P- ¢

GRID MONITORING
ARCHITECTURE

g

[Paceaess e pnowmn sk |

A PROJECT REPORT

Submitted by

G. RAGHUL 71206104037

S .VIMAL KUMAR 71206104058

in partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING
IN
COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE

ANNA UNIVERSITY : CHENNAI- 600 025

APRIL 2010

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “GRID MONITORING ARCHITECTURE?” is
the bonafide work of “G.RAGHUL and “S.VIMAL KUMAR” who carried out

the project under my supervision.

S d—=]

SIGNATURE SIGNATURE

Prof.Dr. S. Thangasamy Mrs.S.Rajini,

HEAD OF THE DEPARTMENT, SUPERVISOR,

Department of Computer Science Department of Computer Science
Kumaraguru College of Technology. Kumaraguru College of Technology.
Chinnavedampatti Post. Chinnavedampatti Post.

Coimbatore — 641 006 Coimbatore — 641 006

The candidates with University Register Nos. 71206104037 & 71206104058

were examined by us in the project viva-voce examination held on. V2:04:10.......

NS 2 Jow

INTERNAL EXAMINER EXTERNAL EXAMINER

ACKNOWLEDGEMENT
The satisfaction that accompanies the successful completion of any task
would be incomplete without the mention of the people who made this possible

and whose constant guidance and encouragement crowns all efforts with success.

We are extremely grateful to Dr. Ramachandran, Principal, Kumaraguru
College of Technology for having given us this opportunity to embark on this

project.

We express our sincere and heartfelt thanks to Dr. S. Thangasamy, Dean,
Department of Computer Science and Engineering, for his kind guidance and

support.

We would like to express our sincere thanks to our project coordinator
Mrs. P. Devaki, for her valuable guidance during the course of the project.
We would also like to thank our class advisor Mrs. R. Kalaiselvi, for her

constant support and guidance.

We would like to thank our guide, Mrs.S.Rajini, without whose motivation
and guidance we would not have been able to embark on a project of this
magnitude. We express our sincere thanks for her valuable guidance, benevolent
attitude and constant encouragement.

We reciprocate the kindness shown to us by the staff members of our
college, people at home and our beloved friends who have contributed in the form
of ideas, constructive criticism and encouragement for the successful completion of

the project.

ABSTRACT

In Large distributed systems such as Computational and Data Grids required a
substantial amount of monitoring data to be collected for a variety of tasks such as
fault detection, performance analysis, performance tuning, performance prediction
and scheduling. Some tools are currently available and others are being developed

tfor collecting and forwarding this data.

The goal of this project is to develop and model a Grid monitoring
system, which monitors the services provided by the systems present in gird to its
consumers. The desired capabilities of the system are fault detection, error

reporting, status reporting of the services provided by the producers.

The above said capabilities of the system are achieved through

this project.

S.No

TABLE OF CONTENTS
Title of the chapter

ABSTRACT
LIST OF FIGURES
INTRODUCTION

DESIGN AND IMPLEMENTATION
2.1 DESIGN

2.2 ARCHITECTURE

2.3 COMPONENTS

2.4 SOURCES OF EVENT DATA

SYSTEM TESTING

3.1 INTRODUCTION

3.2 SOURCE CODE TESTING

3.3 MODULE LEVEL TESTING

3.4 INTEGRATION TESTING

3.5 VALIDATION TESTING

3.6 PERFORMANCE TESTING

3.7 OUTPUT TESTING

3.8 USER ACCEPTANCE TESTING

SYSTEM REQUIREMENTS

iv

vil

W W N

21
21
21
21
21
22
22
22
22

23

IMPLEMENTATION&RESULTS
5.1 IMPLEMENTATION
5.2 RESULTS
CONCLUSION&FUTURE ENHANCEMENTS
APPENDICES
7.1 SAMPLE CODE
7.2 SCREEN SHOTS
REFERENCES

24
24
24
25

26
35
40

S.No

[SS]

(S]

LIST OF FIGURES

Title of the figure

GRID MONITORING ARCHITECTURE COMPONENTS
JOINT PRODUCER/CONSUMER

RELATIONSHIP OF PRODUCER AND SENSORS
SAMPLE USE OF MONITORING SYSTEM

Pg.No

04

14
16

1. INTRODUCTION

The ability to monitor and manage distributed computing
components is critical for enabling High-performance distributed computing.
Monitoring of data is needed to determine the source of performance problems
and to tune the system and application for better performance. Fault detection
and recovery mechanisms need monitoring data to determine if a server is
down, and whether to restart the server or redirect service requests elsewhere. A
performance prediction service might use monitoring data as inputs for a
prediction model, which would in turn be used by a scheduler to determine

which resources to use.

