PROGEISS TEROUGN THOMRENGE

TASK SCHEDULING 1
GENETIC ALGORITHM

A PROJECT REPORT
Submitted by
P.ANANDHI

N.GOWTHAMI

V.T.KALYANI
In partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING
in

COMPUTER SCIENCE AND ENGINEERING

ATORE

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMB

ANNA UNIVERSITY, CHENNAI-600 025

MAY 2010

ANNA UNIVERSITY: CHENNALI 600 025

BONAFIDE CERTIFICATE

Certified that this project report entitled “Task Scheduling In Grid
Environment Using Genetic Algorithm” is the bonafide work of P.Anandhi,

N Gowthami, V.T.Kalyani, who carried out the project work under my

supervision.

e ,

SIGNATURE IGNATURE

Dr.S.Thangasamy, Phd Mrs.P.Devaki

HEAD OF THE DEPARTMENT SUPERVISOR

Department of Computer Asst.Professor

Science and Engineering Department of Computer
Kumaraguru College of Technology Science and Engineering
Coimbatore-641006 Kumaraguru College of Technology

Coimbatore-641006

The candidate with University Register Nos. 71206104003, 71206104017 and 71206104021

were examined by us in the project viva-voce examination held on 6.0k 201D

| D Menge

L)
IXTERNAL EXAMINER EXTERNAL EXAMINE

DECLARATION

We hereby declare that the project entitled ” Task Scheduling in Grid Environment
Using Genetic Algorithm” is a record of original work done by us and to the best of our

knowledge, a similar work has not been submitted to Anna University or any [nstitutions, for

fulfillment of the requirement of the course study.

The report 18 submitted in partial fulfillment of the requirement for the award of the

Degree of Bachelor of Computer Science and Engineering of Anna University, Chennal.

Place: Coimbatore
Date: !b.04.2010

P Aandl

(P. Anandhi)

"ot

(N. Gowthami)

V. T- Kadyans

(V.T. Kalyani)

ACKN OWLEDGEMENT

We extend our sincere thanks to our Principal, Dr. S. Ramachandran,
Kumaraguru College of Technology, Coimbatore, for being a constant source of
inspiration and providing us with the necessary facility to work on this project.

o make a special acknowledgement and thanks to

Wwe would like t
Dr. S. Thangasamy, Ph.D., Dean, Professor and Head of Department of
Computer Science & Engineering, for his support and encouragement

throughout the project.

We express deep gratitude and gratefulness to our Guide Mrs. P.

Computer Science & Engineering, for her supervision,

Devaki, Department of

enduring patience, active involvement and guidance.

We would like to convey Out honest thanks to all Faculty members of
the Department for their enthusiasm and wealth of experience from which we

have greatly benefited.

We also thank our friends and family who helped us to complete this

project fruitfully.

ABSTRACT

The matching of tasks to machines and scheduling the execution order of
the tasks is referred to as mapping. The problem of mapping tasks to machines
is found to be an NP complete problem. In this project we have taken up
mapping of independent tasks to the given set of machines. We have assumed
that the tasks property is submitted statically i.e. (offline or in a predictive
manner). It is also assumed that each machine executes a single task at a time in
the order in which the tasks are assigned. The number of tasks and machines,
the time taken to complete the tasks in each machine is known in advance.
Given all these details, the goal of task scheduling is to allocate the tasks at
machines in a way that the makespan (overall completion time of all tasks) and
the waiting time of each task is reduced. We have taken up two existing
strategies namely min-min and max min and the results of these two algorithms
are compared with the results obtained from the proposed genetic algorithm.
Genetic algorithm is chosen because + is an evolutionary process and the

solution obtained from it will be optimal.

TABLE OF CONTENTS

R R N
Lt OF FLGUIES. v errrenesreoeessseses e ix
CHAPTER -1

| IOUEHON. o eereerssresers e 1
| 2 Grid COMPUERE «rvoorrsserssreseeessosssesses s o 1
1.3 A Classification of emerging grids.oovveerresrrsmmee e 3
1.4 Benefits of Grid EOVATONMEDE. . ceearsreesssressnsssens s s 12
1.5. Overview of Task SChEQUINE. . veeoerrrememmrmmmsssss s s omo s 13
1.6 Issues in Grid COMPUHNE. . oovereemerssmmenssesen sy 16
1.7 Classification of static Task-Scheduling Algorithms.....coooereeene 17

CHAPTER 11

2. PROBLEM OVERVIEW
5 1 Problem DEfimition. ... o.rserseeseersessroee s T 18
2.2. ETC Matrix ReEpIESEntation.ooowessssrsemsss st 18
7 3 Existing Strategies Taken Up for COMPATISON . . ooeovneenmmeressn oo™ 20
2.3.1 MAX MIN QTRATEGY .. avveessemmmsssmemsmnssmssse s 20
2.3.2 MIN MIN QTRATGEY <. vvecnvreemmmsmeessmnesmsrms sy 22

CHAPTER 111

3. OVERVIEW OF GENETIC ALGORITHM
3.1 Introduct10n23
3.2 Steps in Genetic ALGOTERIML <. ooveaewmsseemmssmes s 24
3.3 Genetic Algorithm for Task Scheduling.......oovermrmmermemmmeee 24
3 3.1 Encoding (Initial Population Generation) «.....ocesresmesrsmmomtes 25
332 Select10n26
3.3.3 Cross Over26
334 Mutat10n27

CHAPTER IV

4. IMPLEMENTATION
4.1 Max Min and Min Min JNTTa 511 FUUPRRRTRRPREE RS 28
4.9 Genetic AlORIM oovoorssrsasemrssesssrsess s 70

5. EXPERIMENTAL RESULTS AND DISCUSSION

Comparison Metrics
5.1 Makespan85

52 Average Waiting TIIE. ..oooooveoreessssrrmss s m s 85

CHAPTER V1

6. COMPARISON GRAPHS
6.1 Makespan COMPATISON.o.ovurmvarsnmssssssrrsnsesns e 86
6.2 Average Waiting Time COMPALISOIL. ... rvnernernemrnresens s 92
6.3 Conclusmn98
6.4 Further ENancements.coveeneonarsmrennnnsrnmrrsensms s 99

6.5 References99

LIST OF FIGURES:

Fig.1.1-A Classification of static Task Scheduling Algorithms...........c...... 17

Fig.2.1-2.12-Makespan Comparison

Fig.3.1-3.12-Average Waiting Time

COMPATISON. . ..erenenneernrneeeeensnes 92

CHAPTER It
1. OVERVIEW OF GRID ENVIRONMENT
1.1 INTRODUCTION

The growth of internet along with the availability of powerful computers and
high speed networks as low cost commodity components is changing the way the
scientists and engineers do computing and also is changing how society in general
manages information. These new technologies have enabled the clustering of a wide
variety of geographically distributed resources, such as supercomputers, Siorage
systems, data SQUICES, instruments. A grid is a collection of resources owned by
multiple organizations that is coordinated to allow them to solve a common problem.
The grid vision has been described as 2 world in which computational power
(resources, services, data) is as readily available to users with differing levels of
expertise in diverse areas and in which these services can interact to perform specified

tasks efficiently and securely with minimal human intervention. (4]

1.2 GRID COMPUTING

Grid computing can be viewed as a means 1o apply the resources from a
collection of computers in a network and to harness all the compute power into a
single project. Grid computing can be a cost effective way o resolve IT issues in the
areas of data, computing and collaboration; especially if they require enormous
ammounts of compute POWeT, complex computer processing cycles or access to large
data sources. Grid computing needs 1o be a secure, coordinated sharing o
heterogeneous computing resources across 4 networked environment that allows user:
to get their answers taster. Grid computing is the combination of computer resource

from multiple administrative domains for a common goal. Grids are usually used fo

solving scientific, technical or business problems that require a great number of

computer processing cycles for processing of large amounts of data.

Grid computing concerns the application of the resources of many computers in
a network to a single problem at the same time - usually to a scientific or technical
problem that requires a great number of computer processing cycles or access to large

amounts of data.

Grid computing requires the use of software that can divide and farm out pieces
of a program to as many as several thousand computers. Grid computing can be
thought of as distributed and large-scale cluster computing and as a form of network-
distributed parallel processing. It can be confined to the network of computer
workstations within a corporation or it can be a public collaboration {in which case it

is also sometimes known as a form of peer-to-peer computing).

Grids are a form of distributed computing whereby a “super virtual computer”
is composed of many networked loosely coupled computers acting in concert 10
perform very large tasks. This technology has been apphied to computationally
intensive scientific, mathematical, and academic problems through volunteer
computing, and 1t is used in comumercial enterprises for such diverse applications
as drug discovery, economic forecasting, seismic analysis, and back-office data

processing in support of e-commerce and Web services.

What distinguishes Grid computing from conventional high performance
computing systems such as cluster computing is that Grids tend to be more loosely
coupled, heterogeneous, and geographically dispersed. It is also true that while a Grid
may be dedicated to a specialized application, a single Grid may be used for man)

different purposes.

1.3A CLASSIFICATION OF EMERGING GRIDS

In the literature, two characteristics categorize traditional grids: the type of
solutions they provide and the scope oI SIZ€ of the underlying organization(s). We
propose four additional nomenclatures to facilitate the classification of emerging

grids: accessibility, interactivity, user-centricity, and manageability.
Grids classified by solution

The main solution that computational grids offer is CPU cycles. These grids
have a highly aggregated computational capacity. Depending on the hardware
deployed, computational grids are further classified as desktop, server, Of equipment
grids. In desktop grids, scattered, idle desktop computer resources constitute a
considerable amount of grid resources, whereas in server grids resources are usually
limited to those available in servers. An equipment of instrument grid includes a key
piece of equipment, such as a telescope. The surrounding grid—a group of electronic
devices connected to the equipment——controls the equipment remotely and analyzes

the resulting data.

In data grids, the main solutions are storage devices. They provide an
infrastructure for accessing, storing, and synchronizing data from distributed data

repositories such as digital libraries Of data warehouses.

Service or utility grids provide commercial computer services such as CPU
cycles and disk storage, which people in the research and enterprise domains can

purchase on demand.

Access grids consist of distributed input and output devices, such as speakers
microphones, video cameras, printers, and projectors connected to a grid. Thes

devices provide multiple access points to the grid from which clients can issu

requests and receive results in large-scale distributed meetings and training sessions.If
clients use wireless or mobile devices to access the grid, it’s considered a wireless

access grid or a mobile access grid.
GRIDS CLASSIFIED BY SIZE

Global grids are established over the Internet to provide individuals or
organizations with grid power anywhere in the world. This is also referred to as
Internet computing. Some literature further classifies global grids into voluntary and
nonvoluntary grids. Voluntary grids offer an efficient solution for distributed
computing. They let Internet users contribute their unused computer resources (O
collectively accomplish nonprofit, complex scientific computer-based tasks. Resource
consumption is strictly limited to the controlling organization or application. On the

other hand, nenvoluntary grids contain dedicated machines only.

National grids are restricted to the computer resources available within a
country’s borders. They’re available only to organizations of national importance and

are usually government funded.

Project grids are also known as enterprise grids or partners grids. They’re
structurally similar to national grids, but rather than aggregating resources for a
country, they span multiple geographical and administrative domains. They’re
available only to members and collaborating organizations through a special

administrative authority.

Intra-grids or campus grids, in which resources are restricted to those available

within a single organization, are only for the host organization’s members L0 use.

Departmental grids are even more restricted than enterprise grids. They’re only

available to people within the department boundary.

Personal grids have the most limited scope of underlying organization. They’re
available at a personal level for the owners and other trusted users. Personal grids are

still at a very early stage.
ACCESSIBLE GRIDS

In this context, accessibility means making grid resources available regardless
of the access devices’ physical capabilities and geographical locations. The highly
structured networks of supercomputers and high-performance workstations that
dominate grids today typically don’t provide such accessibility. In traditional,
restricted-access grids, grid nodes are stationary with a predefined wired infrastructure

and entry points.

