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ABSTRACT

Currently, the users of internet have increased geometrically. Grid
computing utilizes the distributed heterogeneous resources in order to support
complicated computing problems in a computational grid. The problem of
optimally mapping the tasks onto the machines is shown to be NP-complete.
Certain assumptions are made for this matching. To increase the efficiency of task
distribution to the clients in a distributed environment; an efficient scheduling

algorithm is needed.

A good schedule would adjust its scheduling strategy according to
changing status of the entire environment and types of jobs. Therefore dynamic
algorithm in job scheduling such as Ant Colony Optimization is appropriate for

grids.

Ant Colony Optimization (ACO) is an outperforming algorithm and it is
compared and analyzed with other existing scheduling algorithms, the Max-min
and the Min-min algorithms. The Ant colony algorithm simulates the natural

behavior of an ant in search of food to find an optimal path.

The main aim is to reduce the make span of a given set of jobs and also to

reduce the waiting time of the jobs in a distributed environment.
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CHAPTER I:

1. OVERVIEW OF GRID ENVIRONMENT

1.1 INTRODUCTION

The growth of internet along with the availability of powerful computers and
high speed networks as low cost commodity components is changing the way the
scientists and engineers do computing and also is changing how society in general
manages information. These new technologies have enabled the clustering of a
wide variety of geographically distributed resources, such as supercomputers,
storage systems, data sources, instruments. A grid is a collection of resources
owned by multiple organizations that is coordinated to allow them to solve a
common problem. The grid vision has been described as a world in which
computational power (resources, services, data) is as readily available to users with
differing levels of expertise in diverse areas and in which these services can
interact to perform specified tasks efficiently and securely with minimal human

intervention. [4]

1.2 GRID COMPUTING

Grid computing can be viewed as a means 1o apply the resources from a
collection of computers in a network and to hamness all the compute power nto a
single project. Grid computing can be a cost effective way to resolve [T issues in
the areas of data, computing and collaboration; especially if they require enormous
amounts of compute power, complex computer processing cycles or access to large
data sources. Grid computing needs to be a secure, coordinated sharing of
heterogeneous computing resources across a networked environment that allows

users to get their answers faster. Grid computing is the combination of computer
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resources from multiple administrative domains for a common goal. Grids are
usually used for solving scientific, technical or business problems that require a
great number of computers processing cycles for processing of large amounts of

data.

Grid computing concerns the application of the resources of many
computers in a network to a single problem at the same time - usually to a
scientific or technical problem that requires a great number of computer processing

cycles or access to large amounts of data .

Grid computing requires the use of software that can divide and farm out
pieces of a program to as many as several thousand computers. Grid computing
can be thought of as distributed and large-scale cluster computing and as a form of
network-distributed parallel processing. It can be confined to the network of
computer workstations within a corporation or it can be a public collaboration (in

which case it is also sometimes known as a form of peer-to-peer computing).

Grids are a form of distributed computing whereby a “super virtual
computer” is composed of many networked loosely coupled computers acting in
concert to perform very large tasks. This technology has been applied to
computationally intensive scientific, mathematical, and academic problems
through volunteer computing, and it is used in commercial enterprises for such
diverse applications as drug discovery, economic forecasting, seismic analysis,

and back-office data processing in support of e-commerce and Web services.

What distinguishes Grid computing from conventional high performance

computing systems such as cluster computing is that Grids tend to be more loosely
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coupled, heterogeneous, and geographically dispersed. It is also true that while a
Grid may be dedicated to a specialized application, a single Grid may be used for

many different purposes.
1.3 A CLASSIFICATION OF EMERGING GRIDS

In the literature, two characteristics categorize traditional grids: the type of
solutions they provide and the scope or size of the underlying organization(s). We
propose four additional nomenclatures to facilitate the classification of emerging

grids: accessibility, interactivity, user-centricity, and manageability.
Grids classified by solution

The main solution that computational grids offer is CPU cycles. These grids
have a highly aggregated computational capacity. Depending on the hardware
deployed, computational grids are further classified as desktop, server, or
equipment grids. In desktop grids, scattered, idle desktop computer resources
~ constitute a considerable amount of grid resources, whereas in server grids
resources are usually limited to those available in servers. An equipment or
instrument grid includes a key piece of equipment, such as a telescope. The
surrounding grid—a group of electronic devices connected to the equipment—

controls the equipment remotely and analyzes the resulting data.

In data grids, the main solutions are storage devices. They provide an
infrastructure for accessing, storing, and synchronizing data from distributed data

repositories such as digital libraries or data warehouses.
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Service or utility grids provide commercial computer services such as CPU
cycles and disk storage, which people in the research and enterprise domains can

purchase on demand.

Access grids consist of distributed input and output devices, such as
speakers, microphones, video cameras, printers, and projectors connected to a grid.
These devices provide multiple access points to the grid from which clients can
issue requests and receive results in large-scale distributed meetings and training
sessions. If clients use wireless or mobile devices to access the grid, it’s considered

a wireless access grid or a mobile access grid.
Grids classified by size

Global grids are established over the Internet to provide individuals or
organizations with grid power anywhere in the world. This is also referred to as
Internet computing. Some literature further classifies global grids into voluntary
and non-voluntary grids. Voluntary grids offer an efficient solution for distributed
computing. They let Internet users contribute their unused computer resources to
collectively accomplish nonprofit, complex scientific computer-based tasks.
Resource consumption is strictly limited to the controlling organization or
application. On the other hand, non-voluntary grids contain dedicated machines

only.