There are several groups that are developing Grnd
monitoring systems to address this problem and these groups have recently seen
a need to interoperate. In order to facilitate this, we have developed architecture
for monitoring components. A Grid monitoring system is differentiated from a
general monitoring system in that it must be scalable across wide-area networks,
and include a wide range of heterogeneous resources. It must also be integrated
with other Grid middleware in terms of naming and security issues. The Grid
Monitoring Architecture (GMA) described here addresses these concerns and 1s
sufficiently general that it could be adapted for use in distributed environments
other than the Grid. For example, it could be used with large compute farms or
clusters that require constant monitoring to ensure that all nodes are running

correctly.

2. DESIGN AND IMPLEMENTATION

2.1 DESIGN:

With the potential for thousands of resources at geographically
different sites and tens-of-thousands of simultaneous Grid users, it 1s important
for the data management and collection facilities to scale while, at the same
time, protecting the data from spoiling.

In order to allow scalability in both the administration and
performance impact of such a system, the decision-making as to what is
monitored, measurement frequency, and how the data i1s made available to the
public must be widely distributed and dynamic. Thus, instead of a centralized
management component, multiple independent management components
synchronize their state through a directory service, which may itself be
distributed.

Distributing management in this fashion also helps minimize the
effects of host and network failure, making the system more robust under
precisely the kinds of conditions it is trying to detect. In some models, such as
the CORBA Event Service, all communication flows through a central
component, which represents a potential bottleneck. In contrast, it is proposed
that performance event data, which makes up the majority of the
communication traffic, should travel directly from the producers of the data to
the consumers of the data. In this way, individual producer/consumer pairs can
do “impedance matching” based on negotiated requirements, and the amount of
data flowing through the system can be controlled and localized fashion based
on current load considerations.

The design also allows for replication and reduction of event data

at intermediate components acting as consumer/producer caches or filters. Use

that is of interest to many consumers, with subsequent reductions in the network
traffic, as the intermediaries can be placed “near” the data consumers. The
directory service contains only metadata about the performance events and
system components and is accessed relatively infrequently, reducing the chance

that it would be a bottleneck.

2.2 ARCHITECTURE:

The GMA architecture supports both a producer/consumer
model, similar to several existing Event Service systems such as the CORBA
Event Service, and a query/response model. For either model, producers or
consumers that accept connections publish their existence in a directory service.
Consumers use the directory service to locate one or more producers generating
the type of event data they are interested in. Each consumer then subscribes to
or queries the matching producer(s) directly. Likewise, a producer may query
the directory service to locate consumer(s) that accept and process event data In
a given manner — for example, a consumer that archives event data for later
analysis. Once the appropriate consumer is identified, the producer would
connect to it directly and stream the event data — similar in behaviour to what
happens when a consumer subscribes to a producer, but initiated by the

producer.

2.3 COMPONENTS:

The architecture consists of the following components, shown in Figure 1:
» Consumers
* Producers

* Directory service

Three interfaces defined are: the consumer to producer interface, the consumer
to directory service interface, and the producer to directory service interface,

thus the “standard” grid monitoring services that will all inter-operate are built.

2.3.1 DIRECTORY SERVICE:

To locate, name, and describe the structural characteristics of
any data available to the Grid, a distributed directory service for publishing this
information must be available. The primary purpose of this directory service 18
to allow information for consumers (users, visualization tools, programs and
resource schedulers) to discover and understand their characteristics. In

addition, information producers must

event publication

| consumer . .
information

directory service

producer event publication
information

™

FIGUREI1: Grid Monitoring Architecture Components
be able to update the information to reflect the system state. In the context of
common operations for both consumers and producers, they will be collectively
referred to as clients. The directory service contains a listing of all available
event data and their associated producers. This allows consumers to discover
what event data are currently availabie (through the producer registration), what
the characteristics of the data are, and which producer to contact to receive a

oiven tvpe of event data. The directorv service. however, 1s not responsible for

The names and characteristics associated with dynamic performance data are
assumed to change slowly (unlike the performance data itself)i.e, the name and
structural characteristics of a data set remain relatively constant while the valid

contents of the data set may change dramatically over time.