Wireless, mobile, and ad hoc grids have emerged to support grid accessibility.
An accessible grid consists of a group of mobile or fixed devices with wired or

wireless connectivity and predefined or ad hoc infrastructures.

One of the most critical issues 1n understanding accessible grids 1S having an
accurate definition, or at least determination, of each grid type (ad hoc, wireless, and
mobile). Yet, researchers offer no consistent definition of any of these three terms. Ad
hoc grids stress the ad hoc nature of virtual organizations, wireless grids emphasize
the wireless connectivity, and mobile grids focus on mobility-related issues such as

job migration and data replication.

An accessible grid’s main characteristic is 1S highly dynamic nature, which
results from the frequently changing structure of underlying networks and VOs due to
nodes switching on and off, nodes entering and leaving, node mobility, and so on
This is why traditional service discovery, management, and security mechanism:

might not be optimal for accessible grids.

Accessible grids are accessible from more geographical locations and social
settings than traditional grids. This opens the door for new applications in emergency
communication, disastet and battlefield management, e-learning, and e-healthcare,

among other fields.

Ad hoc grids. Grids’ ad hoc, sporadic nature was observed within the first
documented Globus Grid application (see www.globus.org). However, traditional
grids fail to support certain aspects of ad hoc environments,such s constantly
changing membership with 2 lack of structured communications infrastructure. As a

result, ad hoc grids have emerged.

An ad hoc grid 1s a spontaneous formation of cooperating heterogeneous
computing nodes mto a logical community without a preconﬁgured fixed
infrastructure and with minimal administrative requirements Thus, the traditional
static grid infrastructure s extended to encompass dynamic additions with no
requirements of formal, well-defined, or agreed-upon grid entry points. Instead, nodes

can join as long as they can discover other members.

Some researchers strictly define ad hoc grids as grid environments without
fixed infrastructures. all their components are mobile. This grid is referred to as a
mobile ad hoc grid. However, ad hoc grids focus on the grid’s ad hoc nature rather

than the nodes’ mobility.

Ad hoc grids’ main challenge is thetr dynamic topology, due to the rebooting of
workstations and the movement OT replacement of computational nodes. Technical
details concerning ad hoc grid challenges and implementations are available

elsewhere.

Wireless grids. The wireless grid extends grid resources to wireless devices ¢

4 tisies guch as sensors, mobile phones, 1aptops, speci:

nstruments, and edge devices. These devices might be statically located, mobile, or
nomadic, shifting across institutional boundaries and connected to the grid via nearby

devices such as desktops.

Many technical concerns arise when integrating wireless devices into 2 grid.
These include low bandwidth and high security risks, power consumption, and
latency. SO, several communities, including the Interdisciplinary Wireless Grid Team

are exploring these new issues to ensure that future grid peers can be wireless devices.

Mobile grids. Mobile grids make grid services accessible through mobile
devices such as PDAs and smart phones. Researchers usually consider these devices
to be at best marginally relevant to grid computing because they’'re typically resource
limited in terms of processing pPowel, persistent storage, runtime heap, battery
lifetime, screen SiZe, connectivity, and bandwidth. In contrast, recent studies suggest a
very different picture. The millions of mobile devices sold annually shouldn’t be
ignored, and some mobile devices’ raw processing power is not insignificant given
their mobility. Furthermore, in emergency situations, such as during natural disasters
and on battlefields, wireless mobile devices might be the only available
communication and computation services. The most important argument is that it’s

difficult to materialize the SOKU and Aml visions without using such devices.

As in the case of wireless devices, there are already two approaches 1o
integrating: mobile devices into grid systems. In the first approach, the grid includes at
least one mobile node that actively participates by providing computational or data
services. In the second approach, mobile devices serve as an interface to a stationary
grid for sending requests and receiving results. Sometimes this approach 1s labeled

mobile access t0 grid infrastructure, O simply mobile access grids.

Recently, researchers have made numerous efforts toward establishing mobile
grids. You can find details concerning mobile grid requirements and challenges
elsewhere. Researchers have proposed various techniques for implementing the
mobile grid vision, inctuding centralized and P2P structure, intelligent mobile agents,
mobile grid middleware, and many more. Existing mobile grid projects include

Akogrimo JSAM, and MADAM.
Interactive grids

Some potential NGG application areas, such as real-time embedded control
systems and video gaming, require rapid response times and online interactivity. The
classic request/response communication paradigm of traditional grid systems (such as
batch grids) can’t accommodate this, sO interactive grids are emerging to support real-

time interaction.

Interactivity in grid environments can be implemented at two layers: the Web
portal layer and the grid middleware layer. In the former, a Web-based grid portal 18
used to submit interactive jobs to a secure shell process rather than directly to the grid
middleware. ScGrid portal falls into this category. In the latter, grid middleware 18
extended to support interactivity. Examples of this category include CrossGrid and

edutain@grd.

These examples mainly highlight explicit interactions between a grid and its
users, so they're labeled explicit interactive grids. However, this 18 only one possible
form of interaction in gnd environments. Another is between a grid and its
surroundings to implement a context-aware orid, which uses sensors t0 interactively
build the context and actuators to adapt grid behaviors accordingly. The research
agendas of many emerging grid projects in the areas of embedded and pervasiv

systems, such as RUNES, SENSE, Hydra, and MORE emphasize context awareness.

User-centric grids

Traditional grids are designed specifically for people involved in research and
large industry domains. Hence, they lack user centricity and personalization features.
Consequently, 1t's difficult for personal users—ithat 1S, individuals outside these
domains—to construct or usé traditional grids. Most traditional grid systems are

nonpersonalized grids.

Personalized grids are emerging grid systems with highly customizable Web
portals that make them adaptable to users’ needs. User centricity 15 2 design
philosophy that focuses on the needs of a system’s USETS. Personalization 18 @ mMOTC
restrictive philosophy that aims to adapt the whole system’s design to a specific user.
In grid computing, user centricity could begin by displaying the user’s name on a Web
portal, and might end with the personalization of all information, resources, and
networks underpinning grids. Research to support uset centricity in grid computing 18

in its infancy.

We use the term user-centric grids 10 refer to two types of emerging grids:
personalized and personal. Personalized grids have highly customizable Web portals
to provide user-friendly access points 10 grid resources for people in different
domains. For instance, the myGrid project lets scientists establish multiple views that
provide access to a user-defined subset of the registered services. These views can be
specific to individual scientists OT to more specialized discovery Sservices. The
Akogrimo project saves all learners’ profiles and needs, such as his or her contexi
information, and automatically loads them whenever they sign o1, providing ¢
customized, user-friendly environment for cach leamer. A personal orid 18
personali'zed grid with an underlying VO of limited scope and size. It’s used and/c
owned by individuals. You can find a framework for a personal orid that consists of

e 1oad personal desktop computers elsewhere.

1udidh

Manageable grids

A grid is highly complex and dynamic, making its management extremely
challenging. Traditional grid-management approaches require centralized servers,
extensive knowledge of the underlying systems, and a large group of experienced

staff. So, grids are emerging with manageability as a main focus.

Centralized grids are traditional grid systems that use a central management

scheme. In distributed grids, such as P2P grids, management is distributed.

Manageability is the capacity to manage, organize, heal, and control a system;
hence, a manageable grid is a sophisticated grid that automatically manages, adapts,
monitors, diagnoses and fixes itself. A manageable system has intelligent control
embedded into its infrastructure to auiomate its management procedure. A variety of
technologies are available to support grid manageability at both the hardware and
software levels. At the software level, a wide range of techniques, from traditional log
files to recent technologies such as Java Management Extensions and knowledge
technologies, can support manageability. At the hardware level, technologies from
simple embedded sensors 10 standalone intelligent robots can achieve this.
Additionally, changing the underlying grid architecture—for example, from

centralized client/server to P2P structures—can support manageability.

Manageable grids offer a simplified installation and greatly reduce
configuration and administration, which, 1 turn, reduces management costs and
dramatically enhances scalability. Existing research in this area includes autonomic
grids, knowledge grids, and organic grids. Hybrid grids use different combinations of
management schemes. For instance, a grid environment might implement a distributec
P2P management scheme at the cluster level and a centralized management structure

at the higher grid level.

Autonomic grids.

Autonomic computing, initiated by IBM in 2001, is named after the human
body’s autonomic nervous system. The autonomic nervous system regulates body
systems without any external help; likewise, an autonomic computing system controls
the functioning of computer systems without user intervention. The main goal of
autonomic computing is to make managing large computing systems (such as grids)

less complex.

An autonomic grid can configure, reconfigure, protect, and heal itself under
varying and unpredictable conditions and optimize its work to maximize resource use.
You can find applications, challenges, and various methods that have been proposed
to work toward autonomic grids elsewhere. Examples of autonomic grid projects

include the IBM OptimalGrid and AutoMAGL.
Knowledge grids.

A knowledge grid is an extension to the current grid in which data, resources,
and services have well-defined meanings that are annotated with semantic metadata so
both machines and humans can understand them. The aim is to move the grid from an
infrastructure for computation and data management to a pervasive knowledge-
management infrastructure. Examples of knowledge grid projects include OntoGrid,
InteliGrid, and K-Wf Grid. Several communities are working to realize knowledge
grids, including the Semantic Grid Group from the Open Grid Forum. Reviews of the
status and future vision of knowledge grids, including applications, challenges, and

critical issues, are detailed elsewhere. p- 3125

Organic grids.

Traditionally, “organic” means forming an integral element of a whole, having
systematic coordination of parts, and/or having the characteristics of an organism and
developing in the manner of a living plant or animal. In grid computing, the organic
grid refers to a new design for desktop grids that relies on a decentralized P2P
approach, a distributed scheduling scheme, and mobile agents. The basic idea comes
from the manner in which complex patterns can emerge from the interplay of many

agents in an ant colony. However, work on organic grids is at a very early stage.
1.4 BENEFITS OF GRID COMPUTING

Grid computing appears 10 be a promising trend for three reasons: (1) its ability
to make more cost-effective use of a given amount of computer resources, (2) as a
way to solve problems that can't be approached without an enormous amount of
computing power, and (3) because it suggests that the resources of many computers
can be cooperatively and perhaps synergistically harnessed and managed as a
collaboration toward a common objective. In some grid computing Systems, the
computers may collaborate rather than being directed by one managing computer. One
likely area for the use of grid computing will be pervasive computing applications -

those in which computers pervade our environment without our necessary awareness.
Moreover the following can be summarized as the merits of Grid Computing
1. Exploiting under utilized resources
2. Parallel CPU capacity
3. Virtual resources and virtual resources for collaboration

4. Access to other resources

5 Resource Balancing
6. Reliability
7. Management

Grid computing enables organizations (real and virtual) to take advantage of
various computing resources in ways not previously possible. They can take
advantage of underutilized resources to meet business requirements while minimizing
additional costs. The nature of a computing grid allows organizations to take
advantage of parallel processing, making many applications financially feasible as
well as allowing them to complete sooner. Grid computing makes more resources
available to more people and organizations while allowing those responsible for the IT

infrastructure to enhance resource balancing, reliability, and manageability. [3]

1.5 OVERVIEW OF TASK SCHEDULING:

Scheduling is defined as the problem of allocation of machines over time 10
competing jobs [1]. The m x n task scheduling problem denotes a problem where a set
of n jobs has to be processed on a set of m machines. Each job consists of a chain of
operations, each of which requires a specified processing time on a specific machine.
The allocation of system resources to various tasks, known as task scheduling, 1s a
major assignment of the operating system. The system maintains prioritized queues of
jobs waiting for CPU time and must decide which job to take from which queue and
how much time to allocate to it, so that all jobs are completed in a fair and timely

manner.

The task scheduling system is responsible to select best suitable machines in

grid for user jobs. The management and scheduling system generates job schedules fo

each machine in the grid by taking static restrictions and dynamic parameters of jobs

and machines into consideration.

