FROGRESS ENROUGH AMOWLIDGE

A QoS SCHEDULING ALGORITHM FOR GRID COMPUTING ENVIRONMENTS
A PROJECT REPORT

Submitted by

R. GURU PRAKASH 71205104011
T. VIGNESH 71205104060

in partition fulfillment for the award of the degree of
BACHELOR OF ENGINEERING
in

COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE
ANNA UNIVERSITY, CHENNAI-600 025
MAY 2009

BONAFIDE CERTIFICATE

Certified that this project report entitied “A QoS Scheduling Algorithm For Grid
Computing Environments” is the bonafide work of R.Guru Prakash and T.Vignesh,
who carried out the research under my supervision. Certified also, that to the best of my
knowledge the work reported herein does not form part of any other project report or
dissertation o the basis of which a degree or award was conferred on an earlier

occasion on this or any other candidate.

S' \j /'i_ "l / 'l
SIGNAT&{?—JJ %GMM

Dr.S.Thangasamy, Phd Mrs.P.Devaki
HEAD OF THE DEPARTMENT Asst.Professor
Department of Department of
Computer Science & Engineering, Computer Science &
Engineering,
Kumaraguru College Of Technology, Kumaraguru College Of
Technology,
Coimbatore-641006. Coimbatore-641006.

The candidate with University Register Nos. 71205104011 and 71205104060
were examined by us in the project viva-voce examination heldon & 8[04(0@,.

- oo o< B

INTERNAL EXAMINER EXTERNAL EXAMINER

DECLARATION

We hereby declare that the project entitled * A QoS Scheduling Algorithm For
Grid Computing Environments” is a record of original work done by us and to the
best of our knowledge, a similar work has not been submitted to Anna University or any

Institutions, for fulfillment of the requirement of the course study.

The report is submitted in partial fulfillment of the requirement for the award of
the Degree of Bachelor of Computer Science and Engineering of Anna University,

Chennai.

Place: Coimbatore

Date : 01%[@4 [031 .

N

(R.Guru Prakash)

\

(T.Vignesh)

'

ACKNOWLEDGEMENT

We extend our sincere thanks to our Vice Principal, Prof. R.Annamalai,M.E.,
Kumaraguru College Of Technology, Coimbatore, for being a constant source of
inspiration and providing us with the necessary facility to work on this project.

We would like to make a special acknowledgement and thanks to Dr. S.
Thangasamy, Ph.D., Dean, Professor and Head of Department of Computer Science
&Engineering, for his support and encouragement throughout the project.

We express deep gratitude and gratefulness to our Guide Mrs.P.Devaki {M.E)
Department of Computer Science &Engineering, for her supervision, enduring patience,
active involvement and guidance.

We would like to convey our honest thanks to all Faculties of the Department for
their enthusiasm and wealth of experience from which we have greatly benefited.

We also thank our friends and family who helped us to complete this project

fruitfully.

Abstract:

The Grid is an emerging technology for enabling resource sharing and coordinated
problem solving in dynamic multi-institutional virtual organizations. The resource
matching problem in the Grid involves assigning resources to tasks in order to satisfy
task requirements and resource policies. The broker schedules the task to the available
computing resources. The broker selects computing resources based on actual task
requirements and a number of criteria identifying the available resources, with the aim
to minimize the turnaround time for the individual application. In this work (QoS
Based Heterogeneous Task scheduling — QBHTS), we propose an aggregation
formula for the QoS parameters. The formula is a unit less combination of the
parameters tcgether with weighting factors. The broker selects the computing resource
by considering the satisfying operator which gives an idea about the task satisfaction.
The Min-Min[4][5] independent task scheduling algorithm is taken up for the
comparison. The Makespan of QBHTS is little higher than the Min- Min algorithm but it
satisfies the task requirements with Quality Of Service. This work is finalized by the

results obtained from simulation and a comparison study.

TABLE OF CONTENTS

CHAPTER --1

1. Overview of Grid Computing

1.1 Introduction

1. 2. Grid Construction

1.3 Grid Components

1.4 Grid Computing Lexicon

1.5 Types of Grids

1.8. Key benefits of the Grid computing model
1.7 Characteristics and Capabilities

1.8 Grid computing Vs Cluster computing
1.9 Distributed vs. Grid Computing

1.10 Grid concepts and components

1.11 Job Scheduling

1.12. 1ssues in Grid Computing

1.13 The Grid Taxonomy and Grid Architecture

10

11

12

14

16

19

20

CHAPTER I

2. Overview of Job Scheduling

2.1 Job Scheduling in Grid Computers
2.2 Classification of Static task-Scheduling algorithms
2.3 Job Scheduling in a Heterogeneous Grid Environment

2.4 Job Scheduling Policy for High Throughput

CHAPTER il

3. Problem Overview

3.1 Problem Definition
3.2 Existing Algorithm

3.3 Proposed Algorithm (QBHTS)

CHAPTER IV

4. Implementation

4.1 Input weight matrix generation

4.2 Graph construction

26

26

27

28

28

29

29

30

31

34

34

37

CHAPTER YV
5. Comparison Graphs

5.1 Makespan Comparison

5.2 Conclusion

5.3 References

38

38

46

47

Abbreviations:

QBHTS
ETC
CCR
QoS
OGSA
GRAM
MDS
GRIS
GIIS
GASS

Quality Based Heterogeneous Task Scheduling
Expected Time to Compute

Communication to Computation Ratio

Quality of Service

Open Grid Service Architecture

Grid Resource Allocation Manager

Monitoring and Directory Service

Grid Resource Information Service

Global Index Information Service

Global Access to Secondary Storage

CHAPTER -1
1. Overview of Grid Computing
1.1 Introduction

1.1.1 Grid Computing

Grid computing is a form of distributed computing that involves coordinating and
sharing computing, application, data, storage, or network resources across dynamic and
geographically dispersed organizations. Grid technologies promise to change the way

organizations tackle complex computational problems.

Grid computing enables the virtualization of distributed computing and data
resources such as processing, network bandwidth and storage capacity to create a single

system image, granting users and applications seamiess access to vast IT capabilities.

Grid computing is based on an open set of standards and protocols — e.g., Open
Grid Services Architecture (OGSA) -— that enable communication across heterogeneous,

geographically dispersed environments
1.1.2 What is Grid Computing?

"A Grid is a collection of distributed computing resources available over a local or
wide area network that appears to an end user or application as one large virtual computing

system." — IBNI

"Conceptually, a grid is quite simple. It is a collection of computing resources that
perform tasks. In its simplest form, a grid appears to users as a large system that provides

a single point of access to powerful distributed resources.” - Sun

"Grid computing is computing as a utility - you do not care where data resides, or
what computer processes your requests. Analogous to the way utilities work, clients
request information or computation and have it delivered - as much as they want, and

whenever they want." - Oracle

Grid computing represents an enabling technology that permits the dynamic
coupling of geographically dispersed resources (machines, networks, data storage,
visualization devices, software and scientific instruments) for performance-oriented
distributed applications in science, engineering, medicine and e-commerce. However, itis a
difficult task to agree on a concrete definition of Grid Computing, as different commercial
and academic implementations use the word for a fairly wide spectrum of architectures. Itis
generally agreed in the literature that there are two important goals which are the driving

force behind grid computing.