The functions supported by a directory service are:
| . Authorize-consumer
Establish identity of a consumer, which is in turn mapped to
access permissions for the next, or possibly several subsequent,
transaction(s).
2. Authorize-producer
<same as Authorize-consumer>, although different mechanisms
may be used for the two authorization operations.
3. Search
Perform a search for event data. The client should indicate whether
only one result, or more than one result, if available, should be returned. An
optional extension would allow the client to get multiple results one element at
time using a “‘get next” query in subsequent searches.
« Preconditions: The client is authorized to perform the search.
» Post conditions: The result(s) of the search are returned, which includes a
well-defined null value for searches which did not match in the directory.
4. Add
Add a record to the directory.
* Preconditions: The client is authorized to add the record. The record conforms
to the directory’s schema. The record is not a duplicate.
« Post conditions: The record is in the directory.

5. Remove

) & IV [SRR I SRR Ha Ry S

» Preconditions: The client is authorized to remove the record. The record
matches exactly one record in the directory.
« Post conditions: The record is not in the directory.
6. Update

Change the state of a record in the directory.
+ Preconditions: The client is authorized to modify the record. The record
matches exactly one record in the directory.
» Post conditions: The record now has the new values.
7. Version request

A client may request the current version of the interface Query-
optimized directory services such as LDAP, Globus MDS, the Legion
Information Base, and the Novell NDS, all provide the necessary base
functionality for this service, but only in their fully distributed implementations.
Some public-domain implementations of these services do not support

distributed implementation.

2.3.2 CONSUMER:

A consumer i1s any program that receives event data from a
producer. Consumers that will accept asynchronous requests from producers
will publish this information in the directory service. The functions supported
by a consumer are:

1. Authorize to producer

The consumer contacts a producer and proves its identity. This may
need to be performed once per “session”, or on every request.
2. Authorize from producer

The consumer accepts authorization requests from a producer and

verifies its identity. As in Authorize to producer, this may be done once per
session or on every producer-initiated request.
3. Query

The consumer receives one event or set of events from the producer.
Optional extensions are a filter to indicate interest in only a subset of events or
to perform transformations on event data.
» Preconditions: The consumer is authorized to revive these event(s). The event
data is available.
* Post conditions: One or more events are returned, together, in the reply.
4. Consumer-initiated Subscribe

The consumer establishes a connection to the producer to receive
events in a stream.
» Preconditions: The consumer is authorized to connect to the producer and
receive these event(s).
» Post conditions: Same as for Query, except that in addition to returning the
most recent event, on success the producer will either (a) return events in a

stream over the connection used for the request or (b) inform the consumer of

+tTlha lammtimes ~F A rvostr et s oe bt s fremivs sttt nab 1 F ~a rand tha ctranty ~F avrom o

+ Other behaviours: If the consumer closes the established connection, the
producer should simply consider the subscription ended (generating no errors).
If the underlying source of event data stops producing data, the producer may
close the connection without warning, so consumers should be designed to
recover gracefully in this 1nstance.
5. Consumer-initiated Unsubscribe
The consumer tells a producer to close the subscription. An optional
extension is a “close all” version which closes all subscriptions for this
consumer.
« Preconditions: The subscription exists for the producer/consumer pair. The
consumer is authorized to end it.
- Post conditions: The subscription is removed. No more data should be sent for
this subscription after the producer has confirmed.
6. Producer-initiated Subscribe
The consumer accepts subscriptions from producers who wish to
send events.
« Preconditions: The producer is authorized to send events to this consumer.
« Post conditions: A new subscription is created for this producer/consumer pair.
7. Producer-initiated Unsubscribe
The consumer accepts an unsubscribe request from the producer.
» Preconditions: The subscription exists. The producer is authorized to end it.
» Post conditions: The subscription is removed.
8. Authorize to directory
The consumer contacts the directory service and proves its identity.

This may need to be performed once per “session” or on every lookup.