Task scheduling in Grids: In a Grid system

1. 1t arranges for higher utilization Complex as many machines with local

policies involved.
7 Resources are fixed Resources may join or leave randomly.

3. One job scheduler or two job schedulers.
Job scheduling in grids

Job scheduling is well studied within the computer operating systems. Most of
them can be applied to the grid environment with suitable modifications. In the
following we introduce several methods for grids. The FPLTF (Fastest Processor 1o
Largest Task First) algorithm schedules tasks to resources according to the workload
of tasks in the grid system. The algorithm needs two main parameters such as the CPU
speed of resources and workload of tasks. The scheduler sorts the tasks and resources
by their workload and CPU speed then assigns the largest task to the fastest available
resource. If there are many tasks with heavy workload, its performance may be very
bad. Dynamic FPLTF (DPLTF) is based on the static FPLTEF, it gives the highest

priority to the largest task.

DPLTE needs prediction information on pProcessor speeds and task workload
The WQR (Work Queue with Replication) is based on the work queuc (WQ
algorithm The WQR sets a faster processor with more tasks than a slower processo
and it applies FCFS and random transfer to assign resources. WQR replicates tasks 11

der to transfer to available resources. The amount of replications is defined by th

user. When one of the replication tasks is finished, the scheduler will cancel the
remaining replication tasks. The WQR’s shortcoming is that it takes too much time to

execute and transfer replication tasks to resource for execution.

Min-min set the tasks which can be completed earliest with the highest priority.
The main idea of Min-min is that 1t assigns tasks to resources which can execute tasks
the fastest. Maxmin set the tasks which has the maximum earliest completion time
with the highest priority. The main idea of Max-min is that it overlaps the tasks with
long running time with the tasks with short running time.For instance, if there is only
one long task, Min-min will execute short tasks in parallel and then execute long task.
Max-min will execute short tasks and long task in parallel. The RR (Round Robin)
algorithm focuses on the fairness problem. RR uses the ring as its queue to store jobs.
Each job in queue has the same execution time and it will be executed in turn. If a job
can’t be completed during its turn, it will store back to the queue waiting for the next
turn. The advantage of RR algorithm is that each job will be executed in turn and they
don’t have to wait for the previous one to complete. But if the load is heavy, RR will
take long time to complete all jobs. Priority scheduling algorithm gives each job a
priority value and uses it to dispatch jobs. The priority value of each job depends on
the job status such as the requirement of memory sizes, CPU time and so on. The
main problem of this algorithm is that it may cause indefinite blocking or starvation if

the requirement of a job 1s never being satisfied.

The FCFS (First Come First Serve) algorithm 1s a simple job scheduling
algorithm. A job which makes the first requirement will be executed first. The main
problem of FCFS is its convoy effect If all jobs are waiting for a big job to finish, the
convoy effect occurs. The convoy effect may lead to longer average waiting time and

lower resource utilization.

1.6 ISSUES IN GRID COMPUTING

A grid is a distributed and heterogeneous environment. A heterogeneous
environment involves dynamic arrival of tasks where the tasks and resources can be
from various administrative domains. Both of these issues require are the source of

challenging design problems.

Being heterogeneous inherently contains the problem of managing multiple
technologies and administrative domains. The computers that participate in a grid may
have different hardware configurations, operating ~ systems and software
configurations. This makes it necessary t0 have right management tools for finding a

suitable resource for the task and controlling the execution and data management.

A grid may also be distributed over a number of administrative domains. Two
or more institutions may decide to contribute their resources 10 a grid. In such cases,
security is a main issue. The users who submit their tasks and their data to the grid
wish to make sure that their programs and data is not stolen or altered by the computer
in which it is running. Of course the problem is reciprocal. The computer
administrators also have to make sure that harmful programs do not arrive over the

grid.

Another important issue 18 scheduling. Scheduling a task to the correct resource
requires considerable effort. The picture 18 further complicated when we consider the
need to access the data. In this project, we have assumed that the capacity of the
machines and the execution time of the tasks are known in advance and no jobs arrive

dynamically. In case of a dynamic scenario, the chance of failure is high.

Grid computing environment may also involve the service level agreements

(SLA) which are service based agreements rather than customer based agreements

SLA is a negotiation mechanism between resource providers and task submitting

SOUrces.

1.7 CLASSIFICATION OF STATIC TASK-SCHEDULING ALGORITHMS

‘ Static Task-Scheduling Algorithms '

L Heuristic Based 4\ \Euided Random Search Basecr\

Genetic algorithms
Simulated Annealing
LocalSearchTechnique

L List Scheduling J \ Task Duplication |

Modified Critical Path Critical path Fast Duplication
Dynamic Critical Path Duplication Scheduling Heuristic
Dynamic Level Scheduling Bottom-up Top-Down Heuristic
Mapping Heuristic Duplication First and Reduction Next

LClustering Heuristics \

Mobility Directed
Dominant Sequence Clustering
Linear Clustering

Figure 1.1 Classification of Static task-Scheduling algorithms

CHAPTER 11
PROBLEM OVERVIEW
2.1 PROBLEM DEFINITION:

Given a set of tasks with certain charactenistics, €.2., estimated execution time
and a set of processing nodes with their own parameters, the goal of task scheduling 18
to allocate tasks at nodes so that the total make span and average waiting time is

minimized. Genetic algorithm is used in order to obtain an optimal solution.
2.2 ETC MATRIX GENERATION:

It is assumed that an accurate estimate of the expected execution time for each
task on each machine is known prior {0 execution and contained within an Expected
Time to Compute (ETC) matrix. One row of the ETC matrix contains the estimated
execution times for a given task on each machine. Similarly, one column of the ETC
matrix consists of the estimated execution times of a given machine for each task in
the meta-task. Thus, for an arbitrary task t, and an arbitrary machine m, ETC (t;, m,) 1S

the estimated execution time of t; on m.

For cases when inter-machine communications are required. ETC (t;, mj) could
be assumed to include the time to move the executables and data associated with task
t, from their known source to machine m. For cases when it is impossible to execute
task t, on machine mj {e.g., if specialized hardware is needed), the value of ETC (1
m) can be set 10 infinity, or some other arbitrary value. For this study , it 18 assumed
that there are inter-task communication each task it can execute on each machine, and
estimated expected execution time of each task on each machine following method are
known. The assumption that these estimated expected execution times are known 1

commeonly made when studying mapping heuristics for HC systems.

For the simulation studies, characteristics of the ETC matrices were varied in an
attempt to represent a range of possible HC environments. The ETC matrices used
were generated using the following method. Initially, a t x 1 baseline column vector,
W, of floating point values is created. The baseline column vector is generated by
repeatedly selecting random numbers x,, and multiplying them by a constant ‘a’
letting W (1) = (xwi x a) for 0 <i <t. Next, the rows of the ETC matrix are constructed.
Each element ETC (t;, m;) in 10w i of the ETC matrix is created by taking the baseline
value, W (i), and multiplying it by a vector X (j). The vector X M= (x/ x b) is created
similar to the way W (i) 18 created. Each row i of the ETC matrix can then be
described as ETC (t;, mj) =B (D) x X (j) for O <j <m. (The baseline column itself does
not appear in the final ETC matrix). This process is repeated for each row until the t x

m ETC matrix is full.

The amount of variance among the execution times of tasks in the meta-task
for a given machine is defined as task heterogeneity. Task heterogeneity was varied by
changing the value of constant ‘a’ used to multiply the elements of vector W (i).
Machine heterogeneity represents the variation that is possible among the execution
times for a given task across all the machines. Machine heterogeneity was varied by
changing the value of constant ‘b’ used to multiply the elements of vector X (j). The
ranges were chosen in such a way that there 18 less variability across execution times
for different tasks on a given machine than the execution time for a single task across

different machines.

To further vary the ETC matrix in an attempt to capture more aspects of
realistic mapping situations. Different ETC matrix consistencies were used. An ETC
matrix is said to be consistent if whenever a machine m; executes any task t; faster than
machine m, , then machine m; executes all the task faster than my . Consistent
matrices were generated by sorting each row of the ETC matrix independently, with

machine my always being the fastest and machine My 1y the slowest. In contrast:

inconsistent matrices characterize the situation where machine m j may be faster than
the machine my for some tasks, may be slower for others. These matrices are left in
the unordered, random state in which they were generated (i.e., NO consistence 18
enforced). Partially-consistent matrices are inconsistent matrices that include a
consistent sub matrix. For the partially-consistent matrices used here . the row
clements in column positions £0,2,4,. ..} of row [are extracted sorted, and replaced 1n
order , while the row elements in column positions {1,3,5...} remain unordered (i.e.,

the even columns are consistent and odd columns are 1n general inconsistent).[1]

SAMPLE ETC MATRIX (FOR 8 TASKS AND 8 MACHINES [LOW LOW
[NCONSISTENT]))

1.097707 2.989389 3.004404 0.68733 2280924 2.081497 2415987 0.7381 58
0.642505 1749737 1.758525 0.402305 1.335061 1.218333 1414115 0.432056
1.013353 759668 2.773529 0.634512 2105646 1.921543 5230329 0.681434
3.517587 9.579454 9.627568 220254 7.30919 6.670126 7.741994 2365418
0.162561 0.442702 0.444925 0.101787 0.337784 0308251 0.357786 0.109315
155419 4232531 4253789 0.973158 372945 2.94709 3.420678 1.045122
1.74766 4759408 4.783312 1.094299 3631461 3.313952 3846493 1.175222
3.570314 0.723048 9.771883 2235556 7.418752 6.770109 7858045 2.400874

2.3 EXISTING STRATEGIES TAKEN UP FOR COMPARISON
2.3.1 MIN MIN STRATEGY:

The Min Min heuristic begins with the set U of all unmapped tasks. Then, the
set of minimum completion times, M= [min0_j<* (ct (1, mj)), for each 6 # U}, &
found. Next, the task with the overall minimum completion time from M is selecte
and assigned to the corresponding machine (hence the name Min_min). Last, th
newly mapped task is removed from U, and the process repeats until all tasks ar

aie 118 empty).

Min_min maps the tasks in the order that changes the machine availability
status by the least amount that any assignment could. Let ti be the first task mapped by
Min_min onto an empty System. The machine that finishes ti the earliest, say mj, 18
also the machine that executes ti the fastest. For every task that Min_min maps after t,
the Min_min heuristic changes the availability status of mj by the least possible

amount for every assignment. [1105119]

MIN-MIN ALGORITHM: (8]
Stepl: Select the minimum execution time in each row.
Step2: From the set of selected minimums, select the minimum time.

Step3: Assign the task which has that selected execution time o the corresponding

Processor.

Step4: If in case, that processor has been allocated for any other task, then select the

next minimum time for that task and assign 1t t0 the corresponding processor.

Step5: Repeat the above steps till every task is assigned.

2.3.2. MAX MIN STRATEGY:

Max Min: The Max Min heuristic 1s very similar to Min Min. The Max Min
heuristic also begins with the set U of all unmapped tasks. Then, the set of minimum
completion times, M, is found. Next, the task with the overall maximum completion
time from M 1s selected and assigned to the corresponding machine (hence the name
Max Min). Last, the newly mapped task is removed from U, and the process repeat:

until all tasks are mapped (i.e., U is empty)

Intuitively, Max Min attempts 10 minimize the penalties incurred from
performing tasks with longer execution times. Assume, ¢or example, that the metatask
being mapped has many tasks with very short execution times and one task with a
very long execution time. Mapping the task with the longer execution time to its best
machine first allows this task to be executed concurrently with the remaining tasks
(with shorter execution times). For this case, this would be a better mapping than
2 Min Min mapping, where all of the shorter tasks would execute first, and then the
longer running task would execute while several machines sit idle. Thus, in €ases
gimilar to this example, the Max Min heuristic may give a mapping with a more
balanced load across machines and a better makespan. [1](5109]

MAX MIN ALGORITHM:
Stepl: Select the minimum execution time in gach row.
Step2: From the set of selected minimums, select the maximum time.

