

o Small, low powered devices

+ Heterogeneous applications and interfaces

» New types of resources like cameras, GPS trackers and sensors

e Dynamic and unstable users / resources

1.8 Grid computing Vs Cluster computing

Cluster computing focuses on platforms consisting of often homogeneous

interconnected nodes in a single administrative domain.
e Clusters often consist of PCs or workstations and relatively fas
networks
¢ Cluster components can be shared or dedicated

¢ Application focus is on cycle-stealing computations, high-throughput

computations, distributed computations

Web focuses on platforms consisting of any combination of resources anc

networks which support naming services, protocols, search engines, etc.

+ Web consists of very diverse set of computational, storage
communication, and other resources shared by an immense number o
users

e Application focus is on access to information, electronic commerce
etc.

Grid focus on ensembles of distributed heterogeneous resources used as ¢

platform for high performance computing.

e Some grid resources may be shared; other may be dedicated o

reserved.

11

e Application focus is on high-performance, resource-intensive

applications.

Cluster computing can't truly be characterized as a distributed computing solution;
however, it's useful to understand the relationship of grid computing to cluster computing.
Grids consist of heterogeneous resources. Cluster computing is primarily concerned with
computational resources; grid computing integrates storage, networking, and computation
resources. Clusters usually contain a single type of processor and operating system; grids
can contain machines from different vendors running various operating systems. Grids are
dynamic by their nature. Clusters typically contain a static number of processors and
resources; resources come and go on the grid. Resources are provisioned onto anc
removed frorn the grid on an ongeing basis. Grids are inherently distributed over a local
metropolitan, or wide-area network. Usually, clusters are physically contained in the same
complex in a single location; grids can be (and are) located everywhere. Cluster
interconnects technology delivers extremely low network latency, which can cause
problems if clusters are not close together. Grids offer increased scalability. Physica
proximity and network latency limit the ability of clusters to scale out; due to their dynamic

nature, grids offer the promise of high scalability.
1.9 Distributed vs. Grid Computing

Grid Computing is the latest name for the hoped-for universal distributed computing
facility. The promise of ubiquitous, cheap, and almost infinitely scalable computing i
alluring, and many descriptions paint a future in which grid computing gives every user anc
every application access to "supercomputing on demand”. The Beowulf projec
demonstrated a practical application of large numbers of PCs to solve grand challenge
supercomputing problems. However, the early successes required applications to be highly
scalable and custom tailored for the environment. In the years since, many researchers anc
vendors have searched for ways to apply ever larger collections of computers to a wide
variety of computing problems. There are actually two similar trends moving in tandem
distributed computing and grid computing. Depending on how you look at the market, the

two either overlap, or distributed computing is a subset of grid computing.

12

Grid Computing got its name because it strives for an ideal scenario in which the
CPU cycles and storage of millions of systems across a worldwide network function as a
flexible, readily accessible pool that could be harnessed by anyone who needs it, similar to
the way power companies and their users share the electrical grid. Grid computing can
encompass desktop PCs, but more often than not its focus is on more powerful
workstations, servers, and even mainframes and supercomputers working on problems

involving huge datasets that can run for days.
1.9.1 Capabilities of Grid Computing

When you deploy a grid, it will be to meet a set of customer requirements. To better
match grid computing capabilities to those requirements, it is useful to keep in mind the
reasons for using grid computing is to exploit underutilized resources. The easiest use of
grid computing is to run an existing application on a different machine. The job in question
could be run on an idle machine elsewhere on the grid. There are at least two prerequisites
for this scenario. First, the application must be executable remotely and without undue
overhead. Second, the remote machine must meet any special hardware, software, or

resource requirements imposed by the application.

1.9.2 Parallel CPU Capacity

The pctential for massive parallel CPU capacity is one of the most attractive features
of a grid. In addition to pure scientific needs, such computing power is driving a new
evolution in industries such as the bio-medical field, financial modeling, oil exploration,
motion picture animation, and many others. A CPU intensive grid application can be
thought of as many smaller “sub jobs,” each executing on a different machine in the grid.
To the extent that these sub jobs do not need to communicate with each other, the more

“scalable” the application becomes.

Another important grid computing contribution is to enable and simplify collaboration
among a wider audience. Grid computing takes these capabilities to an even wider
audience, while offering important standards that enable very heterogeneous systems to

work together to form the image of a large virtual computing system offering a variety of

12

virtual resources. The users of the grid can be organized dynamically into a number of
virtual organizations, each with different policy requirements. Sharing starts with data in the
form of files or databases. A “data grid” can expand data capabilities in several ways. First
files or databases can seamlessly span many systems and thus have larger capacities thar
on any single system. Such spanning can improve data transfer rates through the use of
striping techniques. Data can be duplicated throughout the grid to serve as a backup and
can be hosted on or near the machines most likely to need the data, in conjunction with
advanced scheduling techniques. Sharing is not limited to files, but also includes many
other resources, such as equipment, software, services, licenses, and others. These
resources are ‘“virtualized™ to give them a more uniform interoperability among

heterogeneous grid participants.
1.10 Grid Concepts and Components

Types of resources: A grid is a collection of machines, sometimes referred to as

LI 1 nou ”oow noou

‘nodes,” “resources,” “members”’, “donors,” “clients,” “hosts,” “engines,” and many othe:

such terms. They all contribute any combination of resources to the grid as a whole.
1.10.1 Computation

The most common resource is computing cycles provided by the processors of the
machines on the grid. The processors can vary in speed, architecture, software platform,
and other associated factors, such as memory, storage, and connectivity. There are three
primary ways to exploit the computation resources of a grid. The first and simplest is to use
it to run an existing application on an available machine on the grid rather than locally. The
second is to use an application designed to split its work in such a way that the separate
parts can execute in parallel on different processors. The third is to run an application tha

needs to be executed many times on many different machines in the grid.
1.10.2 Communications

The rapid growth in communication capacity among machines today makes gric
computing practical, compared to the limited bandwidth available when distributec
computing was first emerging. Therefore, it should not be a surprise that another importan

resource of a grid is data communication capacity. This includes communications within the

14

grid and external to the grid. Communications within the grid are important for sending jobs
and their required data to points within the grid. Some jobs require a large amount of data
to be processed and it may not always reside on the machine running the job. The
bandwidth available for such communications can often be a critical resource that can limit

utilization of the grid.
1.10.3 Intragrid to Intergrid

There have been attempts to formulate a precise definition for what a “grid” is. In
fact, the concept of grid computing is still evolving and most attempts to define it precisely
end up excluding implementations that many would consider to be grids. Grids can be built
in all sizes, ranging from just a few machines in a department to groups of machines

organized as a hierarchy spanning the world.
Some examples in this range of grid system topologies:

1.10.4 A simple grid

The simplest grid consists of just a few machines, all of the same hardware
architecture and same operating system, connected on a local network. This kind of grid
uses homogeneous systems so there are fewer considerations and may be used just for
experimenting with grid software. The machines are usually in one department of ar
organization, and their use as a grid may not require any special policies or security
concerns. Because the machines have the same architecture and operating system,
choosing application software for these machines is usually simple. Some people woulc

call this a “cluster” implementation rather than a “grid.”