The first goal is to build up a computational and networking infrastructure that is
designed to provide pervasive, uniform and reliable access to data, computational and
human resources distributed over wide area environments. So a grid should bring together
a diverse collection of different hardware and software technologies, different corporations,

people and procedures do build a shared pool of resources.

The second and more distant goal behind grid computing is the delivery of
computing power as a utility, like the electrical system. Actually the name ‘Grid’ comes
from an analogy from power grids that supply electricity. When somebody needs electricity,
he plugs in a device to the system which uses as much resources as it needs. The end
user is not concerned with the details like which power plant is supplying the electricity at
that moment or lack of power if he buys a hi-fi system. By analogy the home computer in
the future will consist only Human Computer Interface (HCI) and the computing power will
be provided by the grid. If the user will use a word processor, it will draw 1 MIPS and if he
needs to do an elaborate scientific calculation it will draw 100 MIPS. People will pay as

much as they use, just like the electricity or the water system.

Computational Grid is a collection of distributed, possibly heterogeneous resources

which can be used as an ensemble to execute large-scale applications.
Grid applications include,

o Distributed Supercomputing
o Distributed Supercomputing applications couple multiple computational

resources — supercomputers and/or workstations

« High-Throughput Applications
o Grid used to schedule large numbers of independent or loosely coupled tasks
with the goal of putting unused cycles to work. High-throughput applications
include RSA key cracking, detection of extra-terrestrial communication.
s Data-Intensive Applications
o Focus is on synthesizing new information from large amounts of physically
distributed data. Examples include NILE (distributed system for high energy
physics experiments using data from CLEO), SAR/SRB applications, digital

library applications

1. 2. Grid Construction

There are three main issues that characterize computational grids:
Heterogeneity

A grid involves a multiplicity of resources that are heterogeneous in nature and might

span numerous administrative domains across wide geographical distances.
Scalability

A grid might grow from few resources to millions.
Dynamicity or Adaptability

With so many resources in a Grid, the probability of some resource failing is

naturally high.
The steps necessary to realize a computational grid include:

e The integration of individual sofiware and hardware components into a

combined networked resource.

o The implementation of middleware to provide a transparent view of the

resources available.

o The development of tools that allows management and control of grid

applications and infrastructure.

1.3 Grid Components

1.3.1 Grid Fabric

It comprises all the resources geographically distributed and accessible from
anywhere on the Internet. They could be computers, clusters, storage devices, databases,

and special scientific instruments such as a radio telescope.
1.3.2 Grid Middleware

It offers core services such as remote process management, co-allocation of
resources, storage access, information, security, authentication, and Quality of Service

(QoS) such as resource reservation and trading.

A Grid Middleware Component is a piece of software integrated in one or more grid
middleware distributions which provides a service, implements protocols and algorithms

with the objective of allowing users access to the grid's distributed resources.
1.3.2.1 Categories of Grid Middleware Components

. List of Security Infrastructure Grid Middleware components
. List of Information System Grid Middleware components

. List of Computing Element Grid Middleware components

. List of Job Management Grid Middleware components

. List of Data Management Grid Middleware components

. List of Monitoring Grid Middleware components

. List of Accounting Grid Middleware components

. List of other Grid Middleware components

1.3.3 Grid Development Environments and Tools

brokers that act as user agents that can manage or schedule computations across global

These offer high-level services that allow programmers to develop applications and

resources.

1.3.3.1 Sharing Resources

set of rules called protocols to make it easier to set up grid computing environments. It's
possible to create a grid computing system right now and several already exist. But what's
missing is an agreed-upon approach. That means that two different grid computing systems

may not be compatible with one another, because each is working with a unique set of

Several companies and organizations are working together to create a standardized

protocols and tools.

In general, a grid computing system requires:

At least one computer, usually a server, which handles all the administrative
duties for the system. Many people refer to this kind of computer as a control
node. Other application and Web servers (both physical and virtual) provide
specific services to the system.

A network of computers running special grid computing network software. These
computers act both as a point of interface for the user and as the resources the
system will tap into for different applications. Grid computing systems can either
include several computers of the same make running on the same operating
system (called a homogeneous system) or a hodgepodge of different computers
running on every operating system imaginable (a heterogeneous system). The
network can be anything from a hardwired system where every computer
connects to the system with physical wires to an open system where computers
connect with each other over the Internet.

A collection of computer software called middleware. The purpose of middleware
is to allow different computers to run a process or application across the entire
network of machines. Middleware is the workhorse of the grid computing system.
Without it, communication across the system would be impossible. Like software

in general, there's no single format for middleware.

5

1.3.4 Grid Applications and Portal

They are developed using grid-enabled languages such as HPC++, and message-
passing systems such as MPL Applications, such as parameter simulations and grand-

challenge server they are accessing on a UNIX or NT platform.

1.4 Grid Computing Lexicon

Terms involved in Grid Computing

« Cluster

A group of networked computers sharing the same set of resources.

« Extensible Markup Language (XML)

A computer language that describes other data and is readable by
computers. Control nodes (a node is any device connected to a network that can
transmit, receive and reroute data) rely on XML languages like the Web Services
Description Language (WSDL). The information in these languages tells the

control node how to handle data and applications.

. Integrated Development Environment (IDE)
The tools and facilities computer programmers need to create applications

for a platform .The term for an application testing ground is sandbox.

« Interoperability
The ability for software to operate within completely different environments.
For example, a computer network might include both PCs and
Macintosh computers. Without interoperable software, these computers wouldn't
be able to work together because of their different operating systems and

architecture.

Open standards

A technique of creating publically available standards. Unlike proprietary
standards, which can belong exclusively to a single entity, anyone can adopt and
use an open standard. Applications based on the same open standards are

easier to integrate than ones built on different proprietary standards.

Parallel processing
Using multiple CPUs to solve a single computational problem. This is
closely related to shared computing, which leverages untapped resources on a

network to achieve a task.

Server virtualization

A technique in which a software application divides a single physical
server into multiple exclusive server platforms (the virtual servers). Each virtual
server c¢an run its own operating system independently of the other virtual servers.
The operating systems don't have to be the same system — in other words, a
single machine could have a virtual server acting as a Linux server and another
one running a Windows platform. It works because most of the time, servers aren't
running anywhere close to full capacity. Grid computing systems need lots of
servers to handle various tasks and virtual servers help cut down on hardware

costs.

Service

In grid computing, a service is any software system that allows computers

to interact with one another over a network.

Simple Object Access Protocol (SOAP)

A set of rules for exchanging messages written in XML across a

network. Microsoft is responsible for developing the protocol.

1.5 Types of Grids
1.5.1 National-Grids

This will provide a strategic "computing reserve” and will allow substantial computing
resources to be applied to large problems in times of crisis, such as to plan responses to a
major environmental disaster, earthquake, or terrorist attack. Furthermore, such a Grid will
act as a "national collaborators”, supporting collaborative investigations of complex
scientific and engineering problems, such as global climate change, space station design,

and environmental cleanup.
1.5.2 Private-Grids

Private Grids can be useful in many institutions (hospitals, corporations, smalt firms,
etc). They are characterized by a relatively small scale, central management and common
purpose and, in most cases; they will probably need to integrate low-cost commodity
technologies.

1.5.3 Project-Grids

Project Grids will likely be created to meet the needs of a variety of multi-institutional
research groups and multi-company "virtual teams”, to pursue short- or medium-term
projects (scientific collaborations, engineering projects). A Project Grid will typically be built

ad hoc from shared resources for a limited time, and focus on a specific goal.
1.5.4 Goodwill-Grids

Goodwill Grids are for anyone owning a computer at home who wants to donate
some computer capacity to a good cause.

