- 110

WEB CACHE REPLACEMENT USING
REPLACEMENT ALGORITHM

A PROJECT REPORT

Submitted by
Vinoth.R 71206104060

Dhinesh.O.B 71206104011

in partial fulfilment for the award of the degree
of
BACHELOR OF ENGINEERING
IN

COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE

ANNA UNIVERSITY: CHENNAI- 600 025

APRIL 2010

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “WEB CACHE REPLACEMENT USING
RANDOMISED ALGORITHM?” is the bonafide work of “VINOTH.R” and
“DHINESH.O.B” who carried out the project under my supervision.

"S- JLTM 4 C%X\Q\m}bbw

SIGNATURE SIGNATURE

Dr. S. Thangasamy Mrs.Amutha Venkatesh
DEAN Asst. PROFESSOR

Department of Computer Science Department of Computer Science
Kumaraguru College of Technology, Kumaraguru College of Technology,
Chinnavedampatti Post, Chinnavedampatti Post,

Coimbatore — 641606 Coimbatore — 6416006

The candidates with University Register Nos. 71206104060 and
71206104011 were examined by us in the project viva-voce examination held
on ..16: QL2010

% Jlon

TERNAL EXAMINER EXTERNAL EXAMINER

ACKNOWLEDGEMENT

The satisfaction that accompanies the successful completion of any task
would be incomplete without the mention of the people who made this possible
and whose constant guidance and encouragement crowns all efforts with

SUCCeSS.

We are extremely grateful to Dr.S.Ramachandran, Principal,
Kumaraguru College of Technology for having given us this opportunity to

embark on this project.

We express our sincere and heartfelt thanks to Dr. S. Thangasamy,
Dean, Department of Computer Science and Engineering, for his kind guidance

and support.

We would like to express our sincere thanks to our project coordinator

Mrs. P. Devaki, for her valuable guidance during the course of the project.

We would also like to thank our class advisor Mrs. R. Kalaiselvi, for her

constant support and guidance.

We would like to thank our guide Mrs.Amudha Venkatesh, without
whose motivation and guidance we would not have been able to embark on a
project of this magnitude. We express our sincere thanks for her valuable

guidance, benevolent attitude and constant encouragement.

We reciprocate the kindness shown to us by the staff members of our
college, people at home and our beloved friends who have contributed in the

farm Fideac conctrietive eriticiem and encouracements for the successful

ABSTRACT

Web Cache Replacement Using Randomized Algorithm

Web caching is the emerging technology in web and in web caching if the client is requesting
a page from server it will fetch from the server and will give response to the server.
According to the locations where objects are cached, Web caching technology can be
classified into three categories, i.e., client’s browser caching. client-side proxy caching. and

server-side proxy caching.

In client’s browser caching, Web objects are cached in the client’s local disk. It the
user accesses the same object more than once in a short time. the browser can fetch the object
directly from the local disk, eliminating the repeated network latency. However. users are
likely to access many sites, each for a short period ot time. Thus, the hit ratios of per-user

caches tend to be low.

In client side proxy caching. objects are cached in the proxy near the clients to avoid
repeated round-trip delays between the clients and the origin Web servers. To eftectively
utilize the limited capacity of the proxy cache. several cache replacement algorithms are
proposed to maximize the delay savings obtained from cache hits. Such advanced caching
algorithms differ from the conventional ones (e.g.. LRU or LFU algorithms) in their
consideration of size, fetching delay, reference rate, invalidation cost, and invalidation
frequency of a Web object. Incorporating these parameters into their designs. these cache
replacement algorithms show significant performance improvement over the conventional
ones. In addition, cooperative caching architectures, proposed in enable the participating
proxies to share their cache content with one another. Since each participating proxy can seek
for a remote cache hit from other participating proxy’s cache, the overall hit ratio can be

further improved.

In server-side Web caching and content distribution network (CDN) are recently

attractine an increasing amount of attention. It is noted that, as the Web traffic grows

Server-side Web caching, which distributes routes the user requests to the proper server-side
proxies, it is able to release the Web server’s load. Server side proxy caching will shorten the

user perceived response time.