9. Lookup

The consumer makes a query to the directory service, of which at least
2 types should be available:
(1) Producer: get data for a producer associated with an event.
(2) Event: get the description of the event.
« Preconditions: Authorization has been performed.
- Post conditions: The directory service is unchanged (read-only operation).
10. Update

The consumer updates records in the directory service regarding

events for which this consumer will accept producer-initiated subscriptions.
« Preconditions: Authorization has been performed.
« Post conditions: The directory service has more/less/modified records
reflecting the new information. There are many possible types of consumers.
These may include:
s real-time monitor: This consumer is used to collect monitoring data in real
time for use by real-time analysis tools. It checks the directory service to see
what data is available, and then “subscribes” to all the events it is interested in.
The producers then send the event data to the consumer as it is generated. Data
from many sources can then be used for real-time performance analysis.
« archiver: This consumer may be used as to collect data for the archive
service. It subscribes to the producers, collects the event data, and places 1t in
the archive. A monitoring architecture needs this component, as It is important
to archive event data in order to provide the ability to do historical analysis of
system performance, and determine when/where changes occurred desirable to
archive all monitoring data, it is desirable to archive a good sampling of both
“normal” and “abnormal” system operation, so that when problems arise it is

possible to compare the current system to a previously working system. It this

oLt g e e b e T vt et v G T T EYY

 Process monitor: This consumer can be used to trigger an action based on an
event from a server process. For example, it might run a script to restart the
“processes, send email to a system administrator, call a pager, etc.

« overview monitor: This consumer collects events from several sources, and
uses the combined information to make some decision that could not be made

on the basis of data from only one host.

2.3.3 PRODUCER:

Producers are responsible for providing event data to
consumers, either by request or asynchronously. Producers will publish event
availability information in the directory service. The functions supported by a
producer are:

1. Authorize from consumer

The producer establishes a consumer’s identity and access
permissions. Authorization may be combined with subscription or query
requests, or performed separately with the results stored in a shared “key” of
some Sort.

2. Authorize to consumer

The producer contacts a consumer and proves its identity. As for
Authorize to producer, this may need to be performed once per session or on
every new request.
3. Query

The producer returns a single set of event(s) in response to a
consumer query.
« Preconditions: The consumer is authorized to receive data about the event.
» Post conditions: The event data, if present, is returned.

4. Consumer-initiated Subscribe

Accept consumer requests to establish a stream of event data
(subscription). This request should include parameters and filters, etc.
« Preconditions: Consumer is authorized to subscribe to requested event data.
« Post conditions: The subscription is added for a consumer and the producer
either
(a) Returns events in a stream over the connection used for the request (or)
(b) Informs the consumer of the location of a new connection from which it can
read the stream of events.
5. Consumer-initiated Unsubscribe

This is the norma! operation by which a consumer ends its
subscription. An optional “unsubscribe all” extension would allow the consumer
to cancel all its subscriptions at once. As mentioned in the consumer section, if

a consumer summarily closes its connection, the producer should automaticaily

g LIBRARY ©
z
k’onz-"“\
4
A\

+ Post conditions: The subscription is added and the producer may now send

unsubscribe it everywhere.

» Preconditions: The subscription exists for this producer/consumer pair.
« Post conditions: The consumer/producer pair has one less subscription.
6. Producer-initiated Subscribe

A producer asynchronously begins a subscription with a consumer.

» Preconditions: The producer is authorized to send data to the consumer.

data.
7. Producer-initiated Unsubscribe

The producer informs a consumer that the subscription is ending. *
«Preconditions: “The subscription exists for this consumer/producer pair. The
consumer supports this function, allowing producers to asynchronously
unsubscribe.

» Post conditions: The subscription is removed. Note that even in the case of

L e nanm e 1 lne g vttt v v r v et reasd s Flha e diie o

8. Version

A consumer may request the current version of the interface.
Producers can service “streaming” or ‘“‘query” requests from consumers. In
streaming mode the consumer makes a single request, then receives events in a
stream until an explicit action is taken to end the connection. The producers are
also used to provide access control to the event data, allowing different access
to different classes of users. Since Grids typically have multiple organizations
controlling the resources being monitored there may be different access polictes
(firewalls possibly), support for different frequencies of measurement, and
willingness to allow access to different performance details for consumers
“inside” or “outside” of the organization running the resource. Some sites may
allow internal access to real-time event streams, while providing only summary
data off-site. The producers would enforce these types of policy decisions. This
mechanism is especially important for montitoring clusters or computer farms,
where there may be a large amount of internal monitoring, but only a limited
amount of monitoring data accessible to the Grid. There may also be
components that are both consumers and producers. For example a consumer
might collect event data from several producers, and then use that data to
generate a new derived event data type, which is then made available to other

consumers.

2.4 SOURCES OF EVENT DATA:

There are many possible sources of event data,
including monitoring sensors. The following is a type of sensor which is used in
the project to gather event data:

» Process sensors: Process sensors generate events when there is a change in
process status (for example, when it starts, dies normally, or dies abnormally).
They might also generate an event if some dynamic threshold is reached (for
example, if the average number of users over a certain time period exceeds a

given threshold).