The next progression would be to include heterogeneous machines. In this
configuration, more types of resources are available. The grid system is likely to include
some scheduling components. File sharing may still be accomplished using networked file
systems. Machines participating in the grid may include ones from multiple departments bu

within the same organization. Such a grid is also referred to as an “Intragrid.”

15

1.11 Job Scheduling

The job scheduling system is responsible to select best suitable machines in a grid
for user jobs. The management and scheduling system generates job schedules for each
machine in the grid by taking static restrictions and dynamic parameters of jobs and

machines into consideration.
Job Scheduling in Grids: In a Grid system

1. It arranges for higher utilization Complex as many machines with local policies

invelved.
2. Resources are fixed Resources may join or ieave randomly.

3. One job scheduler or two job schedulers.
1.11.1 Types of Job Scheduling Infrastructures
Centralized

Single job scheduler on one instance, all information collected here.
Hierarchical

Two job schedulers, one at global and other at local level.
Decentralized

No central instance, distributed schedulers interact and commit resources.
1.11.1.1 Centralized Job Scheduling
Multi Site Scheduling

A job can be executed on more than one machine in parallel. As job-parts are
running on different machines, latency is important, different job-parts are startec

synchronously on all machines.

ThH

Single Site Scheduling

A job is executed on a single parallel machine. This means that system boundaries

are not crossed. Efficient as communication inside a machine is fast.
Centralized Job Scheduling — Advantages
Efficiency

The scheduler is conceptually able to produce very efficient schedules, because the
central instance has all necessary information on the available resources. Centralization is
useful e.g. at a computing center, where all resources are used under the same objective.

Due to this fact even communication bottlenecks can be ignored.
1.11.1.2 Hierarchical Job Scheduling

Jobs are submitted to the central scheduler; in turn jobs are submitted to low level
machines. In addition, every machine uses a local job Scheduler. Basically centralized as

there is one global instance .
Main advantage

Different policies can be used for global and local scheduling. Meta-

scheduler redirects submitted jobs to local schedulers for resources based on some policy.
1.11.1.3 Decentralized Scheduling

No central instance is responsible. Distributed schedulers interact with each other
and decide the allocations for each job to be performed. Information about state of all
systems is not collected at a single point. Local job schedulers may have different but

compatible scheduling policies.
1.11.1.3.1 Advantages of Decentralized Scheduling

» No cornmunication bottleneck.
e Scalable to greater extent.

» Failure of single component doesn't affect whole metasystem.

17

o Better fault tolerance and reliability than centralized systems which have no back-
ups.
e Site-autonomy for scheduling can be achieved easily as the local schedulers can be

specialized on the needs of the resource provider or the resource itself,

1.11.1.3.2 Disadvantages of Decentralized Scheduling

e The lack of a global scheduler, which knows all job and system information at every
time instant, usually leads to sub-optimal schedules.

« The support for multi-site applications is rather difficult to achieve.

+ As all parts of a parallel program must be active at the same time, the differen
schedulers must synchronize the jobs and guarantee simultaneous execution
Decentralized Scheduling with Direct Communication

o The local schedulers can send/receive jobs to/from other schedulers directly. Either
schedulers have a list of remote schedulers they can contact or there is a directory
that provides information of other systems. If a job start is not possible on the loca
machine immediately, the local scheduler is searching for an alternative machine.

¢ If a system has been found, where an immediate start is possible, the job and all it
data is transferred to the other machine/scheduler.

¢ It can be parameterized which jobs are forwarded to another machine, this affects
the local queue. This can also affect the performance of some scheduling

algorithms.
1.11.1.3.3 Decentralization via Central Job Pool

Jobs that cannot be executed immediately are sent to a central job pool instead of ¢
remote machine, the local schedulers can pick suitable jobs for their schedules. Jobs car
be pushed into or pulled out of the pool. A policy is required that all jobs from the pool are

executed at some time

18

1.11.1.3.4 Scheduling Algorithms
First-Come-First-Serve

The scheduler starts the jobs in the order of their submission. If not enough

resources are currently available, the scheduler waits until the job can be started.
Random

The next job to be scheduled is randomly selected among all jobs that are
submitted.

Backfill

Special FCFS algorithms that prevent unnecessary idle time caused by wide jobs.

1.12. Issues in Grid Computing

A grid is a distributed and heterogeneous environment. Both of these issues require

are the source of challenging design problems.

Being heterogeneous inherently contains the problem of managing multiple
technologies and administrative domains. The computers that participate in a grid may
have different hardware configurations, operating systems and software configurations.
This makes it necessary to have right management tools for finding a suitable resource for

the task and controlling the execution and data management.

A grid may also be distributed over a number of administrative domains. Two or
more institutions may decide to contribute their resources to a grid. In such cases, security
is @ main issue. The users who submit their tasks and their data to the grid wish to make
sure that their programs and data is not stolen or altered by the computer in which it is
running. Of course the problem is reciprocal. The computer administrators also have to

make sure that harmful programs do not arrive over the grid.

19

Another important issue is scheduling. Scheduling a task to the correct resource
requires considerable effort. The picture is further complicated when we consider the need

to access the data.

1.13 The Grid Taxonomy and Grid Architecture

The grids are categorized as departmental, enterprise and global grids. Although this
is not a formal taxonomy all three levels present a different problem in the areas of data

transfer and administration.

A departmental grid is putting together the resources of a department or small
institution together. This means that usually the computers are on the same local high
speed network and under one administrative domain. So the only problem remains is the
correct administration of this single domain to allow users to have access to most suitable

resource from a heterogeneous resource pool.

An enterprise grid on the other hand, is usually distributed over many geographical
locations. At each location a departmental grid may be running but between them usually
there is a lower bandwidth communication line, making transfer of large amounts of data
not very feasible. In such grids, an efficient data transfer strategy is very important.
However such grids usually belong to a single organization and usually run by a single
administration. This means that some long term static planning can be made and some

administrative procedures may be enforced.