TABLE OF CONTENTS

CHAPTER NO. TITLE ' PAGE NO.
ABSTRACT \Y
LIST OF FFIGURES ix

1. INTRODUCTION

1.1 Web Caching |

1.2 Proxy Caching |

1.2.1 Anonymous 3
1.2.2 Transparent 4
1.3 Web Prefetching 4
1.4 Client Side Proxy 5

()]

1.5 Problem Description

1.6 Solution to the Problem 6
2 LITREATURE REVIEW
2.1 Caching Infrastructure 7
2.1.1 Cern Httpd 8
2.1.2 Hensa : 8
2.1.3 Harvest 8

2.1.4 Web Caching with Proxies 9

2.2 Cache Deployment Options 9

2.2.2 Strategic-Oriented Deployment 9

2.2.3 Consumer Oriented Deployment 10

2 3 Combining Caching and Prefetching

2.4 Cache Replacement Policies

2.5 Document Replacement Algorithms
2.5.1 Least-Recently Used (LRU)
2.5.2 Least-Frequently Used (LFU)
2.5.3 LRU-Threshold

2.5.4 Log (size) +LRU

DESIGN AND ARCHITECTURE

3.1 System Model

3.2 Creation of Proxy Server Configuration
3.3 Connection of Proxy Server to Internet
3.4 Replacement Algorithm Design
TESTING

4.1 Introduction

4.2 Source Code Testing

4.3 Specification Testing

4.4 Module Level Testing

4.5 Unit Testing

4.6 Integration Testing

4.7 Validation Testing

10

11

12
12

13

14

17

19
19
19
19

20

4.9 Security Testing 21

CONCLUSION AND FUTURE ENHANCEMENT

APPENDIX

6.1 Sample Code 23
6.1.1 Proxy Server Creation 23
6.1.2 Proxy Connection Creation 27

6.1.3 Graphical User Interface Design 31
6.2 Output and Screenshots 34

REFERENCES 39

CHAPTER NO.

|

[\

(US]

LIST OF FIGURES

TITLE

System Model
Prefetching the web cache
Specifying the Server
Log File Creation

Initiate the Server

Access Log

Error Log

PAGE NO.

CHAPTER 1
INTRODUCTION

World Wide Web 1s the hypermedia-basedv system for browsing
Internet sites. It is named the Web because it is made of many sites
linked together; users can travel from one site to another by clicking
on hyperlinks or "The World Wide Web is the universe of network-
accessible information, an embodiment of human knowledge."

The recent increase in popularity of the World Wide Web has
led to a considerable increase in the amount of traffic over the
Internet. The Web has now become one of the primary bottlenecks to
network performance. When a user requests objects, which are
connected to a server on a slow network link, there is considerable
latency, which can be noticed at the client end. Transferring the object
over the network lead to increase in the level of traffic. Increase in
traffic will reduce the bandwidth for competing requests and increase
latencies for other users. In order to reduce access latencies, it 1S
desirable to store copies of popular objects closer to the user.
Consequently, Web Caching has become an increasingly important
topic. After a significant amount of research to reduce the noticeable
response time perceived by users, it is found that Web caching and

Web Prefetching are two important techniques to this end.

1.1 Web Caching

Web caching is the emerging technology in web and in web caching 1f
the client is requesting a page from server it will fetch from the server
and will give response to the server. Acéording to the locations where

obiects are cached. Web caching technology can be classified into

three categories, i.e., client’s browser caching, client-side proxy
caching, and server-side proxy caching.

In client’s browser caching, Web objects are cached in
the client’s local disk. If the user accesses the same object more than
once in a short time, the browser can fetch the object directly from the
local disk, eliminating the repeated network latency. However, users
are likely to access many sites, each for a short period of time. Thus,
the hit ratios of per-user caches tend to be low.

In client side proxy caching, objects are cached in the
proxy near the clients to avoid repeated round-trip delays between the
clients and the origin Web servers. To effectively utilize the limited
capacity of the proxy cache, several cache replacement algorithms are
proposed to maximize the delay savings obtained from cache hits.
Such advanced caching algorithms differ from the conventional ones
(e.g., LRU or LFU algorithms) in their consideration of size, fetching
delay, reference rate, invalidation cost, and invalidation frequency of a
Web object. Incorporating these parameters into their designs, these
cache replacement algorithms show significant performance
improvement over the conventional ones. In addition, cooperative
caching architectures, proposed in enable the participating proxies to
share their cache content with one another. Since each participating
proxy can seek for a remote cache hit from other participating proxy’s
cache, the overall hit ratio can be further improved.

In server-side Web caching and content distribution
network (CDN) are recently attracting an increasing amount of
attention. It is noted that, as the Web traffic grows exponentially,

overloaded Web servers become the sources of the prolonged response

time. Server-side Web caching, which distributes routes the user
requests to the proper server-side proxies, it is able to release the Web
server’s load. Server side proXy caching will shorten the user

perceived response time.