N

consumD.
event dataT

Producer nterface

——

e

Monrorng Service X

Consumer hnter sce

/\

producer ' producer

FIGURE 2: Joint consumer/producer

Optional Producer Tasks

There are many other services that producers might provide, such
as event filtering and caching. For example, producers could optionally perform
any intermediate processing of the data the consumer might require. A
consumer might request that a prediction model be applied to a measurement
history from a particular sensor, and then be notified only if the predicted

performance falls below a specified threshold. The producer might in this case

"1 - al o3 Ll Y oA e T I R S TR IR ST [

consumer determines. Another example is that a consumer might request that an
event be sent only if its value crosses a certain threshold. Examples of such a
threshold would be if CPU load becomes greater than 50%, or if load changes
by more than 20%. The producer might also be configured to compute summary
data. For example, it can compute 1, 10, and 60 minute averages of CPU usage,
and make this information available to consumers.

Information on which services the producer provides would be published in the

directory server, along with the event information.

o

SN N

:'/ consumer . { consumer |

L

N N

directory service

"subscribed"
events
_ event data A
Producer ‘ publication info Producer
Host A Host B HestC
!
Sensor SenNsor Sensor Sensor Sensor SENSOor " Sensor Sensor 5ensor

Figure 3: Relationship of producers and sensors

Monitoring service characteristics
The following characteristics distinguish performance monitoring
information from other system data, such as files and databases.
Performance information has a fixed, often short lifetime of utility
" Most monitoring data may go stale quickly making rapid read access
important, but obviating the need for long-term storage. The notable exception
to this is data that gets archived for accounting or post-mortem analysis.
» Updates are frequent
Unlike the more static forms of “metadata,” dynamic performance
information is typically updated more frequently than 1t 1s read. Most extant
information-base technologies are optimized for query and not update, making
them potentially unsuitable for dynamic information storage.
* Performance information is often stochastic
It is frequently impossible to characterize the performance of a
resource or an application component using a single value. Therefore, dynamic
performance information may carry guality-of-information metrics quantifying
its accuracy, distribution, lifetime, etc., which may need to be calculated from

the raw data.

Netnt [——I
aware iy
Client === B0 o Ol
S———=7 hest | royter _ royter
Client Host, monitor f‘} \\
~. I network
e . sensor |
] N, i
‘: __‘_/ P
- -
- J‘f-
' -’ -7 - - S
’I" - - - ‘.‘..&
PRt *
producer) .
- ‘A,‘F archiver
\ | consumer
i p— I S P = \ \‘ L :
P . b i ,/' e
real-time e
z S monitor ! :) . ;
oo, consumer S e el
real-tlme__ L event directory eventarchive
monitoring

Figure 4: Sample use of monitoring system

* Data gathering and delivery mechanisms must be high-performance
Because dynamic data may grow stale quickly, the data management
system must minimize the elapsed time associated with storage and retrieval.
Note that this requirement differentiates the problem of dynamic data
management from the problem of providing an archival performance record.
The elapsed time to read an archive, while important, is often not the driving
design characteristic for the archival system. We believe that archival data is
useful both for accounting purposes and for long-term trend analysis. It is our
beliet, however, the separate but complimentary systems for managing and
archiving Grid performance data respectively are required, each tailored to meet

its own set of unique performance constraints.

* Performance measurement impact must be minimized

There must be a way for monitoring facilities to be able to limit their
intrusiveness to an acceptable fraction of the available resources. If no
mechanism for managing performance monitors is provided, performance
measurements may simply measure the load introduced by other performance
monitors.
General Implementation Strategies

The following are the factors to be considered when implementing a
monitoring system.
* The data management system must adapt to changing performance
conditions dynamically

Dynamic performance data is often used to determine whether the
shared Grid resources are performing well (e.g. fault diagnosis) or whether Grid
load will admit a particular application (e.g. resource allocation and
scheduling). To make an assessment of dynamic performance fluctuation
available, the data management system cannot, itself, be rendered inoperable or
inaccessible by the very fluctuations it seeks to capture. As such, the data
management system must use the data it gathers to control its own execution
and resources in the face of dynamically changing conditions.
* Dynamic data cannot be managed under centralized control