National grids are restricted to the computer resources available within a
country’s borders. They’re available only to organizations of national importance

and are usually government funded.
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Project grids are also known as enterprise grids or partner’s grids. They’re
structurally similar to national grids, but rather than aggregating resources for a
country, they span multiple geographical and administrative domains. They’re
available only to members and collaborating organizations through a special

administrative authority.

Intra-grids or campus grids, in which resources are restricted to those
available within a single organization, are only for the host organization’s

members to use.

Departmental grids are even more restricted than enterprise grids. They’re

only available to people within the department boundary.

Personal grids have the most limited scope of underlying organization.
They’re available at a personal level for the owners and other trusted users.

Personal grids are still at a very early stage.
Accessible grids

In this context, accessibility means making grid resources available
regardless of the access devices’ physical capabilities and geographical locations.
The highly structured networks of supercomputers and high-performance
workstations that dominate grids today typically don’t provide such accessibility.
In traditional, restricted-access grids, grid nodes are stationary with a predefined

wired infrastructure and entry points.
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Wireless, mobile, and ad hoc grids have emerged to support grid
accessibility. An accessible grid consists of a group of mobile or fixed devices

with wired or wireless connectivity and predefined or ad hoc infrastructures.

One of the most critical issues in understanding accessible grids is having an
accurate definition, or at least determination, of each grid type (ad hoc, wireless,
and mobile). Yet, researchers offer no consistent definition of any of these three
terms. Ad hoc grids stress the ad hoc nature of virtual organizations, wireless grids
emphasize the wireless connectivity, and mobile grids focus on mobility-related

issues such as job migration and data replication.

An accessible grid’s main characteristic is its highly dynamic nature, which
results from the frequently changing structure of underlying networks and VOs due
to nodes switching on and off, nodes entering and leaving, node mobility, and so
on. This is why traditional service discovery, management, and security

mechanisms might not be optimal for accessible grids.

Accessible grids are accessible from more geographical locations and social
settings than traditional grids. This opens the door for new applications in
emergency communication, disaster and battlefield management, e-learning, and e-

healthcare, among other fields.
Ad hoc grids:

Grids’ ad hoc, sporadic nature was observed within the first documented
Globus Grid application (see www.globus.org). However, traditional grids fail to

support certain aspects of ad hoc environments, such as constantly changing
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membership with a lack of structured communications infrastructure. As a result,

ad hoc grids have emerged.

An ad hoc grid is a spontaneous formation of cooperating heterogeneous
computing nodes into a logical community without a precontigured fixed
infrastructure and with minimal administrative requirements .Thus, the traditional
static grid infrastructure is extended to encompass dynamic additions with no
requirements of formal, well-defined, or agreed-upon grid entry points. Instead,

nodes can join as long as they can discover other members.

Some researchers strictly define ad hoc grids as grid environments without
fixed infrastructures: all their components are mobile. This grid is referred to as a
mobile ad hoc grid. However, ad hoc grids focus on the grid’s ad hoc nature rather

than the nodes’ mobility.

Ad hoc grids’ main challenge is their dynamic topology, due to the rebooting
of workstations and the movement or replacement of computational nodes.
Technical details concerning ad hoc grid challenges and implementations are

available elsewhere.
Wireless grids:

The wireless grid extends grid resources to wireless devices of varying sizes
and capabilities such as sensors, mobile phones, laptops, special instruments, and
edge devices. These devices might be statically located, mobile, or nomadic,
shifting across institutional boundaries and connected to the grid via nearby

devices such as desktops.
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Many technical concerns arise when integrating wireless devices into a grid.
These include low bandwidth and high security risks, power consumption, and
latency. So, several communities, including the Interdisciplinary Wireless Grid
Team are exploring these new issues to ensure that future grid peers can be

wireless devices.
Mobile grids:

Mobile grids make grid services accessible through mobile devices such as
PDAs and smart phones. Researchers usually consider these devices to be at best
marginally relevant to grid computing because they’re typically resource limited in
terms of processing power, persistent storage, runtime heap, battery lifetime,
screen size, connectivity, and bandwidth. In contrast, recent studies suggest a very
different picture. The millions of mobile devices sold annually shouldn’t be
ignored, and some mobile devices’ raw processing power is not insignificant given
their mobility. Furthermore, in emergency situations, such as during natural
disasters and on battlefields, wireless mobile devices might be the only available
communication and computation services. The most important argument is that it’s

difficult to materialize the SOKU and Aml visions without using such devices.

As in the case of wireless devices, there are already two approaches to
integrating mobile devices into grid systems. In the first approach, the grid
includes at least one mobile node that actively participates by providing
computational or data services. In the second approach, mobile devices serve as an
interface to a stationary grid for sending requests and receiving results. Sometimes
this approach is labeled mobile access to grid infrastructure, or simply mobile

access grids.

