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ABSTRACT

The OFDM concept has become very popular in the recent days due to its

advantages compared to the other conventional modulation techniques.

Moreover, the 4G mobile standards that are being developed by the
scientists also employ OFDM. It is also popular for wide-band communications
today by way of low cost digital signal processing components that can efficiently
calculate the FFT. So the design of reliable, low-cost OFDM systems for bringing

into practical use becomes the need of the hour.

The project aims at implementing OFDM in the FPGA. As OFDM 1s a
complex concept with many modules integrated into it, a three stepped approach 1s
followed to achieve the final goal. In the first step, the entire OFDM system with
its modules is analyzed by using MATLAB.A Rayleigh channel is simulated and
noise components are added and the BER performance of OFDM with BPSK

modulation is studied.

In the second step, VHDL is used to design the QAM & FFT blocks of the
OFDM system. A radix-2 butterfly processor which incorporates a complex
conjugate multiplier is also designed. This module serves as a basic block for
developing higher radix FFTs. The VHDL programs are functionally simulated

using Modelsim software.

In the third step, FPGA implementation of OFDM system consisting of the
QAM and FFT blocks is carried out. The synthesis is done using XILINX-ISE. The
design is implemented in XILINX SPARTAN 2 chip.
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CHAPTER 1

INTRODUCTION

1.1 NEED FOR THE PROJECT

In recent days, the need for wireless communications under mobile
conditions has increased. For instance, the very high throughput (VHT) study
group wants to go beyond the IEEE 802.11n standard. This study group suggests
that MIMO-OFDM technology will be a potential solution to increase the data-rate
& throughput. The combination of MIMO transmission, OFDM technology and
the STBC scheme comprises a promising solution for next generation wireless

communications. The aim of our project is to implement the OFDM concept in

FPGA.

With the foray of mobile 3G technology all over the world, scientists are
now concentrating on developing 4G technology. OFDM is seen as a viable
method to be used by the 4G standards. The OFDM has many advantages
compared to the conventional modulation techniques that make it very popular in
the recent times. It is robust against inter-symbol interference (ISI), narrow band
co-channel interference and fading caused by multi-path propagation. It has high
spectral efficiency as compared to conventional modulation schemes, spread

spectrum, etc. It also has low sensitivity to time synchronization errors.

OFDM is popular for wide-band communications today by way of low cost
digital signal processing components that can efficiently calculate the FFT. The
OFDM has found applications in the wireless LAN (WLAN) radio interfaces IEEE
802.11a, g & n, digital radio systems (DAB/EUREKA), digital TV systems (DVB-

T & ISDB-T), mobile TV systems, FLASH-OFDM & Wireless MAN.
1



Hence it is the need of the hour to develop reliable, low-cost OFDM
systems that can serve better than the communication systems available today
and bring those systems into practical use. Our project is just a small step

towards exploring this OFDM concept from various aspects
1.2 OVERVIEW OF THE PROJECT

The concept of OFDM 1is a complex concept that comprises many
modules and entities within itself. Our aim is to go for the FPGA
implementation of OFDM. In order to achieve our final goal, we follow a

three-stepped approach.

1. Analysis of BER performance of OFDM system with the help of
MATLAB.

2. a)VHDL coding of the QAM and FFT blocks of OFDM system and

functional simulation of the system using Modelsim software.

b)VHDL coding of the Butterfly processor module along with the complex

conjugate multiplier and functional simulation using Modelsim.

3. FPGA mmplementation of the OFDM system consisting of the QAM and
FFT blocks.



1.3 VLSI DESIGN:

VLSI stands for “Very Large Scale Integration”. This is the field which
involves packing more and more logic devices into smaller and smaller areas.
VLSI, circuits that would have taken many boards of space can now be put into
small space few millimeters across! VLSI circuits are everywhere... our
computers, our car, our brand new state-of-the-art digital camera, the cell phone,
and what we have. All this involves a lot of expertise on many fronts within the

same field which we will look at in later section.

DEALING WITH VLSI CIRCUIT

The way the normal blocks like latches and gates are implemented 1s
different, but the behavior remains the same. All the miniaturization involves
new things to consider. A lot of thought has to go into actual implementations as

well as design.

Circuit delays: Large complicated circuits running at very high frequencies
have one big problem to tackle-the problem to delays in propagation of signals
through gates and wires. Even for areas a few micrometers across. The
operation speed is very large that as the delays add up, they can actually become

comparable to the clock speed.

1. Power: Another effect of high operation frequencies is increased
consumption of power. This has two-fold effect-devices consumes
batteries  faster, and heat dissipation increases. Coupled with the fact the
surface areas have decreased, heat posses a major threat to the stability of

the circuit itself.



2. Layouts: Laying out the circuit components is task common to all
branches of electronics. What’s so special in our case is that there are
many possible ways to do this; there can be multiple layers of different
materials on the same silicon, there can be different arrangements of the
smaller parts for the same component and soon. The choice between the
two 1s determined by the way we choose the layout the circuit
components. Layout can also affect the fabrication of VLSI chips, making

it either easy or difficult to implement the components on the silicon.



CHAPTER 2

CONCEPT OF OFDM

2.1 INTRODUCTION TO OFDM

Orthogonal frequency-division multiplexing (OFDM), essentially
identical to coded OFDM (COFDM) and discrete multi-tone modulation
(DMT), is a frequency-division multiplexing (FDM) scheme utilized as a digital
multi-carrier modulation method. A large number of closely-spaced orthogonal
sub-carriers are used to carry data. The data is divided into several parallel data
streams or channels, one for each sub-carrier. Each sub-carrier is modulated with a
conventional modulation scheme (such as quadrature amplitude modulation or
phase-shift keying) at a low symbol rate, maintaining total data rates similar to

conventional single-carrier modulation schemes in the same bandwidth.

OFDM has developed into a popular scheme for wideband digital
communication, whether wireless or over copper wires, used in applications such
as digital television and audio broadcasting, wireless networking and broadband

internet access.

The primary advantage of OFDM over single-carrier schemes is its ability to
cope with severe channel conditions (for example, attenuation of high frequencies
in a long copper wire, narrowband interference and frequency-selective fading due
to multipath) without complex equalization filters. Channel equalization is
simplified because OFDM may be viewed as using many slowly-modulated
narrowband signals rather than one rapidly-modulated wideband signal. The low
symbol rate makes the use of a guard interval between symbols affordable, making

it possible to handle



Time-spreading and eliminate inter-symbol interference (ISI). This
mechanism also facilitates the design of single frequency networks (SFNs), where
several adjacent transmitters send the same signal simultaneously at the same
frequency, as the signals from multiple distant transmitters may be combined
ConStructively, rather than interfering as would typically occur in a traditional

single-carrier system.

2.2 ORTHOGONALITY

In OFDM, the sub-carrier frequencies are chosen so that the sub-carriers are
orthogonal to each other, meaning that cross-talk between the sub-channels is
eliminated and inter-carrier guard bands are not required. This greatly simplifies
the design of both the transmitter and the receiver; unlike conventional FDM, a

separate filter for each sub-channel is not required.

The orthogonality requires that the sub-carrier spacing is del(f) = K/ Tu
Hertz, where Tu seconds is the useful symbol duration (the receiver side window
size), and k is a positive integer, typically equal to 1. Therefore, with N sub-

carriers, the total passband bandwidth will be B= N-del(f) (Hz).

The orthogonality also allows high spectral efficiency, with a total symbol
rate near the Nyquist rate for the equivalent baseband signal (i.e. near half the
Nyquist rate for the double-side band physical passband signal). Almost the whole
available frequency band can be utilized. OFDM generally has a nearly 'white'
spectrum, giving it benign electromagnetic interference properties with respect to

other co-channel users.

OFDM requires very accurate frequency synchronization between the

receiver and the transmitter; with frequency deviation the sub-carriers will no

6



longer be orthogonal, causing inter-carrier interference (ICI) (i.e., cross-talk
between the sub-carriers). Frequency offsets are typically caused by mismatched
transmitter and receiver oscillators, or by Doppler shift due to movement. While
Doppler shift alone may be compensated for by the receiver, the situation is
worsened when combined with multipath, as reflections will appear at various

frequency offsets, which is much harder to correct.
2.3 SINGLE CARRIER VS MULTI-CARRIER SYSTEMS.

The diagram below explains the time/ frequency domain pulse waveforms
for the single carrier & multi-carrier systems. As seen clearly, the parallel pulses
occupy only a fraction of the system bandwidth, thus the available frequency

spectrum is made use of more efficiently in the parallel transmission.

Single Carrier Vs Multi-Carrier Systems

MT

PG | g— e el TMT
, I T e
i! bl 1. i {i‘ i }i i I: i
| iy il i ! ]
A Py
- f f
Sequential Tansmission of waveforms Farablel ransmission of waveforms
Waveforms are short duration T Waveforms ars long duration MT

Wavelorms occupy Rl ransmission bandwidth /T Waveforms occupy 1M-th of system bandwidth 17

FIG 2.1 Single carrier vs multicarrier system
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2.4 OFDM DENSE MULTI-CHANNEL SYSTEM:

In an OFDM dense multi-channel system, 50% overlap of adjacent
channels takes place compared to the Non overlapping adjacent channels
that are found in the conventional multichannel system. The orthogonality
of the adjacent pulses play a major role here as otherwise ISI will be more
for overlapping adjacent channels. Thus the available bandwidth is used

twice and also the spectral efficiency increases.

OFDM Dense Multichannel System

]
- i

Conventional Multichannel System
MNon Overlapping Adjacent Channels

L 4
—*

Channels separated by More
Than Ther Two Sided banchwidih

OFDM Mulichannel System
50% Overlap of Adjacent Channels
Available bandwidth is Used Twice

£ 2
gy,

Channels separated by Half
Than Ther Two Sided bandwidth

FIG 2.2 OFDM dense multichannel system



2.5 TRANSMITTER BLOCK DIAGRAM

An OFDM carrier signal is the sum of a number of orthogonal sub-carriers,
with baseband data on each sub-carrier being independently modulated commonly
using some type of quadrature amplitude modulation (QAM) or phase-shift keying
(PSK). This composite baseband signal is typically used to modulate a main RF
carrier. s[n] is a serial stream of binary digits. By inverse multiplexing, these are
first demultiplexed into N parallel streams, and each one mapped to a (possibly
complex) symbol stream using some modulation constellation (QAM, PSK). The
constellations may be different, so some streams may carry a higher bit-rate than
others.An inverse FFT is computed on each set of symbols, giving a set of complex
time-domain samples. These samples are then quadrature-mixed to passband in the
standard way. The real and imaginary components are first converted to the
analogue domain using digital-to-analogue converters (DACs); the analogue
signals are then used to modulate cosine and sine waves at the carrier frequency,

fc, respectively. These signals are then summed to give the transmission signal,

s(t).

+ DAC

Consteliation
mapping
Re
» » » DAC —————-bO——-——*—
; Lt A I
\‘\Hk N -_—-‘— "“’z i' y
Yt e .
¥ <
Serial Loofor R
{0 paralisl - -11}:: f!\

X b1

FIG 2.3 OFDM transmitter



2.6 RECEIVER BLOCK DIAGRAM

The receiver picks up the signal 1(t), which is then quadrature-mixed down
to baseband using cosine and sine waves at the carrier frequency. This also creates
signals centered on 2fc, so low-pass filters are used to reject these. The baseband
signals are then sampled and digitised using analogue-to-digital converters

(ADCs), and a forward FFT is used to convert back to the frequency domain.

This returns N parallel streams, each of which is converted to a binary
stream using an appropriate symbol detector. These streams are then re-combined
into a serial stream, , s”[n] which is an estimate of the original binary stream at the

transmitter.

Symibol
deteclion

e
ADC »

b4

FFT

i Faraliel

R ta seral
» ADC » WWM;

In

FIG 2.4 OFDM receiver
2.7 MATHEMATICAL DESCRIPTION OF OFDM

If N sub-carriers are used, and each sub-carrier 1s modulated using M
alternative symbols, the OFDM symbol alphabet consists of M”N combined

symbols.

1M



The low-pass equivalent OFDM signal is expressed as:

MN—1

0= T, D
k=0

FEAY

| }1\.

t =T,

where {Xk}are the data symbols, N is the number of sub-carriers, and T is the
OFDM symbol time. The sub-carrier spacing of 1/T makes them orthogonal

over each symbol period; this property is expressed as:

1 [T
2 / (e727at/T) * (e727F24T) dt
0o J |

1 rr .
P2 —da /T
=— pl 2R RN At — §p ks
T'/n' Feyfon
where (.)* denotes the complex conjugate operator and del function is the

Kronecker delta.

Kronecker Delta is a function of two variables, usually integers, which 1s 1
if they are equal, and 0 otherwise. So, for example,

61,2 =0, but

033=1

It is written as the symbol dij, and treated as a notational shorthand rather than
as a function.

11



To avoid intersymbol interference in multipath fading channels, a guard
interval of length Tg is inserted prior to the OFDM block. During this interval, a
cyclic prefix is transmitted. The OFDM signal with cyclic prefix is thus:

N—-1
v(t) = § Xped?r T <t <T

=0

The low-pass signal above can be either real or complex-valued. Real-valued
low-pass equivalent signals are typically transmitted at baseband-—wireline
applications such as DSL use this approach. For wireless applications, the low-pass
signal is typically complex-valued; in which case, the transmitted signal is up-
converted to a carrier frequency fc. In general, the transmitted signal can be

represented as:

s(t) = R {v()e" ™)
N1

= | Xy|cos (2n[f. + /Tt + arg[X;])

b=

2.8 ADVANTAGES AND DISADVANTAGES OF OFDM

ADVANTAGES:

e Robust against narrow-band co-channel interference.
e Robust against intersymbol interference (ISI) and fading caused by
multipath propagation.

e High spectral efficiency as compared to conventional modulation
12



schemes,spread spectrum, etc.

e Efficient implementation using Fast Fourier Transform (FFT).

e Low sensitivity to time synchronization errors.

e Tuned sub-channel receiver filters are not required (unlike conventional
FDM).

e Facilitates single frequency networks (SFNs); 1i.e., transmitter

macrodiversity.

e Efficiently deals with channel delay spread
¢ Enchanced channel capacity

e Can easily adapt to severe channel conditions without complex equalization.
DISADVANTAGES:

. Sensitive to frequency synchronization problems.