1.5.5 Peer-to-peer-Grids

Peer-to-peer technology depends on people sharing data between their computers.

The name peer-to-peer suggests that there is no central control.

8

1.5.6 Consumer Grids

In a Consumer Grid, resources are shared on a commercial basis, rather than on the
basis of goodwill or mutual self-interest. A big issue in such Grids will be "resource
marketing”: a user has to find the resources needed to solve his particular problem, and the

supplier must make potential users aware of the resources he has to offer.
1.6. Key benefits of the Grid Computing Model
1.6.1 Consolidation

From servers to applications to whole sites, consolidation is a key benefit of the Grid
computing model, especially in the data center. Consolidation not only minimizes the
infrastructure necessary to meet an enterprise’s business demands, but also reduces costs
by migrating from proprietary or single-use systems to commercial off-the-shelf (COTS)-
based systems that can be shared by multiple applications.

1.6.2 Modular Computing

Modular computing, especially in the data center, minimizes and simplifies the
infrastructure using building blocks that address higher density, lower power, lower
thermals, simplified cabling, and ease of upgrading and management. Blade servers are an

excellent exarnple of modularity.
1.6.3 Virtualization

By creating pools of resources enabled by highly automated management
capabilities, virtualization can enable an IT system administrator to utilize far more of the
resources in the data center, making the resources accessible to more than a single
application sitting on a single physical server.

1.6.4 Utility Computing

Utility Computing allows an infrastructure to be managed analogously to an electric
utility, applying a pay-per-use model, thereby optimizing and balancing the computing

needs of an enterprise, and allowing it to run at maximum efficiency.

1.7 Characteristics and Capabilities

A grid is created by installing software services, or middleware on a set of
networked computers. The middleware provides facilities such as hardware and software

resource location, user authentication, and distributed scheduling of resources and tasks.
1.7.1 Smart Grid

A smart grid delivers electricity from suppliers to consumers using digital technology
to save energy, reduce cost and increase reliability. Such a modernized electricity
network is being promoted by many governments as a way of addressing energy

independence or global warming issues.

Basic functions of Smart Grid are to:

e Be able to heal itseff

+ Motivate consumers to actively participate in operations of the grid

o Resist attack

« Provide higher quality power that will save money wasted from outages
e Accomrodate all generation and storage options

* Enable electricity markets to flourish

o Run more efficiently

1.7.2 Wireless Grid

Wireless grids are wireless computer networks consisting of different types of
electronic devices with the ability to share their resources with any other device in the
network in an ad-hoc manner. A definition of the wireless grid can be given as: "Ad-hoc,

distributed resource-sharing networks between heterogeneous wireless devices”.

10

The following are the key characteristics.

+ No centralized contro}

* Small, low powered devices

¢ Heterogeneous applications and interfaces

o New types of resources like cameras, GPS trackers and sensors

« Dynamic and unstable users / resources

1.8 Grid computing Vs Cluster computing

Cluster computing focuses on platforms consisting of often homogeneous

interconnected nodes in a single administrative domain.

e Clusters often consist of PCs or workstations and relatively fast
networks

¢ Cluster components can be shared or dedicated

» Application focus is on cycle-stealing computations, high-throughput

computations, distributed computations

Web focuses on platforms consisting of any combination of resources and

networks which support naming services, protocols, search engines, etc.

e Web consists of very diverse set of computational, storage,
communication, and other resources shared by an immense number of
users

» Application focus is on access to information, electronic commerce,

etc.
Grid focus on ensembles of distributed heterogeneous resources used as a
platform for high performance computing.

e Some grid resources may be shared; other may be dedicated or

reserved.

o
r
o]

LY N
"‘“ff/\
11 VSRR

O
w~ / ,'\,\2’,“

e Application focus is on high-performance, resource-intensive

applications.

Cluster computing can't truly be characterized as a distributed computing solution;
however, it's useful to understand the relationship of grid computing to cluster computing.
Grids consist of heterogeneous resources. Cluster computing is primarity concerned with
computational resources; grid computing integrates storage, networking, and computation
resources. Clusters usually contain a single type of processor and operating system; grids
can contain machines from different vendors running various operating systems. Grids are
dynamic by their nature. Clusters typically contain a static number of processors and
resources: resources come and go on the grid. Resources are provisioned onto and
removed from the grid on an ongoing basis. Grids are inherently distributed over a local,
metropolitan, or wide-area network. Usually, clusters are physicaily contained in the same
complex in a single location; grids can be (and are) located everywhere. Cluster
interconnects technology delivers extremely low network latency, which can cause
problems if clusters are not close together. Grids offer increased scalability. Physical
proximity and network latency limit the ability of clusters to scale out; due to their dynamic

nature, grids offer the promise of high scalability.
1.9 Distributed vs. Grid Computing

Grid Computing is the latest name for the hoped-for universal distributed computing
facility. The promise of ubiquitous, cheap, and almost infinitely scalable computing Is
alluring, and many descriptions paint a future in which grid computing gives every user and
every application access to “supercomputing on demand®. The Beowulf project
demonstrated a practical application of large numbers of PCs to solve grand challenge,
supercomputing problems. However, the early successes required applications to be highly
scalable and custom tailored for the environment. In the years since, many researchers and
vendors have searched for ways to apply ever larger collections of computers to a wider
variety of computing problems. There are actually two similar trends moving in tandem-
distributed computing and grid computing. Depending on how you look at the market, the

two either overlap, or distributed computing is a subset of grid computing.

12

Grid Computing got its name because it strives for an ideal scenario in which the
CPU cycles and storage of millions of systems across a worldwide network function as a
flexible, readily accessible pool that could be harnessed by anyone who needs it, similar to
the way power companies and their users share the electrical grid. Grid computing can
encompass desktop PCs, but more often than not its focus is on more powerful
workstations, servers, and even mainframes and supercomputers working on problems

involving huge datasets that can run for days.
1.9.1 Capabilities of Grid Computing

When you deploy a grid, it wili be to meet a set of customer requirements. To better
match grid computing capabilities to those requirements, it is useful to keep in mind the
reasons for using grid computing is to exploit underutilized resources. The easiest use of
grid computing is to run an existing application on a different machine. The job in question
could be run on an idle machine elsewhere on the grid. There are at least two prerequisites
for this scenario. First, the application must be executable remotely and without undue
overhead. Second, the remote machine must meet any special hardware, software, or

resource requirements imposed by the application.

1.9.2 Parallel CPU Capacity

The potential for massive parallel CPU capacity is one of the most attractive features
of a grid. In addition to pure scientific needs, such computing power is driving a new
evolution in industries such as the bio-medical field, financial modeling, oil exploration,
motion picture animation, and many others. A CPU intensive grid application can be
thought of as many smaller “sub jobs,” each executing on a different machine in the grid.
To the extent that these sub jobs do not need to communicate with each other, the more

“scalable” the application becomes.