18



Recently, researchers have made numerous efforts toward establishing
mobile grids. You can find details concerning mobile grid requirements and
challenges elsewhere. Researchers have proposed various techniques for
implementing the mobile grid vision, including centralized and P2P structure,
intelligent mobile agents, mobile grid middleware, and many more. Existing mobile

grid projects include Akogrimo, ISAM, and MADAM.
Interactive grids

Some potential NGG application areas, such as real-time embedded control
systems and video gaming, require rapid response times and online interactivity.
The classic request/response communication paradigm of traditional grid systems
(such as batch grids) can’t accommodate this, so interactive grids are emerging to

support real-time interaction.

Interactivity in grid environments can be implemented at two layers: the
Web portal layer and the grid middleware layer. In the former, a Web-based grid
portal is used to submit interactive jobs to a secure shell process rather than
directly to the grid middleware. ScGrid portal falls into this category. In the latter,
grid middleware is extended to support interactivity. Examples of this category

include Cross Grid and edutain@grid.

These examples mainly highlight explicit interactions between a grid and its
users, so they’re labeled explicit interactive grids. However, this is only one
possible form of interaction in grid environments. Another is between a grid and its
surroundings to implement a context-aware grid, which uses sensors to

interactively build the context and actuators to adapt grid behaviors accordingly.
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The research agendas of many emerging grid projects in the areas of embedded and
pervasive systems, such as RUNES, SENSE, Hydra, and MORE emphasize

context awareness.
User-centric grids

Traditional grids are designed specifically for people involved in research
and large industry domains. Hence, they lack user centricity and personalization

features. Consequently, it’s difficult for personal

users—that is, individuals outside these domains—to construct or use traditional

grids. Most traditional grid systems are non-personalized grids.

Personalized grids are emerging grid systems with highly customizable Web
portals that make them adaptable to users’ needs. User centricity s a design
philosophy that focuses on the needs of a system’s users. Personalization 1s a more
restrictive philosophy that aims to adapt the whole system’s design to a specific
user. In grid computing, user centricity could begin by displaying the user’s name
on a Web portal, and might end with the personalization of all information,
resources, and networks underpinning grids. Research to support user centricity in

grid computing is in its infancy.

We use the term user-centric grids to refer to two types of emerging grids:
personalized and personal. Personalized grids have highly customizable Web
portals to provide user-friendly access points to grid resources for people 1n
different domains. For instance, the myGrid project lets scientists establish
multiple views that provide access to a user-defined subset of the registered
services. These views can be specific to individual scientists or to more specialized
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discovery services. The Akogrimo project saves all learners’ profiles and needs,
such as his or her context information, and automatically loads them whenever
they sign on, providing a customized, user-friendly environment for each learner.
A personal grid is a personalized grid with an underlying VO of limited scope and
size. It’s used and/or owned by individuals. You can find a framework for a
personal grid that consists of a set of networked personal desktop computers

elsewhere.
Manageable grids

A grid is highly complex and dynamic, making its management extremely
challenging. Traditional grid-management approaches require centralized servers,
extensive knowledge of the underlying systems, and a large group of experienced

staff. So, grids are emerging with manageability as a main focus.

Centralized grids are traditional grid systems that use a central management

scheme. In distributed grids, such as P2P grids, management is distributed.

Manageability is the capacity to manage, organize, heal, and control a
system; hence, a manageable grid is a sophisticated grid that automatically
manages, adapts, monitors, diagnoses and fixes itself. A manageable system has
intelligent control embedded into its infrastructure to automate its management
procedure. A variety of technologies are available to support grid manageability at
both the hardware and software levels. At the software level, a wide range of
techniques, from traditional log files to recent technologies such as Java
Management Extensions and knowledge technologies, can support manageability.

At the hardware level, technologies from simple embedded sensors to standalone

21



intelligent robots can achieve this. Additionally, changing the underlying grid
architecture—for example, from centralized client/server to P2P structures—can

support manageability.

Manageable grids offer a simplified installation and greatly reduce
configuration and administration, which, in turn, reduces management costs and
dramatically enhances scalability. Existing research in this area includes autonomic
grids, knowledge grids, and organic grids. Hybrid grids use different combinations
of management schemes. For instance, a grid environment might implement a
distributed P2P management scheme at the cluster level and a centralized

management structure at the higher grid level.
Autonomic grids:

Autonomic computing, initiated by IBM in 2001, is named after the human
body’s autonomic nervous system. The autonomic nervous system regulates body
systems without any external help; likewise, an autonomic computing system
controls the functioning of computer systems without user intervention. The main
goal of autonomic computing is to make managing large computing systems (such

as grids) less complex.