. High peak-to-average-power ratio (PAPR), requiring linear transmitter
circuitry, which suffers from poor power efficiency.

« Loss of efficiency caused by cyclic prefix/guard interval.

« Almost half the spectral efficiency offered by vestigial sideband modulation;
e.g., used in the ATSC digital TV system.

. Sensitive to small carrier frequency offsets

. Sensitive to high frequency phase noise

2.9 APPLICATIONS OF OFDM
A) CABLE:
- PEP via telephone lines.

13



ADSL and VDSL broadband access via POTS copper wiring.

Power line communication (PLC).

Multimedia over Coax Alliance (MoCA) home networking.

ITU-T G.hn, a standard which provides high-speed local area networking
over existing home wiring (power lines, phone lines and coaxial cables).

DVB-C2, an enhanced version of the DVB-C digital cable TV standard.

B) WIRELESS:

The wireless LAN (WLAN) radio interfaces IEEE 802.11a, g, n and
HIPERLAN/2.

The digital radio systems DAB/EUREKA 147, DAB+, Digital Radio
Mondiale, HD Radio, T-DMB and ISDB-TSB.

The terrestrial digital TV systems DVB-T and ISDB-T.

The terrestrial mobile TV systems DVB-H, T-DMB, ISDB-T and
MediaFLO forward link.

The cellular network's FLASH-OFDM.

The mobile broadband 3GPP Long Term Evolution air interface named High
Speed OFDM Packet Access (HSOPA).

The wireless MAN/fixed broadband wireless access (BWA) standard IEEE
802.16 (or WIMAX).

The mobile broadband wireless access (MBWA) standards IEEE 802.20,
IEEE 802.16e (Mobile WiMAX) and WiBro.

14



CHAPTER 3

STUDY OF BER PERFORMANCE OF OFDM SYSTEM USING MATLAB
3.1 MATLAB:

MATLAB stands for "Matrix Laboratory” and is a numerical computing
environment and fourth-generation programming language. Developed by The
MathWorks, MATLAB allows matrix manipulations, plotting of functions and
data, implementation of algorithms, creation of user interfaces, and interfacing
with programs written in other languages, including C, C++, and Fortran. In 2004,
MathWorks claimed that MATLAB was used by more than one million people

across the industry and the academic world.

MATLAB, the application, is built around the MATLAB language. The
simplest way to execute MATLAB code is to type it in at the prompt, >> , in the
Command Window, one of the elements of the MATLAB Desktop. In this way,
MATLAB can be used as an interactive mathematical shell. Sequences of
commands can be saved in a text file, typically using the MATLAB Editor, as a

script or encapsulated into a function, extending the commands available.

Variables are defined with the assignment operator, =. MATLAB is a
weakly dynamically typed programming language. It is a weakly typed language
because types are implicitly converted. It is a dynamically typed language because
variables can be assigned without declaring their type, except if they are to be
treated as symbolic objects, and that their type can change. Values can come from
constants, from computation involving values of other variables, or from the output

of a function.

15



MATLAB is a "Matrix Laboratory", and as such it provides many
convenient ways for creating vectors, matrices, and multi-dimensional arrays. In
the MATLAB vernacular, a vector refers to a one dimensional (I1xN or Nx1)
matrix, commonly referred to as an array in other programming languages. A
matrix generally refers to a 2-dimensional array, i.e. an mxn array where m and n
are greater than or equal to 1. Arrays with more than two dimensions are referred

to as multidimensional arrays.

Matrices can be defined by separating the elements of a row with blank
space or comma and using a semicolon to terminate each row. The list of elements
should be surrounded by square brackets: []. Parentheses: ( ) are used to access

elements and subarrays (they are also used to denote a function argument list).

Unlike many other languages, where the semicolon is used to terminate
commands, in MATLAB the semicolon serves to suppress the output of the line

that it concludes.

MATLAB can call functions and subroutines written in the C programming
language or Fortran. A wrapper function is created allowing MATLAB data types
to be passed and returned. The dynamically loadable object files created by

compiling such functions are termed "MEX-files"

MATLAB 1s a proprietary product of The MathWorks, so users are subject
to vendor lock-in. Although MATLAB Builder can deploy MATLAB functions as
library files which can be used with NET or Java application building

environment, future development will still be tied to the MATLAB language.

16



3.2 PURPOSE OF MATLAB ANALYSIS:

The computation of Bit Error Rate (BER) is useful to find out the
performance of any modulation scheme and hence it serves as a precursor to the
analysis and design of various modulation techniques and systems. Here also, in
order to study the performance of OFDM we go for Matlab simulation which
allows us to analyze the BER performance using BPSK in OFDM modulation. The
use of MATLAB also helps us to realize the Rayleigh fading channel and also to
introduce noise components in order to simulate a real-time system so that its BER

can be calculated with greater accuracy.

3.3 COMPUTING THE BER FOR BPSK IN OFDM MODULATION IN
THE PRESENCE OF RAYLEIGH FADING CHANNEL

Initial Assumptions:
1. The FFT is taken as 64 point-FFT.

2 Out of the 64 lines, 52 are used as the data sub-carriers used in the BPSK

modulation.

3. The number of bits per OFDM symbol is taken to be same as the number of sub-

carriers for BPSK, hence it is also 52.
4. The no. of symbols is taken as 10"4.
5. The bit-energy to noise-density ratio is taken as 0:35

6. The bit-energy to noise ratio is converted to the form of symbol to noise ratio.

17



Transmitter side:

7. The input bits are generated as a random stream of 1's & 0's with equal

probability.

8. Then Binary Phase Shift Keying is done by assigning a value of -1 to all input

stream 0's and +1 to all input stream 1's.
9.The bits are then grouped into multiple symbols.

10. The modulated symbols are then assigned to the sub-carriers (from -26 to -1,

+1 to +26) thus making the total no. of sub-carriers as 52.
11. The power of transmit symbol is normalized to 1.

12. The cyclic prefixes are then appended. Cyclic Prefixes are used in OFDM in

order to combat multipath by making channel estimation easy.

13. In order to account for the multipath interference that may occur in
transmission, a 10-tap multipath channel is simulated. Here the channel is modeled

as Rayleigh Channel in order to account for non line-of-sight propagation.

14. The frequency response of the channel is then computed and stored for use at

the receiver.
15. Then each individual symbol is convolved with the random channel.
16. The multiple symbols are then concatenated to form a long vector.

17. Gaussian noise of unit variance and zero mean is then introduced.

18



18. When noise is added, some energy will be wasted due to the cyclic prefix. To
account for this, the term sq.root (80/64) is multiplied with the signal obtained at

Receiver.

Receiver Side:

19. Firstly, the received vectors are formatted into symbols.
20. The cyclic prefixes are removed.

21. Then the conversion to the frequency domain is done.

22. The process of equalization by the known channel frequency response is then
done. Equalization is carried out in order to flatten the frequency response

characteristics of the system.

23. The required 52 data sub-carriers are then extracted.
24. BPSK demodulation is then carried out.

25. The modulated values are then converted into bits.

26. Finally, the No. of errors are counted in order to estimate the BER of the

system.
PLOTTING THE GRAPH:

27. The bit-energy to noise-density ratio is taken as the parameter for X-axis with

units in decibels.

28. The bit-error-rate is taken as the parameter in the Y-axis.
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29. The graph is plotted both for the Rayleigh theory & values obtained by

Rayleigh simulation.

30. The BER performance of the system can be studied from the graph.

BER 1or BF—"SK using OF BN | 1-tap Raylelgh charmc-l

Bil Eror e 4

oot v

s — amd F-'d rIF-lr,ﬂ'u-"I'I‘n:DrJ
Ravyleigh-Sirnulation

]

.08l

Bit Error Rate

1e—84

1e—05

Ebs/MNa, dB

FIG 3.1 BER for BPSK using OFDM

BER for BPSK nodulation in Rayleigh channel

' | T AMGH=Theory & |

i - : Rayleigh-Theory —&—

e TR Rayleigh-Sinulation —%— -

h@ﬁ%aﬁ :

.
s
g
Tl 7
g
By
m“%“"

5 o] 10 15 20 29 38 o]

Eb/MHo,. dB

FIG 3.2 BER for BPSK without OFDM

20



3.4 COMPUTING THE BER FOR BPSK MODULATION IN THE
PRESENCE OF A RAYLEIGH FADING CHANNEL

1. The no. of bits/ symbols is taken as 1076.
TRANSMITTER SIDE:

2. The input bits are generated as a random stream of 1I's & 0's with equal

probability.

3. Then Binary Phase Shift Keying is done by assigning a value of -1 to all input

stream 0's and +1 to all input stream 1's.
4. White Gaussian noise with 0db variation is then introduced.

5 In order to account for the multipath interference that may occur in
transmission, a multipath channel is simulated. Here the channel is modeled as

Rayleigh Channel in order to account for non line-of-sight propagation.

6. The channel and noise addition is then carried out.

7. Equalization is also done to flatten the frequency response characteristics.
RECEIVER SIDE:

8. Hard decision decoding is performed at the receiver.

9. Finally, the errors are counted in order to calculate the BER & study the

performance.
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CHAPTER 4

DESIGN OF THE OFDM SYSTEM

4.1 DESIGN BLOCK DIAGRAM
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FIG 4.1 Design block diagram
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4.2 QUADRATURE AMPLITUDE MODULATION:

QAM is both an analog and a digital modulation scheme. It conveys two
analog message signals, or two digital bit streams, by changing (modulating) the
amplitudes of two carrier waves, using the amplitude-shift keying (ASK) digital
modulation scheme or amplitude modulation (AM) analog modulation scheme.
These two waves, usually sinusoids, are out of phase with each other by 90° and
are thus called quadrature carriers or quadrature components — hence the name of
the scheme. The modulated waves are summed, and the resulting waveform is a
combination of both phase-shift keying (PSK) and amplitude-shift keying (ASK),
or in the analog case of phase modulation (PM) and amplitude modulation. In the
digital QAM case, a finite number of at least two phases, and at least two
amplitudes are used. PSK modulators are often designed using the QAM principle,
but are not considered as QAM since the amplitude of the modulated carrier signal

1s constant.

Digital formats of QAM are often referred to as "Quantised QAM" and they
are being increasingly used for data communications often within radio
communications systems. Systems ranging from cellular technology through
wireless systems including WiMAX, and Wi-Fi 802.11 use a variety of forms of
QAM, and the use of QAM will only increase within the field of radio

communications.

As with many digital modulation schemes, the constellation diagram is a
useful representation. In QAM, the constellation points are usually arranged in a

square grid with equal vertical and horizontal spacing, although other
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configurations are possible (e.g. Cross-QAM). Since in digital telecommunications
the data are usually binary, the number of points in the grid is usually a power of 2
(2, 4, 8 ...). Since QAM is usually square, some of these are rare—the most
common forms are 16-QAM, 64-QAM, 128-QAM and 256-QAM. By moving to a
higher-order constellation, it is possible to transmit more bits per symbol.
However, if the mean energy of the constellation is to remain the same (by way of
making a fair comparison), the points must be closer together and are thus more
susceptible to noise and other corruption; this results in a higher bit error rate and
so higher-order QAM can deliver more data less reliably than lower-order QAM,

for constant mean constellation energy.

If data-rates beyond those offered by 8-PSK are required, it is more usual to
move to QAM since it achieves a greater distance between adjacent points in the I-
Q plane by distributing the points more evenly. The complicating factor is that the
points are no longer all the same amplitude and so the demodulator must now

correctly detect both phase and amplitude, rather than just phase.

64-QAM and 256-QAM are often used in digital cable television and cable
modem applications. In the US, 64-QAM and 256-QAM are the mandated
modulation schemes for digital cable (see QAM tuner) as standardised by the
SCTE in the standard ANSI/SCTE 07 2000. Many marketing people will refer to
these as QAM-64 and QAM-256. In the UK, 16-QAM and 64-QAM are currently
used for digital terrestrial television (Freeview and Top Up TV) and 256-QAM is

planned for Freeview-HD.

Communication systems designed to achieve very high levels of spectral
efficiency usually employ very dense QAM constellations. One example is the

ITU-T G.hn standard for networking over existing home wiring (coaxial cable,
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phone lines and power lines), which employs constellations up to 4096-QAM (12
bits/symbol).

CONSTELLATION DIAGRAM FOR 16-pt QAM:
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FIG 4.2 Constellation diagram for 16-pt QAM
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VARIOUS TYPES OF MODULATION TECHNIQUES USED IN OFDM
SYSTEMS:

OFDM Systems

* OFDM modulation consists of multiplexing QAM
data symbols over a large number of orthogonal
carriers

BPSK QPSK 16-QAM

FIG 4.3 Types of OFDM systems

4.3 QAM - ADVANTAGES AND DISADVANTAGES:

Although QAM appears to increase the efficiency of transmission by

utilising both amplitude and phase variations, it has a number of drawbacks. The

first is that it is more susceptible to noise because the states are closer together so

that a lower level of noise is needed to move the signal to a different decision

point. Receivers for use with phase or frequency modulation are both able to use

limiting amplifiers that are able to remove any amplitude noise and thereby

improve the noise reliance. This is not the case with QAM. The second limitation
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is also associated with the amplitude component of the signal. When a phase or
frequency modulated signal is amplified in a transmitter, there is no need to use
linear amplifiers, whereas when using QAM that contains an amplitude
component, linearity must be maintained. Unfortunately linear amplifiers are less
efficient and consume more power, and this makes them less attractive for mobile

applications.
4.4 FAST FOURIER TRANSFORMS

A fast Fourier transform (FFT) is an efficient algorithm to compute the
discrete Fourier transform (DFT) and its inverse. There are many distinct FFT
algorithms involving a wide range of mathematics, from simple complex-number
arithmetic to group theory and number theory. The fast Fourier Transform is a
highly efficient procedure for computing the DFT of a finite series and requires
less number of computations than that of direct evaluation of DFT. It reduces the
computations by taking advantage of the fact that the calculation of the coefficients
of the DFT can be carried out iteratively. Due to this, FFT computation technique
is used in digital spectral analysis, filter simulation, autocorrelation and pattern

recognition.