A global grid, on the other hand, is a collection of enterprise grids. it is a pool of
resources that are distributed globally and usually under different administrative domains.
The diversity of administrative domains brings the problems of security and management. [t
is important that the system administrators can monitor and manage the job requests
coming over the grid, so that nobody can execute a harmful code. Of course, the users who
submit their jobs to the grid also have to make sure that their programs and data is not

misused by the owners of the computer that the program is executing.

20

1.13.1 Applications Suitable for Grid Computing

As a general rule, applications that work well on clusters are also suitable for grids.
Such applications can be partitioned to be executed on several processors and the results
of these separate processes yield to the desired output. But such jobs are rare and most of

the applications do not fall into this category.

Also the heterogeneous structure of grids do not allow for a fine grained parallelism.
Therefore large batch jobs and long running processes that require minimum inter-process
communication and synchronization are better suitable for grids. These jobs can be
scheduled to processors that have iow workloads making use of the off-peak cycles

available.

Another important aspect is the data access. The smaller the size of data needed by
the application is the better one. Because the applications that need large amount of dats
creates either a scheduling problem by forcing the application run on a processor closer to
the data or requires movement of large chunks of data across the network. It is best to

avoid both cases.

The interactive jobs are not suitable for grids. Because it put pressure on the
scheduler to run the job when the user is available, which is usually means immediately.
However in a grid environment, the networks quality of service cannot be trusted. Non-
interactive jobs on the other hand are easier to schedule as they can wait for the off-peak

periods of a processor within the grid.

21

1.13.2 Grid Management

One of the major problems in grid computing is to be able to schedule jobs and data
to a suitable resource. As a grid may contain many different hardware and software
configurations, a standard has to be agreed upon. The most widely used product for
managing a grid is called Globus Toolkit. Supported by many large vendors, Globus offers

all the functionality needed to manage a grid system.

Grid Resource Allocation Manager (GRAM) allows users to select a specific
resource in the grid to run their jobs on. It has a client side module that allows user to
schedule jobs at a specific server in the grid and a gatekeeper module that is running in
each server 1o schedule arriving jobs. GRAM makes use of Monitoring and Directory
Service (MD3). MDS manages a directory of local and global resources. Grid Resource
Information Service (GRIS) collects local resource information. Global Index Information
Service {GIIS) collects GRIS information from all servers and provides a centralized
resource directory for the whole grid. The movement of data in the grid is managed by
Global Access to Secondary Storage (GASS).

Apart from these basic services, Globus provides security functions and packaging
tools to deploy software in a format that would work in any server. Globus is preferred by
many grid implementations and supported by vendors like IBM. The reason behind the
success of Globus is the open source approach and use of standards. For example,
Globus uses SSL for secure data transfer, Light-Weighted Directory Access Protocol
(LDAP) for directory information. By using these standard protocols it ensures that it is

compatible with many operation environments.

1.43.3 Hardware Trends — Blade Servers

Grid computing and Cilusters are two important architectural trends that demand a
different approach from hardware vendors. Clusters are tightly coupled and homogenous
structures. Grids on the other hand are lightly coupled and heterogeneous. However they
both require a large number of servers to be at their disposal to deliver high performance.
To deliver this in a feasible way, hardware vendors developed the concept of Blade
Servers. A blade server is a server with processor, memory and secondary storage packed

in a very small volume.

27

One of the main problems in operating a large number of machines is the space,
power consumption and heat considerations. In order to answer these problems many

vendors are now delivering blade computers.

As each blade is a server in itself, each may have their own operating systems,
security privileges, data sets. Also it is possible to populate the slots in a chassis with blade
servers of different capacity to create a heterogeneous server where scheduler may select
the best server for the task at hand. This structure makes it possible that older server can
still contribute in the blade form for low demand works protecting the investment made on
them. With rack based servers, due to maintenance costs and physical limitations, older

servers are usually phased out while they could still generate productive work.
1.13.4 Limitations of Grid Computing

Not every application is suitable or enabled for running on a grid. Some kinds of
applications simply cannot be parallelized. For others, it can take a large amount of work to
modify them to achieve faster throughput. The configuration of a grid can greatly affect the

performance, reliability, and security of an organization’s computing infrastructure.

To summarize we have shown how Grid Computing is becoming the preferred
platform for next generation e- Science experiments that require Management of massive
distributed data. It can be observed that while there have been a lot of development grid
technologies for e-Science, there is stil more to be achieved. This would require
development of richer services and applications on top of already existing ones so that Grid
Computing can move beyond Grid Computing can move beyond scientific applications and

into mainstream IT infrastructure.

22

1.13.5 Grid Architecture

GRID Protocol Architecture

Application
v 5
: 2
Collective Application g
=
(8]
¥ <
Resource §
o
et
g
¥ T rt %
— ranspo
Connectivity P g
¥}
-
=
Internet
Fabric
Link

Figure 1.1 A layered grid architecture and its relationship to the Internet protocol

architecture.

Figure 1.1 lllustrates the component layers of the architecture with specific capabilities at
each layer. Each layer shares the behavior of the component layers. Each of these
component layers is compared with their corresponding Internet protocol Layers, for

purposes of providing more clarity in their capabilities.
1.13.5.1 Fabric Layer: Interface to Local Resources

This defines the resources that can be shared. This could include computationa
resources, data storage, networks, catalogs and other system resources. These resources
can be physical resources or logical resources by nature. Example for logical resources are

distributed file systems, computer clusters etc.,

24

Basic capabilities are

1. Provide an “inquiry” mechanism whereby it allows for the discovery against its own

resource capabilities, structure and state of operations.

2. Provide appropriate “ resource management” capabilities to control the QoS the grid

solution promises or has been contracted to deliver.
1.13.5.2 Connectivity Layer: Manages Communications

This defines the core communication and authentication protocol required for grid-
specific networking services transactions. It includes networking transport, routing and
naming. Characteristics to be considered are Single sign on, Delegation, User-Based trust

relationships and Data Security.
1.13.5.3 Resource Layer: Sharing of a Single Resource

This utilizes the communication and security protocol defined by the networking
communications layer, to control the secure negotiation, initiation, monitoring, metering,

accounting, and payment involving the sharing of operations across individual resources.
1.13.5.4 The Collective Layer: Coordinating Multiple Resources

While the Resource layer manages an individual resource, the Collective layer is
responsible for all global resource management and interaction with a collection of
resources. Collective services are Discovery Services, Co allocation, Scheduling and

Brokering Services, Monitoring and Diagnostic Services, Data Replication Services etc.,
1.13.5.5 Application Layer: User- Defined Grid Applications

These are user applications, which are constructed by utilizing the services defined
at each lower layer. Such an application can directly access the resource, or can access

the resource through the Collective service interface APIs (Application Provider Interface)

i

CHAPTER i
2. Overview of Job Scheduling

2.1 Job Scheduling in Grid Computers

Distributed computing utilizes a network of many computers, each accomplishing a
portion of an overall task, to achieve a computational result much more quickly than with a

single computer.