An autonomic grid can configure, reconfigure, protect, and heal itself under
varying and unpredictable conditions and optimize its work to maximize resource
use. You can find applications, challenges, and various methods that have been
proposed to work toward autonomic grids elsewhere. Examples of autonomic grid

projects include the IBM OptimalGrid and AutoMAGI.
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Knowledge grids:

A knowledge grid is an extension to the current grid in which data,
resources, and services have well-defined meanings that are annotated with
semantic metadata so both machines and humans can understand them. The aim is
to move the grid from an infrastructure for computation and data management to a
pervasive knowledge-management infrastructure. Examples of knowledge grid
projects include Onto Grid, InteliGrid, and K-Wf Grid. Several communities are
working to realize knowledge grids, including the Semantic Grid Group from the
Open Grid Forum. Reviews of the status and future vision of knowledge grids,

including applications, challenges, and critical issues, are detailed elsewhere.
Organic grids:

Traditionally, “organic” means forming an integral element of a whole,
having systematic coordination of parts, and/or having the characteristics of an
organism and developing in the manner of a living plant or animal. In grid
computing, the organic grid refers to a new design for desktop grids that relies on a
decentralized P2P approach, a distributed scheduling scheme, and mobile agents.
The basic idea comes from the manner in which complex patterns can emerge from
the interplay of many égents in an ant colony. However, work on organic grids is at

a very early stage.
1.4 BENEFITS OF GRID COMPUTING

Grid computing appears to be a promising trend for three reasons: (1) its
ability to make more cost-effective use of a given amount of computer resources,

(2) as a way to solve problems that can't be approached without an enormous
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amount of computing power, and (3) because it suggests that the resources of many
computers can be cooperatively and perhaps synergistically harnessed and
managed as a collaboration toward a common objective. In some grid computing
systems, the computers may collaborate rather than being directed by one
managing computer. One likely area for the use of grid computing will be
pervasive computing applications - those in which computers pervade our

environment without our necessary awareness.

Moreover the following can be summarized as the merits of Grid Computing
1. Exploiting under utilized resources

2. Parallel CPU capacity

3. Virtual resources and virtual resources for collaboration

4. Access to other resources

5. Resource Balancing

6. Reliability

7. Management

Grid computing enables organizations (real and virtual) to take advantage of
various computing resources in ways not previously possible. They can take
advantage of underutilized resources to meet business requirements while

minimizing additional costs. The nature of a computing grid allows organizations
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to take advantage of parallel processing, making many applications financially
feasible as well as allowing them to complete sooner. Grid computing makes more
resources available to more people and organizations while allowing those
responsible for the IT infrastructure to enhance resource balancing, reliability, and

manageability. [3]

1.5 OVERVIEW OF TASK SCHEDULING:

Scheduling is defined as the problem of allocation of machines over time to
competing jobs [1]. The m x n task scheduling problem denotes a problem where a
set of n jobs has to be processed on a set of m machines. Each job consists of a
chain of operations, each of which requires a specified processing time on a
specific machine. The allocation of system resources to various tasks, known as
task scheduling, is a major assignment of the operating system. The system
maintains prioritized queues of jobs waiting for CPU time and must decide which
job to take from which queue and how much time to allocate to it, so that all jobs

are completed in a fair and timely manner.

The task scheduling system is responsible to select best suitable machines in
a grid for user jobs. The management and scheduling system generates job
schedules for each machine in the grid by taking static restrictions and dynamic

parameters of jobs and machines into consideration.
Task scheduling in Grids: In a Grid system

1. It arranges for higher utilization Complex as many machines with local

policies involved.

2 Resources are fixed Resources may join or leave randomly.
25



3. One job scheduler or two job schedulers.
Job scheduling in grids

Job scheduling is well studied within the computer operating systems. Most
of them can be applied to the grid environment with suitable modifications. In the
following we introduce several methods for grids. The FPLTF (Fastest Processor
to Largest Task First) algorithm schedules tasks to resources according to the
workload of tasks in the grid system. The algorithm needs two main parameters
such as the CPU speed of resources and workload of tasks. The scheduler sorts the
tasks and resources by their workload and CPU speed then assigns the largest task
to the fastest available resource. If there are many tasks with heavy workload, its
performance may be very bad. Dynamic FPLTF (DPLTF) is based on the static
FPLTF, it gives the highest priority to the largest task.

DPLTF needs prediction information on processor speeds and task
workload. The WQR (Work Queue with Replication) is based on the work queue
(WQ) algorithm. The WQR sets a faster processor with more tasks than a slower
processor and it applies FCFS and random transfer to assign resources. WQR
replicates tasks in order to transfer to available resources. The amount of
replications is defined by the user. When one of the replication tasks is finished,
the scheduler will cancel the remaining replication tasks. The WQR’s shortcoming
is that it takes too much time to execute and transfer replication tasks to resource

for execution.

Min-min set the tasks which can be completed earliest with the highest

priority. The main idea of Min-min is that it assigns tasks to resources which can
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execute tasks the fastest. Max-min set the tasks which has the maximum earliest
completion time with the highest priority. The main idea of Max-min is that it
overlaps the tasks with long running time with the tasks with short running time.
For instance, if there is only one long task, Min-min will execute short tasks in
parallel and then execute long task. Max-min will execute short tasks and long task
in parallel. The RR (Round Robin) algorithm focuses on the fairness problem. RR
uses the ring as its queue to store jobs. Each job in queue has the same execution
time and it will be executed in turn. If a job can’t be completed during its turn, it
will store back to the queue waiting for the next turn. The advantage of RR
algorithm is that each job will be executed in turn and they don’t have to wait for
the previous one to complete. But if the load is heavy, RR will take long time to
complete all jobs. Priority scheduling algorithm gives each job a priority value and
uses it to dispatch jobs. The priority value of each job depends on the job status
such as the requirement of memory sizes, CPU time and so on. The main problem
of this algorithm is that it may cause indefinite blocking or starvation if the

requirement of a job is never being satisfied.