1.2 Proxy Caching
Caching can be implemented at various points in the network.
The best method among this is to have a cache in the Web server
itself. Further, it is increasingly common for a university or
corporation to implement specialized servers in the network called
Caching Proxies. Such proxies’ act as agents on behalf of the client in
order to locate a cached copy of a object if possible. There are
different types of proxy server based on FTP, HTTP, and SMTP and
so on. They are FTP Proxy Server which relays and caches FTP
Traffic. HTTP Proxy Server which has one way request to retrieve
Web Pages and Socks Proxy Server is the newer protocol to allow
relaying of far more different types of data, whether TCP or UDP.
NAT Proxy Server which works differently from other servers, it
allows the redirection of all packets without a program having to
support a Proxy Server. SSL Proxy Server which is an extension to the
HTTP Proxy Server which allows relaying of TCP data similar to a
Socks Proxy Server.
Furthermore, a Proxy Server can be split into -another two
Categories:
e Anonymous

e Transparent.

1.2.1Anonymous

An Anonymous Proxy Server blocks the remote
Computer from knowing the identity of the Computer using the Proxy
Server to make requests. Anonymous Proxy Servers can further be
broken down into two more categories, Elite and Disguised. An Elite
Proxy Server is not identifiable to the remote computer as a Proxy in

any way.

1.2.2 Transparent

A Transparent Proxy Server tells the remote Computer
the IP Address of the Computer. This provides no privacy. A
Disguised Proxy Server gives the remote computer enough
information to let it know that it is a Proxy, however it still does not

give away the [P of the Computer it is relaying information for.

1.3 Web Prefetching

In Web prefetching scheme the proxy itself will give the
response to the clients if the web page requested is present in the
proxy itself. Several algorithms based on Markov models and Web
mining techniques are proposed to derive prefetching rules from the
server’s access log.

Prefetching rule is an implication of the form
01,02,03,04.....017 oi+l which mean that if 01,02,03. . . ; o1 have
been referenced in a client’s precedent requests, the object oi+1 will
also be referenced in the client’s subsequent requests with confidence

¢ in prefetching rule. The confidence ¢ of the prefetching rule is the

canditional nrobabilitv of P(o1.02.03....01+1) / p(ol,02,...01) where

P(ol,02,... o1) is the probability that the sequence ol,02...01 is
contained In an access sequence an object referenced in user access
sequence. the objéct which was referenced is called “implied object”
only if the prefetching rule 01,02,03,04.....01? oi+1 is triggered by
some client A and the client A have already referenced the object
ol,02...01 in the precedent request. Otherwise the object oi+1 is called

“non-implied object”.

1.4 Client Side Proxy

In client side proxy caching, caches are kept close to
clients and this will reduce overall backbone traffic considerably.
Client side proxy caching can improve user perceptions about network
performance in two ways. First, when serving clients locally, caches
hide wide area network latencies. On a local cache miss, the original
content provider will serve client requests. Second, temporary
unavailability of the network can be hidden from users, thus making

the network appear to be more reliable.

1.5 Problem Description

The proxy server should be properly designed. If the proxy
server provided rich information, a Web server may deliberately send
all possible prefetching hints with various levels of confidences to the
proxy. Without any control, a proxy will prefetch every implied object
into its cache, despite that the confidences of some prefetching rules
may be low. In this case, a significant portion of the cache content will
be replaced because a proxy may concurrently serve a large amount of

client requests and each of these requests may trigger certain

prefetching rules. As a result, the state of the cache content will
become unstable and the cache-hit ratio will drop sharply. On the
contrary, if the prefetching control is over strict, a proxy will tend to
discard some beneficial hints provided by the Web server, thus
whittling down the advantage of Web prefetching.

Another problem in Cache replacement algorithms data
structure were used which requires priority queue for implementation
and Data structure needs to be constantly updated even when there is
no eviction and we cannot view the data present in cache since the
data are stored using heap structure and they can be connected to only

certain number of clients.

1.6 Solution to the Problem
An innovative cache replacement algorithm (i.e.)
randomized algorithm is proposed. Randomized algorithm combines
the benefit of both utility, based schemes and RR schemes and it
avoids the need for data structures. The utility function assigns to each
page a value based on recentness of use and frequency of use, size of
page, cost of fetching and RR scheme would replace the least recently
used web documents. These data will be evacuated only when it
crosses the expiry time
To reduce the latency time and to increase the memory
capacity and processing power the proxy server is designed in which
data and images are stored separately. The proxy server can be

connected to number of clients.

CHAPTER 2
LITRETURE REVIEW

2.1 Caching Infrastructures
There have been several projects aimed at building
single software packages or complete infrastructures supporting

caching in the Web.

2.1.1 Cern Httpd

This method is first widely available and it is still popular.
This software gained widespread acceptance and served as a reference
implementation to many caching proxies developed later on.
Technically, however, it is inadequate, especially when large numbers
of requests have to be handled. This is mostly due to its simple
mapping of URLs to cache file system names, resulting in expensive
lookup operations on every request. Moreover, a new, full-fledged
UNIX process 1s created for every request, leading to huge memory
and central processing unit (CPU) loads on high access rates. On one
hand, this makes sense given the (high) probability that the original
requesting client will try again sometime later. On the other hand, this
continued loading binds resources urgently needed on the proxy,
especially during the busiest access times of day. Finally, the
conceptual flaw that caused this software to be of no use in
cooperative caching schemes. CERN cachg:s can only be configured to

use one cache higher up in a thus strict hierarchical tree of caches.