Another important grid computing contribution is to enable and simplify collaboration
among a wider audience. Grid computing takes these capabilities to an even wider
audience, while offering important standards that enable very heterogeneous systems to

work together to form the image of a large virtual computing system offering a variety of

13

virtual resources. The users of the grid can be organized dynamically into a number of
virtual organizations, each with different policy requirements. Sharing starts with data in the
form of files or databases. A “data grid” can expand data capabilities in several ways. First,
files or databases can seamlessly span many systems and thus have larger capacities than
on any single system. Such spanning can improve data transfer rates through the use of
striping techniques. Data can be duplicated throughout the grid to serve as a backup and
can be hosted on or near the machines most likely to need the data, in conjunction with
advanced scheduling techniques. Sharing is not limited to files, but also includes many
other resources, such as equipment, software, services, licenses, and others. These
resources are ‘“virtualized” to give them a more uniform interoperability among

heterogeneous grid participants.
1.10 Grid Concepts and Components

Types of resources: A grid is a collection of machines, sometimes referred to as

n oW » i n o

“nodes,” “resources,” “members”, “donors,” “clients,” “hosts,” “engines,” and many other

such terms. They all contribute any combination of resources to the grid as a whole.
1.10.1 Computation

The most common resource is computing cycles provided by the processors of the
machines on the grid. The processors can vary in speed, architecture, software platform,
and other associated factors, such as memory, storage, and connectivity. There are three
primary ways to exploit the computation resources of a grid. The first and simplest is to use
it to run an existing application on an available machine on the grid rather than locally. The
second is to use an application designed to split its work in such a way that the separate
parts can execute in parallel on different processors. The third is to run an application that

needs to be executed many times on many different machines in the grid.
1.10.2 Communications

The rapid growth in communication capacity among machines today makes grid
computing practical, compared to the limited bandwidth available when distributed
computing was first emerging. Therefore, it should not be a surprise that another important

resource of a grid is data communication capacity. This includes communications within the

14

grid and external to the grid. Communications within the grid are important for sending jobs
and their required data to points within the grid. Some jobs require a large amount of data
to be processed and it may not always reside on the machine running the job. The
bandwidth available for such communications can often be a critical resource that can limit

utilization of the grid.
1.10.3 Intragrid to Intergrid

There have been attempts to formulate a precise definition for what a “grid” is. In
fact, the concept of grid computing is still evolving and most attempts to define it precisely
end up excluding implementations that many would consider to be grids. Grids can be built
in all sizes, ranging from just a few machines in a department to groups of machines

organized as a hierarchy spanning the world.

Some examples in this range of grid system topologies:
1.10.4 A simple grid

The simplest grid consists of just a few machines, all of the same hardware
architecture and same operating system, connected on a local network. This kind of grid
uses homogeneous systems so there are fewer considerations and may be used just for
experimenting with grid software. The machines are usually in one department of an
organization, and their use as a grid may not require any special policies or security
concerns. Because the machines have the same architecture and operating system,
choosing application software for these machines is usually simple. Some people would

call this a “cluster” implementation rather than a “grid.”

The next progression would be to include heterogeneous machines. In this
configuration, more types of resources are available. The grid system is likely to include
some scheduling components. File sharing may still be accomplished using networked file
systems. Machines participating in the grid may include ones from multiple departments but

within the same organization. Such a grid is aiso referred to as an “Intragrid.”

15

1.11 Job Scheduling

The job scheduling system is responsible to select best suitable machines in a grid
for user jobs. The management and scheduling system generates job schedules for each
machine in the grid by taking static restrictions and dynamic parameters of jobs and

machines into consideration.
Job Scheduling in Grids: In a Grid system

1. It arranges for higher utilization Complex as many machines with local policies

involved.
2. Resources are fixed Resources may join or leave randomly.

3. One job scheduler or two job schedulers.
1.11.1 Types of Job Scheduling Infrastructures
Centralized

Single job scheduler on one instance, all information collected here.
Hierarchical

Two job schedulers, one at global and other at local level.
Decentralized

No central instance, distributed schedulers interact and commit resources.
1.11.1.1 Centralized Job Scheduling
Multi Site Scheduling

A job can be executed on more than one machine in parallel. As job-parts are
running on different machines, latency is important, different job-parts are started

synchronously on all machines.

16

Single Site Scheduling

A job is executed on a single parallel machine. This means that system boundaries

are not crossed. Efficient as communication inside a machine is fast.
Centralized Job Scheduling — Advantages
Efficiency

The scheduler is conceptually able to produce very efficient schedules, because the
central instance has all necessary information on the available resources. Centralization is
useful e.g. at a computing center, where ali resources are used under the same objective.

Due to this fact even communication bottlenecks can be ignored.
1.11.1.2 Hierarchical Job Scheduling

Jobs are submitted to the central scheduler; in turn jobs are submitted to low level
machines. In addition, every machine uses a local job Scheduler. Basically centralized as

there is one global instance .
Main advantage

Different policies can be used for global and local scheduling. Meta-

scheduler redirects submitted jobs to local schedulers for resources based on some policy.
1.11.1.3 Decentralized Scheduling

No central instance is responsible. Distributed schedulers interact with each other
and decide the allocations for each job to be performed. Information about state of all
systems is not collected at a single point. Local job schedulers may have different but
compatible scheduling policies.

1.11.1.3.1 Advantages of Decentralized Scheduling

¢ No cornmunication bottleneck.
o Scalable to greater extent.

¢ Failure of single component doesn't affect whole metasystem.

17

e Better fault tolerance and reliability than centralized systems which have no back-
ups.
« Site-autonomy for scheduling can be achieved easily as the local schedulers can be

specialized on the needs of the resource provider or the resource itself.

1.11.1.3.2 Disadvantages of Decentralized Scheduling

e The lack of a global scheduler, which knows all job and system information at every
time instant, usually leads to sub-optimal schedules.

e The support for multi-site applications is rather difficult to achieve.

e As all parts of a parallel program must be active at the same time, the different
schedulers must synchronize the jobs and guarantee simultaneous execution
Decentralized Scheduling with Direct Communication

e The local schedulers can send/receive jobs fo/ffrom other schedulers directly. Either
schedulers have a list of remote schedulers they can contact or there is a directory
that provides information of other systems. If a job start is not possible on the local
machine immediately, the local scheduler is searching for an alternative machine.

e If a system has been found, where an immediate start is possible, the job and all its
data is transferred to the other machine/scheduler.

e It can be parameterized which jobs are forwarded to another machine, this affects
the lozal queue. This can aiso affect the performance of some scheduling

algorithms.
1.11.1.3.3 Decentralization via Central Job Pool

Jobs that cannot be executed immediately are sent to a central job pool instead of a
remote machine, the local schedulers can pick suitable jobs for their schedules. Jobs can
be pushed into or pulled out of the pool. A policy is required that all jobs from the pool are

executed at some time

18

1.11.1.3.4 Scheduling Algorithms

First-Come-First-Serve

The scheduler starts the jobs in the order of their submission. If not enough

resources are currently available, the scheduler waits until the job can be started.
Random

The next job to be scheduled is randomly selected among all jobs that are

submitted.
Backfill

Special FCFS algorithms that prevent unnecessary idle time caused by wide jobs.

1.12. Issues in Grid Computing

A grid is a distributed and heterogeneous environment. Both of these issues require

are the source of challenging design problems.

Being heterogeneous inherently contains the problem of managing multiple
technologies and administrative domains. The computers that participate in a grid may
have different hardware configurations, operating systems and software configurations.
This makes it necessary to have right management tools for finding a suitable resource for

the task and controlling the execution and data management.