The FCFS (First Come First Serve) algorithm is a simple job scheduling
algorithm. A job which makes the first requirement will be executed first. The
main problem of FCFS is its convoy effect [25]. If all jobs are waiting for a big job
to finish, the convoy effect occurs. The convoy effect may lead to longer average

waiting time and lower resource utilization.

1.6 ISSUES IN GRID COMPUTING

A grid is a distributed and heterogeneous environment. A heterogeneous

environment involves dynamic arrival of tasks where the tasks and resources can
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be from various administrative domains. Both of these issues require are the source

of challenging design problems.

Being heterogeneous inherently contains the problem of managing multiple
technologies and administrative domains. The computers that participate in a grid
may have different hardware configurations, operating systems and software
configurations. This makes it necessary to have right management tools for finding

a suitable resource for the task and controlling the execution and data management.

A grid may also be distributed over a number of administrative domains.
Two or more institutions may decide to contribute their resources to a grid. In such
cases, security is a main issue. The users who submit their tasks and their data to
the grid wish to make sure that their programs and data is not stolen or altered by
the computer in which it is running. Of course the problem is reciprocal. The
computer administrators also have to make sure that harmful programs do not

arrive over the grid.

Another important issue is scheduling. Scheduling a task to the correct
resource requires considerable effort. The picture is further complicated when we
consider the need to access the data. In this project, we have assumed that the
capacity of the machines and the execution time of the tasks are known in advance
and no jobs arrive dynamically. In case of a dynamic scenario, the chances of

failure are high.

Grid computing environment may also involve the service level agreements
(SLA) which are service based agreements rather than customer based agreements.
SLA is a negotiation mechanism between resource providers and task submitting

Sources.
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1.7 CLASSIFICATION OF STATIC TASK-SCHEDULING ALGORITHMS

Static Task-Scheduling Algorithms

Heuristic Based Guided Random Search

Genetic algorithms
Simulated Annealing

Local Search Technique

List Scheduling Task Duplication
Modified Critical Path Critical path Fast Duplication
Dynamic Critical Path Duplication Scheduling Heuristic
Dynamic Level Scheduling Bottom-up Top-Down Heuristic
Mapping Heuristic Duplication First and Reduction Next

Clustering Heuristics

Mobility Directed
Dominant Sequence Clustering

Linear Clustering

Fig 1: Classification of Static task-Scheduling algorithms
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CHAPTER 11
PROBLEM OVERVIEW
2.1 PROBLEM DEFINITION:

Given a set of tasks with certain characteristics, e.g., estimated execution
time and a set of processing nodes with their own parameters, the goal of task
scheduling is to allocate tasks at nodes so that the total make span and average
waiting time is minimized. Genetic algorithm is used in order to obtain an optimal

solution.
2.2 ETC MATRIX GENERATION:

It is assumed that an accurate estimate of the expected execution time for
each task on each machine is known prior to execution and contained within an
Expected Time to Compute (ETC) matrix. One row of the ETC matrix contains
the estimated execution times for a given task on each machine. Similarly, one
column of the ETC matrix consists of the estimated execution times of a given
machine for each task in the meta-task. Thus, for an arbitrary task t, and an

arbitrary machine m, ETC (t;, m,) is the estimated execution time of t; on m.

For cases when inter-machine communications are required. ETC (t;, mj)
could be assumed to include the time to move the executables and data associated
with task t, from their known source to machine m. For cases when it is impossible
to execute task t, on machine mj (e.g., if specialized hardware is needed), the value
of ETC (t;, m) can be set to infinity, or some other arbitrary value. For this study ,
it is assumed that there are inter-task communication each task it can execute on

each machine, and estimated expected execution time of each task on each
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machine following method are known. The assumption that these estimated
expected execution times are known is commonly made when studying mapping

heuristics for HC systems.

For the simulation studies, characteristics of the ETC matrices were varied
in an attempt to represent a range of possible HC environments. The ETC matrices
used were generated using the following method. Initially, a t x 1 baseline column
vector, W, of floating point values is created. The baseline column vector is
generated by repeatedly selecting random numbers x,, and multiplying them by a
constant ‘a’ letting W (1) = (xy x a) for 0<i < t. Next, the rows of the ETC matrix
are constructed. Each element ETC (t;, m;) in row i of the ETC matrix is created by
taking the baseline value, W (i), and multiplying it by a vector X (j). The vector X
g) = (x; x b) is created similar to the way W (i) is created. Each row 1 of the ETC
matrix can then be described as ETC (t, mj) = B (i) x X (j) for 0 <j < m. (The
baseline column itself does not appear in the final ETC matrix). This process is

repeated for each row until the t x m ETC matrix is full.