Moreover, it could not gracefully deal with the failure of such parent
cache.
2.1.2 Hensa

Hensa used Lagoon, a rather immature proxy, for a short
time before switching to the Cern proxy software. As soon as many
people started using the HENSA caching service, the limitations of the
software that was present in CERN HTTPD became apparent. a
commercial caching proxy from Netscape Communications was
installed on a set of six machines sharing their load. This is achieved
by making use of several domain name server (DNS) resource record
entries for the one Internet name of the HENSA caching proxy that are
returned ‘round-robin to clients resolving the cache’s name to IP
addresses. The HENSA approach of a centrally administered caching
service subsequently faced several barriers inherent to a nondistributed
approach. Each of them had to be dealt with by migrating to new

software or hardware to keep up with demand.

2.1.3 Harvest

The most sophisticated software cashing in on the
resulted from the Harvest. It sharply contrasts in concept from the
HENSA approach by enabling administrators to span a tree of
cooperating caches over wide distances. Harvest caches can be
arranged in parent- or sibling relationships, with each cache
contributing to the overall data set in a generally autonomous way.
Whenever a caching proxy cannot serve a requested document from its
local cache, it sends messages to its parents and siblings querying

whether they hold the document. These messages are sent in parallel.

and the first peer returning a positive acknowledgment is asked to
deliver the document in question.
2.1.4 Web Caching with Proxies

After a serious research in caching technologies it was
found that Web caching with proxies is the efficient technology. Web
proxy will be between the server and client and will serve for web

page request.

2.2 Cache Deployment Options
There are three main cache deployment choices:
* Near the content consumer (consumer-oriented)
* Near the content provider (provider-oriented)
* At strategic points in the network, based on user access patterns

and network topology.

2.2.1 Provider-Oriented Deployment

In provider oriented deployment method caches
positioned near or maintained by the content provider, as in reverse
proxy and push caching, improve access to a logical set of content.
This type of cache deployment can be critical to delay-sensitive
content such as audio or video. Positioning caches near or on behalf of
the content provider allows the provider to improve the scalability and
availability of content, but is obviously only useful for that specific

provider. Any other content provider must do the same thing.

2.2.2 Strategic Point Oriented Deployment

In strategic point oriented deployment method the
dynamic deployment of caches at network choke points, is a strategy
embraced by the adaptive caching approach. Although it would seem
to provide the most flexible type of cache coverage, it is still a work in
progress and, to the best of the authors’ knowledge, there have not
been any performance studies demonstrating its benefits. The dynamic
deployment technique also raises important questions about the
administrative control of these caches, such as what impact network

boundaries would have on cache mesh formation.

2.2.3 Consumer-Oriented Deployment

Positioning caches near the client, as in client
side proxy caching has the advantage of leveraging one or more
caches to a user community. If those users tend to access the same
kind of content, this placement strategy improves response time by
being able to serve requests locally. Thus this technology is widely

used in recent trends and used in this project model

2.3 Combining Caching and Prefetching

Prefetching and caching are two known approaches
for improving the performance of file systems. Although they have
been studied extensively, most studies on prefetching have been
conducted in the absence of caching or for a fixed caching strategy.
After the invention of complication in individual prefetching
technology (i.e.) prefetching file blocks into a cache can be harmful

even if the blocks will be accessed in the near future. This is because a

cache block needs to be reserved for the block being prefetched at the
time the Prefetch is initiated. The reservation of a cache block requires
performing a cache block replacement earlier than it would otherwise
have been done. Making the decision earlier may hurt performance
because new and possibly better replacement opportunities open up as
the program proceeds and hence combining caching and prefetching 1s

essential.

2.4 Cache Replacement Policies

One of the key complications in implementing
cache replacement policies for Web objects is that the objects to be
cached are not necessarily of homogeneous size. For example, if two
objects are accessed with equal frequency, the hit ratio 1S maximized
when the replacement policy is biased towards the smaller object. This
1s because it is possible to store a larger number of objects of smaller
size.

In addition to non homogeneous object sizes, there are
several other special features of the Web, which need to be
considered. First, the hit ratio may not be the best possible measure for
evaluating the quality of a Web caching algorithm. For example, the
transfer time cost for transferring a large object is more than that for a
small object, though the relationship is typically not straightforward. It
will depend on the distance of the object from the Web server.
Furthermore, Web objects will typically have expiration times. So,
when considering which objects to replace when a new object enters a

Web cache.