Distributed computing can be defined in many different ways. In distributed
computing the task is split up into smaller chunks and performed by the many computers
owned by the general public. Distributed computing is usually known as parallel computing.
The key issue here is that we are using computing power that we don't own. These

computers are owned and controlled by other people, who you would not necessarily trust.

Grid computing is a form of distributed computing that coordinates and shares
computation, application, and data storage or network resources across dynamic and
geographically dispersed organizations. One primary issue associated with the efficient
utilization of heterogeneous resources in a grid id grid scheduling. Grid scheduling is a
critical design issue of grid computing. It is a challenge because the capability and
availability of resources vary dynamically. The complexity of scheduling problem increases

with the size of the grid and becomes difficult to solve effectively.

Grid scheduling requires a series of challenging tasks. These include, searching for
resources in the collection of geographically distributed heterogeneous computing systems
and making scheduling decisions, taking into consideration quality of service. Grid
scheduler does not have full control over the grid. The grid scheduler can not assume that it

has a global view of the grid.

26

2.2 Classification of Static Task-Scheduling algorithms

Static Task-Scheduling Algorithms

Heuristic Based

Guided Random Search Based

Genetic algorithms
Simulated Annealing
Local SearchTechnigue

List Scheduling Heuristics

Modified Critical Path
Dynamic Critical Path
Dynamic Level Scheduling
Mapping Heuristic

Task Duplication Heuristics

Clustering Heuristics

Mobility Directed
Dominant Sequence Clustering
Linear Clustering

Critical path Fast Duplication

Duplication Scheduling Heuristic
Bottom-up Top-Down Heuristic

Duplication First and Reduction Next

Figure 2.1 Classification of Static task-Scheduling algorithms

27

2.3. Job Scheduling in a Heterogeneous Grid Environment

Computational grids have the potential for solving large-scale scientific problems
using heterogeneous and geographically distributed resources. However, a number of
major technical hurdles must be overcome before this potential can be realized. One
problem that is critical to effective utilization of computational grids is the efficient

scheduling of jobs.

One of the primary goals of grid computing is to share access to geographically
distributed heterogeneous resources in a transparent manner. There will be many benefits
when this goal is realized, including the ability to execute applications whose computational
requirements exceed local resources and the reduction of job turnaround time through
workload balancing across multiple computing facilities. The development of computational
grids and the associated middleware has therefore been actively pursued in recent years.
However, many major technical (and political) hurdles stand in the way of realizing these
benefits. Although numerous researchers have proposed scheduling algorithms for parallel
architectures, the problem of scheduling jobs in a heterogeneous grid environment is

fundamentally different.
2.4 Job Scheduling Policy for High Throughput

The growing computational power requirements of grand
challenge applications has promoted
the need for merging high throughput computing and grid Computing principles to harness
computational resources distributed across multiple organizations.

First of all there is a lot of activity to bring standards to the field. Globus is a big step
forward towards the formation of very large global grid systems.

Secondly, the hardware vendors are rushing to deliver the right kind of hardware for
this new architecture. Blade servers will make it possible in the future that whenever we
have a job, there will be an available server somewhere to execute it. Software vendors like

Oracle are also delivering products that take advantage of these new architectures.

i

CHAPTER Il
3. Problem Overview
3.1 Problem Definition

To determine the assignment of Tasks (N) of a given application to a given

machine set P (P < N) such that

+ The scheduling length { Makespan — overall completion time) is to be

minimized
¢ All precedence constraints are to be satisfied.
e The application is represented by the Task Graph

¢ The Resources are scheduled in Batch Mode, where the jobs and

resources are collected and mapped at prescheduled time.

3.2 Task Graph Representation
o Directed Acyclic Graph: G(V,E}

e Vs the set of v nodes, each node v; € V represents an application Task, which is a

sequence of instructions that must be executed serially on the same machine.

¢ E is the set of communication edges. The directed edge e;; joins nodes v; and v,
where node vi is called the parent node and node v; is calied child node. This also

implies that v; cannot start until v; finishes and sends its data to v;.

e C;;is the communication cost from the node n; to the node n;.

29

3.3 Application Representation using Task Graph

1
l 11
\‘,
-
N

17 - ;/ a
O V- & o
3 4

.i’sl i 6 "

i > e
F : .
& ;
R - -

T 717 12 -
o3 . .15

ﬂ.“\“ -4 1 : ~ =
yon . . s

Figure 3.1 Task graph representation

3.4 Representation of Weight Matrix

TASK P1 P2 P3
14 16 g
13 19 18
11 13 19
13 8 17
12 13 10
13 16 9
7 15 11
5 11 14
18 12 20
21 7 16

W] | | O O] K W] N —~

-
o

Table 3.1 Weight matrix representation

20

3.5 Existing Algorithms taken up for comparison

3.5.1 Critical Path on a Processor (CPOP)

The CPQOP algorithm uses summation of upward and downward rank for prioritizing

tasks.

Tasks are ordered in this algorithm by their scheduling priorities that are based on

upward and downward ranking. The upward rank of a task n; is recursively defined by
Rank,(n;)=avg(w;}+max{avg(c;;}+rank (n;)}, Where n; €succ(n;)

Where succ(n) is the set of immediate successors of task n;,. Cij is the average
communication cost of edge (i, j), and w; is the average computation cost of task n;. Since
the rank is computed recursively by traversing the task graph upward, starting from the exit

task, it is called upward rank. For the exit task neit, the upward rank value is equal to
Ranku(nexit)=avg (Wexit)

Basically, ranky(n;) is the length of the critical path from task n; to the exit task,
including the computation cost of task ni. Similarly, the downward rank of a task n; is

recursively defined by
Rankqg(nj)=max{rank(n;)+avg(wi)+avg(ci;)}, where n; €pred(n;)

where pred(n;) is the set of immediate predecessors of task n;. The downward ranks
are computed recursively by traversing the task graph downward starting from the entry
task of the graph. For the entry task nentry, the downward rank value is equal to zero.
Basically, rankd(n;) is the longest distance from the entry task to task n; excluding the

computation cost of the task itself. The priorities of each task n; is calculated as

Priority(n;)=UpwardRank(n;}+DownwardRank(n;)

21

Critical tagsks are the tasks which are having equal upward and downward ranks.