The amount of variance among the execution times of tasks in the meta-task
for a given machine is defined as task heterogeneity. Task heterogeneity was
varied by changing the value of constant ‘a’ used to multiply the elements of
vector W (i). Machine heterogeneity represents the variation that is possible among
the execution times for a given task across all the machines. Machine heterogeneity
was varied by changing the value of constant ‘b’ used to multiply the elements of
vector X (j). The ranges were chosen in such a way that there is less variability
across execution times for different tasks on a given machine than the execution

time for a single task across different machines.
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To further vary the ETC matrix in an attempt to capture more aspects of
realistic mapping situations. Different ETC matrix consistencies were used. An
ETC matrix is said to be consistent if whenever a machine m; executes any task t;
faster than machine my , then machine m; executes all the task faster than my .
Consistent matrices were generated by sorting each row of the ETC matrix
independently, with machine m, always being the fastest and machine m,,. 1y the
slowest. In contrast: inconsistent matrices characterize the situation where machine
m ; may be faster than the machine m, for some tasks, may be slower for others.
These matrices are left in the unordered, random state in which they were
generated (i.e., no consistence is enforced). Partially-consistent matrices are
inconsistent matrices that include a consistent sub matrix. For the partially-
consistent matrices used here , the row elements in column positions {0,2.4,...} of
row I are extracted sorted, and replaced in order , while the row elements in
column positions {1,3,5...} remain unordered (i.e., the even columns are consistent

and odd columns are in general inconsistent).[1]

SAMPLE ETC MATRIX (FOR 8 TASKS AND 8 MACHINES [LOW LOW
INCONSISTENT])

1.097707 2.989389 3.004404  0.68733 2.280924 2.081497 2415987 0.738158
0.642505 1.749737 1.758525 0.402305 1.335061 1.2:/18333 1.414115  0.432056
1.013353  2.759668 2.773529 0.634512 2.105646 1.921543 2.230329 0.681434
3.517587  9.579454 9.627568 220254 730019 6.670126 7.741994 2.365418
0.162561 0.442702 0.444925 0.101787 0.337784 0.308251 0.357786 0.109315
1.55419  4.232531 4253789 0.973158  3.22945 2.94709 3.42067% 1.045122
1.74766  4.759408 4.783312 1.094299 3.631461 3.313952 3.846493 1.175222
3.570314 9.723048 9.771883 2.235556 7.418752 6.770109 7.858045 2.400874
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2.3 EXISTING STRATEGIES TAKEN UP FOR COMPARISON
2.3.1 MIN MIN STRATEGY:

The Min Min heuristic begins with the set U of all unmapped tasks. Then,
the set of minimum completion times, M= [min0_j<+ (ct (t1, mj)), for each ti # U],
is found. Next, the task with the overall minimum completion time from M is
selected and assigned to the corresponding machine (hence the name Min_min).
Last, the newly mapped task is removed from U, and the process repeats until all
tasks are mapped (i.e., U is empty).

Min_min maps the tasks in the order that changes the machine availability
status by the least amount that any assignment could. Let ti be the first task
mapped by Min_min onto an empty system. The machine that finishes ti the
earliest, say myj, is also the machine that executes ti the fastest. For every task that
Min_min maps after ti, the Min_min heuristic changes the availability status of mj
by the least possible amount for every assignment. [1][5][9]

MIN-MIN ALGORITHM: [8]
Stepl: Select the minimum execution time in each row.
Step2: From the set of selected minimums, select the minimum time.

Step3: Assign the task which has that selected execution time to the corresponding

processor.

Step4: If in case, that processor has been allocated for any other task, then select

the next minimum time for that task and assign it to the corresponding processor.

Step5: Repeat the above steps till every task is assigned.
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2.3.2. MAX MIN STRATEGY:

Max Min:

The Max Min heuristic is very similar to Min Min. The Max Min heuristic
also begins with the set U of all unmapped tasks. Then, the set of minimum
completion times, M, is found. Next, the task with the overall maximum
completion time from M is selected and assigned to the corresponding machine
(hence the name Max Min). Last, the newly mapped task is removed from U, and
the process repeats until all tasks are mapped (i.e., U is empty)

Intuitively, Max Min attempts to minimize the penalties incurred from performing
tasks with longer execution times. Assume, for example, that the metatask being
mapped has many tasks with very short execution times and one task with a very
long execution time. Mapping the task with the longer execution time to its best
machine first allows this task to be executed concurrently with the remaining tasks
(with shorter execution times). For this case, this would be a better mapping than a
Min Min mapping, where all of the shorter tasks would execute first, and then the
longer running task would execute while several machines sit idle. Thus, in cases
similar to this example, the Max Min heuristic may give a mapping with a more

balanced load across machines and a better makespan. [1][5][9]

MAX MIN ALGORITHM:
Stepl: Select the minimum execution time in each row.
Step2: From the set of selected minimums, select the maximum time.

Step3: Assign the task which has that selected execution time to the corresponding

processor.
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Step4: If in case, that processor has been allocated for any other task, then select

the next minimum time for that task and assign it to the corresponding processor.
StepS: Repeat the above steps till every task is assigned.

2.4 PROPOSED ALGORITHM:
Ant Colony Algorithm:

Ant algorithm is a new heuristic algorithm; it is based on the behavior of
real ants. When the blind insects, such as ants look for food, every moving ant lays
some pheromone on the path, then the pheromone on shorter path will be increased
quickly, the quantity of pheromone on every path will effect the possibility of other
ants to select path. At last all the ants will choose the shortest path.

Basic Description

Ant algorithm has been successfully used to solve many NP problem.
The algorithm has inherent parallelism, and we can validate its scalability. So it’s
obvious that ant algorithm is suitable to be used in Grid computing task
scheduling. The factors that affects the state of resources can be described by

pheromone and we can get the predictive results very simple and quickly.