Step3: Assign the task which has that selected execution time to the corresponding

processor.

Step4: If In case, that processor has been allocated for any other task, then select the

next minimum time for that task and assign it to the corresponding processor.

Step5: Repeat the above steps till every task is assigned.

2.4 PROPOSED ALGORITHM:

GENETIC ALGORITHM:
A genetic algorithm (GA) is an iterative search procedure widely used 1
solving optimization problems, motivated by biological models of evolution. In eac

iteration, a population of candidate solutions is maintained. Genetic operators such

nutation and crossover are applied to evolve the solutions and 1o find the good

solutions that have 2 high probability to survive for the next iteration.

BASIC DESCRIPTION

Qtart with a set of possible golutions (represented by chromosomes) the
population. Solutions from one population are taken and used t0 form a new
population. This is motivated by 2 hope that the new population will be better than the
old one. New solutions (offspring) are selected according 10 their fitness - the more
suitable they are the more chances they have to reproduce by mating (crossover)-

Repeat the cycle until some condition is satisfied.

CHAPTER 11

OVERVIEW OF GENETIC ALGORITHM
3.1 INTRODUCTION

Genetic algorithms are a part of evolutionary computing, which is a rapidly
growing area of artificial intelligence. GAS are excellent for all tasks requiring
optimization and is highly effective 1 any situation where many inputs (variables)
interact to produce 2 large number of possible outputs (solutions). It can quickly scan
4 vast solution set. Genetic algorithms are a class of search techniques inspired from
the biological process of evolution by means of natural selection. GA 1s an iterative
procedure that consists of a constant-size population of individuals, each ong
represented by a finite string of symbols, known as the genome, encoding a possibl
solution 1n a given problem space. This space, referred to as the search space
comprises all possible solutions to the problem at hand. Generally speaking, th
genetic algorithm 18 applied to spaces which are 100 jarge to be exhaustive

searched.

3.2 STEPS IN GENETIC ALGORITHM

THM

OF THE GENETIC ALGORI
omosomes which are suitable sol

ate a random population of n chr

OUTLINE
1. Gener utions.
2. Establi

X in the population
new population by repeating the

sh a method to evaluate the fitness f(x) of each chromosome

3. Create a following steps until the new

population is complete

4.
o Selection - select from the population according to some fitness scheme.

a crossover with the parents

o Crossover- New offspring formed by

mutate new offspring at

o Mutation - With a mutation probability

Each locus (position in chromosome).

5. Use the newly generated population for a further run of algorithm

RITHM FOR TASK SCHEDULING

3.3 GENETIC ALGO

3.3.1 ENCODING:

To solve a proble

m via GAs, it is necessary to find a mapping of a potential
nto a sequence of binary digits, the sO called chromosome. 11

candidate for a solution 0
omes as strings of integers

our case, however, it is more efficient to represent chromos

The length of the chromosomes is given

By the number of tasks that should be allocated. Every gene in the chromosome
represents the processor where the task is running on.

Solutions of a given problem obtained from existing algorithms are encoded
in the form of chromosomes. These chromosomes form the initial population. The
chromosomes are the task allocation vectors and order vectors of the obtained
solutions. Task allocation vector is of length equal to the qumber of given tasks and
each value represents the processor 0 which the corresponding task is allotted. For
instance, the value py in the vector indicates the processor 10 which the jth task 18
allotted.

Similarly, order vector of dimension equal to the number of tasks contains the

order of execution of the corresponding task in the assigned processor.

Eg: task vector {7]
Order vector 7]

Here, taskl gets executed In processor2 first, task5 the second 1n processorZ.

Tasks 4 and 2 get executed in processorl in the respective order. Task3 1n processor3.

Solutions obtained from max-min and min-min scheduling algorithms are encoded as
above and these form the initial population, the two parents to crossover. The schedule
produced by these algorithms is located at an approximate area in the search space
around the optimal schedule. Genetic algorithm searches that area 1o improve th

schedule.

e Genetic algorithm, the number Of

To reduce the complexity of th
ut its operation. 6]

chromosomes in the population s fixed througho

3.3.2 SELECTION:
crossing new

The subsequent

m are created by
rents and the two offspring

be from the two initial pa
cess from these parent offspring set (pt+c) follows a

generations of genetic algorith

set of parents which can

obtained. The selection pro

criternion called the “fltness function” which is

Fz= (tz - tmax)/ (tmin - tmax) l7]

The two chromosomes with the maximum fitness value are selected as the
new parents for the next crossovet. Selection and Crossover processes continues until

the makepsa

n of the parents and the two offspring converges.

3.33 CROSSOVER:
over point 18 chosen in both the

[6]A common and a single random Cross
parents. The values after the crossover point In both the parents are swapped to
d contains the qualities of both

produce the two new offspring. The offspring generate

the parents.

Eg:
Parent!
Parent2

2543

Crossover point: 3

After crossover:

Offspringl
Pl

Offspring?

EEREE

3.3.4 MUTATION:

[6)Mutation is perfo
n is to preven

rmed by exchanging any two values in the newly

¢ all solutions from falling into a local

generated offspring. Mutatio

optimum of solved problem

that is to preserve the diversity of the population. The

points for mutation are also selected at random.

Eg:
AR

Mutation points: 3 and 8

After Mutation:

CHAPTER IV

4. IMPLEMENTATION:

4.1 MAX MIN AND MIN MIN ALGORITHM

package fpack;

PROGRAM FOR GENERATING SIMULATION MODEL...coovereeer

import java.io.*;

import java.util.*;
a.io.IOException;

import jav
public class mar8
{
public static void main(String args|])throws Exception
{
InputStream (System.in);

DatalnputStream in=new Data
System.out.print("ENTER NO. OF TASKS:"),

nt noﬂtasks:Integer.parselnt('m.readLine());

calc c=new calc(noftasks);

/%.....GEN ERATING LOW AND HIGH HETEROGENETIC MATRICES.....

Random r=new Random();

do
{

System.out.println(“ 1-->MAX-MIN ‘n 7->MIN-MIN \n 3->EXIT\n");
System.out.println(“Enter which algorithm to perform:");
int maxonnin=1nteger.parselnt(in.readLine());
mar8.options(r, C, maxormin);

}while(true);
3
static void options(Random r,calc c,int maxormin) throws Exception
{
DatalnputStream in=new DatalnputStream (System.in);
String s1,82;
float templ]{]=new float[512}{17};
float H[][}=new float[5121[17};
float 1h[1{]=new float[5121117);
float hi[][]=new float[5121[17);
float hh[][}=new float[5121(17%;
11=c.matrix(r,.1953f,0.625f);
1h=c.matrix(r,.1953f,6.25ﬂ;
hl=c.matrix(r,1 953£,0.625%);
hh=c.matrix(r,1 953f,6.25f);
while(true)

{

System.out-println(“1—->10w low 2-->low high 3-—>high low 4-->high high 5--
>Exit");

System.out.println(”Enter the option:");

int 0p=1nteger.parselnt(in.readLine());

String 33=nu11,s4=nu11,sS=nu11,type=nu11;

switch(op)

{
case \:
/¥ LOW TASK AND LOW MACHINE HETERO

System.out.println("Inconsistent matrix:");

i/c.display(il);
temp=11;
g1=" d:\\\iteration 10N 1.x1s";
c.display(temp,sl)
type="1";
if(maxormin:=l)
{

s2=" d-\W\iteration 10N\max\ul axt";

g3="d:\\iter ationl O\max\iw 1 xls™;

s3 ,maxormin,op type);

¢.func _parmax(temp,sZ,
3
else if(maxormin:—f'z)
{
g2=" d-\iteration 1ONminil ~xt"s
s3=" d-\\iteration 10\ minhiw xis™;
c.func ﬂparmin(temp,sZ 83 ,maxormin,op,type);
}
rix: \n");

System.out.println(“Partially consistent mat

temp—*—c.p_sorting(‘ll);

s1=" d:\\\\iterationl O\l xis™;

c.display(temp,sl);

R [BV LN

type='P >

GENITY ...

]

if(maxormin==1)
{
="d:\Witeration1 0W\maxipl x5

s4="d:\\iteration] O\max\pw 1.x1s";

¢.func _parmax(temp,sZ,34,maxormin,op,type);

}

else if(maxormin==2)
1
s2="d:\iterationl O\mimipl.txt";

s4="d:\iteration10\mint\pw1.x1s™

c.func _parmin(temp,s2,s4,maxormin,op,type);

3

System.out.println("Consistent matrix:");

temp=c.sorting(1l);
s1="d:\iterationl O\el.xls™;

¢.display(temp,sl);
type="c";
if(maxormin== 1)
{

$2="d:\\\iteration1 Ovmax\\cl.txt";

s5="d:-\\\iterationl O\maxiew 1 .x1s";

c.funcmax(temp, s2, sS,maxormin,op,type);

j

else if(maxormin:=2)

{
s2="d:\\\iterationl O\\min\\cl.txt";

$5="d:\iteration } O\minW\ew 1.x1s";

c.funcmin(temp,s2,55 ,maxormin,op,type);

}
break;

case 2:

/% LOW TASK AND HIGH MACHINE HETEROGENITY ...

System.out.println("lnconsistent matrix:");

temp=lh;
s1="d:\\\iteration10\\i2 xl1s™;
c.display(temp,sl);

type="1";

if(maxormin==1)

{

s2="d:\\Witeration10\\max\\i2.txt";
s3="d:\Witeration 10\ max\iw2 x1s";

c.func Jarmax(temp,s2,s3,maxomin,op,type);

j
else if(maxormin==2)
{
$2="d-\\\iteration 10\\min'\i2 Axt";
g3="d:\\\iteration! O\\minthiw?2.x1s";
c.func _parmin(temp,s2,53,maxormin,op,type);
}

System.out.println("Partially consistent matrix: \n\n");

temp:c-p_sorting(lh);

*/

s1="d:\Witeration 10\p2 x1s™;

c.display(temp,s1);
type:"p" ;
if(maxormin==1}

{

$2="d:-\W\iterationl O\max\\p2.txt";
s4="d:\\iteration1 O\\max\\pw?2.xls";

c.func _pafmax(temp,sZ,s4,maxormin,op,type);

}
else if{maxormin==2)
{
s2="d-\\\iteration 10\umin\\p2 xt";
s4="d:\\iteration 10\umin\\pw2 x1s";
c.func _parmin(temp,s2,s4,maxormin,op,type);
§

System.out.println("Consistent matrix:");
temp=c.sorting(lh);
s1="d:\\\\iteration10\\c2.xls“;

c.display(temp,s1);
type::llcﬂ;
if(maxormin==1)

{

="d-\Witeration 1 O\max\\c2.txt";
¢5="d:\\Witerationl O\maxiew2.x1s™;
c.funcmax(temp,SQ,SS,maxormin>0p°type);

}

else if(maxormin==2)

$2="d:\W\\iteration 10\min\\c2.txt";
s5="d-\Witeration 10\\min\\cw2.x1s";
¢.funcmin(temp,s2,s5,maxormin,op,type);

;
break;

case 3:

/*__HIGH TASK AND LOW MACHINE HETEROGENITY ...