We must consider not only the relative frequency, but
also factors such as object sizes, transfer time savings, and expiration
times. It may not always be favorable to insert an object into the
cache, because it may lower the probability of a hit to the cache.
However, maximizing the cache hit ratio alone does not guarantee the
best client response time in the Web environment. In addition to
maximizing the cache hit ratio, a cache replacement algorithm for
Web documents should also minimize the cost of cache misses, i.e.,
the delays caused by fetching documents not found in the cache.
Clearly, the documents, which took a long time to fetch, should be
preferentially retained in the cache. For example, consider a proxy
cache at Northwestern University. The cache replacement algorithm at
the proxy found two possible candidates for replacement. Both
documents have the same size and are referenced with the same rate,
but one document originates from the University of Chicago while the
other is from Seoul National University. The cache replacement
algorithm should select for replacement the document from the
University of Chicago and retain the document from Seoul National
University because upon a cache miss the former can be fetched much

faster than the latter.

2.5 Existing Document Replacement Algorithms

2.5.1 Least-Recently-Used (LRU)
In the standard least recently used (LRU) caching
algorithm for equal sized objects we maintain a list of the objects in

the cache, which is ordered, based on the time of last access. In

particular, the most recently accessed object is at the top of the list,
while the least recently accessed object is at the bottom. When a new
object comes in and the cache is full, one object in the cache must be
pruned in order to make room for the newly accessed object. The
object chosen is the one which was least recently used. Clearly the
LRU policy needs to be extended to handle objects of varying sizes.
LRU treats all documents equally, without
considering the document size, type or network distance. It also
ignores frequency information, thus an often-requested document will
not be kept if 1t is not requested for a short period so LRU does not
perform well in web caches. A scan, stream of multiple documents

accessed only once, can force all the popular documents out of an

[LRU-based cache.

2.5.2 Least-Frequently-Used (LFU)

In least-frequently used method evicts the
document, which is accessed least frequently. Least Frequently Used
also has some disadvantages; the important problem with this method
is cache pollution which means that a document that was formerly
popular, but no longer is, will stay in the cache until new documents
become more popular than the old one which was used. This can take
a long time, and during this time, part of the cache is wasted. It
assumes that probabilities are constant, but in practical it is not so. it

also includes problem with implementation. Ideally, an

implementation of the algorithm would keep a frequency counter for

documents not in the cache as well as those present. On the scale of

performance of the algorithm diminishes. Even if only the counters for
the documents in the cache are kept, counters have to be updated
continuously, even when no document needs to be replaced, incurring
considerable overhead. It is also necessary to keep the documents
sorted by frequency to be able to make rapid decisions at replacement

time. This method has no notion of document size or cost of retrieval.

2.5.3 LRU-Threshold

LRU-Threshold method is the same as LRU, except
documents larger than a certain threshold size are never cached. this
method also has some disadvantages, it causes cache pollution and it
includes implementation problem. The counters present in the cache
for documents need to be updated continually even if no document
needs to be replaced.
2.5.4 Log(Size)+LRU

Log (size) +LRU method evicts the document who has
the largest log(size) and is the least recently used document among all
documents with the same log(size). log(size)*LRU method include
problem with implementation and the counters needs to be constantly

updated even when there is no eviction.

CHAPTER 3
DESIGN AND ARCHITECTURE

Modulel: Creation of Proxy server configuration
Module 2: connection of proxy server with internet
Module 3: Replacement algorithm design

Module 4: web caching and prefetching

3.1 System Model

The proxy is located near the Web clients in order to
avoid repeated round-trip delays between the clients and the origin
Web servers. The origin Web server in this model is an enhanced Web
server which employs a prediction engine and this will derive
prefetching rules from the server’s access log periodically. These
derived rules are assumed to be frequent. That is, only rules with
supports larger than the minimum support are derived and provided by
Web servers. The derived prefetching rules are stored in the
prefetching rule depository of the Web server.

As shown in Fig. 3.1, the proxy serves the requests sent
from the Web clients. In the case that a cache miss occurs, the proxy
will forward the request to the origin Web server for resolution. Upon
receiving the request, the origin server will log this request into
record, fetch the requested object form the Web object depository, and
check the prefetching rule depository at the same time. If this request
triggers some prefetching rules in the prefetching rule depository, the
objects implied by these prefetching rules and their corresponding
confidences will be piggybacked to the responding message as hints

and returned to the proxy. After the proxy receives the response with

the hints piggybacked from the origin Web server, the proxy will first
send the requested object back to the client and then determine
whether it is worth caching the piggybacked implied objects in the
proxy. here the cache replacement algorithm is devised for the
integration of Web caching and Web prefetching techniques. if cache
hit is found (i.e., the client’s request can be satisfied directly with the
proxy’s local cache), we assume that the proxy will still communicate
with the origin Web server to obtain the prefetching hints related to
that request after the proxy has sent the response to the client. As such,
we are able to investigate each request the prefetching hints from the
origin Web server to ensure that the discovered prefetching hints are
always up-to date.