CHAPTER 111
3 Overview of ant colony Algorithm

3.1 General ant behavior:

The ants in an ant colony go in search of food. It secretes a pheromone
fluid in its path. When any one of the ants finds the food resource, the other ants
follow the ant’s path by its pheromone. When another ant finds another path which

1s shorter than this path, more pheromone is secreted in that path than any other
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path and every ant follows that shorter path and the pheromone in the other paths

gets evaporated.

F i i F ;
i T
o \ et R ¢
)
N i a',_' N.}
1 2 3

Fig 2: General ant behavior
3.2 Architecture of the System:

The clients use the portal interface for job execution. The Network
Weather Service reports system information to the Information server periodically.
The job scheduler selects the most appropriate resources to execute the request
according to the proposed ACO algorithm. Finally the results will be sent back to
the user.
~

Information Reg/Ras
Server
s

:\\\ 4 k‘cq.“l(chx
! e |

i
Step 7 ¢

Client

Fig 3: System Architecture
36



3.3 The proposed Ant Colony Algorithm:
In order to map the ant system to the grid system

a) An ant -An ant in the ant system is a job in the grid system
b) Pheromone -Pheromone value on a path in the ant system is equivalent

for a weight for the resource in the grid system.

A resource with a larger weight value means at the resource has a better

computing power.

weight-pheromone

path o

ant

a

pheasnsene

path b norle

schoeduler

path ¢

TENOUIUY O

Ant Svstem Grid System

Fig 4: Mapping between the ant system and the grid system.
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The scheduler collects data from the information server and uses the data to
calculate a weight value of resource. The pheromone (weight) of each resource 18
stored in the scheduler and the scheduler uses it as a parameter for ACO algorithm.
At last the scheduler selects a resource by a scheduling algorithm and sends the job

to the selected resource.

3.4 Steps in Ant Colony Algorithm:

1. The initial pheromone value of each resource for each job is equal to the
pheromone indicator. The pheromone indicator of each resource for each job
is calculated by adding the estimated transmission time and execution time
of a given job when assigned to this resource.

7 The estimated transmission time can be easily determined by M;/Bandwidth;
where Mi is the size of a given job; and Bandwidth; is the bandwidth
available between the scheduler and the resource.

3. The other parameter, job execution time, is hard to predict. Depending on
the type of programs, many methods can be used to estimate the program
execution time. The method used here is generation of Expected Time to

Compute matrix(ETC), E[L,j] With the pheromone indicator is defined by
PI; = [MyBandwidth+ T/CPU_speed;]”

Where PIjj is the pheromone indicator for job i assigned to resource J,

M; is the size of a given job 1,

T,is the CPU time needed of job i,
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CPU_speed; and bandwidth; are the status of resource.

. The pheromone indicator tells that when a job is assigned to a resource, we
consider the resource status, the size of jobs, and the program execution time
in order to select a suitable resource for execution. The larger the value of

PI; is, the more efficient it is for resource j to execute this job i.

Assume there are n resources and m jobs. We have the PI matrix as follows

PI= /- PI]] PI]2 PIin 3\

Pl Pl., ... PI,, )
e

. In each iteration, we need to select the largest entry from the matrix.
Assuming PI; is selected, then job i assigned to a resource j ; we apply the
formula to the resource selected for each unassigned jobs in the PI matrix.
This step is done to recalculate the entire PI matrix. When a job is completed

we apply the formula along with which we multiply (1-g;) further, where

’ 1>pj ZO
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3.3 Ant Colony Algorithm For Task Scheduling

Example:

Assume there are three jobs j1,j2,j3 and three resources rl,r2,r3 in a grid. Let the
initial states of each resource be assumed. The size of each Jjob is 2MB, 3MB,

SMB. CPU cycles needed for each job are 3M,2M and M respectively.

The initial pheromone indicator of each entry in the PI matrix is

PI= ( PI11=3.88 PI12=8.33  PI13=5.28 )

PI21=5.82 PI22=12.49 PI23=7091

PI31=11.64 PI32=24.99 PI33=15.83 )
\

Here PI32 has the highest pheromone value so the job j3 is assigned to the

resource r2 and the row is removed.
PI= [ PI11=3.88 PI12=8.33 PI13=5.28 J
PI21=5.82 PI22=12.49 PI23=7.91]

After 12 finishes j3 the scheduler dispatches next job. The entries of the
PI matrix must be updated in order to get newest pheromone for the next job

submission. Now the assumptions made at the initial stage are changed.