System.out.printin("Inconsistent matrix:");
temp=hl;

s1="d:\\\\iteration 10013 .x1s";
c.display(temp,s1);

type:"i" ;
if(maxormin==1)
{

s2="d:\\Witeration I O\\max\\i3.txt",
s3="d-\\iteration 10\\max\\iw3.x1s";
c.func_parmax(temp,s2,s3,maxormin,op,type);
h
else if(maxormin==2)
{
s2=="d:\\\iteration 10\\min\\i3.txt";
s3="d:\Witeration | \\min\iw3.x1s";

c.func _parmin(temp,sZZ,SB,maxormin,op,type);

*/

}

System.out.println("Partially consistent matrix: \n\n");
temp=c.p_sorting(hl);
s1="d:\\\iteration 10\\p3.x1s™;

c.display(temp,sl);
type="p";
if(maxormin==1)

d

$2="d-\W\iteration 10\\max\\p3.txt";
s4="d:\\iteration10\umax\\pw3.x1s";

c.func _parmax(temp,s2,s4,max0rmin,op,type);

}
else iffmaxormin==2)
{
s2="d:\W\iteration 10\\min\ip3.txt";
s4="d:\\iteration 10\min\\pw3.x1s";
c.func _parmin(temp,sZ,s4,max0rmin,0p,type)3
;

System.out.println(“Consistent matrix:");
temp=c.sorting(hl);
s1="d:\W\iteration 10%\c3.x1s";

c.display(temp,sl);
type="c";
if(maxormin==1)

{

s2="d:-\\\iteration 1 0\\max\\c3.txt";
s5="d:\\\iteration 10\ \max\\cw3.x1s";

c.funcmax(temp,s2,s5,maxormin,op,type);
f
else if(maxormin==2)
{
s2="d:\\\\iteration 1 O\\min\\c3.txt";
s5="d:\Witeration 1 0\\min\\cw3 xIs";
c.funcmin(temp,s2,s5, maxormin,op,type);
}
break;

case 4:

/*._.HIGH TASK AND HIGH MACHINE HETEROGENITY ...

System.out.printin("Inconsistent matrix:");

temp=hh;
s1="d:\W\iteration10\\i4.xIs";
c.display(temp,sl);

type="1";

if(maxormin==1)

{

s2="d:\\Witeration | 0\imax\\i4.txt";
s3="d:\\Witeration 1 O\\max\\iw4 .x1s";
c.func_parmax(temp,s2,s3,maxormin,op,type};
}
else if(maxormin==2)

{

*/

s2="d:\W\iteration10\\min\\i4.txt";
s3="d:\\W\iteration 1 0\\min\\iw4 x1s";
c.func_parmin(temp,s2,s3,maxormin,op,type);

}

System.out.printin("Partially consistent matrix: \n\n");

temp=c.p_sorting(hh});

si="d:\W\iteration 1 \\p4.x1s";

c.display(temp,sl);
typ e="p":
if(maxormin==1)

{

s2="d:\\\iteration | O\\max\\p4. .txt";
s4="d:\\\iteration 1 0\imax\\pw4.x1s";

c.func_parmax(temp,s2,s4,maxormin,op,type);

}

else if(maxormin==2)

d
s2="d:\\\\iteration 1 O\\min\\p4.txt";
s4="d:\\\iteration 1 0\min\\pw4.xls";
c.func_parmin(temp,s2,s4,maxormin,op,type);

j

System.out.println("Consistent matrix:");
temp=c.sorting(hh);
s1="d:\Witeration10\\c4.x1s":
c.display(temp,sl);

type="c";

1f{maxormin==1)

$2="d:\\\\iteration 10\\max\\c4.txt";
s5="d:\\\\iteration 10\\max\\cw4.x1s";

c funcmax(temp,s2,85,maxormin,op,type);

}
else if{maxormin==2)
{
g2="d-\\\iteration 1 0\\min\\c4.txt";
s5="d:\\\iteration 10\\mint\\cw4 .x1s";
¢ funcmin{temp,s2,s5,maxormin,op,type);
b
break;
case 5:
return;
;
}
§
}
class calc

§

1
float max|]=new float[40];
int awt=0,m=0;
int d1=0;

float max1=0;

float makespan[]=new float[512];
float avgwt[{}=new float{40];
//static int p=0;,

int no_tasks=0;

static int itcount=0;

public calc(int ntasks)

i

no_tasks=ntasks;
!
int i,j,par_con_flag=0,mks=0;
float no;
float y[][]=new float[512][16];
float w[]=new float[512];
float x[J=new float[512];
int maxcon_task[]=new int{515];int maxcon_order[]=new int[515];
int maxpcon_task[]=new int[515];int maxpcon_order[]J=new int{515];
int maxincon_task[]=new int[515];int maxincon_order[]=new int[513];
int mincon_task([]=new int[515];int mincon_order[J=new int[515];
int minpcon_task[]=new int[515};int minpcon_order[]=new int[515];

int minincon_task[]=new int[515];int minincon_order|[=new int[515];

/% MATRIX GENERATION.....*/

public float[][} matrix(Random r,float a,float b)

{

for(i=0;i<noﬁtasks;i++)

{

no=r.nextFloat();

w[i]=no*a;
}
for(j=0;j<no_tasks;j++)
{
no=r.nextFloat();
x[j]=no*b;
h
for(i=0;i<no_tasks;it++)
{
for(j=0;j<16;j++)
{
ylilG1=wlil*x0)l;
}
h
return y;

/¥ MATRIX SORTING-CONSISTENCY */

public float[][] sorting(float arr[}{])
{
float tmp;
for(int i=0;i<no_tasks;i++)
{
for(int j=0;j<15;3++)
{

for(int k=j+1;k<16;k++)
if(arr(i][iT>arr{i](k])
i
tmp=arr[i][j};
arr[i][j}=arr(i]{k};
arr[i][k}=tmp;

}

refurn arr;

M MATRIX SORTING-PARTIALLY CONSISTENCY */

public float[][] p_sorting(float arr[][])
{
par_con_flag=1;
float tmp;

for(int i=0;i<no_tasks;i++)

d
for(int j=0;j<15;)
{
for(int k=j+2;k<16:)
{
if(arr[i][jj>arrli]ik])
{

tmp=arr[i][j];

arr(i][j]=arr{i]fk};
arr[i){k]=tmp;

h

k=k+2;

;
=it

}

return arr,;

/% MATRIX DISPLAY...*/

public void display(tloat arr[][1,String s) throws Exception
{

QutputStream out=new FileQutputStream(s);
BufferedOutputStream bfo=new BufferedOutputStream(out);
for(int i=0;i<no_tasks;i++)
{
String s2 = null;
for(int j=0;j<16;j++)
{
Float fObj = new Float(arr[1]ij});
String s1 = fObj.toString();
s2=s1.concat("\t");
byte by[]=sZ.getBytes();

bfo.write(by);

;
String s3="\n";
byte by1[]=s3.getBytes();
bfo.write(byl);
}
bfo.close();
}
P MAX-MIN IMPLEMENTATION FOR CONSISTENT
MATRIX. ... */

void funcmax(float a[][},String s,String str,int maxormin,int opt,String type) throws
Exception
{
OutputStream outl=new FileOutputStream(s);
BufferedOutputStream bfol=new BufferedOutputStream(out 1);
int no,1,3,.k=1;
int b[]=new int[600];
int p[}J=new int[600];
maxormin=maxormin;
for(int z=0;z<no_tasks;z++)
{
b[z]=z;
b
for(i=0;i<no_tasks;i++)

{

for(j=0;j<no_tasks-1;j++)
{
if(alj][0F>alj+11[0])
{
float tmp1;int tmp2;
tmp1=a[j]{0];
tmp2=b[j];
a[j](01=ali+110];
al[j+11{0]=tmpl;
b[j]=b{j+1};
b[j+1]=tmp2Z;

}
p[0}=b[no_tasks-1};
for(j=no_tasks-2;j>=0:j--)
{

plk]=blj];
K+

7

h

String s4=null;

for(int 1=0;1<16;1++)

{
String s3 = new Integer(l).toString();
s4=s3.concat("\t");
byte by2[}=s4.getBytes();

bfol.write(by2);

String s7="\n";
byte by2[]=s7.getBytes();
bfol.write(by2);
String s3="\n";
byte by[]=s3.getBytes();
bfol.write(by);
String s1=null,s2=null;
int y=0;
for(int 1=0;l<no_tasks;]++)
{
if(y<15)
{
sl= new Integer(p[l]).toString();
s2=s1.concat("\t");
byte by1[]=s2.getBytes();
bfol.write(byl);

y=0,

String s8=s2.concat("\n");
byte by6[]=s8.getBytes();
bfol.write(by6);

bfol.close();

int count=0;

int p1[][]=new int[512][16];

for(int g=0;q<no_tasks/16;q++)
for(int h=0;h<16;h++)

{

pliq]lh]=p[count];

countt+;

}
maxcon_task=taskalloc(pl,maxormin,opt,type);
maxcon_order=ordervec(pl,maxormin,opt,type);
int itcount=calculate(p1,a,str);

write(itcount,maxormin);

}
I e MIN-MIN IMPLEMENTATION FOR CONSISTENT
MATRIX......coooo /

void funcmin(float af]f],String s,String str,int maxormin,int opt,String type) throws
Exception
{

OutputStream outl=new FileQutputStream(s):

BufferedOutputStream bfol=new BufferedOutputStream(out]);

int no,i,j,k=1;

int b[J=new int[600];

int p[J=new int[600];

maxormin=maxormin;

for(int z=0;z<no_tasks;z++)

{
b[z]=z;
}
for(i=0;i<no_tasks;i++)
{
for(j=0;j<no_tasks-1;j++)
{
if(afj][0]<alj+1]i01)
{
float tmpl;int tmp2;
tmp I=a[j][0];
tmp2=b[j};
a[j][0]=a[j+11[0];
a[j+1][0]=tmp]l;
bj}=bl+11;
b[j+1]=tmp2;
}
}
}

pl0}=blno_tasks-1];
for(j=no_tasks-2;1>=0;j--)
{

plk]=b[jl;

k++;
;

String s4=null;

for(int 1=0;1<16;1++)
{
String s3 = new Integer(l).toString();
s4=s3.concat("\t");
byte by2[]=s4.getBytes();
bfol.write(by2}),
}
String s7="\n";
byte by2[]=s7.getBytes();
bfol.write(by2);
String s3="\n";
byte by[]=s3.getBytes();
bfol.write(by);
String s1=null,s2=null;
int y=0;
for(int 1=0;I<no_tasks;l++)
{
if(y<15)
{
s1= new Integer(p[l]).toString();
s2=s] .concat("\t");
byte byl[]=s2.getBytes();
bfol.write(byl);
y++;
h

else

int no,1,j,k=1;

int flag[]=new int[20];

int proart[][]=new int[515]{20];
int b[J=new int{515];

int p[][J=new int[515][20];

for(int z=0;z<no_tasks;z++)

{
blz]=z;
for(i=0;1<16;1++)
{
proarr{z]{i]=i;
flag[i]=0;
}
;
for(i=0;i<no_tasks;i++)
{

for(j=0;)<165j++)
!
for(k=0;k<15:;k++)
{
if(ali][k]>ali][k+1])
!
int
=proarr[i}[k+1 J:proarr[ij[k+1 J=proarr[ij{k];proarrli] (kl=t;
float tmpl=ali][k+1];
a[ij[k+11=alil(k};
a[ij[kj=tmpl;

}

OutputStream outp=new FileQutputStream("'d:\\\\pro.txt");
BufferedOutputStream bfop=new BufferedOutputStream(outp);

for(int m=0;m<no_tasks;m++)

{
for(int n=0;n<16;n++)
{
String s4;
String s3 = new Integer(proarr[m][n]).toString();
s4=s3.concat("\t");
byte by2[]=s4.getBytes();
bfop.write(by2);
}
}
bfop.close();

for(i=0:i<no_tasks;i++)
, .
for(j=0;)j<no_tasks-1;)++)
§
if(a[j]{0]>a[j+11[0])
{
float tmpl;int tmp2,tmp3;
tmpl=a[j}[0];
tmp2=b{j];

tmp3=proarr{j][0];
a[j]l0fFai+1][0%;
a[j+1][0]=tmpl;
bjl=bl+1};

b[j+1]=tmp2;
proarr[j][0]=proarr{j+1 1{01:
proarr{j+1][0]=tmp3;

}
int row=0;
k=proarrfno_tasks-1][0];
plrow}{k]=b[no_tasks-1];
flag[k]=1;
int count=0;
for(i=no_tasks-2;i>=0;1--)
{
7=0;
count+t+;
if(count==16)
{
row++;
1=0;
count=0;
for(int h=0;h<16;h++)
t
flag[h]=0;