The FFT is based on decomposition and breaking the transform into smaller
transforms and combining them to get the total transform. FFT reduces the
computation time required to compute a discrete Fourier transform and improves

the performance by a factor of 100 or more over direct evaluation of the DFT.

A DFT decomposes a sequence of values into components of different
frequencies. This operation is useful in many fields but computing it directly from
the definition is often too slow to be practical. An FFT is a way to compute the

same result more quickly: computing a DFT of N points in the obvious way, using
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the definition, takes O(N 2) arithmetical operations, while an FFT can compute the

same result in only O(N log N) operations.

The difference in speed can be substantial, especially for long data sets
where N may be in the thousands or millions—in practice, the computation time
can be reduced by several orders of magnitude in such cases, and the improvement
1s roughly proportional to N/log(N). This huge improvement made many DFT-
based algorithms practical; FFTs are of great importance to a wide variety of
applications, from digital signal processing and solving partial differential

equations to algorithms for quick multiplication of large integers.

The most well known FFT algorithms depend upon the factorization of N,
but (contrary to popular misconception) there are FFTs with O(N log N)
complexity for all N, even for prime N. Many FFT algorithms only depend on the

Iwi

fact that e~ N is an Nth primitive root of unity, and thus can be applied to

analogous transforms over any finite field, such as number-theoretic transforms.

The Fast Fourier Transform algorithms exploit the 2 basic properties of the
twiddle factor - the symmetry property & periodicity property and reduces the

number of complex multiplications required to perform DFT.

FFT algorithms are based on the fundamental principle of decomposing the
computation of discrete Fourier Transform of a sequence of length N into
successively smaller discrete Fourier transforms. There are basically two classes of

FFT algorithms.

A) decimation-in-time
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B) decimation-in-frequency.

In decimation-in-time, the sequence for which we need the DFT is
successively divided into smaller sequences and the DFTs of these subsequences
are combined in a certain pattern to obtain the required DFT of the entire sequence.
In the decimation-in-frequency approach, the frequency samples of the DFT are

decomposed into smaller and smaller subsequences in a similar manner.
4.5 Various FFT Algorithms:

The different types of FFT algorithms are classified by the different index maps of

the input & output sequences.
1) Cooley- Tukey FFT Algorithm

Classified into Decimation in Time (DIT) & Decimation In Frequency (DIF)
Algorithms.

2) Good — Thomas FFT Algorithm (Prime-factor FFT algorithm)
3) Winograd FFT Algorithms

4) Bruun's FFT algorithm

4.6 Cooley-Tukey FFT Algorithm:

The Cooley-Tukey is the most universal of all FFT algorithms. This is a divide and
conquer algorithm that recursively breaks down a DFT of any composite size N =
NIN2 mto many smaller DFTs of sizes N1 and N2, along with O(N)
multiplications by complex roots of unity traditionally called twiddle factors (after

Gentleman and Sande, 1966).
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This method (and the general idea of an FFT) was popularized by a
publication of J. W. Cooley and J. W. Tukey in 1965, but it was later discovered
(Heideman & Burrus, 1984) that those two authors had independently re-invented
an algorithm known to Carl Friedrich Gauss around 1805 (and subsequently

rediscovered several times in limited forms).

The most well-known use of the Cooley—Tukey algorithm is to divide the
transform into two pieces of size N / 2 at each step, and is therefore limited to
power-of-two sizes, but any factorization can be used in general (as was known to
both Gauss and Cooley/Tukey). These are called the radix-2 and mixed-radix
cases, respectively. Although the basic idea is recursive, most traditional
implementations rearrange the algorithm to avoid explicit recursion. Also, because
the Cooley—Tukey algorithm breaks the DFT into smaller DFTs, it can be
combined arbitrarily with any other algorithm for the DFT such as the Prime-
factor FFT algorithm, Bruun's FFT algorithm, Rader's FFT algorithm or Bluestein's
FFT algorithm.

4.7 Ilustration of the Cooley-Tukey algorithm for the radix-2 decimation in

Time case:

A radix-2 decimation-in-time (DIT) FFT is the simplest and most common
form of the Cooley—Tukey algorithm, although highly optimized Cooley—Tukey
implementations typically use other forms of the algorithm. Radix-2 DIT divides a
DFT of size N into two interleaved DFTs (hence the name "radix-2") of size N/2

with each recursive stage.

The discrete Fourier transform (DFT) is defined by the formula:
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where £ is an integer ranging from O to N — 1.
Radix-2 DIT first computes the DFTs of the even-indexed inputs 2

(To, T2y ---» TN-2) and of the odd-indexed inputs #2m+1 (T2 L3, -+ -+ TN-1) and
then combines those two results to produce the DFT of the whole sequence. This
idea can then be performed recursively to reduce the overall runtime to O(N log N).
This simplified form assumes that V is a power of two; since the number of sample
points NV can usually be chosen freely by the application, this is often not an

important restriction.

The Radix-2 DIT algorithm rearranges the DFT of the function x» into two
parts: a sum over the even-numbered indices » = 2m and a sum over the odd-

numbered indices n =2m + 1
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One can factor a common multiplier f:f_%k out of the second sum, as shown in the
equation below. It is then clear that the two sums are the DFT of the even-indexed
part x2m and the DFT of odd-indexed part x2m + | of the function xn. Denote the
DFT of the Even-indexed inputs x2m by Ek and the DFT of the Odd-indexed

inputs x2m + | by Ok and we obtain:
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However, these smaller DFTs have a length of N/2, so we need compute only N/2
outputs: thanks to the periodicity properties of the DFT, the outputs for
N/2<k <N fiom a DFT of length N/2 are identical to the outputs for
0 <k <N/2 Tha is, Ek+ N /2 = Ek and Ok + N/ 2 = Ok. The phase factor exp[
— 2mnik / N] (called a twiddle factor) obeys the relation: exp[ — 2mi(k + N/ 2) / N} =
e ~ Mexp[ — 2mik / N} = — exp[ — 2nik / NJ, flipping the sign of the Ok + N/ 2

terms. Thus, the whole DFT can be calculated as follows:

E, + e~ Fk0, if &< N/2

_:_)ﬁ'! {k“ﬁ\""‘?’) . - ,.“.)
E,:;_N',a‘g — & N A C'}R—N;’E if & = ;‘7\‘/ L.

This result, expressing the DFT of length N recursively in terms of two
DFTs of size N/2, is the core of the radix-2 DIT fast Fourier transform. The
algorithm gains its speed by re-using the results of intermediate computations to
compute multiple DFT outputs. Note that final outputs are obtained by a +/—
combination of Fk and Okexp( — 2nik / N), which is simply a size-2 DFT; when
this is generalized to larger radices below, the size-2 DFT is replaced by a larger

DFT (which itself can be evaluated with an FFT).

This process is an example of the general technique of divide and conquer

32



algorithms; in many traditional implementations, however, the explicit recursion is

avoided, and instead one traverses the computational tree in breadth-first fashion.

The above re-expression of a size-N DFT as two size-N/2 DFTs is
sometimes called the Danielson—Lanczos lemma, since the identity was noted by
those two authors in 1942(influenced by Runge's 1903 work). They applied their
lemma in a "backwards" recursive fashion, repeatedly doubling the DFT size until

the transform spectrum converged.
4.8 Butterfly structures for FFT:

In the context of fast Fourier transform algorithms, a butterfly is a portion of
the computation that ¢combines the results of smaller discrete Fourier transforms
(DFTs) into a larger DFT, or vice versa (breaking a larger DFT up into
subtransforms). The name "butterfly" comes from the shape of the data-flow
diagram in the radix-2 case, as described below. The same structure can also be
found in the Viterbi algorithm, used for finding the most likely sequence of hidden

states.

X O

xl

FIG 4.4 Radix-2 butterfly structure

Most commonly, the term "butterfly" appears in the context of the Cooley—
Tukey FFT algorithm, which recursively breaks down a DFT of composite size

n = rm into r smaller transforms of size m where r is the "radix" of the transform.
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These smaller DFTs are then combined with size- butterflies, which themselves
are DFTs of size r (performed m times on corresponding outputs of the sub-
transforms) pre-multiplied by roots of unity (known as twiddle factors). This is the
"decimation in time" case; one can also perform the steps in reverse, known as
"decimation in frequency", where the butterflies come first and are post-multiplied

by twiddle factors.

The figure illustrates the Data-flow diagram connecting the inputs x (left) to
the outputs y that depend on them (right) for a "butterfly" step of a radix-2 Cooley—
Tukey FFT. This diagram resembles a butterfly (as in the Morpho butterfly shown

tor comparison), hence the name.

In the case of the radix-2 Cooley-Tukey algorithm, the butterfly is simply a
DFT of size-2 that takes two inputs (x0, x1) (corresponding outputs of the two sub-

transforms) and gives two outputs (y0, y1) by the formula.

Up = o+ 14

= Ip— Iy,

where k is an integer depending on the part of the transform being computed.

More specifically, a decimation-in-time FFT algorithm on n=2p inputs with
respect to a primitive n-th root of unity w =exp(27i/n) relies on O(n log n)

butterfly form.
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4.9 Radix-2 FFTs:

A) Decimation-in-time Algorithm:

Decimatiomrim-time FFT
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FIG 4.5 Decimation in time FFT

In the DIT algorithm, the twiddle multiplication is performed before the butterfly
stage whereas for the DIF algorithm, the twiddle multiplication comes after the

Butterfly stage.

B) Decimation-in-Frequency Algorithm:

Decimation-in-frequency FH
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FIG 4.6 Decimation in frequency FFT
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410 HARDWARE DESCRIPTION LANGUAGES:

Hardware Description Language (HDL) is a language that can describe
the behavior and structure of electronic system, but it is particularly suited as a
language to describe the structure and the behavior of the digital electronic
hardware design, such as ASICs and FPGAs as well as conventional circuits.
HDL can be used to describe electronic hardware at many different levels of
abstraction such as Algorithm, Register transfer level (RTL) and Gate level.
Algorithm is un synthesizable, RTL is the input to the synthesis, and Gate Level
is the input from the synthesis. It is often reported that a large number of ASIC
designs meet their specification first time, but fail to work when plunged into a
system. HDL allows this issue to be addressed in two ways, a HDL specification
can be executed in order to achieve a high level of confidence in its correctness
before commencing design and may simulate one specification for a part in the
wider system context(Eg:- Printed Circuited Board Simulation). This depends
upon how accurately the specialization handles aspects such as timing and

initialization.
ADVANTAGES OF HDL.:

A design methodology that uses HDLs has several fundamental
advantages over traditional Gate Level Design Methodology. The following are

some of the advantages:

* One can verify functionality early in the design process and immediately
simulate the design written as a HDL description. Design simulation at
this high level, before implementation at the Gate Level allows testing

architectural and designing decisions.
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o FPGA synthesis provides logic synthesis and optimization, so one can
automatically convert a Verilog HDL description to gate level
implementation in a given technology.

e HDL descriptions provide technology independent documentation of a
design and its functionality. A HDL description is more easily read and
understood than a net-list or schematic description.

e HDLs typically support a mixed level description where structural or net-
list constructs can be mixed with behavioral or algorithmic descriptions.
With this mixed level capabilities one can describe system architectures at

a high level or gate level implementation.
4.11 VHDL:

VHDL (VHSIC hardware description language; VHSIC: very-high-speed
integrated circuit) is a hardware description language used in electronic design
automation to describe digital and mixed-signal systems such as field-

programmable gate arrays and integrated circuits.

VHDL is a fairly general-purpose language, and it doesn't require a
simulator on which to run the code. There are many VHDL compilers, which build
executable binaries. It can read and write files on the host computer, so a VHDL
program can be written that generates another VHDL program to be incorporated
in the design being developed. Because of this general-purpose nature, it is
possible to use VHDL to write a testbench that verifies the functionality of the
design using files on the host computer to define stimuli, interacts with the user,
and compares results with those expected.

It is relatively easy for an inexperienced developer to produce code that
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simulates successfully but that cannot be synthesized into a real device, or is too
large to be practical. One particular pitfall is the accidental production of

transparent latches rather than D-type flip-flops as storage elements.

VHDL is not a case sensitive language. One can design hardware in a
VHDL IDE (such as Xilinx ISE or Altera Quartus) to produce the RTL schematic
of the desired circuit. After that, the generated schematic can be verified using
simulation software (such as ModelSim) which shows the waveforms of inputs and
outputs of the circuit after generating the appropriate testbench. To generate an
appropriate testbench for a particular circuit or VHDL code, the inputs have to be
defined correctly. For example, for clock input, a loop process or an iterative

statement 1s required.

The key advantage of VHDL when used for systems design is that it allows
the behavior of the required system to be described (modeled) and verified
(simulated) before synthesis tools translate the design into real hardware (gates and

wires).

Another benefit is that VHDL allows the description of a concurrent system
(many parts, each with its own sub-behavior, working together at the same time).
VHDL is a Dataflow language, unlike procedural computing languages such as
BASIC, C, and assembly code, which all run sequentially, one instruction at a

time.