A grid may also be distributed over a number of administrative domains. Two or
more institutions may decide to contribute their resources to a grid. In such cases, security
is a main issue. The users who submit their tasks and their data to the grid wish to make
sure that their programs and data is not stolen or altered by the computer in which it is
running. Of course the problem is reciprocal. The computer administrators also have ic

make sure that harmful programs do not arrive over the grid.

19

Another important issue is scheduling. Scheduling a task to the correct resource
requires considerable effort. The picture is further complicated when we consider the need

to access the data.

1.13 The Grid Taxonomy and Grid Architecture

The grids are categorized as departmental, enterprise and global grids. Although this
is not a formal taxonomy all three levels present a different problem in the areas of data

transfer and administration.

A departmental grid is putting together the resources of a department or small
institution together. This means that usually the computers are on the same local high
speed network and under one administrative domain. So the only problem remains is the
correct administration of this single domain to allow users to have access to most suitable

resource from a heterogeneous resource pool.

An enterprise grid on the other hand, is usually distributed over many geographical
locations. At each location a departmental grid may be running but between them usually
there is a lower bandwidth communication line, making transfer of large amounts of data
not very feasible. In such grids, an efficient data transfer strategy is very important.
However such grids usually belong to a single organization and usually run by a single
administration. This means that some long term static planning can be made and some

administrative procedures may be enforced.

A global grid, on the other hand, is a collection of enterprise grids. It is a pool of
resources that are distributed globally and usually under different administrative domains.
The diversity of administrative domains brings the problems of security and management. It
is important that the system administrators can monitor and manage the job requests
coming over the grid, so that nobody can execute a harmful code. Of course, the users who
submit their jobs to the grid also have to make sure that their programs and data is not

misused by the owners of the computer that the program is executing.

20

1.13.1 Applications Suitable for Grid Computing

As a general rule, applications that work well on clusters are also suitable for grids.
Such applications can be partitioned to be executed on several processors and the results
of these separate processes yield to the desired output. But such jobs are rare and most of

the applications do not fall into this category.

Also the heterogeneous structure of grids do not allow for a fine grained parallelism.
Therefore large batch jobs and long running processes that require minimum inter-process
communication and synchronization are better suitable for grids. These jobs can be
scheduled to processors that have low workloads making use of the off-peak cycles

available.

Another important aspect is the data access. The smaller the size of data needed by
the application is the better one. Because the applications that need large amount of data
creates either a scheduling problem by forcing the application run on a processor closer to
the data or requires movement of large chunks of data across the network. It is best to

avoid both cases.

The interactive jobs are not suitable for grids. Because it put pressure on the
scheduler to run the job when the user is available, which is usually means immediately.
However in a grid environment, the networks quality of service cannot be trusted. Non-
interactive jobs on the other hand are easier to schedule as they can wait for the off-peak

periods of a processor within the grid.

21

1.13.2 Grid Management

One of the major problems in grid computing is to be able to schedule jobs and data
to a suitable resource. As a grid may contain many different hardware and software
configurations, a standard has to be agreed upon. The most widely used product for
managing a grid is called Globus Toolkit. Supported by many large vendors, Globus offers

all the functionality needed toc manage a grid system.

Grid Resource Allocation Manager (GRAM) ailows users to select a specific
resource in the grid to run their jobs on. It has a client side module that allows user 10
schedule jobs at a specific server in the grid and a gatekeeper module that is running in
each server to schedule arriving jobs. GRAM makes use of Monitoring and Directory
Service (MDS). MDS manages a directory of local and global resources. Grid Resource
Information Service (GRIS) collects local resource information. Global Index Information
Service (GIIS) collects GRIS information from ail servers and provides a centralized
resource directory for the whole grid. The movement of data in the grid is managed by
Global Access to Secondary Storage (GASS).

Apart from these basic services, Globus provides security functions and packaging
tools to deploy software in a format that would work in any server. Globus is preferred by
many grid implementations and supported by vendors like IBM. The reason behind the
success of Globus is the open source approach and use of standards. For example,
Globus uses SSL for secure data transfer, Light-Weighted Directory Access Protocol
(LDAP) for directory information. By using these standard protocols it ensures that it is

compatible with many operation environments.

1.13.3 Hardware Trends — Blade Servers

Grid computing and Clusters are two important architectural trends that demand a
different approach from hardware vendors. Clusters are tightly coupled and homogenous
structures. Grids on the other hand are lightly coupled and heterogeneous. However they
both require a large number of servers to be at their disposal to deliver high performance
To deliver this in a feasible way, hardware vendors developed the concept of Blade
Servers. A blade server is a server with processor, memory and secondary storage packec

in a very smail volume.

22

One of the main problems in operating a large number of machines is the space,
power consurnption and heat considerations. In order to answer these problems many

vendors are now delivering blade computers.

As each blade is a server in itself, each may have their own operating systems,
security privileges, data sets. Also it is possible to populate the slots in a chassis with blade
servers of different capacity to create a heterogeneous server where scheduler may select
the best server for the task at hand. This structure makes it possible that older server can
still contribute in the blade form for low demand works protecting the investment made on
them. With rack based servers, due to maintenance costs and physical limitations, older

servers are usually phased out while they could still generate productive work.
1.13.4 Limitations of Grid Computing

Not every application is suitable or enabled for running on a grid. Some kinds of
applications simply cannot be parallelized. For others, it can take a large amount of work to
modify them to achieve faster throughput. The configuration of a grid can greatly affect the

performance, reliability, and security of an organization's computing infrastructure.

To summarize we have shown how Grid Computing is becoming the preferred
platform for next generation e- Science experiments that require Management of massive
distributed data. It can be observed that while there have been a lot of development grid
technologies for e-Science, there is still more to be achieved. This would require
development of richer services and applications on top of already existing ones so that Grid
Computing can move beyond Grid Computing can move beyond scientific applications and

into mainstream IT infrastructure.

23

1.13.5 Grid Architecture

GRID Protocol Architecture

Application

Collective

Resource

Connectivity

Fabric

Figure 1.1 A layered grid architecture and its relationship to the Internet protocol

Figure 1.1 lllustrates the component layers of the architecture with specific capabilities at
each layer. Each layer shares the behavior of the component layers. Each of these

component layers is compared with their corresponding Internet protocol Layers, for

Application

Transport

Internet

Link

internet Protocol Architecture

architecture.

purposes of providing more clarity in their capabilities.

1.13.5.1 Fabric Layer: Interface to Local Resources

This defines the resources that can be shared. This could include computational
resources, data storage, networks, catalogs and other system resources. These resources

can be physical resources or logical resources by nature. Example for logical resources are

distributed file systems, computer clusters etc.,

24

Basic capabilities are

1. Provide an “inquiry” mechanism whereby it allows for the discovery against its own

resource capabilities, structure and state of operations.

2. Provide appropriate “ resource management” capabilities to control the QoS the grid

solution promises or has been contracted to deliver.
1.13.5.2 Connectivity Layer: Manages Communications

This defines the core communication and authentication protocol required for grid-
specific networking services transactions. It includes networking transport, routing and
naming. Characteristics to be considered are Single sign on, Delegation, User-Based trust

relationships and Data Security.
1.13.5.3 Resource Layer: Sharing of a Single Resource

This utilizes the communication and security protocol defined by the networking
communications layer, to control the secure negotiation, initiation, monitoring, metering,

accounting, and payment involving the sharing of operations across individual resources.
1.13.5.4 The Collective Layer: Coordinating Multiple Resources

While the Resource layer manages an individual resource, the Collective fayer is
responsible for all global resource management and interaction with a coliection of
resources. Collective services are Discovery Services, Co allocation, Scheduling and

Brokering Services, Monitoring and Diagnostic Services, Data Replication Services etc.,
1.13.5.5 Application Layer: User- Defined Grid Applications

These are user applications, which are constructed by utilizing the services defined
at each lower layer. Such an application can directly access the resource, or can access

the resource through the Collective service interface APls (Application Provider interface)

25

CHAPTERII
2. Overview of Job Scheduling

2.1 Job Scheduling in Grid Computers

Distributed computing utilizes a network of many computers, each accomplishing a
portion of an overall task, to achieve a computational result much more quickly than with a

single computer.