}

}
k=proarr[i][0];
int num;
if(flag[k]==1)
{
while(flag[k|==1&&j<16)
{
s
num=bf1];
k=proarr[num](j];
}
}
else
{
k=proarr[i][0];
}
plrow]ik}=bl[i};
flag[k]=1;

String s4=null;
for(int 1=0;1<16;1++)

String s3 = new Integer(l).toString(};

s4=s3.concat("\t");

byte by2[]=s4.getBytes();
bfol.write(by2);

}
String s7="\n";
byte by2[]=s7. getBytes();
bfol.write(by2);
String s1=null,s2=null;
for(int n=0:n<no_tasks/16;nt+)
{
for(int m=0;m<16;m++)
{
s1=new Integer(p[n][m]).toString();
s2=s1.concat("\t");
byte byl []=s2.getBytes();
bfol.write(byl);
}
String s3="\n";
byte by[]=s3.getBytes();
bfol.write(by);
}
bfol.close();
if(par_con_flag==1)

{
maxpcon_task=taskalloc(p,maxormin,opt,type);
maxpcon_order=ordervec(p,maxorm'm,opt,type);
}
else
{

maxinconﬂtask=taska1loc(p,maxormin,opt,type);

maxincon_uorder=0rdervec(p,maxormin,opt,type);

}

calculate(p,a,str);
}
1% MIN-MIN IMPLEMENTATION FOR PARTIALLY CONSISTENT AND
INCONSISTENT MATRIX.........c..... */

void func_parmin(float a[][],String s,String str,int maxormin,int opt,String type}
throws Exception
{
OutputStream outl=new F ileOutputStream(s);
BufferedOutputStream bfol=new BufferedOQutputStream(outl);
int no,i,j.k=1;
int flag[]=new int[20];
int proarr[][J=new int[515]{20];
int b[J=new int[515];
int p[][]=new int[515][20];
for(int z=0;z<no_tasks;z++)
1
biz}=z;
for(i=0;1<16;1++)
{
proarr[z][i]=1;

flag[i}=0;

for(i=0;i<no_tasks;i++)
{
for(j=0;j<16;)++)
{
for(k=0;k<15;k++)
{
if(a[i][k]>ali][k+1])
{
int
t=proarr{i][k+1];proarr{i][k+1 J=proarr[i]{k];proart{i][k]=t;
float tmp1=a[i][k+1];
ali][k+1]=a[i]lk};
a[i][k}=tmpl;

j
}
}
}
for(i=0;i<no_tasks;1t+)
t
for(j=0;j<no_tasks-1;j++)
{
if(alj1[0]<alj+1][0])
{

float tmp1;int tmp2,tmp3;
tmp1=a[j]{0];

tmp2=b[j};
tmp3=proarr{j][0];

alI[0=al+ 0L
a[j+1}[0]=tmpl;
b{j]=blj+1];

b[j+1]=tmp2;
proart(j][0}=proarr[j+1]{0};
proarr[j+1][0]=tmp3;

}

int row=0;
k=proarr[no_tasks-1][0];
p[row][k}=b[no_tasks-1];
flagik]=1;

int count=0;

for(i=no_tasks-2;1>=0;1--)

{
j=0;
count+-+;
if(count==16)
{
row++;
i=0;
count=0;
for(int h=0;h<16;h++)
{
flag[h]=0;

}

}
k=proarr{i][0];

int num;
if(flaglk]==1)
{
while(flag[k]==1&&j<16)
{
AR
num=bli];
k=proarr[num][j];
}
!
else
{
k=proarr[i][0];
}
plrow][k]=b[i];
flagik]=1;

String s4=null;
for(int 1=0;1<16;1++)

{

String s3 = new Integer(l).toString();
s4=g3.concat("\t");

byte by2[]=s4.getBytes();
bfol.write(by2);

String s7="\n";
byte by2[]=s7.getBytes();
bfol.write(by2);
String sl=null,s2=null;
for(int n=0;n<no_tasks/16;n++)
{
for(int m=0;m<16;m++)
1
s1= new Integer(p[n][m]).toString();
s2=s1.concat("\t");
byte by1[]=s2.getBytes();
bfol.write(byl);
}
String s3="\n";
byte by[]=s3.getBytes(};
bfol.write(by);
}
bfol.close();
if(par_con_flag==1)

{
minpconﬁtask=taskalloc(p,maxormin,opt,type);
minpcon_order=ordervec(p,max ormin,opt.type);
b
else
{

minincon_task=taskalloc(p,maxormin,opt,type);

minincon_order=ordervec(p,maxormin,opt,type);

}

calculate(p,a,str);
}
[F e CALCULATING MAKESPAN AND AVERAGE WAITING TIME....... */
int calculate(int taskarr1[][],float total1[][],String str) throws IOException

{

int count=0;

int no,}=0;

int taskarr[]=new int[512],

int c=0,m1=0;

int total wt=0;

float total[][J=new float[512]{17];
total=totall;

float time[]=new float[512];

for(int n=0;n<16;n++)

{
for(int m=0;m<no_tasks/16;m++)
{
taskarr[c|=taskarr1[m][n];
c++;
makespan[n]+=total[m]{n];
y
}

max 1=makespan[0];
for(int y=0;y<16;y++)
{

if(max 1<makespan[y+1]}

t
max 1=makespan[y+1];
}
}
max[mks]=maxl;
mks++;

for(int 1=0;1<no _tasks;)

if(count<16)
{
no=taskarr{l];
time[no1=0;
J-++;

?

count+-+;

clse

{
if(j<16)

no=taskarr{l];
int Inew=taskarr[l-16];
float num=total[lnew][j];
float tnew=time[lnew];
time[no]=num-+tnew;
count++;

[++;

rl

for(int n=0;n<no_tasks;n++)
total wt+=time[n];
avgwt[awt]=total _wt/no_tasks;
awt++,;
OutputStream out3=new FileOutputStream(str);
BufferedOutputStream bfo3=new BufferedOutputStream(out3);

for(int i=0;i<no_tasks/16;i++)

for(int j1=0;j1<16;j1++)
{
int index=j1+16%*1;
String task= new Integer(taskarr[index]).toString();
byte taskbyte[]=task.getBytes(});
String tim= new Float(time[index]).toString(),
byte timbyte[]=tim.getBytes();
String newline= "\t";
byte linebyte[]=newline.getBytes();
String newlinel= "\n";
byte linebyte1{J=newlinel.getBytes();
bfo3.write(taskbyte);
bfo3.write(linebyte);

bfo3.write(timbyte);
bfo3.write(linebytel);

itcount+-+;
bfo3.close();
return itcount;

}
/*__FUNCTION TO WRITE THE MAKESPAN INTO THE FILE....*/
void write(int itcount,int maxormin) throws IOException
{

int it=itcount/4;

maxormin=maxormin;

FileQutputStream out4 =null;

if(maxormin==1)

outd =new

FileOutputStream("d:\\\\iteration1 O\imax‘\\makespan"+(it+1)+".txt");

else if{maxormin==2)

out4=new

FileOutputStream("d:\\iterationl O\min\\makespan"+(it+1 }+".ixt");

BufferedOutputStream bfo4=new BufferedOutputStream(out4);

for{m=d1;m<mks;m++)

{

String ms= new Float(max[m]).toString();

byte maxbyte[]=ms.getBytes();

String avgl= new Float(avgwt{m]).toString();

byte avgbyte[]=avgl.getBytes();

String newline= "\";
byte linebyte[]=newline.getBytes();
String newlinel= "\t";
byte linebytel [J=newlinel. getBytes(),
bfo4.write(maxbyte);

bfod .write(linebyte);
bfod.write(avgbyte);
bfo4.write(linebytel);

d1++;

bfo4.close();

E reeeereeenne TASK ALLOCATION VECTOR GENERATION......ccocooomiiene.
nt[] taskalloc(int p[]{],int maxormin,int opt,String type) throws 1I0Exception

int of j=new int{515];

int t[]=new int[515];

int 1,j,k;

String newline= "\t";
byte linebyte[]=newline.getBytes();
String newlinel= "\t";
byte linebyte[]=newlinel.getBytes(};

for(k=0;k<no_tasks;k++)

{
for(i=0;i<no_tasks/16;i++)

{
for(j=0;j<16;++)

if(p[i}1==k)
1
t{k}=J;

}

iftmaxormin==1}

{
FileOutputStream outd =new

FileOutputStream(” d:\\\iterationl 0\\max\\taskvector\\”+type+opt+" Axt");

BufferedOutputStream bfo8=new BufferedOutputStream(outd);
System.out.println("task vec:");
for(k=0;k<no_tasks;k++)
{
System.out.print(t[k]+"\t“);
String tv= new Integer(t[k]).toString();
byte tabyte[]=tv.getBytes();
bfo8.write(linebyte);
bfo8.write(tabyte);
bfog.write(linebytel);

!
f

System.out.println();

bfo8.close();
}

else

FileOutputStream out9 =new
leOutputStream("d:\\iteration 10\\min\taskvector\\"-+typetoptt".ixt");
BufferedOutputStream bfo9=new BufferedOutputStream(out9);
System.out.println("task vec:");
for(k=0;k<no_tasks;k++)
{
System.out.print(t{k]+"\t");
String tv= new Integer(t[k)).toString();
byte tabyte[|=tv.getBytes();
bfo9.write(linebyte);
bfo9.write(tabyte);
bfo9.write(linebytel);
}
System.out.println();
bfo9.close();
}

return t;

int{] ordervec(int p{][}.int maxormin,int opt,String type) throws Exception
{

int o[J=new int|515];

int t[]=new int[515];

int 1,),k;

if(maxormin==1)

{

FileOutputStream out10 =new

eOutputStream("d:\\\\iterationl O\\max\\ordervector\\"+type+opt+".txt");
BufferedOutputStream bfol0=new BufferedOutputStream(out10);
for(k=0;k<no_tasks;k++)

{
for(i=0;i<no_tasks/16;i++)
{
for(j=05<16:j++)
1
if(pLlG==k)
{
olkJ=i+1;
}
3
}
}

String newline= "\t";
byte linebyte[J=newline.getBytes();
String newlinel="\t";
byte linebytel[]=newlinel getBytes();
System.out.println("order vec: ")
for(k=0:k<no_tasks;k++)
{
System.out.print(o[k]+"\t");
String order= new Integer(o[k]).toString();
byte orderbyte[J=order.getBytes();

bfo10.write(orderbyte);
bfol0.write(linebyte);
bfol10.write(linebytel);
}
Systern.out.println();
bfol0.close();
3

else
{
FileOutputStream outl i =new
FileOutputStream("d:\\\\iteration| O\\min\ordervector\\"+type+opt+".txt");
BufferedOutputStream bfol 1=new BufferedOutputStream(outl1);

for(k=0;k<no_tasks;k++)

t
for(i=0;i<no_tasks/16;i++1)
i
for(j=0;j<16;++)
i
if(plil[jI==k)
d
ofk]=1+1;
}
f
}
y

String newline= "\t";

byte linebyte[|=newline.getBytes();
String newlinel= "\t";
byte linebytel[]=newlinel.getBytes();
System.out.println("order vec:");
for(k=0;k<no_tasks;k++)
{
System.out.print{o[k]+"\t");
String order= new Integer(o[k]).toString();
byte orderbyte|]=order.getBytes();

bfoll.write(orderbyte);
bfoll.write(linebyte);
bfoll.write(linebytel);
}
System.out.println();
bfoll.close();
}

return o;

}

4.2 GENETIC ALGORITHM:
package fpack;

import java.10.*;

import java.sql.Connection,;

import java.sql.DriverManager;
import java.sql.ResultSet;

import java.sql.ResultSetMetaData;

import java.sql.Statement,

public class genetic

{
public static void main(String args|]) throws Exception
{
int itrn=0;
DatalnputStream in=new DatalnputStream (System.in);
System.out.print("ENTER NO. OF TASKS:");
int no_tasks=Integer.parselnt(in.readLine());
crossandmutate crn=new crossandmutate();
cm.crossover{no_tasks);
}
}
class crossandmutate
{