A final point is that when a VHDL model is translated into the "gates and
wires" that are mapped onto a programmable logic device such as a CPLD or

FPGA, then it is the actual hardware being configured.
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4.12 VHDL description of 4-point FFT & IFFT Blocks

1) The Decimation-In-Time Algorithm is used to design the 4-point FFT and IFFT

structures.

2) The entire structure is developed by taking into account the operation of

complex numbers. Hence we use 8- input values to individually give the values for

real part & imaginary parts.
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FIG 4.7 4-point Decimation-In-Time FFT Algorithm
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4.13 IFFT ALGORITHM:
1) The FFT algorithm can be itself be used to compute the IFFT
2) First take the complex conjugate of the input values & multiply by N
3) This value should in turn be given to the input of the FFT Block

4) The complex conjugate is taken for the values obtained at the output of the

FFT algorithm and then multiplied with N.
5) This gives the IFFT output values.
4.14 DESIGN OF A GENERAL RADIX-2 FFT USING VHDL:

As we move to higher-point FFTs, the structure for computing the FFT
becomes more complex and the need for an efficient complex multiplier to be
incorporated within the butterfly structure arises. Hence we propose an algorithm
for an efficient complex multiplier that overcomes the complication of using

complex numbers throughout the process.

A radix-2 FFT can be efficiently implemented using a butterfly processor
which includes, besides the butterfly itself , an additional complex multiplier for

the twiddle factors.

A radix-2 butterfly processor consists of a complex adder, a complex

subtraction, and a complex multiplier for the twiddle factors. The complex

multiplication with the twiddle factor is often implemented with four real

multiplications and 2 add / subtract operations. However it is also possible to build



the complex multiplier with only 3 real multiplications and 3 add / subtract

operations because one operand is precomputed.

Normal Complex Operation:

(XHY) (C+jS)=CX +jSX +jCY - YS
= CX-YS+j(SX+CY)
Real Part R=CX - YS
Imaginary Part I = SX + CY
4.15 EFFICIENT COMPLEX MULTIPLIER:
Consider the complex twiddle factor multiplication
(X47Y) (C+jS) = R+l

C & S are the real & imaginary parts of the twiddle factor which are precomputed
& stored in a table.

Also 2 other co-efficients are stored. C+S, C-S
With these 3 precomputed factors we first compute
E=X-Y, andthen Z=C*E =C * (X-Y)

We can thus compute the final product using

R=(C-S)Y *Y+Z [= (C+S)* X-Z
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WORKING OF THE ALGORITHM:

R = (C-S)Y + C(X-Y)

=(CY-SY + CX - CY =CX-SY

[=(C+S)X — C(X-Y)

=CX+SX-CX+CY=CY+SX

The algorithm uses 3 multiplications, 1 addition, & 2 subtractions at the cost

of an additional 3rd table.

Using the twiddle factor multiplier that has been developed, it is possible to
design a butterfly processor for a radix-2 Cooley-Tukey FFT. Hence this basic
structure of radix-2 FFT can be used as a building block to construct higher N-
point FFTs. This structure has been developed as an extension to provide for the

computation of higher value index FFTs.
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CHAPTER S

FPGA IMPLEMENTATION

5.1 Introduction

A field-programmable gate array (FPGA) is an integrated circuit designed
to be configured by the customer or designer after manufacturing—hence "field-
programmable". The FPGA configuration is generally specified using a hardware
description language (HDL), similar to that used for an application-specific
integrated circuit (ASIC) (circuit diagrams were previously used to specify the
configuration, as they were for ASICs, but this is increasingly rare). FPGAs can be
used to implement any logical function that an ASIC could perform. The ability to
update the functionality after shipping, partial re-configuration of the portion of the
design[1] and the low non-recurring engineering costs relative to an ASIC design
(not withstanding the generally higher unit cost), offer advantages for many

applications.

FPGAs contain programmable logic components called "logic blocks", and a

"

hierarchy of reconfigurable interconnects that allow the blocks to be "wired
together"—somewhat like a one-chip programmable breadboard. Logic blocks can
be configured to perform complex combinational functions, or merely simple logic
gates like AND and XOR. In most FPGAs, the logic blocks also include memory

elements, which may be simple flip-flops or more complete blocks of memory.
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5.2 FPGA ARCHITECTURE:

The most common FPGA architecture consists of an array of configurable
logic blocks (CLBs), 1/O pads, and routing channels. Generally, all the routing
channels have the same width (number of wires). Multiple I/O pads may fit into the
height of one row or the width of one column in the array.

An application circuit must be mapped into an FPGA with adequate
resources. While the number of CLBs and 1/Os required is easily determined from
the design, the number of routing tracks needed may vary considerably even
among designs with the same amount of logic. (For example, a crossbar switch
requires much more routing than a systolic array with the same gate count.) Since
unused routing tracks increase the cost (and decrease the performance) of the part
without providing any benefit, FPGA manufacturers try to provide just enough
tracks so that most designs that will fit in terms of LUTs and IO0s can be routed.
This is determined by estimates such as those derived from Rent's rule or by

experiments with existing designs.

A classic FPGA logic block consists of a 4-input lookup table (LUT), and a
flip-flop, as shown below. In recent years, manufacturers have started moving to 6-

input LUTSs in their high performance parts, claiming increased performance.f

4-input }__aOutput
Look-Up 1D Flip-[—

Table | Clock \Flop

f

Inputs

FIG 5.1 Typical logic block in FPGA
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There is only one output, which can be either the registered or the
unregistered LUT output. The logic block has four inputs for the LUT and a clock
input. Since clock signals (and often other high-fanout signals) are normally routed
via special-purpose dedicated routing networks in commercial FPGAs, they and

other signals are separately managed.

For this example architecture, the locations of the FPGA logic block pins are

shown below.

iné

ot

inl out

FIG 5.2 Logic Block Pin Locations

Each input is accessible from one side of the logic block, while the output
pin can connect to routing wires in both the channel to the right and the channel

below the logic block.

Each logic block output pin can connect to any of the wiring segments in the
channels adjacent to it. Similarly, an I/O pad can connect to any one of the wiring

segments in the channel adjacent to it. For example, an I/O pad at the top of the
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chip can connect to any of the W wires (where W is the channel width) in the
horizontal channel immediately below it. Generally, the FPGA routing 1S
unsegmented. That is, each wiring segment spans only one logic block before it
terminates in a switch box. By turning on some of the programmable switches
within a switch box, longer paths can be constructed. For higher speed
interconnect, some FPGA architectures use longer routing lines that span multiple
logic blocks.Whenever a vertical and a horizontal channel intersect, there 1s a
switch box. In this architecture, when a wire enters a switch box, there are three
programmable switches that allow it to connect to three other wires in adjacent
channel segments. The pattern, or topology, of switches used in this architecture is
the planar or domain-based switch box topology. In this switch box topology, a
wire in track number one connects only to wires in track number one in adjacent
channel segments, wires in track number 2 connect only to other wires in track

number 2 and so on. The figure below illustrates the connections in a switch box.

Frogrammable |
W Wire Switch :
Segment

)
ge}
(e}

FIG 5.3 Switch box topology
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Modern FPGA families expand upon the above capabilities to include higher
level functionality fixed 1nto the silicon. Having these common functions
embedded into the silicon reduces the area required and gives those functions
increased speed compared to building them from primitives. Examples of these
include multipliers, generic DSP blocks, embedded processors, high speed 10 logic
and embedded memories.

FPGAs are also widely used for systems validation including pre-silicon
validation, post-silicon validation, and firmware development. This allows chip
companies to validate their design before the chip is produced in the factory,

reducing the time to market.

OO OO Ood oo Logic

Block

/O Block .—->|:|

oo oo oo oo

oo 0O 0o oo

FIG 5.4 Structure of an FPGA
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5.3 FPGA DESIGN AND PROGRAMMING

Then, using an electronic design automation tool, a technology-mapped
netlist is generated. The netlist can then be fitted to the actual FPGA architecture
using a process called place-and-route, usually performed by the FPGA company's
proprietary place-and-route software. The user will validate the map, place and
route results via timing analysis, simulation, and other verification methodologies.
Once the design and validation process is complete, the binary file generated (also
using the FPGA company's proprietary software) is used to (re)configure the

FPGA.

Going from schematic/HDL source files to actual configuration. The source
files are fed to a software suite from the FPGA/CPLD vendor that through different
steps will produce a file. This file is then transferred to the FPGA/CPLD via a

serial interface (JTAG) or to an external memory device like an EEPROM.

The most common HDLs are VHDL and Verilog, although in an attempt to
reduce the complexity of designing in HDLs, which have been compared to the
equivalent of assembly languages, there are moves to raise the abstraction level

through the introduction of alternative languages.

To simplify the design of complex systems in FPGAs, there exist libraries of
predefined complex functions and circuits that have been tested and optimized to
speed up the design process. These predefined circuits are commonly called IP
cores, and are available from FPGA vendors and third-party IP suppliers (rarely
free, and typically released under proprietary licenses). Other predefined circuits
are available from developer communities such as OpenCores (typically released

under free and open source licenses such as the GPL, BSD or similar license).

In a typical design flow, an FPGA application developer will simulate the
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design at multiple stages throughout the design process. Initially the RTL
description in VHDL or Verilog is simulated by creating test benches to simulate
the system and observe results. Then, after the synthesis engine has mapped the
design to a netlist, the netlist is translated to a gate level description where
simulation is repeated to confirm the synthesis proceeded without errors. Finally
the design is laid out in the EPGA at which point propagation delays can be added

and the simulation run again with these values back-annotated onto the netlist.

5.4 Basic process technology types

.« SRAM - based on static memory technology. In-system programmable and
re-programmable. Requires external boot devices. CMOS.

. Antifuse - One-time programmable. CMOS.

. PROM - Programmable Read-Only Memory technology. One-time
programmable because of plastic packaging.

. EPROM - Erasable Programmable Read-Only Memory technology. One-
time programmable but with window, can be erased with ultraviolet (UV)
light. CMOS.

. EEPROM - Electrically Erasable Programmable Read-Only Memory
technology. Can be erased, even in plastic packages. Some, but not all,
EEPROM devices can be in-system programmed. CMOS.

. TFlash - Flash-erase EPROM technology. Can be erased, even in plastic
packages. Some, but not all, flash devices can be in-system programmed.
Usually, a flash cell 1s smaller than an equivalent EEPROM cell and is
therefore less expensive to manufacture. CMOS.

. Fuse - One-time programmable. Bipolar.
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5.5 Major manufacturers

Xilinx and Altera are the current FPGA market leaders and long-time industry
rivals. Together, they control over 80 percent of the market, with Xilinx alone

representing over 50 percent.

Xilinx also provides free Windows and Linux design software, while Altera
provides free Windows tools; the Linux tools are only available via a rental

scheme.

Other competitors include Lattice Semiconductor (SRAM based with
integrated configuration Flash, instant-on, low power, live reconfiguration), Actel
(antifuse, flash-based, mixed-signal), SiliconBlue Technologies (low power),
Achronix (RAM based, 1.5 GHz fabric speed), and QuickLogic (handheld focused
CSSP, no general purpose FPGAs).

In March 2010, two FPGA companies that had previously worked in stealth

mode, announced their new FPGA technology: Tabula and Tier Logic.
5.6 DESIGN FLOW
The steps are listed below.

1. Design Entry: Enter the design into an ASIC design system either
using a Hardware Description Language Or schematic entry.
2. Logic synthesis: Use an HDL and a logic synthesis tool to produce

a netlist, a description of the logic cells and their connections.

(8]

. System partitioning: divide large system into ASIC-sized pieces.

4. Pre-layout simulation: check to see if the design functions properly.
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Floor planning: Arrange the blocks of the net-list on the chip.
Placement: Decide the locations of cells in the block.

Looping: Make the connections cells and the blocks.

Extraction: Determine the resistance and capacitance of the
interconnect.
9. Post-layout simulation: check to see if the design still works with

the added loads of the interconnect.

5.7 SYNTHESIS

A process that starts from high-level logic abstraction and automatically
creates a net list (connection details between individual componentsjusing a
library. The synthesizing unit includes the selection of device, speed-grade for its
internal operation. After synthesis the output generated is “net-list” file named with

the extension of “.xnf”.
5.8 SIMULATION

This simulation is otherwise called as waveform editor. Digital oscilloscopes
were too costly even with low channel capacity and it is not possible to view all
signals getting transferred from one component to another .This problem is
faithfully solved by this simulation part of the tool. Here one could select all
signals right from the initial part of the design to end pin of the package and this

can be visualized. Simulation takes part in input of net-list file and creates a file

[13 2

with the extension “.edn”. This simulation in addition to the wave form

presentation, it adds some features like simulation and timing simulation.
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CHAPTER 6

RESULTS AND DISCUSSION

6.1 SIMULATION RESULTS OBTAINED IN MODELSIM

6.1.1 SIMULATION RESULT OBTAINED FOR COMPLEX CONJUGATE
MULTIPLIER: (using ALTERA Modelsim)
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D0110010
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1010100000
0ioionio

| [EEE
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AOOO1 100101111000

010001001001100
001 000000000100
DOO10101111000000
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6.1.2 SIMULATION RESULT OBTAINED FOR OFDM TRANSMITTER:

(Comprising the QAM & Inverse FFT Blocks)- using XILINX Modelsim

9
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6.1.3 SIMULATION RESULT OBTAINED FOR OFDM RECEIVER:

(Comprising the Inverse-QAM & FFT Blocks) - Using XILINX Modelsim

TR _madere I g _mgl
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6.2 RTL SCHEMATIC

6.2.1 RTL SCHEMATIC FOR OFDM TRANSMITTER

——J;put(?::()) [F_q_img0(7:0) pm—
{F_q_img!(7.0) m——

IF_q_img2(7:0) =

IF_q_img3(7:0)
IF_q_real0{7.0) m=——
IF_q_real{7.0) jpm——

IF_q_real2(7.0)

— clk IF_q_real3{7:0) =

|
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6.2.2 RTL SCEMATIC FOR OFDM RECEIVER

IF_q_imgQ(7:0) output(3:0)
‘ — IF_q_img1{7:0)
| — |F_q_img2(7:0)
— IF_q_img3(7:0)

— [F_q_reall(7:0)

— IF_q_real(7:0) Type=

— |F_q_real2(7:0)
M IF_q_real3(7.0)

— clk
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6.3 SYNTHESIS REPORT

6.3.1 SYNTHESIS REPORT OBTAINED FOR OFDM TRANSMITTER

Release 8.11 - xst 1.24

Copyright (¢) 1995-2005 Xilinx, Inc. All rights reserved.