¢ Critical tasks are scheduled in a critical path processor which will execute all

the critical task fastly.
o Tasks are arranged in a queue in descending order of priority.

e Select the highest priority task and assign it to the processor which is

execuling the task fastly.
» Repeat the above step until the queue is empty.
» Calculate the exit task completion time which is the makespan.
Algorithm
Initialize the priority queue {(PQ) with the entry task
While there is an unscheduled task in PQ do
Select the highest priority task n; from PQ
if n; € critical path task then
Assign the task n; fo cpp
else
Assign the task n; to processor pj which minimizes the EFT(n;,pj)
Update PQ with the successors of n; ,if they become ready tasks

End while

32

3.5.2 Heterogeneous Critical Parent Trees (HCPT)

This method consists of two phases
1. Listing phase
2. Assignment phase

Listing phase will list the order of execution of tasks. For ordering, it finds Critical
nodes in the graph. Critical node is the node which has equal Average Earliest Start Time
(AEST) and Average Latest Start Time(ALST).

The AEST and ALST are calculated as follows,

AEST (v;) = max { AEST (v,)+ avg (w,)+ avg (Cm, i) } where vi,,€ pred(vj)

avg(wijl=2 (wj j)/p ,0<j<=p

ALST {v;)=min { ALST (v,) -avg (°i,m) } -avg (w;), where v, €succ(v;)

Assignment phase will assign each task into a machine which minimizes the

Earliest Execution Finish Time (EEFT) and it is calculated as,

EEFT(v;, Pq) =max { AvaiIT(pq) FTvp) t k. cp i} + Wiq

22

Algorithm
Traverse the graph downward and compute AEST for each node,
Traverse the graph upward and compute ALST for each node,
Push CNs on the stack S in the reverse order of their ALST,
While S is not empty do
if there is an unlisted parent of top (S) then
push the parent node on S
else
pop the top (S) and enqueue it to list L
While not the end of L do
dequeue vifrom L
for each machine pq in the machine set P do
compute EEFT (v, pg)

assign task v; to the machine pp, that minimizes EEFT of v;

34

3.5.4 Proposed method
Heterogeneous Task Scheduling (HTS)
Drawbacks of existing algorithms

Existing algorithms use almost 50% of its total execution time for computing

listing phase.

In order to avoid this calculation we maintained a ready Queue dynamically. After
executing a particular task, ready queue is updated with its children if they become ready

tasks.

The algorithm starts from the entry node. Initially the entry node is available in ready
queue. Until the queue is empty take the task of the nodes in ready queue. Select the node
(let task t) which has earliest completion time at machine m; and remove from the ready
queue. Allocate the task t; in m;. Update the ready queue by adding the task which are
ready due to t; completion. The overall completion time(makespan) is calculated.

Algorithm
Initialize the Ready queue (RQ) with the entry task
While there is an unscheduled task in RQ do
Assign the task n; to processor pj which minimizes the EEFT (n;,pj)
Update RQ with the successors of ni, if they become ready tasks

End while

20

we

20

01

0L

501

0L

80

P1

P2

(a)

Scheduling of the task graph in the figure with:

P3

30

L

501

60

0L

soL

90

0]

200

P1

P2

p3 P1 P2

G k{1

100

50, -
TGL ﬂ

80

(b)

(b)HCPT(makespan=76) (c) CPOP{makespan=86)

Figure 3.2 Makespan comparison

36

P3

(c)

(a) HTS{makespan=75)

CHAPTER IV
4. Implementation
4.1 Input Weight Matrix Generation

4.1.1 Simulation Model

Mixed-machine heterogeneous computing (HC) environments utilize a distributed
suite of different high-performance machines, interconnected with high-speed links to
perform different computationally intensive applications that have diverse computational
requirements. The general problem of mapping (i.e., matching and scheduling) tasks to
machines in an HC suite has been shown to be NP-complete. Heuristics developed to
perform this mapping function are often difficult to compare because of different underiying
assumptions in the original studies of each heuristic. To facilitate these comparisons,
certain simplifying assumptions were made. For these studies, let a meta-task be defined
as a collection of independent tasks with no (data dependencies) (a given task, however,
may have subtasks and dependencies among the subtasks). For this case study, it is
assumed that static: (i.e., off-line or predictive} mapping of meta-tasks is being performed.
The goal of this mapping is to minimize the total execution time of the meta-task. It is also
assumed that each machine executes a single task at a time (i.e., no multi-tasking), in the
order in which the tasks are assigned. The size of the Meta task (i.e., the number of tasks
to execute), |, and the number of machines in the HC environment, n are static and known

a priori.

The eleven static mapping heuristics were evaluated using simulated execution
times for a Heterogeneous Computing (HC) environment. Because these are static
heuristics, it is assumed that an accurate estimate of the expected execution time for an
each task on each machine is known prior to execution and contained within an Expected
Time to Compute (ETC) matrix. One row of the ETC matrix contains the estimated
execution times for a given task on each machine. Similarly, one of the ETC matrixes
consists of the estimated execution times of a given machine for each task in the meta-
task. Thus, for an arbitrary task t, and an arbitrary machine m,. ETC (t, m,) is the estimated

execution time of tion m,.

17

For cases when inter-machine communications are required. ETC (t, mj) could be
assumed to include the time to move the executables and data associated with task t, from
their known source to machine m,. For cases when it is impossible to execute task {, on
machine mj {(e.g., if specialized hardware is needed), the value of ETC (t, m) can be set to
infinity, or some other arbitrary value. For this study , it is assumed that there are inter-task
communication each task it can execute on each machine, and estimated expected
execution time of each task on each machine following method are known. The assumption
that these estimated expected execution times are known is commonly made when

studying mapping heuristics for HC systems.

For the simulation studies, characteristics of the ETC matrices were varied in an
attempt to represent a range of possible HC environments. The ETC matrices used were
generated using the following method. Initially, a t x 1 baseline column vector, B, of floating
point values is created. Let $;, be the upper-bound of the range of possible values within the
baseline vector. The baseline column vector is generated by repeatedly selecting a uniform
random number, x, € [1, $p], and letting B(i) = x, for 0< | < t. Next, the rows of the ETC
matrix are created constructed. Each element ETC (t, myin row | of the ETC matrix is
created by taking the baseline value, B(i), and multiplying it by a uniform random number,
X , which has an upper-bound of $r. This new random number X € [1, 8r], is called a row
multiplier. One row requires m different row muitipliers,0<j<m. Each row | of the ETC matrix
can then be described as ETC(t,m;) = B(i) x x for 0 <] < m. (The baseline column itself
does not appear in the final ETC matrix). This process is repeated for each row until the t x
m ETC matrix is full. Therefore, any given value in the ETC matrix is within the range

[1,%s x $r].