Distributed computing can be defined in many different ways. In distributed
computing the task is split up into smaller chunks and performed by the many computers
owned by the general public. Distributed computing is usually known as parallel computing.
The key issue here is that we are using computing power that we don't own. These

computers are owned and controlled by other people, who you would not necessarily trust.

Grid computing is a form of distributed computing that coordinates and shares
computation, application, and data storage or network resources across dynamic and
geographically dispersed organizations. One primary issue associated with the efficient
utilization of heterogeneous resources in a grid id grid scheduling. Grid scheduling is a
critical design issue of grid computing. It is a challenge because the capability and
availability of resources vary dynamically. The complexity of scheduling problem increases

with the size of the grid and becomes difficult to solve effectively.

Grid scheduling requires a series of challenging tasks. These include, searching for
resources in the collection of geographically distributed heterogeneous computing systems
and making scheduling decisions, taking into consideration quality of service. Grid
scheduler does not have full control over the grid. The grid scheduler can not assume that it

has a global view of the grid.

26

2 2 Classification of Static Task-Scheduling algorithms

Static Task-Scheduling Algorithms

Heuristic Based

Guided Random Search Based

Genetic algorithms
Simulated Annealing
Local SearchTechnique

List Scheduling Heuristics

Modified Critical Path
Dynamic Critical Path
Dynamic Level Scheduling
Mapping Heuristic

Task Duplication Heuristics

Clustering Heuristics

Mobility Directed
Dominant Sequence Clustering
Linear Clustering

Critical path Fast Duplication

Duplication Scheduling Heuristic
Bottom-up Top-Down Heuristic

Duplication First and Reduction Next

Figure 2.1 Classification of Static task-Scheduling algorithms

27

2.3. Job Scheduling in a Heterogeneous Grid Environment

Computational grids have the potential for solving large-scale scientific problems
using heterogeneous and geographically distributed resources. However, a number of
major technical hurdles must be overcome before this potential can be realized. One
problem that is critical to effective utilization of computational grids is the efficient

scheduling of jobs.

One of the primary goals of grid computing is to share access to geographically
distributed heterogeneous resources in a fransparent manner. There will be many benefits
when this goal is realized, including the ability to execute applications whose computational
requirements exceed local resources and the reduction of job turnaround time through
workload balancing across multiple computing facilities. The development of computational
grids and the associated middleware has therefore been actively pursued in recent years.
However, many major technical (and political) hurdles stand in the way of realizing these
benefits. Although numerous researchers have proposed scheduling algorithms for parallel
architectures, the problem of scheduling jobs in a heterogeneous grid environment is

fundamentally different.
2.4 Job Scheduling Policy for High Throughput

The grawing computational power requirements of grand
challenge applications has promoted
the need for merging high throughput computing and grid Computing principles to harness
computational resources distributed across multiple organizations.

First of all there is a lot of activity to bring standards to the field. Globus is a big step
forward towards the formation of very large global grid systems.

Secondly, the hardware vendors are rushing to deliver the right kind of hardware for
this new architecture. Blade servers will make it possible in the future that whenever we
have a job, there will be an available server somewhere to execute it. Software vendors like

Oracle are also delivering products that take advantage of these new architectures.

28

CHAPTER 1l
3. Problem Overview

3.1 Problem Definition

The resource matching problem in the Grid involves assigning M resources to N
tasks where M<N, in order to satisfy task requirements and resource policies. The broker
selects computing resources based on actual task requirements and a number of criteria
identifying the available resources, with the aim to minimize the turnaround time for the
individual application. The problem s to match the resources for the required tasks in grid
environment. The Resources are scheduled in Batch Mode, where the jobs and resources

are collected and mapped at prescheduled time.
Following mode! explains the problem:
1. The problem input
a. A set of resources with their capabilities
b. A set of tasks with their requirements
2. The problem output: Matching the best resource for each task
3. The problem purpose: Minimizing turnaround time
We can consider:

n: the task number

m: the resource number

e k: the number of QoS parameters

g™ :Resource Capability

o ' task requirement

We define the vector g™° which gives the capabilities of a resource as follows.
qreg — {lqi“es ﬁqges q;(:s x} (1\)

!
N

29

The requirements of a resource are given by the vector with QoS parameters and weights

for the parameters are given in the following equations.
ask rask task rask ‘
q - <f]]) Qg s---3 q,‘; J,"} (2\)

W=<w wWo... W 5= wy <= Z W, = I (3)

We introduce satisfy operator m. Ri m Tj means that the resource Ri can satisfy the task Tj
and guarantees QoS parameters.

i Res;

RimTi= (O L —xw)2 D)

FASK 5

=g
3.2 Existing Algorithm

The existing algorithm that we have taken for our comparison is Min-Min
Algorithm[4][5].

The following steps are involved in the algorithm.
e The Expected Time to Compute (ETC) matrix is taken as input matrix
o First 16 tasks are taken and repeat the following for 512 tasks.

e First row minimum execution time of the task1 is selected and assigned to the
respective machine if it is free at that time. If the respective machine is not free, wait

for the machine to schedule.

e Then the minimum execution time in the next row is selected and checked whether

the corresponding machine is already allocated or not.

e |f allocated then the next minimum execution time is selected from the row and
check for the availability of the respective machine. If not available, proceed with the

next minimum until the task is assigned to the idle machine.

o This process is repeated until all the machines are allocated to some tasks.

30

3.3 Proposed Algorithm

QoS Based Hetrogeneous Task Scheduling (QBHTS)

There are three matrices, one is Ty Matrix given by (5) for task requirements,

another is W, matrix given by (6) for weight of requirements, and the other is Rym matrix

given by (7) for resource capabilities.

These matrices are shown in below.

[rask rask rasi
@t ogyt o g
task. task FasE,
g, ° 4, - - 4y 7
T. =" T B G
1ask rask ask,
¢ " g " o qy
3 ﬁi'askﬁ_ 3 v;askl Y ;as;:l]
] }Vlmskz “;;askl o ,”v;’ask:
Fpﬂ*k - _ - . . (6)
Jasi, Jdask, | 1055y
_11’1 11’2 T k]
T res, res, res, |
41 d gy
rgs, FE5n 7es,,
L S S S
R}r’“m - - - - . (’j
res. res, res,
9 4 Ay

31

We define Wd T« matrix as below.

BN ‘M/ 1 :M/ AL Vi /«/
sk sk iazk
g, > / dr

IGER oAt e -" 4 ‘ QY

wieh / 1,1»3“7 Wy / (8]
— tasks h tsi- tazks
WaT . = /Q) ¢, - Sy
14) 4 e/ ML) - - u:k) / I
“..c'.k 11.?" 1 :’ a / i

ll - Fge g T 4 i M

e e T

So, equation (4) is based on multiplying WdTq« matrix to Rem matrix and the result is Vpm
matrix given by (9) and (10).