_-> Parameter TMPDIR set to Jxst/projnav.tmp

CPU - 0.00/0.16 s | Elapsed : 0.00/ 0.00 s

_-> Parameter xsthdpdir set to ./xst
CPU : 0.00/0.16 s | Elapsed : 0.00/ 0.00 s

-> Reading design: FFT modemt.prj

TABLE OF CONTENTS
1) Synthesis Options Summary
2) HDL Compilation
3) HDL Analysis
4y HDL Synthesis
4.1) HDL Synthesis Report
5) Advanced HDL Synthesis
5.1) Advanced HDL Synthesis Report
6) Low Level Synthesis
7) Final Report
7.1) Device utilization summary
7.2) TIMING REPORT




* Synthesis Options Summary

---- Source Parameters
Input File Name - "FFT_modemt.prj"
Input Format - mixed

Ignore Synthesis Constraint File : NO

---- Target Parameters

Output File Name :"FFT_modemt"
Output Format :NGC
Target Device : x¢25200-6-pq208

---- Source Options

Top Module Name : FFT modemt
Automatic FSM Extraction " YES
FSM Encoding Algorithm : Auto
FSM Style - lut

RAM Extraction :Yes
RAM Style . Auto

ROM Extraction :Yes

Mux Style : Auto
Decoder Extraction :YES
Priority Encoder Extraction :YES
Shift Register Extraction :YES
Logical Shifter Extraction - YES
XOR Collapsing - YES
ROM Style : Auto

Mux Extraction - YES
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Resource Sharing : YES

Multiplier Style - lut
Automatic Register Balancing : No
---- Target Options

Add 10 Buffers - YES
Global Maximum Fanout - 100
Add Generic Clock Buffer(BUFG) 4
Register Duplication - YES
Slice Packing - YES

Pack 10 Registers into IOBs - auto
Equivalent register Removal :YES

-—-- General Options

Optimization Goal - Speed
Optimization Effort 1

Keep Hierarchy :NO

RTL Output 2 Yes

Global Optimization - AllClockNets
Write Timing Constraints : NO
Hierarchy Separator 2/

Bus Delimiter P <>

Case Specifier : maintain

Slice Utilization Ratio - 100

Slice Utilization Ratio Delta °5

—--- Other Options
Iso - FFT_modemt.1so
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Read Cores : YES

cross_clock analysis :NO
verilog2001 :YES
safe_implementation : No

Optimize Instantiated Primitives : NO

tristate2logic - Yes

use clock enable :Yes

use_sync_set 2 Yes

use_sync_reset s Yes

* HDL Compilation *

Compiling vhdl file "C:/Xilinx/transmit/newQAM _16.vhd" in Library work.
Entity <qam_ 16> compiled.

Entity <qam_ 16> (Architecture <bhv>) compiled.

Compiling vhdl file "C:/Xilinx/transmit/IFFT 4.vhd" in Library work.
Entity <IFFT 4> compiled.

Entity <IFFT 4> (Architecture <bhv>) compiled.

Compiling vhdl file "C:/Xilinx/transmit/FFT modemt.vhd" in Library work.
Entity <FFT modemt> compiled.

Entity <FFT modemt> (Architecture <bhv>) compiled.
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* HDL Analysis *

Analyzing Entity <FFT_modemt> (Architecture <bhv>).
Entity <FFT_modemt> analyzed. Unit <FFT modemt> generated.

Analyzing Entity <gam_16> (Architecture <bhv>).

INFO:Xst:1561 - "C:/Xilinx/transmit/newQAM_16.vhd" line 83: Mux is complete
- default of case is discarded

Entity <qam_16> analyzed. Unit <gam_16> generated.

Analyzing Entity <IFFT_4> (Architecture <bhv>).
Entity <IFFT_4> analyzed. Unit <IFFT_4> generated.

* HDL Synthesis *

Synthesizing Unit <IFFT_4>.
Related source file is "C:/Xilinx/transmit/IFFT_4.vhd".

Found 8-bit register for signal <iyl img>.
Found 8-bit register for signal <iy0_real>.
Found 8-bit register for signal <iy2_img>.
Found 8-bit register for signal <iyl_real>.
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Found 8-bit register for signal <iy2 real>.

Found 8-bit register for signal <iy3 1mg>.

Found 8-bit register for signal <iy3 real>.

Found 8-bit register for signal <iy0 img>.

Found 8-bit adder for signal <$n0000> created at line 66.
Found 8-bit subtractor for signal <$n0001> created at line 47.
Found 8-bit subtractor for signal <$n0002> created at line 43.
Found 8-bit adder for signal <$n0003> created at line 69.
Found 8-bit adder for signal <$n0004> created at line 38.
Found 8-bit subtractor for signal <$n0005> created at line 46.
Found 8-bit adder for signal <$n0006> created at line 72.
Found 8-bit adder for signal <$n0007> created at line 41.
Found 8-bit adder for signal <$n0008> created at line 37.
Found 8-bit subtractor for signal <$n0009> created at line 44.
Found 8-bit adder for signal <$n0010> created at line 40.
Found 8-bit adder for signal <$n0011> created at line 47.
Found 8-bit subtractor for signal <$n0012> created at line 47.
Found 8-bit subtractor for signal <$n0013> created at line 43.
Found 8-bit adder for signal <$n0014> created at line 43.
Found 8-bit adder for signal <$n0015>.

Found 8-bit adder for signal <$n0016>.

Found 8-bit adder for signal <$n0017> created at line 46.
Found 8-bit subtractor for signal <$n0018> created at line 46.
Found 8-bit subtractor for signal <$n0019> created at line 41.
Found 8-bit subtractor for signal <$n0020> created at line 41.
Found 8-bit adder for signal <$n0021>.

Found 8-bit adder for signal <$n0022>.

Found 8-bit subtractor for signal <$n0023> created at line 44.
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Found 8-bit adder for signal <$n0024> created at line 44.
Found 8-bit subtractor for signal <$n0025> created at line 40.
Found 8-bit subtractor for signal <$n0026> created at line 40.
Found 8-bit register for signal <k0 1mg>.
Found 8-bit register for signal <k0 real>.
Found 8-bit register for signal <kl i1mg>.
Found 8-bit register for signal <kl real>.
Found 8-bit register for signal <k2 1mg>.
Found 8-bit register for signal <k2 real>.
Found 8-bit register for signal <k3 1mg>.
Found 8-bit register for signal <k3 real>.
Found 8-bit register for signal <z0 img>.
Found 8-bit register for signal <z0 real>.
Found 8-bit register for signal <zl 1mg>.
Found 8-bit register for signal <zl real>.
Found 8-bit register for signal <z2 img>.
Found 8-bit register for signal <z2 real>.
Found 8-bit register for signal <z3 1mg>.
Found 8-bit register for signal <z3 real>.
Summary:
inferred 192 D-type flip-flop(s).
inferred 27 Adder/Subtractor(s).
Unit <IFFT_ 4> synthesized.

Synthesizing Unit <qam_16>.
Related source file is "C:/Xilinx/transmit/newQAM _16.vhd".
Found 16x16-bit ROM for signal <$n0004>.
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Found 8-bit register for signal <qam_real>.
Found 8-bit register for signal <qam_img>.
Summary:
inferred 1 ROM(s).
inferred 16 D-type flip-flop(s).
Unit <gam_16> synthesized.

Synthesizing Unit <FFT_modemt>.
Related source file is "C:/Xilinx/transmit/FFT_modemt.vhd".
Unit <FFT modemt> synthesized.

HDL Synthesis Report

Macro Statistics

# ROMs 1
16x16-bit ROM 1
# Adders/Subtractors 127
8-bit adder 15
8-bit subtractor 12

# Registers .26

8-bit register 126




* Advanced HDL Synthesis *

Synthesizing (advanced) Unit <IFTT 4>.
Found 2-bit shift register for signal <k0 real<4>>.
Found 2-bit shift register for signal <k0 real<5>>.
Found 2-bit shift register for signal <k0 1mg<4>>.
Found 2-bit shift register for signal <kO img<5>>.
Found 3-bit shift register for signal <iyQ real<0>>.
Found 3-bit shift register for signal <iy0_real<1>>.
Found 3-bit shift register for signal <iy0 real<2>>.
Found 3-bit shift register for signal <iyQ_real<3>>.
Found 2-bit shift register for signal <k3 1mg<0>>.
Found 2-bit shift register for signal <k3 1mg<I1>>.
Found 2-bit shift register for signal <k3 1mg<2>>.
Found 2-bit shift register for signal <k3 1mg<3>>.
Found 2-bit shift register for signal <k3 1img<4>>.
Found 2-bit shift register for signal <k3 img<5>>.
Found 2-bit shift register for signal <kl real<4>>.
Found 2-bit shift register for signal <kl real<5>>.
Found 2-bit shift register for signal <kl 1mg<0>>.
Found 2-bit shift register for signal <kl 1mg<1>>.
Found 2-bit shift register for signal <kl 1mg<2>>.
Found 2-bit shift register for signal <kl img<3>>.
Found 2-bit shift register for signal <kl 1mg<4>>.
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Found 2-bit shift register for signal <kl 1mg<5>>.
Found 3-bit shift register for signal <iy0 img<0>>.
Found 3-bit shift register for signal <1y0 img<]>>.
Found 3-bit shift register for signal <iy0 1mg<2>>.
Found 3-bit shift register for signal <iy0 1mg<3>>.
Found 2-bit shift register for signal <k2 real<4>>.
Found 2-bit shift register for signal <k2_real<5>>.
Found 2-bit shift register for signal <k2 1mg<0>>.
Found 2-bit shift register for signal <k2 1mg<1>>.
Found 2-bit shift register for signal <k2 1mg<2>>.
Found 2-bit shift register for signal <k2 1mg<3>>.
Found 2-bit shift register for signal <k2 img<4>>.
Found 2-bit shift register for signal <k2 1mg<5>>.
Found 2-bit shift register for signal <k3 real<4>>.
Found 2-bit shift register for signal <k3 real<5>>.
Found 3-bit shift register for signal <iyl real<0>>.
Found 3-bit shift register for signal <iyl real<]>>.
Found 3-bit shift register for signal <iyl real<2>>.
Found 3-bit shift register for signal <iyl real<3>>.
Found 3-bit shift register for signal <iy2 real<0>>.
Found 3-bit shift register for signal <iy2 real<l]>>.
Found 3-bit shift register for signal <iy2 real<2>>.
Found 3-bit shift register for signal <iy2 real<3>>.
Found 3-bit shift register for signal <iy3 real<0>>.
Found 3-bit shift register for signal <iy3 real<1>>.
Found 3-bit shift register for signal <iy3 real<2>>.
Found 3-bit shift register for signal <iy3 real<3>>.
Unit <IFFT_4> synthesized (advanced).
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INFO:Xst:2261 - The FF/Latch <iy3 real 5> in Unit <IFFT_4>
the following FF/Latch, which will be removed : <iy3 real 7>

INFO:Xst:2261 - The FF/Latch <iy3 real 4> in Unit <IFFT_4> i

the following FF/Latch, which will be removed : <iy3 real 6>

INFO:Xst:2261 - The FF/Latch <iyl real 5> in Unit <IFFT_4> 1

the following FF/Latch, which will be removed : <iyl real 7>

INFO:Xst:2261 - The FF/Latch <iyO_real 5> in Unit <IFFT 4> 1

the following FF/Latch, which will be removed : <iyQ real 7>

INFO:Xst:2261 - The FF/Latch <iyl real 4> in Unit <IFFT_4> i

the following FF/Latch, which will be removed : <iyl real 6>

INFO:Xst:2261 - The FF/Latch <iy0 real 4> in Unit <IFFT_4> 1

the following FF/Latch, which will be removed : <iyQ real 6>

INFO:Xst:2261 - The FF/Latch <iy0_img_5> in Unit <IFFT_4> i

the following FF/Latch, which will be removed : <iy0 img 7>

INFO:Xst:2261 - The FF/Latch <iy2 real 5> in Unit <IFFT_4> i

the following FF/Latch, which will be removed : <iy2 real 7>

INFO:Xst:2261 - The FF/Latch <iy0_img 4> in Unit <IFFT _4> i

the following FF/Latch, which will be removed : <iy0 _img_ 6>

INFO:Xst:2261 - The FF/Latch <iy2 real 4> in Unit <IFFT_4> i

the following FF/Latch, which will be removed : <iy2 real 6>

1S

1S

1S

1S

1S

1S

1S

1S

1S

1S

equivalent to

equivalent to

equivalent to

equivalent to

equivalent to

equivalent to

equivalent to

equivalent to

equivalent to

equivalent to

Advanced HDL Synthesis Report

Macro Statistics

# ROMs |
16x16-bit ROM 1

# Adders/Subtractors 27
8-bit adder 15
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8-bit subtractor =12

# Registers - 50

Flip-Flops 50

# Shift Registers - 48

2-bit shift register 28

3-bit shift register : 20

* Low Level Synthesis *

INFO:Xst:2261 - The FF/Latch <dutl/qam_img_3> in Unit <FFT_modemt> 1is
equivalent to the following 4 FFs/Latches, which will be removed
<dutl/qam_img_4> <dutl/qam_img_5> <dutl/qam_img_6> <dutl/qam_img_7>

Optimizing unit <FFT_ modemt> ...