To evaluate the heuristics for different mapping scenarios, the characteristics of the
ETC matrix were varied based on several different methods from [Arm97]. The amount of
variance among the execution times of tasks in the meta-task for a given machine is
defined as task heterogeneity. Task heterogeneity was varied by changing the upper-bound
of the random numbers within the baseline column vector. High task heterogeneity was
represented by $, = 3000 and low task heterogeneity used $, = 100. Machine
heterogeneity represents the variation that is possible among the execution times for a

given task across all the machines. Machine heterogeneity was varied by changing the

18

upper-bound of the random numbers used to multiply the baseline values. High machine
heterogeneity values were generated using $ = 10. These heterogeneous ranges are
based on one type of expected environment for MSHN. The ranges were chosen to reflect
the fact that in real situations there is more variability across execution times for different
tasks on a given machine than the execution time for a single task across different

machines.

To further vary the ETC matrix in an attempt to capture more aspects of realistic
mapping situations. Different ETC matrix consistencies were used. An ETC matrix is said to
be consistent if whenever a machine m; executes any task t; faster than machine my, then
machine m; executes all the task faster than my . Consistent matrices were generated by
sorting each row of the ETC matrix independently, with machine mg always being the
fastest and machine mym.1; the slowest. In contrast: inconsistent matrices characterize the
situation where machine m ; may be faster than the machine my for some tasks, may be
slower for others. These matrices are left in the unordered, random state in which they
were generated (i.e., no consistence is enforced). Partially-consistent matrices are
inconsistent matrices that include a consistent sub matrix. For the partially-consistent
matrices used here , the row elements in column positions {0,2,4,...} of row 1 are extracted
sorted, and replaced in order , while the row elements in column positions {1,3,5...} remain
unordered (i.e., the even columns are consistent and odd columns are in general

inconsistent).

While it was necessary to select some specific parameter values for t, m , and the
ETC entries to allow implementation of a situation , the techniques presented here are
completely general. Therefore, if these parameters values do not apply to a specific
situation of interest, researchers may substitute in their own values and the evaluation

software of this study will apply.

39

4.1.2 ETC Matrix Generation Algorithm

Step 1.

Construct t x 1 baseline column vector B, by repeatedly selecting uniform
random number x € [1,b) where b is upper bound,

Step 2:

Construct Row Multiplier by repeatedly selecting uniform random number y €
[1,r}, where r is upper bound,

Step 3:

Construct ETC matrix by multiplying Baseline column vector and Row
multiplier

4.1.3 Sample ETC Matrix

Task 1 0.24243058 1.2949938 2.0064628 24523716 2.971872
3.4139936 3.903617 4.9719954 5.5944223 6.371052
6.5972569 6.721537 7.0242734 7.8943787 8.861938
10.836024

4.2 Graph Construction

The random graph generator was implemented to generate application graphs with

various characteristics. The generator requires the following input parameters:
= number of tasks in the graph v,

» The computation cost wi for each task ti is generated using the simulation
model.

= Communication to Computation Ratio {CCR), which is defined as the ratic

of the average communication cost to the average computation cost.

» Each node in the level |i has half the number of nodes in the level li-1 as

parents.

AD

in all experiments
« Only graphs with a single entry and a single exit node were considered.
e Graph levels |=5.

CHAPTER YV

5. Experimental Results and Discussion

This section presents performances comparison of the proposed algorithm with the
existing CPOP and HCPT algorithms.

5.1. Comparison Metrics
The comparisons of the algorithms are based on the following metrics:
5.1.1 Makespan
The makespan, or scheduling length, is defined as:
Makespan = FT{(Vexit) »
Where FT (vexi) is the finishing time of the scheduled exit node.

5.1.2 Speedup

The speedup value is defined as the ratio of the sequential execution time (i.e.,
cumulative computation costs of all tasks) to the parallel execution time (i.e., the
makespan). The sequential execution time is computed by assigning all tasks to a single

machine, which minimizes the cumulation of the computation costs.

SpeedUp = (mlnp]€Q{an€le’j}) ! makespan

a1

CHAPTER VI

6 .Comparison Graphs
6.1 Makespan Comparison

6.1.1 Low Task Heterogeneity Low Machine Heterogeneity

INCONSISTENT CONSISTENT
=z =
a 80 = 40
w w
v 60 . 30 //
< -
= 40 %’/ = 20 /
T o
20 10
= &
w o w 0
P 55 65 75 85 95 105 o 55 8 75 8 95 105
- —HTS 29.721 31.675 35.342 39.877 40.094 43.103 —HTS 16.858 18.872 19.843 21.717 23.351 25.153
—HCPT 34.466 38.884 43.998 51.481 53.086 58.565 — HCPT 18.422 21.544 23,228 26 498 29.092 31.973
——CPOF 30.448 32.943 36.969 42.277 42 875 46.562 —CPOP 16.87219.061 20.218 22535 244 26.567
NO. OF TASKS NOC. OF TASKS
Figure 6.1 Figure 6.2
PARTIALLYCONSISTENT
F
o 30
72
w
X 20
" M”/
& 10
<
14
w 0
z 5 65 75 85 95 105

——HTS 10.74 11.477 12,727 13.529 14.193 16.032

—— HCPT 11.82113.589 15.388 17.075 18.186 21.002

—_ CPOP 10.784 11.792 13.055 14.223 14.978 17.08
NO. OF TASKS

Figure 6.3

42

6.1.2 Low Task Heterogeneity High Machine Heterogeneity

AVERAGE MAKESPAN

INCONSISTENT CONSISTENT
=
1
200 a 50
wl
150 / = 100 /
=
- 50
50 o
(14
0 - 0
55 6 75 8 95 105 = 55 65 75 8 95 105
___HTS 87.342 98.380 108.72 114.73 126.51 134.11 __HTS 69613 75.58 82.04991.972 10224 109.6
—__HCPT 93.929 112.42 12530 139.01 153.59 165.01 _HCPT 75.501 86.32 54.895 111.37 124.01 134.83
___CPOP 85.706 98.632 108.73 118.62 130.51 138.85 __CPOP 69.07 75.92 82.967 95.071 105.3% 113.93
NO. OF TASKS NO. OF TASKS
Figure 6.4 Figure 6.5
PARTIALLYCONSISTENT
=
Py 150
[<2]
2
x 100 //’
E /_/
© 50
<L
o
w 0
> 55 65 75 8 95 105