File £ f1,fomax fomin,ftmax,ftmin;

it
len,i0=0,11=0,i2=0,13=0,i4=0,i5=0,16=0,i7=0,i8=0,19=0,110=0,i1 1=0,112=0,113=0,114=
0,i115=0;

String[] temp=null;

String str=null, fullstr="";

Connection con=null;

Statement st=null;

int[] oparentl=new int[512];

int[] oparent2=new int{512];

int[] tparent1=new int{512];

int{] tparent2=new int[512];

int[] temparr=new int[512];

int[] prO=new int[32];

int[] prl=new int[32];

int[] pr2=new int[32];

int{] pr3=new int[32];

int[] pr4=new int[32];

int[] pr5=new int{32];

int[] pré=new int[32];

int[] pr7=new int[32];

int[] pr8=new int{32];

int[] pr9=new int[32];

int[} pr1O=new int[32];

int[] prl 1=new int[32];

int[] pr12=new int[32];

int[] pr13=new int{32];

int[] prl4=new int[32];

int[] prl5=new int[32];

float[] prtime=new float[16];
tloat[] fitness=new float[5];

int[] newparentl=new int[512];
int[] newparent2=new int[512];
int[] newoparentl=new int[512];
nt[] newoparent2=new int[512];
String[] files12={"c1","c2","c3","c4","i1","i2","i3","i4" "p1","p2","p3","p4"};
int rawRandomNumber;

int min = 1,max;

float max1=0,min1=0;

I s FUNCTION TO PERFORM CROSSOVER AND

void crossover(int no_tasks) throws Exception

{

max=no_tasks-1;

for(int 1t10=1;it10<=10;it10++)//10 iterations loop

{
System.out.printin("\n\n[TERATION:"+it10);
int f12=0;
FileOutputStream ou=new

FileOutputStream("D:\\\\"+no_tasks+"\\iteration"+it10+"\\genetic\\makespan.txt"):

BufferedOutputStream bf=new BufferedOutputStream(ou);
FileOutputStream out=new

FileOutputStream("D:\\\"+no_tasks+™"\iteration"+it10+"\\genetic\\wtime. txt");

BufferedOutputStream bfl=new
BufferedQutputStream(out);
for(f12=0,f12<12;f12++) //12 files iteration
{
int itcount=0;
float[] avgwtime=new float[500];
fomax=new
File("D:\\\'+no_tasks+"\iteration"+it10+"\\max\\ordervector\\"+files12 [f12]+".txt");
fomin=new
File("D:\W"+no_tasks+"\iteration"+it]10+"\min\\ordervector\\"+filesl 2{f12]+"txt");
ftmax=new
File("D:\\W'+no_tasks+"\iteration"+it10+"\\max\\taskvector\\"+files12 [f12]+".txt");
ftmin=new
File("D:\\W\"+no_tasks+"\iteration"+itl 0+"\\min\\taskvector\\"+files12[f12]+".txt");
oparent l=makeint(fomax);
oparent2=makeint(fomin);
tparentl =makeint{ftmax);
tparent2=makeint(ftmin);
for(int i=0;i<temp.length;i1++)
{
System.out.print(oparent][i]+"\t");
}
System.out.printIn("\noparent2:");
for(int j=0;j<temp.length;j++)
{
System.out.print(oparent2[j]+"\t");

}

System.out.println("\ntparent1 "),
for{int k=0:k<temp.length;k++)
{
System.out.print(tparent] [k]+"\t");
}
System-out.println("\ntparentZ:");
for(int 1=0 ‘I<temp.length;l++)
{
System-out.print(tparentZ[1]+”\t");
i
int itercount=0,iter=0,continuous=0;
for(iter=1;iter<=1 00;iter++)
{
float[] genindiv_mks=new float[5];
int flag0=0,flag1=0.flag2=0,flag3=0;
int[] ooffspring1=new int[5 12);
int[] ooffspring2=new int[512];
int[] toffspring1=new int{51 21;
int[] toffspring2=new int[512];
rawRandomNumber = (int) (Math.random() * (max - min + 1)) +
min;
for(int rr=0 ;rr<rawRand0mNumber;rr++)
{
ooffspring | [rr]=oparentl frr];
ooffspring2[rr]=oparent2{1r];
}

for(int rr=rawRandomNumber;rr<temp.length;rr++)

min;

min;

ooffspring1[rr]=oparent2[rr];
ooffspring2[rr]=oparentl1[rr];
}
for(int rr=0;rr<rawRandomNumber;rr++)}
{
toffspring 1 [rr]=tparent]{rr];
toffspring2[rr]=tparent2[rr];
!
for(int rr=rawRandomNumber;rr<temp.length;rr++)
{
toffspring 1 [rr]=tparent2rr];
toffspring2[rr]=tparent1{rr];
}

int Randommutatel = (int) (Math.random() * (max - min + 1)) +

int Randommutate2 = (int) (Math.random() * (max - min + 1)) +

int tmp=0;

tmp=ooffspring1[Randommutatel |;

ooffspring1[Randommutate J=ooffspring [Randommutate2];;
ooffspring1[Randommutate2 |=tmp;

tmp=0;

tmp~ooffspring?[Randommutatel];

ooffspring?[Randommutate! J=ootfspring2[Randommutate2];
ooffspring2| Randommutate2 J=tmp;

tmp=0;

tmp=toffspring1{ Randommutatel};

toffspring 1| Randommutatel]=toffspring1| Randommutate?|;;
toffspring1[Randommutate2 J=tmp;

tmp=0;

tmp=toffspring2[Randommutatel];

toffspring2| Randommutatel]=totfspring2| Randommutate2];
toffspring2[Randommutate2 |=tmp;
genindiv_mks[0]=makespan(tparentl files12[f12],it] 0,no_tasks);
genindiv_mks[I]=makespan(tparent2,files12[f12],it] 0,no_tasks);

genindiv_mks[2]=makespan(toffspringl,files12[f] 21,it10,no0_tasks);

genindiv_mks|3}=makespan(toffspring2,files12[f12],it1 0,no_tasks);
for(int f=0;f<4;f++)
System.out.print(genindiv_mks[f]+"\\t");
System.out.printin();

if((genindiv_mks[0]==genindiv_mks[1 1N&&{(genindiv_mks[0]==genindiv_mks
[2])&&(genindiv_mks[0]==genindiv_mks[3]}))

{
if((continuous==0)||iter==(continuous+1})
itercount++;
else itercount=1;
continuous=iter;
Y

max } =genindiv_mks[0];

for(int in=1;in<4;in++)

if(genindiv_mks[in]>max1)
max |=genindiv_mks[in];
b
minl=genindiv_mks[0];

for(int in=1;in<4;in++)

{
if(genindiv_mks[in]<minl)
minl=genindiv_mks|in];
}
fitness[0]=findfit(max 1,minl,genindiv_mks[0]);

[[
fitness[1]=tindfit(max1,min1,genindiv_mks[1]};
fitness[2]=findfit(max 1,minl,genindiv_mks[2]);
fitness[3]=findfit{max1,minl,genindiv_mks[3]);
float[] fitnessorig=new float[5];
for(int ch=0;ch<4;ch++)

fitnessorig[chj=fitness[ch];
for(int as=0;as<4;as++)

{
for(int asi=as+1;asi<4;asi++)
{
if(fitness[as]<fitness[asi])
{
float tmpfit=fitness[as];
fitness[as]=fitness[asi];

fitnessfasi]=tmpfit;

}
if{fitness[0]==fitnessorig[0])

!
newparentl=tparentl;
newoparentl=oparenti;
flag0=1;
}
else if(fitness[0]==fitnessorig[1])
d
newparent]=tparent2;

newoparent] =oparent2;

tflagi=1;
}
else if(fitness[0]==fitnessorig[2])
{

newparent | =toffspringl ;
newoparent]=ooffspringl;
flag2=1;

}

else if(fitness[0]==fitnessorig[3])

{
newparentl=toffspring?2;
newoparent=ooffspring2;
flag3=1;

}

if({fitness[1]==fitnessorig[0])&&(flag0==0))

newparent2=tparent];

newoparent2=oparentl;

}
else if((fitness[1]==fitnessorig|1])&&(flag1==0))
{
newparent2=tparent2;
newoparent2=oparent2;
}
else if((fitness[1]==fitnessorig[2])& &(flag2==0))
{
newparent2=toffspringl;
newoparent2=ooffspringl;
}
else if((fitness[1 |==fitnessorig[3])&&(flag3==0})
{
newparent2=toffspring2;
newoparent2=ooffspring?2;
}

tparent]=newparentl ;
tparent2=newparent2;
oparentl=newoparentl;
oparent |=newoparent2;
if(itercount="=3)

break;
}

avgwtime[itcount++]=wtc.avgwt(oparent 1 tparentl files12[f12],itl 0,no_tasks);
//System.out.printin("avgerage waiting time:"+avgwtime[itcount-11]);
System.out.println("Converged at “+iter+"th iteration");
String files=files12{f12];
String minval=new Float(minl).toString();
String wittab=files.concat(":\t");
String witval=wittab.concat(minval);
String towrite=witval concat("\");
String wittabl=files.concat(" At"Y;
Float fObj = new Float(avgwtime[itcount-1]);
String s1 = fObj.toString();
String wttime=wittabl.concat(s 1);
String towritel =wttime.concat("\t");
byte writebyte[]=towrite. getBytes();
System.out. printIn(™nStrNg 18......oorrienisicinen "t+towrite);
bf write(writebyte);
byte writebytel[]=towritel. getBytes();
//System.out. printIn("\nSING 1S ..o "+towritel);
bfl.write(writebytel);
} //12 files iteration
bf.close();
bfl.close();
1//it10 loop ends

int[] makeint(File f) throws Exception

int[] intarrl=new int[512];
if{!f.exists()& & f.length()<0)
System.out.printin("The specified file is not exist");

else

FileInputStream finp=new FileInputStream(f);
BufferedReader in = new BufferedReader(new FileReader(f));
str=null;

fullstr="";

while ((str = (in.readLine())) != null)

{

fullstr+=str;
b
len=0;
len=fullstr.length();
temp=null;
temp=~fullstr.split("\t\t");
try
{
for(int i=0;i<temp.length;i++)
{
intarr1[i}=Integer.parselnt(temp[i]);
!