Optimizing unit <IFFT_4> ...

Loading device for application Rf Device from file 'v200.nph' in environment
C:\Xilinx.

Mapping all equations...
Building and optimizing final netlist ...

[NFO:Xst:2261 - The FF/Latch <dutl/qam_real 3> in Unit <FFT_ modemt> is
equivalent to the following 4 TFFs/Latches, which will be removed
<dutl/qam real 4> <dutl/qam_real 5> <dutl/qam_real 6> <dutl/qam_real 7>

Found area constraint ratio of 100 (+ 5) on block FFT modemt, actual ratio is 4.
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FlipFlop dutl/qam_img_3 has been replicated 4 time(s)
FlipFlop dutl/qam_real_3 has been replicated 3 time(s)

* Final Report *

Final Results
RTL Top Level Output File Name FFT modemt.ngr

Top Level Output File Name - FFT_modemt
Output Format - NGC

Optimization Goal : Speed

Keep Hierarchy :NO

Design Statistics

# 10s 69
Cell Usage :

# BELS - 308
# GND 1

#  INV .9

# LUTI 2

# LUT2

# LUI2_D 2
# LUT2_L - 78
# LUT3

# LUT4

# MUXCY - 101
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# VCC 1

# XORCY - 90
# FlipFlops/Latches 97
# TID : 86

# FDR 4

# FDRS -6

# FDS 1

# Shift Registers - 48
# SRLI16 48
# Clock Buffers -1
# BUFGP -1
# 10 Buffers - 68
# IBUF -4

# OBUF 64

Selected Device : 25200pq208-6

114 out of 2352 4%
97 outof 4704 2%
154 outof 4704 3%

Number of Slices:
Number of Slice Flip Flops:
Number of 4 input LUTs:

Number used as logic: 106

Number used as Shift registers: 48
Number of bonded 10Bs: 69 outof 144 47%



TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE
TRACE REPORT

GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

___________________________________ S S
Clock Signal | Clock buffer(FF name) | Load |
___________________________________ R SR S
clk | BUFGP | 145 |
____________________________________ S S S S

Timing Summary:

Speed Grade: -6

Minimum period: 10.840ns (Maximum Frequency: 92.251MHz)
Minimum input arrival time before clock: 4.401ns
Maximum output required time after clock: 6.959ns

Maximum combinational path delay: No path found

Timing Detail:
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All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock 'clk’
Clock period: 10.840ns (frequency: 92.251MHz)
Total number of paths / destination ports: 7976 / 142
Delay: 10.840ns (Levels of Logic = 13)
Source: dutl/gam_img_0 (FF)
Destination: dut2/Mshreg k3 img 5 (FF)
Source Clock:  clk rising

Destination Clock: clk rising

Data Path: dutl/qam_img_ 0 to dut2/Mshreg k3 img 5
Gate  Net
Cell:in->out  fanout Delay Delay Logical Name (Net Name)

FD:C->Q 8§ 1.085 1.845 dutl/qgam_img O (dutl/qam _img 0)
LUT2 D:11->LO 1 0.549 0.000 dut2/IFFT 4 n0017<0>lut (N30)
MUXCY:S->0 1 0.659  0.000  dut2/IFFT 4 n0017<0>cy
(dut2/IFFT 4 n0017<0> cyo)
MUXCY:CI->0O 1 0.042  0.000 dut2/IFFT 4 n0017<I>cy
(dut2/IFFT 4  n0017<1> cyo)
MUXCY:CI->0O 1 0.042  0.000 dut2/IFFT 4 n0017<2>cy
(dut2/IFFT 4 n0017<2> cyo)
MUXCY:CI->0O 1 0.042  0.000 dut2/IFFT 4 n0017<3>cy
(dut2/IFFT 4  n0017<3> cyo)
MUXCY:CI->0O 1 0.042 0.000 dut2/IFFT 4 n0017<4>cy
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(dut2/IFFT_4_ n0017<4> cyo)

XORCY:CI->0 I 0420 1.035 du2/IFFT 4 n0017<5> xor
(dut2/_n0017<5>)

(dut2/IFFT_4__n0018<5> cyo)

XORCY:CI->0 L0420 1.035 dut2/IFFT_4‘nOOI8<6>%xor
(dut2/ n001] 8<6>)
LUT2_L:10->L0O 1 0.549  0.000 dut2/IFFT~4_nOOOS<6>Iut
(dut2/N141)
MUXCY:S->0 0 0.659  0.000 dut2/IFFT_4‘nOOOS<6>cy
(dut2/IFFT__4_nOOOS<6>_Cy0)
XORCY:CI->0 10420  0.000 dut2/IFFT*4_nOOOS<7>*xor
(dut2/_n0005<7>)
SRL16:D 0.788 dut2/Mshreg_k3_reaI_5
Total 10.840ns (6.925ng logic, 3.915ns route)

(63.9% logic, 36.1% route)

Timing constraint: Default OFFSET IN BEFORE for Clock 'clk'
Total number of paths / destination ports: 19/ 16

Offset: 4.401ns (Levels of Logic = 2)
Source: Input<2> (PAD)
Destination: dutl/qam_realﬁl (FF)

Destination Clock: clk rising

Data Path: input<2> to dutl/qam*real_l
Gate  Net
Cell:in->out  fanout Delay Delay Logical Name (Net Name)
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IBUF:I->0 3 0.776 1.332 input 2 IBUF (input 2_IBUF)

INV:I->0 1 0.549 1.035 Mrom data_dutl/Mrom__n000421_INV_0
(N12)

FDS:D 0.709 dutl/gam real 1

Total 4.401ns (2.034ns logic, 2.367ns route)

(46.2% logic, 53.8% route)

Timing constraint: Default OFFSET OUT AFTER for Clock 'clk’
Total number of paths / destination ports: 64 / 64

Offset: 6.959ns (Levels of Logic = 1)
Source: dut2/iy0 real 5 (FF)
Destination: IF_q_real0<7> (PAD)

Source Clock:  clk rising

Data Path: dut2/iy0_real 5 to IF_q_real0<7>
Gate  Net
Cellsin->out  fanout Delay Delay Logical Name (Net Name)

FD:C->Q 2 1.085 1.206 dut2/iy0 real 5 (dut2/iy0O_real 5)
OBUF:1->0 4.668 [F q real0 7 OBUF (IF_q real0<7>)
Total 6.959ns (5.753ns logic, 1.206ns route)

(82.7% logic, 17.3% route)
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CPU :6.10/6.30 s | Elapsed : 7.00/ 7.00 s

Total memory usage is 132364 kilobytes

Number of errors : 0 (0 filtered)
Number of warnings : 48 (0 filtered)
Number of infos  : 13 (0 filtered)

6.3.2 SYNTHESIS REPORT OBTAINED FOR OFDM RECEIVER

Release 8.11 - xst [.24

Copyright (c) 1995-2005 Xilinx, Inc. All rights reserved.
--> Parameter TMPDIR set to /xst/projnav.tmp

CPU :0.00/0.32 s | Elapsed : 0.00/1.00 s

--> Parameter xsthdpdir set to ./xst
CPU:0.00/0.32 s | Elapsed : 0.00/1.00 s

--> Reading design: FFT modemr.prj

TABLE OF CONTENTS
1) Synthesis Options Summary
2) HDL Compilation
3) HDL Analysis
4) HDL Synthesis
4.1) HDL Synthesis Report
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5) Advanced HDL Synthesis

5.1) Advanced HDL Synthesis Report
6) Low Level Synthesis
7) Final Report

7.1) Device utilization summary

7.2) TIMING REPORT

Synthesis Options Summary

-——- Source Parameters
Input File Name :"FFT modemr.prj"
Input Format - mixed

Ignore Synthesis Constraint File : NO

---- Target Parameters

Output File Name -"FFT modemr"
Output Format - NGC
Target Device - x¢28200-6-pq208

---- Source Options

Top Module Name : FFT modemr
Automatic FSM Extraction - YES

FSM Encoding Algorithm . Auto

FSM Style s lut
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RAM Extraction Yes

RAM Style : Auto
ROM Extraction s Yes
Mux Style : Auto
Decoder Extraction - YES
Priority Encoder Extraction : YES
Shift Register Extraction :YES
Logical Shifter Extraction - YES
XOR Collapsing :YES
ROM Style : Auto
Mux Extraction : YES
Resource Sharing : YES
Multiplier Style - lut
Automatic Register Balancing : No
---- Target Options

Add IO Buffers - YES
Global Maximum Fanout - 100
Add Generic Clock Bufter(BUFG) : 4
Register Duplication - YES
Slice Packing :YES

Pack 10 Registers into [OBs : auto
Equivalent register Removal :YES

---- General Options

Optimization Goal : Speed
Optimization Effort 1
Keep Hierarchy : NO
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RTL Output - Yes

Global Optimization : AllClockNets
Write Timing Constraints :NO
Hierarchy Separator 2/

Bus Delimiter D <>

Case Specifier : maintain

Slice Utilization Ratio 100

Slice Utilization Ratio Delta °5

---- Other Options

Iso : FFT modemr.lso
Read Cores : YES
cross_clock analysis :NO
verilog2001 - YES

safe implementation : No

Optimize Instantiated Primitives : NO

tristate2logic : Yes

use clock enable - Yes
use_sync_set 2Yes
use_sync_reset :Yes

* HDL Compilation
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Compiling vhdl file "C:/Xilinx/recieve/FFT_4.vhd" in Library work.

Entity <FFT 4> compiled.

Entity <FFT 4> (Architecture <bhv>) compiled.

Compiling vhdl file "C:/Xilinx/recieve/newDEQAM_16.vhd" in Library work.
Entity <deqam_16> compiled.

Entity <deqam_ 16> (Architecture <bhv>) compiled.

Compiling vhdl file "C:/Xilinx/recieve/FFT_modemr.vhd" in Library work.
Entity <FFT modemr> compiled.

Entity <FFT modemr> (Architecture <bhv>) compiled.

* HDL Analysis *

Analyzing Entity <FFT modemr> (Architecture <bhv>).

Entity <FFT modemr> analyzed. Unit <FFT modemr> generated.

Analyzing Entity <FFT 4> (Architecture <bhv>).
Entity <FFT 4> analyzed. Unit <FFT 4> generated.

Analyzing Entity <deqam_16> (Architecture <bhv>).
Entity <deqam_ 16> analyzed. Unit <deqam_16> generated.

* HDL Synthesis *
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Synthesizing Unit <deqam_16>.
Related source file is "C:/Xilinx/recieve/newDEQAM 16.vhd".
Found 4-bit register for signal <qam_out>.
Summary:
inferred 4 D-type flip-flop(s).
Unit <degam 16> synthesized.

Synthesizing Unit <FFT 4>.
Related source file is "C:/Xilinx/recieve/FFT 4.vhd".
Found 8-bit register for signal <yl img>.
Found 8-bit register for signal <y0 real>.
Found 8-bit register for signal <y2 img>.
Found 3-bit register for signal <yl real>.
Found 8-bit register for signal <y3 img>.
Found 3-bit register for signal <y2 real>.
Found 8-bit register for signal <y0 img>.
Found 8-bit register for signal <y3 real>.
Found 8-bit subtractor for signal <$n0000> created at line 24.
Found 8-bit adder for signal <$n0001> created at line 22.
Found 8-bit subtractor for signal <$n0002> created at line 27.
Found 8-bit adder for signal <$n0003> created at line 25.
Found 8-bit adder for signal <$n0004> created at line 30.
Found 8-bit subtractor for signal <$n0005> created at line 28.
Found 8-bit adder for signal <$n0006> created at line 21.

Found 8-bit subtractor for signal <$n0007> created at line 31.
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Found §-bit subtractor for signal <$n0008> created at line 24.
Found §-bit adder for signal <$n0009> created at line 24.
Found 8§-bit adder for signal <§n0010>.
Found 8-bit adder for signal <$n0011>.
Found 8-bit subtractor for signal <$n0012> created at line 27.
Found 8-bit adder for signal <$n0013> created at line 27.
Found 8-bit subtractor for signal <$n0014> created at line 25.
Found 8-bit subtractor for signal <$n0015> created at line 25.
Found 8-bit subtractor for signal <$n0016> created at line 30.
Found 8-bit subtractor for signal <$n0017> created at line 30.
Found 8-bit subtractor for signal <$n0018> created at line 28.
Found 8-bit adder for signal <$n0019> created at line 28.
Found 8-bit adder for signal <$n0020>.
Found 8-bit adder for signal <$n0021>.
Found 8-bit adder for signal <$n0022> created at line 31.
Found 8-bit subtractor for signal <$n0023> created at line 31.
Summary:

inferred 64 D-type flip-flop(s).

inferred 24 Adder/Subtractor(s).

Unit <FFT 4> synthesized.

Synthesizing Unit <FFT modemr>.

Related source file is "C:/Xilinx/recieve/FFT_modemr.vhd".

Unit <FFT modemr> synthesized.

WARNING:Xst:524 - All outputs of the instance <dut3> of the block <FFT_4> are
unconnected in block <FFT modemr>.
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This instance will be removed from the design along with all underlying logic

HDL Synthesis Report

Macro Statistics

# Registers 1
4-bit register 1
* Advanced HDL Synthesis *

Advanced HDL Synthesis Report

Macro Statistics
# Registers : 68
Flip-Flops : 68
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* Low Level Synthesis *

Optimizing unit <FFT modemr> ...

Optimizing unit <FFT 4> ..

Optimizing unit <deqam_ 16> ...