A typical system model is shown below

T
) } Prediction
L Log } '''' > Engire
request request o Request < T
| g Processing » prefetching
3 TR Module i« Rule
S response ¢ i) response t deposiery
Client Prox hirsts -
Server
Web object Web
depository Server

Fig 1. Module for integrating web caching and prefetching

3.2 Creation of Proxy Server Configuration

In this module proxy server is configured in which the
images are stored separately. This is done by initializing the Boolean
function for images. the port number and maximum number of
connection possible with the proxy server are initialized and during
the running mode of the server, the server is started and we check
whether the ip address is present. If so the server socket is created
with port number and maximum number of connection and if ip
address is not present then we get the new ip address for it and this
process is done by setting the timeout period.

Graphical user interface design is done in this phase. This
includes the menu items like start server and stop server and viewing
cache and the graphical user interface contains help menu item and
client can also view that administrator is currently connected to which

person.

3.3 Connection of Proxy Server with Internet

The proxy server is connected with the internet
by creating HTTP configuration and proxy cache pool. Proxy ip
address and port number is connected with the network and if the

cache is enabled then that cache 1s used.

3.4 Replacement Algorithm Design

Replacement algorithm designing includes
two iteration models. in the first iteration step the N-documents is
randomly picked from the cache and among that N-documents the

least useful document is evicted and then next M least useful

document is retained and in subsequent iteration the N-M documents
is randomly picked from cache And it is Appended to the M
previously retained documents and among the N-samples the least
useful document is evicted and M next least useful document are

retained.

CHAPTER 4

TESTING

4.1 INTRODUCTION

After finishing the development of any computer based system the
next complicated time consuming process 1s system testing. During
the time of testing only the development company can know that, how

far the user requirements have been met out, and so on.

Following are the some of the testing methods applied to this

effective project:

4.2 SOURCE CODE TESTING
This examines the logic of the system. If we are getting the
output that is required by the user, then we can say that the logic is

perfect.

4.3 SPECIFICATION TESTING
We can set with, what program should do and how it should
perform under various condition. This testing is a comparative study

of evolution of system performance and system requirements.

4.4 MODULE LEVEL TESTING
In this the error will be found at each individual module, it
encourages the programmer to find and rectify the errors without

affecting the other modules.

4.5 UNIT TESTING

Unit testing focuses on verifying the effort on the smallest unit
of software-module. The local data structure is examined to ensure
that the date stored temporarily maintains its integrity during all steps
in the algorithm’s execution. Boundary conditions are tested to ensure
that the module operates properly at boundaries established to limit or

restrict processing.

4.6 INTEGRATION TESTING

Data can be tested across an interface. One module can have an
inadvertent, adverse effect on the other. Integration testing Is a
systematic technique for constructing a program structure while

conducting tests to uncover errors associated with interring.

4.7 VALIDATION TESTING

It begins after the integration testing is successfully assembled.
Validation succeeds when the software functions in a manner that can
be reasonably accepted by the client. In this the majority of the
validation is done during the data entry operation where there is a
maximum possibility of entering wrong data. Other validation will be

performed in all process where correct details and data should be

entered to get the required results.

4.8 RECOVERY TESTING
Recovery Testing is a system that forces the software to fail 1n

variety of ways and verifies that the reéovery is properly performed. If

recovery is automatic, re-initialization, and data recovery are each

evaluated for correctness.

4.9 SECURITY TESTING

Security testing attempts to verity that protection mechanism
built into system will in fact protect it from improper penetration. The
tester may attempt to acquire password through external clerical
means, may attack the system with custom software design to break

down any defenses to others, and may purposely cause errors.

CHAPTER S
CONCLUSION AND FUTURE ENHANCEMENT

In the first phase of the project, proxy server was configured.
The proxy server, which was designed in first phase, doesn’t use the
data structure to store the data in the cache and hence the server is
capable of accessing to number of clients and the administrator can
view the data’s present in the cache.

The work to be proposed in the next phase is to connect this
proxy server created to connect it with the Internet later the cache
replacement policies should be done to reduce the response time of the

user and then to test and implement the proxy server created.