}
finally

{

finp.close();

}
}
temparr=intarr1;

return temparr,

float makespan(int{] ttparentl,String filename,int it10,int no_tasks) throws
Exception

{

try{
Class.forName("sun.jdbc.odbc.JdbcOdbeDriver™);

con = DriverManager.getConnection("jdbc:odbe:con"+no_tasks);
st = con.createStatermnent();
ResuliSet rs = stexecuteQuery("Select * from
[it"+it1O+filename+"$]");
int tasknum=0;
while(rs.next())
{
if(ttparent][tasknum]==0)
prtime[0]+=rs.getFloat(1);
else if(ttparentl [tasknum]==1)
priime[1]+=rs.getFloat(2);
else if(ttparent][tasknum]==2)
prtime[2]+=rs.getFloat(3);
else if(ttparent1[tasknum}==3)
prtime[3]+=rs.getFloat(4);

else if(ttparentl[tasknum]==4)
prtime[4]+=rs.getFloat(5);
else if(ttparentl [tasknum]==35)
prtime[5]+=rs.getFloat(6);
else if(ttparent1tasknum]}==6)
prtime[6]+=rs.getFloat(7);
else if(ttparent1[tasknum]==7)
prtime[7]+=rs.getFloat(8);
else if(ttparent1[tasknum]==8)
prtime[8J+=rs.getFloat(9);
else if(ttparent1[tasknum]==9)
prtime[9]+=rs.getFloat(10);
else if(ttparent1{tasknum]==10)
prtime[10]+=rs.getFloat(11);
else if(ttparent1tasknum]==11)
prtime[11]+=rs.getFloat(12);
else if(ttparent][tasknum]==12)
prtime[12]+=rs.getFloat(13});
else if(ttparent1[tasknum]==13)
prtime[13]+=rs.getFloat(14);
else if(ttparent1{tasknum]==14)
prtime[14]+=rs.getFloat(15);
else if(ttparent1{tasknum]==15)
prtime[15]+=rs.getFloat(16};
tasknum++;

}

rs.close();

st.close();
con.close();

}

catch(Exception ex)

{
System.err.print("Exception: "),
System.err.printin(ex.getMessage());

|

float max=prtime[0];

for{int k=1;k<16;k++)

{
if(prtime[k]>max)

max=prtime[k];

}

for(int qg=0;99<16;qq++)
prtime[qq]=0;

return max;

float findfit(float tmax,float tmin,float tz)

{

float fitvalue,check=tmin-tmax;
if(check==0.0)
fitvalue=0;

else

fitvalue=({tz-tmax)/check);

return fitvalue;

j

i
CHAPTER V

EXPERIMENTAL RESULTS AND DISCUSSION
COMPARISON METRICS:

5.1 MAKESPAN: Makespan is a measure of the throughput of the heterogeneous

computing systems, such as grid. It can be calculated as the following relation:
Makespan = MAX(CT;)

The less the makespan of a scheduling algorithm, the better it works. [2]

5.2 AVERAGE WAITING TIME:

The tasks allotted to the processor have to be executed in a sequence. The tasks
in the sequence can be executed only when the preceding tasks in the sequence finish
their execution. The time lapse between the task allocation and the start of execution
of the task gives the waiting time of the task. The average of the waiting time

computed for all the tasks should be a minimum for the algorithm to be efficient.

CHAPTER V1

6. COMPARISON GRAPHS

6.1IMAKESPAN COMPARISON

LOWLOW INCOSISTENT
200

800 A

700 4
600 -

500 A

——e MAXMIN

—a— MINMIN

MAKESPAN

400

——k— GA

300 A

200

100 A

32 48 54 80 96 112 128 144 160 176
NO OF TASKS

Figure 2.1 Low Low Inconsistent

1000

808

800

600

500

MAKESPAN

400
300

200

100

LOWHIGH INCOSISTENT

00 A

| —

——— A M

—am— i [N MM

—ak— GA

NO OF TASKS

Figure 2.2 Low High Inconsistent

MAKESPANM

HIGHLOW INCOSISTENT

e -

| e B SR
—— P MR

—h— CA

fo o

o

30 96 1z 123 144 160 175

NO OF TASKS

Figure 2.3 High Low Inconsistent

MAKESPANMN

1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100

HIGH HIGH INCONSISTENT

112

NO CF TASKS

—e— MAX MIN

——- AN MIN

—le—= (34

Figure 2.4 High High Inconsistent

MAKESPAN

900

800

300
00

100 1

LOWLOWPARTIALLY CONSISTENT

& &

48 34 96

L
I~

NO OF TASKS

—— [l A M

—a— M MIN

—&— GA

Figure 2.5 Low Low Partially Consistent

MAKESPAN

1200
1100
1000
200
800
700
600
500
400

300 A

200
100

LOWHIGHPARTIALLY CONSISTENT

I A WM

—m—MIN MIN

—k—GA

»
»
'S
L

;:f—i—ﬁ—l-—ﬁ—_‘_‘-,__*

32 48 34 80 96 112 123 144 160 178

NO OF TASKS

Figure 2.6 Low Low Partially Consistent

MAKESPAN

1300
1200
1100
1000
go0
200
700
600
500
400
300
200
100

HIGHLOW PARTIALLY CONSISTENT

—— MAX MM

—a— MIN M

»
%
'-
»
»

"
A

w
T

3z 48 34 80 g6 112 123 144 160 178
NO OF TASKS

Figure 2.7 High Low Partially Consistent

1600
1500
1400
1300
1200
1100
1000
902
30
703
602
502
403
300
207
100

MAKESPAN

HIGHHIGH PARTIALLY CONSISTENT

i i T ‘_ T ‘* T * T :— T : T ; T : i
32 48 64 80 96 12 138 144 16C 178
NO OF TASKS

N A N

—— MiNMIN

—a— GA

Figure 2.8 High High Partially Consistent

1600

1500 A

1400
1300

1200 -

1100
Z1000
900
800
100
600
500
400
300
200
100

MAKESFA

LOW LOW CONSISTENT

i
r/'/.” N __e-____.——‘._‘-_—‘
r——y—— % - 4 " S A
3z 48 34 30 98 112 123 142 160 176

NO OF TASKS

—— ML MM

—m— W MR

R e d CELY

Figure 2.9 Low Low Counsistent

LOW HIGH CONSISTENT

1200

1100 A
1000 4
900 A e i 200 M N

800 1
700 A
600 -
500
400 A —h— DA
300 -
200
100 A

—— N MM

MAKESPAN

32 48 34 80 86 112 123 14+ 160 176

NO OF TASKS

Figure 2.10 Low High Consistent

HIGH LOW CONSISTENT

1400
1300
1200
1100
1000
900 - ;
800 4 ‘

(7;88 i —m— MINMIN
500 - |

400 i —a— A
300 - |
200 - !
100 1 1

I T |

—e—MAK M I

MAKESPAN

48 34 80 96 112 123 142 160 176

5
R

N3 OF TASKS

Figure 2.11 High Low Consistent

MAKESPAN

HIGH HIGH CONSISTENT

‘ —e—MAaX KR

| — M3 N

TV T R T T R

-
] —a— GA
——— A ke |
32 48 B4 80 96 N2 1 141 180 178

NO OF TASKS

Figure 2.12 High High Consistent

6.2AVERAGE WAITING TIME COMPARISON

AVG WAITING TIME

—_—
[=2]

—

—
o
L

LOWLOW CONSISTENT

—
EY
I

(]
S

e
1

(=2}
4

[E]
1

——— WA MM

e NI T

i —r G

3z 42 64 g0 s 112 128 144 160 175

NO OF TASKS

Figure 3.1 Low Low Consistent

LOW HIGH CONSISTENT

LI.I1C‘ T
2 I
F1a -
(4] i
212 l e
E10 : —— MAX N
< 7
4 ; —ae—e bR MIN
T
> :
<6 —_—GA
¢
2]
0
32 48 6L B0 2l 112 128 144 160 176
NO OF TASKS
Figure 3.2 Low High Consistent
BIGH LCW CONSISTENT
16
14
T
':12 E
3
Z10
= —— MAK MIN
£
5 1 —a— WM MIN
6 -
—— G4
‘4_1 . —_—
2 -
‘/ \//A\‘
0 T T T 13 T T T T
2z 48 64 Z0 98 112 128 144 160 176
NO OF TASKS

Figure 3.3 High Low Consistent

AVG WAITING TIME

16

14

12

10

HIGHHIGH CONSISTENT

18 64 80 g5 142 128 144 160
NQ OF TASKS

176

—+— MAX MIN
—a— MIN MIN

—— G4

Figure 3.4 High High Consistent

AVG WAITINGTIME

60

40

30

20

LOWLOW INCONSISTENT

48 £4 83 96 12 128 144 160

NQ OF TASKS

176

. [20 LN

MM MIN

—— G4

Figure 3.5 Low Low Inconsistent

LOWHIGH INCONSISTENT

16 —
= |
14
" 1
|
12 4
U] H
=z l
=10 —e— MAX MIN
= :
S, |
o ; — e b IM BN
Z 6|
<L
] —— (G
4
2
L \’/‘\/\A
32 48 64 g0 96 112 128 144 160 176
NGO OF TASKS
]
Figure 3.6 Low High Inconsistent
HIGH L.OW INCONSISTENT
16 -
ta |
w o
g12
% i
=.q A
,___10 ! —— M1 A MM
L
= g -
g ‘ — - MM RN
< 4 .
! —— GA
4 " ’
23 \‘\‘-”_’—‘\1‘\‘\ 1
0 4 : . . . ‘ . 4 . T
32 44 54 80 a5 112 125 144 160 176
NOC OF TASKS

Figure 3.7 High Low Inconsistent

— -
= (o]

I~

AVG WAITING TIME
o o

(o))

HIGH HIGH INCONSISTENT

96 112 128

NO OF TASKS

—— LA MIN

— e ML MIN

—— GA

Figure 3.8 High High Inconsistent

_ —
= [=)]

A
]

AVG WAITING TIME
& @ o O

[

LOWLOW PARTIALLY COMSISTENT

[PSS

96 112 128

NO OF TASKS

—— WL MM

—m— N NN

— 54

Figure 3.9 Low Low Partially Consistent

-
[a)]

= -
ra +

AVG WAITING TIME

o

[eo)

o

LOW HIGH PARTIALLY CONSISTENT

32

48

54 80 96 112 128 144 160

NO OF TASKS

= N A TN

—a— MIN MIN

——— 0

Figure 3.10 Low High Partially Consistent

-
[s)]

nOR

AVG WAITING TIME

o

op

[5)

HIGH LOW PARTIALLY CONSISTENT

32

43

54 g0 95 12 128 144 160 17

NO OF TASKS

—— A M

—a— PN B

—— (G

Figure 3.11 High Low Partially Consistent

-HIGH HIGHPARTIALLY CONSISTENT

s
[o3]
a

=
S
—

-
L]

WA KN

co
-

——— MIN MIN

AVG WAITING TIME
o

32 48 54 30] 112 128 144 160 /6

NO OF TASKS

Figure 3.12 High High Partially Consistent

.3 CONCLUSION

We have taken up Min Min strategy and Max Min strategy in order to compare
1¢ performance of genetic algorithm. The genetic algorithm implementation shows
at it yields better performance than the already existing strategies taken up for
ymparison i.e. genetic algorithm has given lesser makespan and lesser waiting time
T almost all cases when compared to Min Min and Max Min strategies, except in the
se of low task low machine heterogeneity for inconsistent matrix. A better result can

> obtained if the chosen fitness function is altered.

6.4 FURTHER ENHANCEMENTS

The performance of genetic algorithm can be further improved if the Quality of

Service (QoS) parameters are considered.

6.5 REFERENCES

LA Comparison of Eleven Static Heuristics for Mapping a Class of Independent
Tasks onto Heterogeneous Distributed Computing Systems

Tracy D. Braun, Howard Jay Siegel,2 and Noah Beck

School of Electrical and Computer Engineering, Purdue University, West Lafayette,
Indiana 47907-1285

2. A Min-Min Max-Min Selective Algorihtm for Grid Task Scheduling

Kobra Etminani .Prof. M. Naghibzadeh

3.www.redbooks.ibm.com

4.Grid Computing:Introduction and Overview,Manish Parashar,Senior Member JEEE
and Craig A.Lee,Member,IEEE

>.An enhanced ant algorithm for grid scheduling problem Kousalya. K and
Balasubramanie.P

.An Efficient Genetic Algorithm For Task Scheduling In Heterogeneous Distributed
“omputing Systems.Mohammad 1.Daoud And Nawwaf Kharma,Department Of
“lectrical And Computer Engineering,Concorda University, Montreal, QC

. Improved Genetic Algorithms and List Scheduling Techniques for Independent

'ask Scheduling in Distributed Systems ,Thanasis Loukopoulos, Petros

.ampsas,Panos Sigalas.

8. Segmented Min-Min: A Static Mapping Algorithm for Meta-tasks on
Heterogeneous Computing Systems , Min-You Wu and Wei Shu Department of
Electrical and Computer Engineering University of New Mexico Hong Zhang
Department of Electrical and Computer Engineering University of Central Florida

9.A Min-Min Max-Min Selective Algorihtm for Grid Task Scheduling ,Kobra
Etminani, Dept. of Computer Engineering Ferdowsi University of Mashad Mashad,
Iran ,Prof. M. Naghibzadeh Dept. of Computer Engineering Ferdowsi University of
Mashad ,Mashad, Iran.