Loading device for application Rf Device from file 'v200.nph' in environment
C:\Xilinx.

Mapping all equations...
Building and optimizing final netlist ...

Found area constraint ratio of 100 (+ 5) on block FFT modemr, actual ratio 1s 0.

* Final Report *

Final Results
RTL Top Level Output File Name : FFT _modemr.ngr

Top Level Output File Name : FFT modemr
Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : NO
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Design Statistics
#10s : 69

Cell Usage :
# BELS : 20

# LUT2 4

# LUT3 23

# LUT4 112
#  MUXFS 1
# FlipFlops/Latches 4
# FD 03

# FDR -1

# Clock Buffers 1
#  BUFGP 1
# 10 Buffers : 20
# IBUF 16
# OBUF 4

Device utilization summary:

Selected Device : 25200pq208-6

Number of Slices: 11 outof 2352 0%

Number of 4 input LUTs: 19 outof 4704 0%
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Number of bonded 10Bs: 21 outof 144 14%
IOB Flip Flops: 4
Number of GCLKSs: 1 outof 4 25%

TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE
TRACE REPORT

GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

___________________________________ S
Clock Signal | Clock butfer(FF name) | Load |
____________________________________ S
clk | BUFGP |4 |
____________________________________ U

Timing Summary:

Speed Grade: -6

Minimum period: No path found
Minimum input arrival time before clock: 8.883ns

Maximum output required time after clock: 6.788ns
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Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default OFFSET IN BEFORE for Clock 'clk'
Total number of paths / destination ports: 117 /5

Offset: 8.883ns (Levels of Logic = 6)
Source: IF _g_img0<4> (PAD)
Destination: dutd/qam_out 3 (FF)

Destination Clock: clk rising

Data Path: [F_q img0<4> to dut4/qam_out_3
Gate Net
Cell:in->out  fanout Delay Delay Logical Name (Net Name)

IBUF:I->0 2 0.776 1206 IF q img0 4 IBUF (IF_q_img0 4 IBUF)
LUT2:10->0 1 0.549 1.035 dut4/Ker7 SWO (NI11)

LUT4:13->0 4 0.549 1.440 dutd/Ker7 (dut4/N7)

LUT4:10->0 1 0.549 0.000 dut4/Ker0 F (N156)

MUXF5:10->0 2 0315 1.206 dutd/Ker0O (dut4/NO)

LUT2:11->0 1 0.549 0.000 dut4/ n0001<2>1 (N155)

FDR:D 0.709 dutd4/gam_out 2

Total 8.883ns (3.996ns logic, 4.887ns route)
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(45.0% logic, 55.0% route)
Timing constraint: Default OFFSET OUT AFTER for Clock 'clk’
Total number of paths / destination ports: 4 / 4
Offset: 6.788ns (Levels of Logic = 1)
Source: dut4/gam_out 3 (FF)
Destination: output<3> (PAD)

Source Clock:  clk rising

Data Path: dut4/qgam_out_3 to output<3>
Gate Net
Cell:in->out  fanout Delay Delay Logical Name (Net Name)

FD:C->Q 1 1.085 1.035 dutd/qam_out 3 (dut4/qam_out_3)
OBUF:1->0 4.668 output 3 OBUF (output<3>)
Total 6.788ns (5.753ns logic, 1.035ns route)

(84.8% logic, 15.2% route)

CPU :4.82/5.21 s|Elapsed : 5.00/6.00 s

>
Total memory usage is 132108 kilobytes
Number of errors : 0 ( 0 filtered)
Number of warnings : 9 ( 0 filtered)
Number of infos : 0 ( O filtered)
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6.4 FLOOR PLANNING RESULTS:

6.4.1 FLOOR PLAN OBTAINED FOR OFDM TRANSMITTER:
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6.4.2 FLOOR PLAN OBTAINED FOR OFDM RECEIVER:

b
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CHAPTER 7

CONCLUSION

The project analyses the OFDM system under various considerations. First,
the MATLAB simulation of the OFDM system provides an insight into the various
processes that are carried out in the process of OFDM. The Rayleigh-Fading
channel for BPSK system has been modeled and the noise components also have
been introduced. Finally, the BER performance of the OFDM system is estimated

and analyzed.

Next our aim of developing VHDL programs for the OFDM system
comprising of the QAM, Inverse FFT, FFT & Inverse QAM blocks has also been

achieved.

The 16-point QAM with rectangular constellation is employed along with
the 4-point Decimation-In-Time FFT & Inverse FFT blocks. The transmitter
module output is given as input to the receiver module and the transmitted data is
obtained back at the receiver accurately. The VHDL code for the complex
conjugate multiplier to be incorporated within the butterfly processor has also been

functionally simulated using Modelsim.

Finally, the developed OFDM system is implemented in the FPGA. The
RTL schematic, synthesis report and floorplans for the transmitter and receiver
modules are obtained successfully. Thus with the description of the system in

VHDL, the hardware implementation of the system is arrived.
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CHAPTER 8

EXTENSION OF THE PROJECT

As the aim of our project is achieved, useful extensions are suggested for the

project that will make the OFDM concept to be implemented practically.

1)The OFDM Transmitter & Receiver cores are constructed with only the QAM &
FFT blocks for coding and implementation. In order to make it practically
applicable, other blocks such as the Frequency Interleaver, de-interleaver, STBC

Coder & Decoder along with Channel Estimation can be included.

2) The outputs of the Transmitter block are directly coupled to the Receiver Block.
However in practical, there exists a wireless path in between the Transmitter and
Receiver. Hence an RF module can be added for demonstration or in case of
practical systems, additional modifications are required for amplifying the received
signal. Error correction & detection may also be included to make the system more

reliable.

3)In the FFT block, 4-point FFT is used. If more complex systems are designed,
the need for multiplication of complex twiddle factors arises. An algorithm for the
complex conjugate multiplier is proposed. As an extension to this, higher order

FFTs can be developed to account for complex systems.
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APPENDIX - A

MATLAB PROGRAMS

A.1 Script for computing the BER for BPSK modulation in a Rayleigh fading channel

clear

N = 1076 % number of bits or symbols

% Transmitter

ip = rand(1,N)>0.5; % generating 0,1 with equal probability

s = 2*ip-1; % BPSK modulation 0 ->-1; 1 -> 0

Eb NO dB = [-3:35]; % multiple Eb/NO values

for ii = 1:length(Eb_NO_dB)

n = 1/sqrt(2)*[randn(1,N) + j*randn(1,N)]; % white Gaussian noise,0dB variance
h = 1/sqrt(2)*[randn(1,N) + j*randn(1,N)]; % Rayleigh channel
% Channel and noise Noise addition

y=h.*s+ 10~-Eb_NO_dB(ii)/20)*n;

% equalization

yHat = y./h;

% receiver - hard decision decoding

ipHat = real(yHat)>0;

% counting the errors

nErr(ii) = size(find([ip- ipHat]),2);

end

simBer = nErr/N; % simulated ber

theoryBerAWGN = 0.5*erfc(sqrt(10.~(Eb_NO_dB/10))); % theoretical ber
EbNOLin = 10.~(Eb_NO dB/10);

theoryBer = 0.5.%(1-sqrt(EbNOLin./(EbNOLin+1)));
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% plot

close all

figure

semilogy(Eb NO_dB,theoryBerAWGN,'cd-','LineWidth',2);
hold on

semilogy(Eb_NO_dB,theoryBer, bp-','LineWidth',2);
semilogy(Eb NO_dB,simBer,'mx-','LineWidth',2);

axis([-3 35 10"-5 0.5])

grid on

legend(' AWGN-Theory','Rayleigh-Theory', 'Rayleigh-Simulation’);
xlabel("Eb/No, dB');

ylabel('Bit Error Rate');

titte((BER for BPSK modulation in Rayleigh channel’);

A.2 Script for computing the BER for BPSK with OFDM modulation in the
presence of Rayleigh fading channel

clear all
nFFT = 64; % fft size
nDSC = 52: % number of data subcarriers

nBitPerSym = 52; % number of bits per OFDM symbol

nSym = 10"4; % number of symbols

EbNOdB = [0:35]; % bit to noise ratio

EsNOdB = EbNOdB + 10*loglO(nDSC/nFFT) + 10*logl0(64/80); %
converting to symbol to noise ratio

for i1 = 1:length(EbNOdB)
% Transmitter
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ipBit = rand(1,nBitPerSym*nSym) > 0.5; % random 1's and 0's

ipMod = 2*ipBit-1; % BPSK modulation 0 --> -1, 1 --> +1

ipMod = reshape(ipMod,nBitPerSym,nSym)."; % grouping into multiple symbolsa
% Assigning modulated symbols to subcarriers from [-26 to -1, +1 to +26]

xF = [zeros(nSym,6) ipMod(:,[ I:nBitPerSym/2]) zeros(nSym, 1)
ipMod(;,[nBitPerSym/2+1:nBitPerSym]) zeros(nSym,5)] ;

% Taking FFT, the term (nFFT/sqrt(nDSC)) is for normalizing the power of
transmit syrnbol to 1

xt = (nFFT/sqrt(nDSC))*ifft(fftshifi(xF.")).’;

% Appending cylic prefix

xt = [xt(:,[49:64]) xt];

% multipath channel

nTap = 10;

ht = 1/sqrt(2)*1/sqrt(nTap)*(randn(nSym,nTap) + *randn(nSym,nTap));

% computing and storing the frequency response of the channel,for at recevier

hF = fftshift(fft(ht,64,2));

% convolution of each symbol with the random channel

for jj = 1:nSym

xht(jj,:) = conv(ht(jj,:),xt(3),:));

end

xt = xht;

% Concatenating multiple symbols to form a long vector

xt = reshape(xt.',1,nSym*(80+nTap-1));

% Gaussian noise of unit variance, 0 mean

nt = 1/sqrt(2)*[randn(1,nSym*(80+nTap-1)) + j*randn(1,nSym*(80+nTap-1))];

% Adding noise, the term sqrt(80/64) is to account for the wasted energy due to
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cyclic prefix

yt = sqrt(80/64)*xt + 10"(-EsN0dB(i1)/20)*nt;

% Receiver

yt = reshape(yt.,80+nTap-1,nSym)."; % formatting the received vector into
symbols

yt = yt(;,[17:80]); % removing cyclic prefix

% converting to frequency domain

yF = (sqrt(nDSC)/nFFT)* fftshift(fft(yt.")).";

% equalization by the known channel frequency response
yF = yF./hF;

% extracting the required data subcarriers

yMod = yF(:,[6+[1:nBitPerSym/2] 7+[nBitPerSym/2+1:nBitPerSym] ]);
% BPSK demodulation

% +ve value --> 1, -ve value --> -1

ipModHat == 2*floor(real(yMod/2)) + 1;
ipModHat(find(ipModHat>1)) = +1;
ipModHat(find(ipModHat<-1)) = -1;

% converting modulated values into bits

ipBitHat = (ipModHat+1)/2;

ipBitHat = reshape(ipBitHat.', nBitPerSym*nSym, 1).";

% counting the errors

nErr(i1) = size(find(ipBitHat - ipBit),2);

end

simBer = nErr/(nSym*nBitPerSym);

EbNOLin = 10.~(EbNO0dB/10);

theoryBer = 0.5.*(1-sqrt(EbNOLin./(EbNOLin+1)));
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close all; figure

semilogy(EbNOdB, theoryBer,'bs-','LineWidth',2);

hold on

semilogy(EbNOdB,simBer,'mx-','LineWidth',2);

axis([0 35 107-5 1))

grid on

legend('Rayleigh-Theory', 'Rayleigh-Simulation');
xlabel('Eb/No, dB')

ylabel('Bit Error Rate')

title('BER for BPSK using OFDM in a 10-tap Rayleigh channel’)
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APPENDIX - B

VHDL CODING:

B.1 VHDL CODE FOR THE COMPLEX CONJUGATE MULTIPLIER TO
BE IMPLEMENTED WITH THE BUTTERFLY PROCESSOR

library lpm;
use lpm.lpm_components.ALL;
library ieee;
use teee.std_logic 1164.ALL;
use ieee.std_logic arith. ALL;
entity ccmul is
generic(w2:integer:=17;
wl:integer:=9;
w:integer:=8);
port(clk:std_logic;
X_iny in,c in
:1in STD_LOGIC_VECTOR(w-1 downto 0);
Cps_in,cms_in
:in STD_LOGIC_VECTOR(w1-1 downto 0);
r_out,i_out
:out STD_LOGIC_VECTOR(W—I downto 0));
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end ccmul;
architecture flex of ccmul is
signal x,y,c:std logic vector(w-1 downto 0);
signal r,i,cmsy,cpsx,xmyc : std_logic_vector(w2-1 downto 0);
signal xmy,cps,cms,sxtx,sxty:std logic vector(wl-1 downto 0);
begin
X<=x_in;
y<=y_in;
c<=C_In;
Cps<=cps_in;
cms<=cms_in;
process
begin
wait until clk="1";
r_out <=r(w2-3 downto w-1);
1_out <=1(w2-3 downto w-1);
end process;
sxtx <=x(x'high)&x;
sxty <=y(y'high)&y;
sub_1:lpm_add sub
generic map ( LPM WIDTH
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=>w1 ,LPM__DIRECTION=>"SUB",LPM_REPRESENTATION=>"SIGNED”)
port map (dataa=>sxtx,datab=>sxty,result=>xmy);
mul_1:Ipm mult

generic
map(LPM_WIDTHA=>w] ,LPM_WIDTHB=>w,LPM_WIDTHP=>w2 LPM W]
DTHS=>w2,LPM_REPRESENTATION=>"SIGNED")

port map (dataa=>xmy,datab=>c result=>xmyc);
mul 2:lpm mult

generic
map(lpm_widtha=>w1,lpm_widthb=>w,lpm_widthp=>w2 Jpm_widths=>w2 lpm
representation=>"SIGNED")

port map(dataa=>cms,datab=>y result=—cmsy);
mul 3:lpm_mult

generic
map(lpm_widtha=>w]1 ,lpm*widthb=>w,lpm_widthp=>w2,lpmqwidths:>w2,lpm_
representation=>"SIGNED")

port map(dataa=>cps,datab=>x result=>cpsx);
sub_2:lpm add_sub

generic

map(lpm_width=>w2,1pm‘directi0n=>"SUB",lpm_representation=>"SIGNED”)
port map(dataa=>cpsx,datab=>xmyc,result=>i);

add 1:lpm add sub
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generic

map(lpm_width=>w2,lpm_direction=>"ADD",lpm_representati0n=>”SIGNED")
port map( dataa:>cmsy,datab=>xmyc,resu1t=>r);

end flex;