—MHTS 57.35266.706 65.607 75.406 83.178 88.988

—HCPT 62.304 76.21 79.89591.317 101.05 109.9

— CPOP 56.684 67.066 69.152 77.868 8§5.733 92.134
NO. OF TASKS

Figure 6.6

42

6.1.3 High Task Heterogeneity Low Machine Heterogeneity

AVERAGE MAKESPAN

INCONSISTENT CONSISTENT
=
100 Y 100
[77]
L
(17
L]
I,
14
0 - w 0
55 65 75 8 95 105 = 55 65 75 85 8 105
~—HTS 50.983 56.04 61.373 67.453 70.146 76.844 —_HTS 42.85151.208 53.162 58.97262.144 71.8
—HCPT 55.415 63.525 70.853 §1.073 84.828 94.460 — HCPT 46.540 57.999 61.57 71.268 75.514 88.035
——CPOP 50.519 55.725 61.765 69.274 72.175 79.65 —__CPOP 42.623 51.166 53.683 60.876 64.205 74.883
NO. OF TASKS NO. OF TASKS
Figure 6.7 Figure 6.8
PARTIALLYCONSISTENT
=
a 80
[<2)
g 60 /
<
= 40
o
- 20
o
w 0
o 55 65 75 8 95 105

—— PROPOSED 38.08 42.57 46.11 51.25 54.91 60.89

—HCPT 41.25 486 53.06 61.74 66.58 75.43
—CPOP 37.81 42,65 46.43 52.71 56.66 63.28
NO. OF TASKS
Figure 6.9

44

6.1.4 High Task Heterogeneity High Machine Heterogeneity

INCONSISTENT CONSISTENT
=z =z
N 800 & 800
o o
o 600 v 600 -
< <
o o)
200 200
o =
= 55 65 75 8 95 105 > 5 65 75 85 95 105
___HTS 3147839661 423 460.45 486.36 550.68 ___HTS 28567 356.21 386.85 422.12 450.41 498.5
—HCPT 343.87 448.24 485.75 559.82 588.94 674.58 —_HCPT 309.81 409 447.82508.29 555 612.59
——CPOP 31275 394.86 423.6 479.95 499.76 566.19 —CPOP 282.04 359,96 390.23 436.67 473.28 517.47
NO. OF TASKS NO. OF TASKS
Figure 6.10 Figure 6.11
PARTIALLYCONSISTENT
=
& 600
7]
Ll
X 400 /
=
¢ 200
<L
o
w 0
= 5 65 75 8 95 105

___HTS 285.67 338.07 362,34 367.56 422,17 461.4

___HCPT 300.81 383.18 414.97 475,85 508.95 566,79

___CPOP 282.04 336.91 362.46 407.84 431,57 475.99
NO. OF TASKS

Figure 6.12

45

6.2 Speedup Comparison

6.2.1 Low Task Heterogeneity Low Machine Heterogeneity

INCONSISTENT CONSISTENT
a o
a 6 2 2
wl w
o a [—
o 4 o
w /___/ 7
w —_— w 1
e e o
= = 0.5
L w
> c > 0
< 56 65 75 85 95 105 < 55 65 75 85 95 105
—HTS 2.831 3.0836 3.2105 3.356 3.7678 4.0101 —HTS 1.2652 1.3021 1.4104 1.4818 1.5469 1.5853
——HCPT 2.2531 2.3195 2,3425 2.2835 2.329 2.4404 — HCPT 1.31991.2714 1.3058 1.3626 1.312 1.382
—CPOF 2.6014 2.7897 2.8203 2.9177 3.0226 3.2795 — CPOP 1.4018 1.396 1.4636 1.5731 1.5541 1.6486
NO. OF TASKS NO. OF TASKS
Figure 6.13 Figure 6.14
PARTIALLYCONSISTENT
=
2 15
18]
i
o 1
) @f
&
b 0.5
i
> 0
< 55 75 85 95 105
— HTS 0.85560.9134 0.9916 0.9894 1.114 1.1591

—HCPT 0.8677 0.7627 0.8547 0.7918 0.8585 0.8411
—CPOP 0.9226 0.8824 0.9899 0.9574 1.0658 1.0642

NO. OF TASKS

Figure 6.15

46

6.2.2 Low Task Heterogeneity High Machine Heterogeneity

AVERAGE SPEEDUP

INCONSISTENT CONSISTENT
o
06 2 0.6
m
04 e G 0.4
@ ——————
wl
02 Q 02
o
w
0 - : > 0
55 65 75 8 95 105 = 5 65 75 8 95 105
—HTS 0.3688 0.391 0.4122 0.4317 0.4466 0.4547 —HTS 0.2952 0.3053 0.325 0.3405 0.3585 0.3659
— HCPT 0.3643 0.3576 0.3815 0.3641 0.401 0.3864 - HCPT 0.2964 0.2793 0.3112 0.2969 0.3175 0.3437
—CPOP 0.3871 0.3979 0.4296 0.4194 0.4568 0.4497 —CPOP 0.3151 0.3104 0.3446 0.3371 0.3653 0.3941
NO. OF TASKS NO. OF TASKS
Figure 6.16 Figure 6.17
PARTIALLYCONSISTENT
>
2 0.4
w
w 0.3
o
w
w 0.2
2
= 0.1
w
> 0
< 5 65 75 8 95 105

—HTS 0.2432 0.2587 0.2665 0.2825 0.2972 0.3016

—HCPT 0.2439 0.2422 0.2467 0.238 .0.2503 0.2497

— CPOP 0.2597 0.2689 0.2781 0.2743 0.2894 0.2941
NO. OF TASKS

Figure 6.18

47

6.2.3 High Task Heterogeneity Low Machine Heterogeneity

INCONSISTENT CONSISTENT
S 5
2 0.3 a 03
w 11}
w T W
Y 02 =————— T — o 02
72] wn
:IDJ L
Q 0.1 2 0.1
[1 4 a4
L 11}
> 0 - 0
= 55 65 75 85 95 105 =3 55 65 75 8 95 105
__HTS 0.2165 0.2204 0.2399 0.245 0.2574 0.2587 —_HTS 0.1833 0.1958 0.2083 0.2132 0.2238 0.2368
—__ HCPT 0.2079 0.1987 0.2175 0.2129 0.223 0.2148 —_ HCPT 0.1914 0.1992 0.192 0.1812 0.1982 0.2013
— CPOF 0.2219 0.2206 0.2444 0.2431 0.2549 0.2492 _—CPGP 0.2011 0.2181 0.2143 0.2084 0.2255 0.2326
NO. OF TASKS NO. OF TASKS
Figure 6.19 Figure 6.20
PARTIALEYCONSISTENT
=
= 0.3
w
w
a 0.2 _
oy
©
9 0.1
14
w
> 0
< 55 65 75 8 95 105