*:*m ".*m ()
e 7w ¥ s, & 5 f‘
L RIS B “t’ rgton oL < | ¥ 4:,-., (10)
| Ttk i P Sarrrull ¥ 1 s :;wl i
= K N g; w4
PR L { Tk g1 ek ‘.{
1 W W [£
; E R) Ti) * sy X 1] .
poo|2iErtet | Mt 2
= g ! Ele
& F Gtk ko, sk N £
H g | S S
| s { iy ik, Ly ik, W :
[N T - '..q_, LY q i

Vi,j shows the value of (4) for assigning resource j to task i. If Vi,j = 1, the resource j exactly
will provide the task i requirements. If Vij < 1, the resource j will be weaker than task i
requirements. If Vij > 1, the resource j will be stronger than task i requirements. We define

MAX unary operator that it gets one n*m matrix and produces n*3 matrix.

32

Algorithm

The Vn*m matrix is generated using the following steps

The Task Requirement T« matrix, Resource Rim Matrix and weight Wo-x matrix are

generated.

The WdT,.« matrix is calculated by dividing the weight Wy matrix and resource

Rk*m matrix.

The V., matrix is generated by multiplying the Task requirement matrix with the
WdTn*k matrix.

The Max M3 matrix is generated using the following steps

In Va*m matrix first 16 tasks are taken and repeat the following for 512 tasks.

Maximum requirement time for the first row is taken and allocated to the respective

machina.

Then the maximum requirement in the next row is selected and checked whether the

corresponding machine is already allocated or not.

If allocated then the next maximum requirement is selected from the same row and
check for the availability of the respective machine. If not available, proceed with the

next maximum until the task is assigned to the idle machine.

This process is repeated unti all the machines are allocated to some tasks.

33

CHAPTER IV
4. Implementation
4.1 Input Weight Matrix Generation

4.1.1 Simulation Model

Mixed-machine heterogeneous computing (HC) environments utilize a distributed
suite of different high-performance machines, interconnected with high-speed links to
perform different computationally intensive applications that have diverse computational
requirements. The general problem of mapping (i.e., matching and scheduling) tasks to
machines in an HC suite has been shown to be NP-complete. Heuristics developed to
perform this mapping function are often difficult to compare because of different underlying
assumptions in the original studies of each heuristic. To facilitate these comparisons,
certain simplifying assumptions were made. For these studies, let a meta-task be defined
as a collection of independent tasks with no (data dependencies) (a given task, however,
may have subtasks and dependencies among the subtasks). For this case study, it is
assumed that static: (i.e., off-line or predictive) mapping of meta-tasks is being performed.
The goal of this mapping is to minimize the total execution time of the meta-task. It is also
assumed that each machine executes a single task at a time (i.e., no multi-tasking), in the
order in which the tasks are assigned. The size of the Meta task (i.e., the number of tasks
to execute), |, and the number of machines in the HC environment, n are static and known

a priori.

The eleven static mapping heuristics were evaluated using simulated execution
times for a Heterogeneous Computing (HC) environment. Because these are static
heuristics, it is assumed that an accurate estimate of the expected execution time for an
each task on each machine is known prior to execution and contained within an Expected
Time to Compute (ETC) matrix. One row of the ETC matrix contains the estimated
execution times for a given task on each machine. Similarly, one of the ETC matrixes
consists of the estimated execution times of a given machine for each task in the meta-
task. Thus, for an arbitrary task t, and an arbitrary machine m,. ETC (t;, m,) is the estimated

execution time of t;on m,.

34

For cases when inter-machine communications are required. ETC (i, mj) could be
assumed to include the time to move the executables and data associated with task t, from
their known source to machine m,. For cases when it is impossible to execute task t, on
machine mj (e.g., if specialized hardware is needed), the value of ETC (t; m)} can be set to
infinity, or some other arbitrary value. For this study , it is assumed that there are inter-task
communication each task it can execute on each machine, and estimated expected
execution time of each task on each machine following method are known. The assumption
that these estimated expected execution times are known is commonly made when

studying mapping heuristics for HC systems.

For the simulation studies, characteristics of the ETC matrices were varied in an
attempt to represent a range of possible HC environments. The ETC matrices used were
generated using the following method. Initially, a t x 1 baseline column vector, B, of floating
point values is created. Let $, be the upper-bound of the range of possible values within the
baseline vector. The baseline column vector is generated by repeatedly selecting a uniform
random number, xp' € [1, $], and letting B(i) = Xy for 0< | < t. Next, the rows of the ETC
matrix are created constructed. Each element ETC (t, myin row | of the ETC matrix is
created by taking the baseline value, B(i), and multiplying it by a uniform random number,
%1 which has an upper-bound of $r. This new random number x;” € [1, $r], is called a row
multiplier. One row requires m different row multipliers,0sj<m. Each row | of the ETC matrix
can then be described as ETC(t,m;) = B(i) X x for 0 < j < m. (The baseline column itself
does not appear in the final ETC matrix). This process is repeated for each row until the t x
m ETC matrix is full. Therefore, any given value in the ETC matrix is within the range

[1,9 x $r].

To evaluate the heuristics for different mapping scenarios, the characteristics of the
ETC matrix were varied based on several different methods from [Arm97]. The amount of
variance among the execution times of tasks in the meta-task for a given machine is
defined as task heterogeneity. Task heterogeneity was varied by changing the upper-bound
of the random numbers within the baseline column vector. High task heterogeneity was
represented by $, = 3000 and low task heterogeneity used $ = 100. Machine
heterogeneity represents the variation that is possible among the execution times for a

given task across all the machines. Machine heterogeneity was varied by changing the

35

upper-bound of the random numbers used to multiply the baseline values. High machine
heterogeneity values were generated using $; = 10. These heterogenecus ranges are
based on one type of expected environment for MSHN. The ranges were chosen to reflect
the fact that in real situations there is more variability across execution times for different
tasks on a given machine than the execution time for a single task across different

machines.

To further vary the ETC matrix in an attempt to capture more aspects of realistic
mapping situations. Different ETC matrix consistencies were used. An ETC matrix is said to
be consistent if whenever a machine m; executes any task {; faster than machine my, then
machine m; executes all the task faster than my . Consistent matrices were generated by
sorting each row of the ETC matrix independently, with machine my always being the
fastest and machine my.1) the slowest. In contrast: inconsistent matrices characterize the
situation where machine m j may be faster than the machine my for some tasks, may be
slower for others. These matrices are left in the unordered, random state in which they
were generated (i.e., no consistence is enforced). Partially-consistent matrices are
inconsistent matrices that include a consistent sub matrix. For the partially-consistent
matrices used here , the row elements in column positions {0,2,4,...} of row | are extracted
sorted, and replaced in order , while the row elements in column positions {1,3,5...} remain
unordered (i.e., the even columns are consistent and odd columns are in general

inconsistent).

While it was necessary to select some specific parameter values for t, m , and the
ETC entries to allow implementation of a situation , the techniques presented here are
compietely general. Therefore, if these parameters values do not apply to a specific
situation of interest, researchers may substitute in their own values and the evaluation

software of this study will apply.