B.2 VHDL CODE FOR OFDM TRANSMITTER MODULE:
library ieee;

use ieee.std_logic 1164.all;

entity FFT modemt is

port (clk:in std_logic;

input :in std_logic_vector(3 downto 0);

IF_q real0,IF_q reall,IF q real2,IF _q_real3,IF_q img0,IF q img]l AF g img2 1
F_q img3:out std_logic vector(7 downto 0));

end FFT modemt;

architecture bhv of FFT modemt is

component gam_16

port (clk:in std_logic;
qam_in :in std_logic vector(3 downto 0);
qam_real:out std_logic_vector(7 downto 0);
qam_img:out std_logic_vector(7 downto 0));

end component;
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component [FFT 4

port(clk:std logic;
ixO_real,Jix1_real,ix2_real,ix3_real:in std_logic_vector(7 downto 0):
ixO_img,:ix1_img,ix2_img,ix3_img :in std_logic_vector(7 downto 0);
iyO_real,iyl_real,iy2_real,iy3_rea1:out std_logic_vector(7 downto 0);
iyO_img,iyl*img,iy2_img,iy3_img rout std_logic vector(7 downto 0));

end component;

signal q_real,q_img:std_logic_vector(7 downto 0);

begin

dutl:qgam_16 port map(clk,input,q real,q_img);

dut2:IFFT_4 port map (clk,q_real,q_real,q_real,q_real,q_img,cLimg,q_img,qﬁimg,

IF_q real0,IF g reall,IF _q_real2,IF_q real3,IF_q img0,IF ~q_imgl,
IF_q img2,IF q img3):

end bhv;

B.3 VHDL CODE FOR Inverse FFT BLOCK:

library ieee;

use ieee.std_logic 1164.all;
use ieee.std_logic unsigned.all;

entity IFFT 4 is
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port(clk:std logic;
ixO_reaL,ix1_real,ix2_real,ix3_real:in std_logic_vector(7 downto 0);
ixO_img,ixl‘img,ix2_img,ix3_img :in std_logic_vector(7 downto 0);
| iyO_real,iy1_real,iy2_rea1,iy3‘real:out std_logic_vector(7 downto 0);
iyO‘img,iyl_img,iy2_img,iy3_img rout std_logic_vector(7 downto 0));
end IFFT 4;

architecture bhv of IFFT 4is

signal zO_real,z1_real,zZ_real,z3_real:std_logic*vector(7 downto 0);
signal zO_img,zl_img,z2_img,z3_img :std_logic_vector(7 downto 0);
signal kO_reaxl,k1_rea1,k2_real,k3_real:std_logic_vector(7 downto 0);
signal kO_img,kl_img,k2_img,k3_img std_logic_vector(7 downto 0);
begin

process(clk,ix0 realix 1_real,ix2_rea1,ix3_real,ix0_img,ix I_img,ix2_img, X3 img)
begin

if clk'event and clk='1" then

--z0_real<=ix0 real + ix]_real +ix2_real + ix3 real;

-z0_img<= "00000000";

--zl_real<=ix( rea] - 1x2_real;

—-z]_img<=ixl_img - 1x3_img;--

--z2_real<=ix0 real - ix1_real +ix2 real - 1x3 real;
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--z2_img<="00000000";--

--z3_real<=ix0 real - ix2 _real;

--z3 1mg<=ix3 img - ix3_img;

z0_real<=1x0_real +ix] real +ix2 real +ix3 real;
z0_img<= ix]l_img + ix2_img + ix3 img + ix0_img;---- (-)
z1_real<=ix0 real - ix2 real - ix]_img + ix3_img;
zl_img<=1ix3_real - ix0_img - ix] real + ix2_img;--
z2_real<=ix0_real - ix]1 real +ix2 real - ix3 real;
z2_img<=ixl_img - ix2_img + ix3_img -ix0_img ;
z3_real<=ix0_real +ix]1_img - ix2_real - ix3_img;
z3_img<= ix]_real +ix2 img - ix3 real - ix0_img;
kO_real<="00" & (z0_real(7 downto 2));

kO img<="00" & z0_img(7 downto 2);

kl_real<="00" & z1 real(7 downto 2);

k]l img<="00" & z1 img(7 downto 2);

k2 real<="00" & z2_real(7 downto 2);

k2 _img<="00" & z2_img(7 downto 2);

k3 real<="00" & z3_ real(7 downto 2);

k3 1mg<="00" & z3_img(7 downto 2);
1y0_real<=kO0_real(5 downto 4) & k0 _real(5 downto 0);
1y0_img<= kO_img(5 downto 4) & kO _img(5 downto 0);

b
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iyl real<=kl real(5 downto 4) & k1 real(5 downto 0);

iyl img<="00000001" + not (k1 img(5 downto 4) & k1 img(5 downto 0));
iy2 real<=k2 real(5 downto 4) & k2 real(5 downto 0);

1y2 _img<="00000001" + not(k2 img(5 downto 4) & k2 _img(5 downto 0));
1y3 real<=k3 real(5 downto 4) & k3 real(5 downto 0);

1y3 img<="00000001" + not(k3 img(5 downto 4) & k3 img(5 downto 0));
end if;

end process;

end bhv;

B.4 VHDL CODE FOR QAM BLOCK:

library ieee;

use ieee.std_logic 1164.all;

entity gam_16 1is

port (clk:in std logic;
qam_in :in std_logic_vector(3 downto 0);
qam_real:out std_logic_vector(7 downto 0);
gam_img:out std logic vector(7 downto 0));

end gam_16;

architecture bhv of qam_16 is

begin
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process(clk,qam_in)

begin

if clk="1" and clk'event then
case gam_in is

when "0000" =>
qam_real<="11111010";-- -6
gam_img <="00000110";--+6j
when "0001"=>qam real<="11111010";-- -6
gam_img <="00000011";--- +3;
when "0010"=>
qam_real<="11111010";-- -6
gam_img <="11111010";-- -6;
when "0011"=>
gam_real<="11111010";-- -6
gam_img <="11111101";-- -3;
when "0100" =>
qam_real<="11111101";-- -3
gqam_img <="00000110";--+6j
when "0101" =>
qam_real<="11111101";-- -3
gam_img <="00000011";--- +3;
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when "0110"=>
qam_real<="11111101";-- -3
qam_img <="11111010";-- -6j
when "0111"=>
qam_real<="11111101";---3
dqam_img <="11111101";-- -3j
when "1000"=>
gam_real<="00000110";--+6
qam_img <="00000110";--+6j
when "1001"=>
qam_real<="00000110";--+6
dqam_img <="00000011";--- +3;j
when "1010"=>
qam_real<="00000110";--+6
qam_img <="11111010";-- -6j
when "1011" =>
gqam_real<="00000110";--+6
qam_img <="11111101";-- -3]
when "1100" =>
dam_real<="00000011";--- +3
dqam_img <="00000110";--+6j
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when "1101" =>
qam_real<="00000011";--- +3
gam_img <="00000011";--- +3j
when "1110" =>
qam_real<="00000011";--- +3
gam_img <="11111010";-- -6)
when "1111" =>
qam_real<="00000011";--- +3
qam img <="11111101";-- -3j
when others=>
gam_real<="00000000";--0
qam_img <="00000000";--j0
end case;

end if;

end process;

end bhv;

B.5S VHDL CODE FOR OFDM RECEIVER SIDE:
library ieee;
use ieee.std logic 1164.all;
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entity FFT modemr is

port (clk:in std_logic;

IF_q real0,IF_q_reall,IF_q real2,IF q real3,IF _q_img0,IF_q imgl,IF q img2,
IF_q_img3:in std_logic_vector(7 downto 0);

output :out std_logic_vector(3 downto 0));

end FFT modemr;

architecture bhv of FFT modemr is

component FFT 4

port(clk:std logic;
x0_real,x1_real,x2 real,x3 real:in std_logic_vector(7 downto 0);
x0_img,x1_img,x2 img,x3 img :in std_logic_vector(7 downto 0);
y0_real,yl_real,y2 real,y3 real:out std_logic_vector(7 downto 0);
y0_img,yl img,y2 img,y3 img :out std_logic_vector(7 downto 0));

end component;

component deqam_16

port (clk:in std_logic;
qam_out :out std_logic_vector(3 downto 0);
qam_real:in std_logic vector(7 downto 0);
qam_img :in std_logic_vector(7 downto 0));

end component;
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signal F_q real0,F q reall ,F_q real2,F q real3,F q img0,F q imgl ,JF q img2,
F_q img3:std_logic_vector(7 downto 0);

begin

dut3:FFT 4 port
map(clk,IF_q real0,IF g reall JF_q real2 IF_q real3,IF_q img0,IF ~q mmgl,
IF_q img2,IF q img3,

F_q_real0,F g _reall,F q real2,F q real3 ,F_q img0,F q imgl,
F_q mg2F q img3);
dut4:deqam_16 port map(clk,output,IF_q_real0,IF_q img0);
end bhv;

B.6 VHDL CODE FOR FFT BLOCK:

library ieee;

use ieee.std logic 1164.all;

use leee.std_logic signed.all;

entity FFT 4 is

port(clk:std logic;
x0_real,x1_real,x2 real,x3 real:in std_logic vector(7 downto 0);
x0_img,x]_img,x2_img,x3 img :in std_logic_vector(7 downto 0);
y0_real,yl_real,y2 real,y3 real:out std_logic_vector(7 downto 0);
y0_img,yl_img,y2 img,y3 img :out std_logic_vector(7 downto 0));

end FFT 4;
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architecture bhv of FFT 4 is

begin
process(clk,x0_real,x1_real,x2_real,x3 real,x0 img,x l_img,x2 img,x3 img)
begin

if clk'event and clk='1' then

y0_real<=x0_real + x1_real +x2 real + x3 real;
yO_img<=x0_img + x1_img +x2_img + x3_img;
yl_real<=x0 real - x2_real + x1 img - x3_img;
yl_img<=x0_img - x1_real - x2_img + x3 real;
y2_real<=x0 real - x1_real + x2 real - x3 real;
y2_img<=x0_img - x]_img + x2 img - x3 img;
y3_real<=x0 real - x1_img - x2 real + x3 img;
y3_img<=x0_img + x1_real - x2_img - x3 real;
end if;

end process;

end bhv;

B.7 VHDL CODE FOR INVERSE QAM BLOCK:
library ieee;

use ieee.std_logic 1164.all;

entity deqam_16 is

110



port (clk:in std_logic;
qam_out :out std_logic_vector(3 downto 0);
qam_real:in std logic vector(7 downto 0);
qam_img :in std_logic_vector(7 downto 0));
end deqam_16;
architecture bhv of deqam_16 is
signal real_img:std logic_vector(15 downto 0);
begin
real img<=qam real & gam img;
process(clk,real img)
begin
if clk="1" and clk'event then
case real img is
when "1111101000000011" =>
--qam_real<="11111010";-- -6
--qam_img <="00000011";--+3j
gam_out<="0001";
when "1111101000000110"=>
--qam_real<="11111010";--- -6
--gam_img <="000001106";--- +j6
gam_out<="0000";
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when "1111101011111010"=>
--qam_real<="11111010";-- -6
--qgam_img <="11111010";-- -6;
qam_out<="0010";

when "1111101011111101"=>
--qam_real<="11111010";--- -6
--qam_img <="11111101";--- -3;
gam_out<="0011";
gam_out<="0100";

when "1111110100000011" =>
--qam_real<="11111101";-- -3
--qam_img <="00000011";--- +3j
gam_out<="0101";

when "1111110111111010"=>
--qam_real<="11111101";-- -3
--qam_img <="11111010";-- -6j
qam_out<="0110";

when "1111110111111101"=>
--qam_real<="11111101";-- -3
--qam_img <="11111101";-- -3j

gam_out<="0111";
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when "0000011000000110"=>
--qam_real<="00000110";--+6
--qam_img <="00000110";--+6;
qam_out<="1000";

when "000001100000001 1"=>
--qam_real<="00000110";--+6
--qam_img <="00000011";--- +3;
qam_out<="1001";

when "0000011011111010"=>
--qam_real<="00000110";--+6
--qam_img <="11111010";-- -6j
qam_out<="1010";

when "0000011011111101" =
--qam_real<="00000110";--+6
--qam_img <="11111101";-- -3j
gam_out<="1011";

when "0000001100000110" =>
--gqam_real<="00000011";--- +3
--qam_img <="00000110";--+6]
qam_out<="1100";

when "0000001100000011" =>
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--qam_real<="00000011";--- +3
--gam_img <="00000011";--- +3j
gqam_out<="1101";

when "0000001111111010" =>
--qam_real<="00000011";--- +3
--gam_img <="11111010";-- -6j
gam_out<="1110";

when "0000001111111101" =>
--qam_real<="00000011";--- +3
--gam_img <="11111101";-- -3;j
qam_out<="1111";

when others=>
--qam_real<="00000000";--0
--qam_img <="00000000";--j0
gam_out<="0000";

end case;

end if;

end process;

end bhv;
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