Having a single, centralized repository for dynamic data (however

short its lifespan) causes two distinct performance problems. The first is that the
centralized repository for information and/or control represents a single-point-
of-failure for the entire system. [f the monitoring system is to be used to detect
network failure, and a network failure isolates a centralized controller from
separate system components, it will be unable to fulfil its role. All components

must be able to function when temporarily disconnected or unreachable due to

ittt e et Fatliires Bar Avrarmie Aata wuritec oftarnm st hber reeade That

is, performance data may be gathered that is never read or accessed since
demand for the data cannot be predicted. Experience has shown that a
centralized data repository simply cannot handle the load generated by actively
monitored resources at Grid scales.
* All system components must be able to control their intrusiveness on the
resources they monitor
Different resources experience varying amounts of sensitivity to the

load introduced by monitoring. A two megabyte disk footprint may be
insignificant within a 10 terabyte storage system, but extremely significant if
implemented for a palm-top or RAM disk. In general, performance monitors
and other system components must have tuneable CPU, communication,
memory, and storage requirements.
» Efficient data formats are critical

In choosing a data format, there are trade offs between ease-of-use
and compactness. While the easiest and most portable format may be ASCII
text including both event item descriptions and event item data in each
transmission, this also the least compact. This format may be suitable for cases
where a small amount of data is recorded and transmitted infrequently.

However, some sources of event data can generate huge volumes of
data in a short amount of time, demanding that a more efficient data format be
adopted. Compressed binary representations that can be read on machines with
different byte orders is one possibility. Transmitting only the item data values
and using a data structure obtained separately to interpret the data is another
way to reduce the data volume. XML is an emerging standard that allows the
data description to be separated from the data values. The XML schema could
be placed in a separate directory server, retrieved, and used in conjunction with

the event data values. Another possibility is to send the data descriptor one time

when a consumer subscribes to a producer, and send only the data values for
each event transmission.

The GMA could support registration of a data format for each event,
allowing different events to use the format most appropriate for their needs.
Consumers could be provided plug-in modules to convert from one format to
another.

Scalability

In addition, for the GMA system to scale, performance monitoring
consumers (particularly those that require the cooperation between two or more
producers) must coordinate their interactions to control intrusiveness. For
example, if network performance is to be monitored between all pairs of hosts
attached to a single Ethernet segment, the network probes required to generate
end-to-end measurements cannot occur simultaneously.

If they do, both the quality of the readings that are gathered and
the network capacity that is available for other work will suffer. If performance
monitors are not coordinated in the Grid, the intrusiveness of performance
monitoring may strongly impact available performance, particularly as the
system scales 1.e, if all performance facilities operate their own monitoring
sensors, Grid resources will be consumed by the monitoring facilities alone.

Coordinating a Grid-wide collection of sensors i1s complicated both
by the scale of the problem (there are many Grid resource characteristics to
monitor) and by the dynamically changing performance and availability of Grid
resources that are being used to implement the dynamic data management
service.

One recommended producer service that is important for system
scalability is that of consumer-specified caching. Often a consumer needs to

access only a small subset of the global data pool, and will sacrifice fast access

N I T I D T R Ao ot as o Tt e e e el v e e

want the “freshest “data that can be delivered tfor a specified set of hosts with no
more than a one second access delay.

To achieve this functionality at Grid scales, producers must cache the
data the consumer will want and deliver whatever data is available at the time of
request. Experience with dynamic program scheduling indicates that this type of

producer is valuable to scalable performance within the Grid.

B

3. SYSTEM TESTING .

3.1 INTRODUCTION:

After finishing the development of any computer based system the next
complicated time consuming is system testing. During the time of testing only
the development company can know that, how far the user requirements have

been met out, and so on.

Following are the some of the testing methods applied to this effective

project:

3.2 SOURCE CODE TESTING:

This examines the logic of the system. [f we are getting the output that 1s

required by the user, then we can say that the logic is perfect.

3.3 MODULE LEVEL TESTING:

In this the error will be found at each individual module, it encourages the

programmer to find and rectify the errors without affecting the other modules.

3.3 INTEGRATION TESTING:

Data can be tested across an interface. One module can have an
inadvertent, adverse effect on the other. Integration testing is a systematic
technique for constructing a program structure while conducting tests to

uncover errors assoclated with interring.

3.5 VALIDATION TESTING:

It begins after the integration testing is successfully assembled.
Validation succeeds when the software functions in a manner that can be
reasonably accepted by the client. In this the majority of the validation 1s done
during the data entry operation where there 1s a maximum possibility of entering
wrong data. Other validation will be performed in all process where correct

details and data should be entered to get the required result.