36

4.1.2 ETC Matrix Generation Algorithm

Step 1:

Construct t x 1 baseline column vector B, by repeatedly selecting uniform
random number x € [1,b} where b is upper bound,

Step 2:

Construct Row Multiplier by repeatedly selecting uniform random number y €
[1.r), where ris upper bound,

Step 3:

Construct ETC matrix by multiplying Baseline column vector and Row
multiplier

4.1.3 Sample ETC Matrix

Task 1 0.24243058 1.2949038 2.0064628 2.4523716 2.971872
3.4139936 3.903617 4.9719954 5.6944223 6.371052
6.597259 6.721537 7.0242734 7.8943787 8.861938
10.836024

4.2 Graph Construction

The following steps are involved in constructing the graphs. The My« matrix is
calculated for both Min-Min algorithm and QoS based Hetrogeneous Task Scheduling
(QBHTS) algorithm.

o The execution time for each and every task in their allotted machine is taken from

the input ETC matrix.
* The total time of completion for each machine is calculated.

e Then the Makespan for Min-Min algorithm and QoS based Hetrogeneous Task
Scheduling (QBHTS) algorithm are calculated.

37

CHAPTER V

5. Comparison Graphs

5.1 Makespan Comparison

5.1.1 Low Task Heterogeneity Low Machine Heterogeneity

Consistent

4
3.5
3 J
g
8 25 A
]
= 15 A
1
0.5 -
0
100 200 300 400 500
——QBHTS 0.48 1.23 2.04 2.45 3.48
Min-Min ; 0.37 0.89 ‘ 0.95 1.53 1.88 !
No.of Tasks
Figure 5.1.1
Inconsistent
35
3 4
25 A
c
g 2
"]
g
= 15 A
=
1 4
0.5 -
0 .
100 200 300 400 500 |
——QBHTS 0.43 112 1.65 2.47 3.31 '
Min-Min 017 063 1.1 13 195
No.ofTa§ks
Figure 5.1.2

Partially Consistent

35
3 4
25 1
5
o 2 4
2
é 15 1
1 N
05 A
0
100 200 300 400 500
e QBETS 0.46 1.03 1.99 2.48 3.13
Min-Min 04 0.67 1.09 1.32 1.81
No.of Tasks
Figure 5.1.3

39

5.1.2 Low Task Heterogeneity High Machine Heterogeneity

Consistent
40 —
35 A
30
g 25
2 20
-
= 15
10 A
5 -
0)
100 200 300 : 400 500
—AQBHTS 5.51 9.52 20.05 25.45 34.51
Min-Min 3.58 7.23 10.86 15.99 18.29
No.of Tasks
Figure 5.2.1
Inconsistent
30 i e
25 A
e 20
o
o
a 15 -
-
[s+]
= 10
5 4
¢
100 200 300) 400 500
—QBHTS 572 15.4 17.47 25.4 : 26.18
Min-Mir 3.49 6.95 11.28 15.21 i 19.04
No.of Tasks
Figure 5.2.2

Partially Consistent

35
30 A
25 A
&
o 20
@
- 15
=
10
5 g
0 T T
i 100 I 200 300 : 400 500
—QBHTS 5.46 \ 9.45 16.81 28.55 32.16
Min-Min 2.66 | 8.71 11.71 : 15.31 18.17
No.of Tasks
Figure 5.2.3

41

5.1.3 High Task Heterogeneity Low Machine Heterogeneity

42

Consistent
40
35
30 A
c 25 -
[=3
S 20 -
o
(1]
= 15 A
10 5
5 <4
0
100 200 300 400 500
l——QBHTS 4.21 10.53 19.36 2891 34.09 L
\ Min-Min 29 7.81 1.8 14.76 19.17
No.of Tasks
Figure 5.3.1
Inconsistent
30 —
25 A
c 20 4
[:-]
3
g 15 A
£
10 4
5 .
0 T
100 200 300 400 500
—— QBHTS 5.23 11.97 16.07 20.54 2817 i
— Min-Min 4.24 7.05 9.96 13.05 19.05 ﬂ
No.of Tasks
Figure 5.3.2

Partially Consistent

40
35
30
< 28
=3
g 20
»
= 1%
10
5
0 -]
100 200 : 300 ! 400 1 500
—— QBHTS 7.43 9.38 17.7 2593 | 3359
Min-Min 3.62 7.51 1049 | 1429 17.12
No.of Tasks
Figure 5.3.3

43

5.1.4 HighTask Heterogeneity High Machine Heterogeneity

44

Consistent
350
300 4
250 A
=
8 200 -
@
<>
] 150
=
100 4
50 A
Q e
100 200 300 400 500
—AQEHTS 77.73 93.7 186.08 253.13 305.58 *‘
— Min-Min 42.31 77.65 137.62 145.08 199.59 !
No. of tasks
Figure 5.4.1
Inconsistent
300 -
250
c 200
o
o
2 150
-
[
= 100
50
0 ‘
100 200 300 400 500 i
——QBHTS 57.82 92.33 155.26 236.44 266.47 |
——Min-Min 33.88 82.59 108.46 156.38 201.48 |
No.of Tasks
Figure 5.4.2

Partially Consistent

350
300 1
250
]
o 200
&
{
- 150 -
5
100 1
80 A
¢
100 200 300 400 500
——QBHTS | 38.03 916 170.75 233.72 297 57
Min-Min 23.44 70.43 115.25 165.06 198.36
No.of Tasks
Figure 5.4.3

45

5.2 Conclusion

In this work, we have studied the QoS Based scheduling algorithm which shows
better resource matching and requirement satisfaction. Even though the Makespan is
higher in our work, the graph shows that the increase in Makespan is not that much for
all the combinations of Task and machine heterogeneity. For further work, this may be

improved to decrease the Makespan by considering the sufferage values {7].

5.3 References

[1] |. Foster and C. Kesselman. The GRID: Blueprint for a New Compating
Infrastructure, 2nd Edition.Morgan- Kaufmann, San Mateo, CA, 2004.

[2] M. Analoui and L. Mohammad Khanli “Grid JQA: A QoS Guided Scheduling
Algorithm for Grid Computing™, Proceedings of Sixth International Symposium on Parallel and
distributed Systems, IEEE 2007.

[31 Yin-Yun Shen, Xiao-Ping Li,Qian Wang,Ying-Chun Yuan. A Hybrid QoS- B
ased Algorithm for Independent Tasks Scheduling In Grid. Supported by National
Natural Science Foundation Of China under Grants, IEEE 2006.)

[4] Buyya R, Abramson D, Giddy J, Stockinger H. Economic Models For
Resource Management and Scheduling in Grid Computing. Concurrency and
Computation: Practice and Experience Journal (Special Issue on Grid Computing
Environments) 2002,14(13-15): 1507-1542. |

[5] Buyya R, Murshed M, Abramson D. A Deadline and Budget constrained Cost-
Time Optimization Algorithm for Scheduling Task Farming Applications on Global
Grids[A]. Proceeding of the 2002 International Conference on Parallel and Distributed
Processing Techniques and Applications(PDPTA '02)[C],2002.

[6] A.Radulescu, and A.van Gemund, "Fast and Effective Task Scheduting in
Heterogeneous Systems,” 9th Heterogeneous Computing Workshop, pp.229-238, 2000.

[7] Zhang Jinquan, Ni Lina, Jiang Changjun. A Heuristic Scheduling Strategy for
Independent Tasks on Grid. Proceedings of the Eighth International Conference on
High-Performance Computing in Asia-Pacific Region(HPCASIA "05), IEEE 2005.