CHAPTER 6
APPENDICES

6.1Sample Code

6.1.1 Proxy Server Creation
import java.io.lOException;
import java.io.PrintStream;
import java.net.InetAddress;

import java.net.ServerSocket;

public class ProxyServer

implements Runnable

1]
1
//initializing proxy server with port number and maximum

connection

ProxyServer(Object p, String ip, int port, boolean saveimgs)
{
server_port = 80;
max_connections = §;
server_running = false;
server exit = false;
console = p;
server_1p = ip;
se€rver_port = port;
this.saveimgs = saveimgs:;
myThread = new Thread(this);

myThread.setDaemon(true);

myThread.start();

ProxyServer(Object p, int port)

f
§

this(p, "127.0.0.1", port, talse);

——

public boolean isServerRunning()
{

return server_running;
i

//intaializing proxy server to start

public synchronized boolean startServer()
{

if(server running)

return true;

try
d

if(server ip == null

server_ip.equals("") ||
server ip.equals("*"))
ss = new ServerSocket(server port, max connections);

else

ss=newServerSocket(server_port,max_connections,InetAddress.getBy
Name(server 1p));

ss.setSoTimeout(1000);

}
catch(IOException)

d

ss = null;
return false;

1
f

System.out.println("Server Started on " + server_ip + ", port: "
+ server port);
Server_running = true;
return true;
!
/nitializing proxy server to stop
public synchronized boolean stopServer()
{
server running = false;
try
{
ss.close();
j
catch(IOException _ex) { |
ss = null;

return true;

public void serverExit()

{

j

//proxy server in running phase
vpublic void run()
{
while(!server exit)
if(server running)
try
{
java.net.Socket s = ss.accept();

new ProxyConnection(console, this, s, saveimgs);

((Serverlnterface)console).updateHTTPCounter();
!
catch(IOException _ex) { }
else
try
{
Thread.sleep(500L);

j

catch(InterruptedException _ex) { }

N

String server 1p;

int server port;

int max_connections;
private Thread myThread;
private ServerSocket ss;

private boolean server running;

private boolean server_exit;

Object console;

static final String localhost ="127.0.0.1";
static final boolean debug mode = false;

boolean saveimgs;

——

6.1.2 Proxy Connection Creation
import java.io.Serializable;

import java.util.Date;

public class ProxyCache

implements Serializable

S

ProxyCache()
{

url ="";

filename = createName();

public boolean isExpired(Date d)
{

return expiration.after(d);

private String createName()

char file char[] = new char[10];
for(int i = 0;1 < 10; i++)

{

int location = (int)(Math.random() * 1000D) %
alphabets.length;
file char{i] = alphabets[location];

e

return new String(file char) + ".cache";

public String getName()

{
3

return filename;

public void setExpiration(Date d)

i
§

expiration = d;

public void setExpiration(long d)

{

expiration = new Date(d);

public Date getExpiration()

{

return expiration;

——

public void setURL(String newurl)
{
1

url = newurl;

public String getURL()

f
It

return url;

—

public void setHeader(String h)

s
§

header = h.getBytes();

public void setHeader(byte h[])

{
header = h;

public void setContent(String c)

{

content = c.getBytes();

N

public void setContent(byte c[])
f
t

content = ¢;

—_——

public byte[] getHeader()
d

return header;

(o

public byte[] getContent()
I
t

return content;

N

public boolean matchURL(String target)

{

return url.equals(target);

e

String url;
Date expiration;
String filename;

byte header[];

byte content[];

static char alphabets[] = {
a','b, ¢!, d, e, ', e, 'h,
kLT, 'm', ', o', 'p', ', s, 't
'U', 'V', 'W', 'X', 'y', 'Z', A '3', '4',

=
1517 !6V, "7'7 V8!’ !9!7 VOV

——

6.1.3 Graphical User Interface Design
import java.awt.*;
import java.awt.event.™;
import javax.swing.*;
import javax.swing.event.®;
public class Web extends JFrame
{
JMenuBar mb;
JMenu Furher;
JMenultem
Initiateserver,Haltserver,Lucidhoard, Lucidsimilies,Depart;
JMenu Scrutiny;
JMenultem
Serverretort,Clientappeal,Beginpotraitviewer,Beginhoardviewer;
JMenu Launch;
JMenultem Serverconfiguration;

JMenu Lendahand;

JMenultem Assist,Concern;

String msg;
public Web()
{

/setTitle("WEBCACHING AND WEBPREFETCHING™);

mb=new JMenuBar();

setJMenuBar(mb);

Furher=new JMenu("Furher");
Scrutiny=new JMenu("Scrutiny");
Launch=new JMenu("Launch");
Lendahand=new JMenu("Lendahand");
mb.add(Furher);

mb.add(Scrutiny);

mb.add(Launch);

mb.add(Lendahand);

Initiateserver=new JMenultem("Initiateserver");

Haltserver=new JMenultem("Haltserver");
Lucidhoard=new JMenultem("Lucidhoard");
Lucidsimilies=new JMenultem("Lucidsimilies");
Depart=new JMenultem("Depart");
Serverretort=new JMenultem("Serverretort");
Clientappeal=new JMenultem("Clientappeal);