3.6 PERFORMANCE TESTING:

Performance Testing i1s used to test runtime performance of software
within the context of an integrated system. Performance test are often coupled

with stress testing and require both software instrumentation.

3.7 OUTPUT TESTING:

After performing the validation testing, the next step is output testing of
the proposed system since no system would be termed as useful until it does
produce the required output in the specified format. Output format is

considered in two ways, the screen format and the printer format.

3.8 USER ACCEPTANCE TESTING:

User Acceptance Testing is the key factor for the success of any system.
The system under consideration is tested for user acceptance by constantly

keeping in touch with prospective system users at the time of developing and

m')]f';ﬂﬁ f"]"\ﬁh[‘\‘ﬂ(‘ ‘ill‘\QﬂD‘IQI" TQI‘III;TQI“

e N T = P R W A W . e W T W . Bt T A W T FE—.

4.SYSTEM REQUIREMENTS & IMPLEMENTATION

4.1.1 HARDWARE REQUIREMENTS

1. Processor Type : Pentium 4
2. Processor Speed : 1.4 MHZ

3. RAM : 266 RAM
4. Hard Disk Capacity ; 20 GB

4.1.2 SOFTWARE REQUIREMENTS

|. Operating System : Microsoft windows XP,
Windows 2000 professional

2. Programming Language :JAVA

TR ATIEY TR IATY"ARTIET 4 "T'"' 772y O TR YT YWIXY Orenvg

SIMPLEMENTATION&RESULTS

5.1 IMPLEMENTATION

Implementation is the stage in the project where the theoretical design is
turned into a working system. The most critical stage 1s achieving a successful
system and giving confidence on the new system for the users that it will work
efficiently. The implementation process begins with preparing a plan for the

implementation of the system.

The language used to develop this project is JAVA. In JAVA the RMI
programming 1s the main concept behind the development of this project. The
process sensors are used to collect event data. The JNDI also plays an important

role; it acts as the directory service for this project

5.2 RESULTS:

We executed the project in windows platform using java. We
implemented the system using a single system; both client and server are
simulated in the same system.

The following results are obtained, while executing
Result 1: Appropriate response obtained
Condition: if all the services are available and working correctly
Result 2: Service out of order
Condition: If a particular service is not available due to server
shutdown or some other problems. |
Result 3: Service corrupted
Condition: If the service is corrupted due to errors or due to server

crash.

FiIL2RTLS Y TTOYTL AR O T ETTTITITINIEI TYO9%TYY 4 AT A T "M AYANTINO

6.CONCLUSION AND FUTURE ENHANCEMENTS

We presented a performing and portable implementation of the
Grid Monitoring Architecture. Performance was obtained through the use of
JAVA as base implementation language; we obtained good results in terms of
throughput and response time, both for producers and the directory service.

Multiple ready-to-use consumers have been implemented

In the future there is a possibility to record the resource’s presence
in the directory service, auto install suitable sensor and register with a set of
producers (based on the type of monitoring data offered and the resource’s
location).

Also there is a scope to develop proxy producers which allow
collecting sensor data from other rﬁonitoring platforms, information providers

and use these data in our framework.

FYR Y. N 2 Falh nYal

7.1 SAMPLE CODE

CONSUMER:
import java.awt.event. ActionEvent;

import java.awt.event.ActionListener;
import javax.swing.*;
public class GMA extends JFrame implements ActionListener
{
JMenuBar mbar;
JMenu File,Help;
JMenultem Init,Moniter,Exit, About;
String [] list={"factser","addser"};
JComboBox combo;

public GMAJ()

{

}

public void init(}

{
mbar=new JMenuBar();
File=new JMenu("File");
JPanel panel=new JPanel();
Help=new JMenu("Help");
//Init=new JMenultem("Initilize");
//Init.addActionListener(this);
//Init.setActionCommand("init");
Moniter=new JMenultem("Call Producer");

~ Moniter.setActionCommand("monitor");

Moniter.addActionListener{this);

™@ ., I & O O A e I R

Exit.addActionListener(this);

Exit.setActionCommand("exit");

//File.add(Init);

File.add{Moniter);
File.addSeparator();
File.add(Exit);

mbar.add(File);
mbar.add(Help);

combo=new JComboBox(list);
combo.setSelectedIndex(0);

combo.addActionListener(this);