——HTS 0.183 0.1701 0.1793 0.1884 0.1956.0.2042

__HCPT 0.16720.1573 0.1789 0.171 0.1691 0.1735

—CPOP 0.1761 0.1744 0.1968 0.1936 0.1937 0.2018
NO. OF TASKS

Figure 6.21

48

6.2.4 High Task Heterogeneity High Machine Heterogeneity

INCONSISTENT CONSISTENT
o 0.
2 0.2 2 0.2
& . —— w .
wn
w 0.1 w 0.1
g o
= 0.05 é 0.05
w L
> 0 > 0
< 55 65 75 85 95 105 < 55 65 75 85 95 105
—HTS 0.1361 0.1429 0.1523 0.1594 0.1583 0.1686 — HTS 0.12450.1295 0.1384 0.1425 0.1503 0.1532
—— HCPT 0.1287 0.1312 0.1369 0.1361 0.1329 0.141 — HCPT 0.1174 01171 0.1237 0.12150.1277 0.127
— CPOP 0.1391 0.1463 0.1541 0.1561 0.1542 0.1657 ——CPOP 0.1271 0.1312 0.1395 0. 1396 0.1469 0.1481
NO. OF TASKS NO. OF TASKS
Figure 6.22 Figure 6.23
PARTIALLYCONSISTENT
5
2 0.15
o /,f—:
w ‘
o 0.1
w
w
% 0.05
5 o
< 55 B85 75 85 95 105

—HTS 0.111 0.1204 0.1276 0.1338 0.1377 0.1365

—__HCPT 0.1072 0.1098 0.1164 0.1159 0.1202 0.1197

—_ CPOP 0.1158 0.1229 0.1308 0.133 0.1386 0.1363
NO. OF TASKS

Figure 6.24

49

6.3 Number of Favorable Cases for 1000 Trials

6.3.1 Low Task Heterogeneity Low Machine Heterogeneity

6.3.1.1 Inconsistent

NO OF NODES METHODS
PROPOSED HCPT CPOP
55 490 46 294
65 573 20 256
75 646 15 223
85 742 7 151
95 786 &) 104
105 844 2 83
Table 6.1
6.3.1.2 Consistent
NO OF NODES METHODS
PROPOSED HCPT CPOP
55 376 66 354
65 468 40 308
75 524 30 274
85 661 15 166
95 739 10 149
105 806 8 89
Table 6.2
6.3.1.3 Partially Consistent
NO OF NODES METHODS
PROPOSED HCPT CPOP
55 410 78 321
65 571 26 259
75 552 25 271
85 722 11 164
95 756 13 130
105 833 10 79

Table 6.3

50

6.3.2 Low Task Heterogeneity High Machine Heterogeneity

6.3.2.1 Inconsistent

NO OF NODES METHODS
PROPOSED HCPT CPOP
55 363 106 485
65 496 36 436
75 453 29 482
85 672 15 282
95 667 23 278
105 735 13 232
Table 6.4
6.3.2.2 Consistent
NO OF NODES METHODS
PROPQSED HCPT CPOP
55 389 117 457
65 477 48 444
75 504 50 415
85 663 24 284
95 682 20 272
105 750 14 213
Table 6.5
6.3.2.3 Partially Consistent
NO OF NODES METHODS
PROPOSED HCPT CPOP
55 379 95 472
65 479 47 433
75 530 34 400
85 661 27 290
95 675 19 286
105 727 9 245

Table 6.6

51

6.3.3 High Task Heterogeneity Low Machine Heterogeneity

6.3.3.1 Inconsistent

NO OF NODES METHODS
PROPOSED HCPT CPOP
55 406 86 473
65 448 40 480
75 464 31 465
85 646 20 312
95 645 22 295
105 711 24 248
Table 6.7
6.3.3.2 Consistent
NO OF NODES METHODS
PROPOSED HCPT CPOP
55 396 112 448
65 458 49 451
75 525 40 405
85 676 16 288
95 690 28 251
105 758 18 198
Table 6.8

6.3.3.3 Partially Consistent

NO OF NODES METHODS
PROPOSED HCPT CPOP
65 393 137 418
65 457 49 457
75 496 56 412
85 659 22 287
95 686 24 270
105 764 18 194

Table 6.9

52

6.3.4 High Task Heterogeneity High Machine Heterogeneity

6.3.4.1 Inconsistent

NO OF NODES METHODS
PROPOSED HCPT CPOP
55 360 108 502
65 451 37 466
75 470 42 4865
85 622 29 330
95 659 29 302
105 659 29 302
Table 6.10
6.3.4.2 Consistent
NO OF NODES METHODS
PROPOSED HCPT CPOP
55 421 104 452
65 490 47 438
75 530 44 411
85 672 29 276
95 691 32 267
105 749 19 215
Table 6.11
6.3.4.3 Partially Consistent
NO OF NODES METHODS
PROPOSED HCPT CPOP
55 414 112 448
65 454 43 471
75 490 50 439
85 656 18 306
95 615 33 325
105 711 16 249

Table 6.12

53

6.4 Conclusion

In this project, we presented the Heterogeneous Task Scheduling (HTS) algorithm
for scheduling tasks onto any number of heterogenecus machines. Based on the
experimental study using a large set (60K) of randomly generated application graphs with
various characteristics, the HTS outperformed the other algorithms in terms of
performance, complexity and cost metrics includes speedup, frequency of best results and
average makespan. Because of its robust performance, low running time, and the ability to give
stable performance over a wide range of graph structures, the HTS algorithm is a viable solution
for the DAG scheduling problem with higher number of nodes, on heterogeneous systems.
Rased on our performance evaluation study, we also observed that the HTS algorithm has
given either better performance and better running time results than existing algorithms or
comparable results with them.

GA

6.5 References

[1] Tarek Hagras, Jan Jane cek, A Simple Scheduling Heuristic for
Heterogeneous Computing Environments,” Proceedings of the Second Intemational

Symposium on Parallel and Distributed Computing (ISPDC, 03),2003.

[2] Haluk Topcuoglu, Salim Hariri, Min-You Wu, ” Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing,” /EEE Trans. on Parallel And
Distributed Systems, Vol. 13, No. 3, pp.260-274,March 2002.

[3] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J.
Robertson, M. Theys, B. Yao, D. Hensgen, and R. Freund. “A comparison study of static
mapping heuristics for a class of meta tasks on heterogeneous computing systems”. In 8th
IEEE Heterogeneous Computing Workshop (HCW'99), pages 15-29, Apr. 1999

[4] G.Sih, and E.Lee, "A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures,” IEEE Trans. In Parallel and
Distributed Systems, Vol.4, pp.75-87, 1993.

[5] A.Radulescu, and A.van Gemund, "Fast and Effective Task Scheduling in
Heterogeneous Systems,” 9th Heterogeneous Computing Workshop, pp.229-238, 2000.

55