Beginpotraitviewer=new

JMenultem("Beginpotraitviewer");

Beginhoardviewer=new

JMenultem("Beginhoardviewer");

Serverconfiguration=new
JMenultem("Serverconfiguration");
Assist=new JMenultem("Assist");
Concern=new JMenultem("Concern");
Furher.add(Initiateserver);
Furher.add(Haltserver);
Furher.add(Lucidhoard);
Furher.add(Lucidsimilies);
Furher.add(Depart);
Scrutiny.add(Serverretort);
Scrutiny.add(Clientappeal);
Scrutiny.add(Beginpotraitviewer);
Scrutiny.add(Beginhoardviewer);
Launch.add(Serverconfiguration);
Lendahand.add(Assist);
Lendahand.add(Concern);
JMenu Systemlogs;
Systemlogs=new JMenu("Systemlogs");
Scrutiny.add(Systemlogs);
Systemlogs.add("" Admittancemonitor™);

Systemlogs.add("Blundermonitor");

]
§
class WH extends WindowAdapter
d

public void windowClosing(WindowEvent e)

-

System.exit(0);
§

1
s

public static void main(String args[])
-{
Web fra=new Web();
Toolkit tk=fra.getToolkit();

fra.setlconlmage(tk.getimage("sb.jpg"));

fra.setSize(800,600);

fra.setVisible(true);

R

6.2 Output and Screenshots

The final implementation includes the process of
connecting the proxy server with the client and the server will fetch
the documents from web and the response time of the user reduced is
shown

The function initiate server and halt server and lucid
hoard(i.e)viewing the cache and lucid smiles(i.¢) viewing smiles and

depart function is implemented in server side can be shown as follows

In scrutiny the function server retort and client appeal
and portrait viewing and hoard viewing and admittance monitor

functions is implemented in server side can be shown an as follows

Web PreFetching with p
| File view Lend A Hand |
Pretch Iﬁle\product\lo.2.0\server\bjn;z
| whem; C:\windows\System32\Wind
‘ oth Software\;C:\Program File

les (x86)\Common Files\Roxio
n Files\Roxio Shared\DLLShare
o0ls\binn\;g:/softwares/jdké6/

lations.

Fig 2.Prefetching the Web Cache

Server Configuration

Network || Logging

— TCPIP
IF : 1192.168.100.7 Proxy Server:
PORT : 12008 Proxy Port :

Note: leave proxy ip/port Mlank if not using proxy.

[Connections
Receive TimeOut: gy Cached GRLs : junn
Send TimeQut : g Cache Expires (hrs) : 1
Number of Threads : (100 W Show Printable Contents ?

Save ¢ Cancel

Fig 3.Specifing the Server

Server Configuration o

Network || Logging

—Logsi

Agcess Log :]..-'logs:'access.log

Error Log :]..-’10 gs!errnr.log]

Logging Level : ™ Afinimal
&+ Mormal
" Detail -

¥ Save downloaded images ?

Save | Cancel E

Fig 4. Log File Creation

view Launch Lend A Hand

Initiate Server

Lucid Hoard

Lucid Similes

Depart

Fig 5.1nitiating the Server

proxy.initializati
proxy.initizlizatic
source unknown s5Ta
sour<ce unknown Ereor:

“nitialized
T port: 2008

[N

Fig 6.Access Log File

M €RROR - Notepad

File Edit Format VYiew Help

279:2010 17:48:18 proxy.initialization{proxy.]

Fig 7.Error Log File

CHAPTER 7
REFERENCES

Books:
[1]. Patric Naughton Herbert Shieldt, * Java 2: The Complete
Reference’,Tata McGraw-Hill, 1999

Conference Proceedings:

[2] C. Aggarwal, J.L. Wolf, and P.-S. Yu, “Caching on the World
Wide Web,” IEEE Trans. Knowledge and Data Eng., vol. 11, no. 1,
pp. 94- 107, Jan. /Feb. 1999.

[3] P. Barford and M. Crovella, “Generating Representative Web
Workloads for Network and Server Performance Evaluation,” Proc.
1998 ACM SIGMETRICS Int’l Conf. Measurements and Modeling of
Computer Systems, 1998.

[4] G. Barish and K. Obraczka, “World Wide Web Caching: Trends
and Techniques,” IEEE Comm. Magazine, Internet Technology
Series, pp. 178-185, 2000.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM 1999, Mar. 1999. |

[6] P. Cao, E.W. Felten, A. Karlin, and K. Li, “A Study of Integrated
Prefetching and Caching Strategies,” Proc. 1995 ACM SIGMETRICS

Int’l Conf. Measurements and Modeling of Computer Systems, pp.
188-197, 1995.