JButton but=new JButton("Connect");
but.addActionListener(this);
but.setActionCommand("click");
panel.add(combo);

panel.add(but});
this.setJMenuBar(mbar);
getContentPane().add(panel);
setS1ze(400,400);

show();

public void actionPerformed(ActionEvent arg0)

d

if(arg0.getActionCommand()=="monitor")

f

"

//System.out.print("clicked");

//JComboBox c¢b = (JComboBox)arg0.getSource();
String petName = (String)combo.getSelectedltem();
GMAConnect g=new GMAConnect(petName);

//System.out.print(petName);

;

if(arg0.getActionCommand()=="exit")

{

System.out.print("clicked");
//IGMAConnect g=new GMAConnect();

}

PRODUCER:

import java.rmi.™;

import java.rmi.server.®;

import java.io.*;

public class addserverimp extends UnicastRemoteObject implements addint

{

public addserverimp() throws RemoteException

{

public int fact(int a)

{
if(a==0)
return ;
else

return (a*fact(a-1));
//return 0;

}

public String Swlog() throws RemoteException

{
try {
FileReader file=new FileReader("log.txt");
BufferedReader br=new BufferedReader(file);

return str;

catch (Exception e)

{
// TODO Auto-generated catch block
e.printStackTrace();
}
return null;
;

USER INTERFACE FOR CONSUMER:

import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event. ActionListener;
import javax.swing.*;
public class GMAConnect extends JFrame implements ActionListener
¢

JLabel labei,labell;

JButton button;

JTextField tf,tfl;

String [] hist={"factser","addser" {;

JComboBox combo;

String service;

public GMAConnect(String ser)

SErviCe=ser;

setLayout(new FlowLayout(FlowLayout.LEFT));
label=new JLabel("Address");

tf=new JTextField(10};

combo=new JComboBox(list);

combo.setSelectedIndex(0);
combo.addActionListener(this);
button=new JButton("Connect");
button.addActionListener(this);
labelt=new JLabel("Number");

Y s D (e e oo . VR YA T

//getContentPane().add(label);
//getContentPane().add(tf);
getContentPane().add(labell);
getContentPane().add(tfl),
getContentPane().add(button);
setSize(200,100);

show();

h

public void actionPerformed(ActionEvent ¢)

cli c=new cli(service,tf].getText());

this.setVisible(false);
}

import java.rmi.*;
import java.io.*;
public class cli
{
public cli(String add,String num) {
try
{
int a=Integer.parselnt(num);
/int a=5;
String connect="rmi://127.0.0.1/" + add,

-

String [] list=Naming.list("rmi://127.0.0.1");
for(int 1=0;1<list.length;1++)
System.out.print(list[i] + list.length + "\n");
if{add=="factser"){

addint ab=(addint)Naming.lookup(connect);
if(ab.fact(a)==0)

d

System.out.print(ab.Swlog());

1

$

else
System.out.printin(ab.fact(a});

h
Else

{
if{add=="addser"){
subint sb=(subint}Naming.lookup(connect);

System.out.printIn(sb.square(a));

catch(Exception €){

System.out.println("unable to connect to producer”);

ADDING INTERFACE:
import java.net.®;

import java.rmi.*;

public class addser

{

public addser(){}

public static void main(String [] s)

{
Try
{
addserverimp obj=new addserverimp();
addserverimpl objl=new addserverimpl();
Naming.rebind("factser",obj);
Naming.rebind("addser",objl);
}

catch(Exception ¢)

{

System.out.println(e);

}

7.2 SCREENSHOTS

STARTING DIRECTORY SERVICE:

DIRECTORY SERVICE STARTED:

[(C> Copu

C:i\[

SBocunenus
Divded final
¥ C:\Program Files\BMUavaS0ibinumiregistry, exe

USER INTERFACE FOR CONSUMER:

factser ¥ _ Connect

CONSUMER REQUESTING:

o

File Help

atiiser ~ Comnect

o

B Fefliier O spuiuting

RESPONSE:

e =k e e R Tt

8.REFERENCES

[1] CORBA, “Systems Management: Event Management Service”, X/Open
Document Number: P437, http://www.opengroup.org/onlinepubs/008356299/

[2] Jini distributed Event Specification, http://www.sun.com/jini/specs/

[3] W. Smith, “Monitoring and Fault Management,”

http://www.nas.nasa.gov/~wwsmith/mon_fm

[4] A. Waheed, W. Smith, J. George, J. Yan. “An Infrastructure for Monitoring
and Management in Computational Grids.” In Proceedings of the 2000

Conference on Languages, Compilers, and Runtime Systems.