The new values of the pheromone in the row corresponding to the resource will

have to be multiplied by (1- pj) where pj is the overhead incurred in the resource ]
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after completing the job i, but this overhead does not affect the other two

resources.
CODING:

package fpack;

import java.io.*;

import java.util.*;

import java.io.IOException;
public class mar8

{

public static void main(String args|])throws Exception

{

DatalnputStream in=new DatalnputStream (System.in);
System.out.print("ENTER NO. OF TASKS:");

int no_tasks=Integer.parselnt(in.readLine());

calc c=new calc(no_tasks);

/*...GENERATING LOW AND HIGH HETEROGENETIC
MATRICES....*/

Random r=new Random();
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do

{
System.out.println("1-->MAX-MIN \n 2-->MIN-MIN\n3-->EXIT\n");
System.out.println("Enter which algorithm to perform:"};
int maxormin=Integer.parselnt(in.readLine());
mar§.options(r, ¢, maxormin);
}while(true);
}
}
}
////PT MATRIX
package fpack;

import java.io.BufferedOutputStream;
import java.io.DatalnputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream:;
import java.io.lIOException,;

import java.io.OutputStream;
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import java.util.Random,;

public class Pimatrix

{ static int 0=0,q=0,z=0;
static double size[]=new double[600];
static Integer cpuspeed[]=new Integer{50];
static Integer band[]=new Integer[50];
static float t[][]=new float[600][20];
static float load[]=new float[20];
static int tmat[]=new int[600];
static int pmat[]=new int[600];
static int P[]=new int[20];
static float a,b,c;
static int I;
static float Pisort[][]J=new float[512][20];
static float Pinew[][]=new float[512][20]; |
static float Pi[][]J=new tloat[512][20];
static int task[}[]=new int[512][20];

static int processor||[]=new int[512][20];
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static float Pild[]=new float[600];
static int task 1d[]=new int[600];
static int processorld| J=new int[600];

public static void main(String args[]) throws NumberFormatException,

10Exception
{
0=0;
intr;
int min = 10;
int max = 20;
DatalnputStream in=new DatalnputStream (System.in);
for(int 1=0;i<16;i++)
{
1f(i==0)
cpuspeed|[0]=3200;
else
cpuspeed[i]=cpuspeed[i-1]-50;
r = (int) (Math.random() * (max - min + 1) ) + min;

load[i]=r;
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band[i}=r/10;
;

System.out.println(”Enter the no of tasks"):

nt no=Integer.parseInt(1'n.readLine());

im'tiah'ze(no);

readfile(no);

public static void initialize(int no)
{
double r;
double min = 10;
double max = 20;
for(int n=O;n<n0;n++)
{

I' = (double) (Math.random() * (max - min + 1)) + min:

size[n]=r;
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public static float random(int no)

{
float r = 0;
float min = 0;

float max = [;

for(int n=0;n<no;n++)

{

r = (float) (Math.random() * (max - min + 1) ) + min;
}
return r;

}
public static void readfile(int no) throws IOException
d
String filename[]={"i1cI ”,"ilc2",”i1c3",”ilc4"};
for(int h=0;h<4;h++)

//int h=0;

o
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0=0;

q=0;

formmatrix(no,ﬁlename[h]);

f

public static void formmatrix(int no,String filename) throws |

{

OException

int row=(;
String s5 = null;

t=readexce]] .readﬁle(no,ﬁlename);
String s="e:\\\\Pj] \\\\",s3=nu11;
s3=s.concat( filename);

sS=s3.concat(” L.xIs™)

OutputStream out=new F ileOutputStream(sS);

BufferedOutputStream bfo=new BufferedOutputStream(out);

System.out.print]n( "Inside formmatrix");

// formula substitution

for(int 1'=O;i<no;i++)
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for(int j=0;j<] 0;j++)
{
a=(float) size[i]/band[j];
c=cpuspeed][j];
b=t[i][j]*100/c;
float d=a+b;
if(d==0)
Pifi][j]=0;
else
Pi[i][j1=1/d;
task[i][j]=i;

processor[i][j]=j;

}
for(int 1=0;i<no;i++)

S
1

for(int J=0;j<16;j++)
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System.out.print(Pi[i][j]+”\t");
}

f
if{21=0)
for(int i=0;i<no;i++)
{
for(int J=0;j<16j++)
{

if(processor[i] [j]==pmat[q- 1])

Pi[i][j]=Pi[i][j]*(l -random(no));

}

System.out.println(”End”);

//converting to 1 dimension

int k=0;

for(int 1'=O;i<no;1'++)

{
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for(int j=0;j<16j++)
{
Pild[k]=Pi[i][j];
taskld[k]:task[i]ﬁ];
processorld[k]= processor[i][j];
k++;
} }
//creating new pi

for(int i=0;i<no;i++)

{
for(int j=0;j<16j++)
{
if(task 1d[row]==i)
Pinew[i][j]=0;
else
Pinew[i][j]=Pi[i][j];
}
}
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//writing to file
for(int i=0;i<no;i++)
{
String s2 = null;
for(int j=0;j<1 6;)++)
{

Float fObj = new FIoat(PineW[i][j]);

String s1 = fObj.toString();

s2=g1 -concat("\t");

byte by[]=s2. getBytes();

bfo.write(by);
h
String s4="\n"";

byte by1[]=s4. getBytes();
bfo.write(byl );

f
bfo.close();

System.out.print("entered file");
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while(z<no)
{
Z++;

formmatrix(no,ﬁlename) ;

s=”e:\\\\”;s3=null;
s3=s.concat( "taskvec.txt");
OutputStream outl=new F ileOutputStream(s3);
BufferedOutputStream bfol=new BufferedOutputStream( outl);
for(int i=O;i<n0;i++)
{
String s2 = null;
String tv= new Integer(pmat[i]).toString();
s2:tv.concat(”\t”);
System.out.print(sZ);
byte byp[]=s2.getBytes();

bfol -write(byp);
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bfol.close();

}

public static int function(int no)

{
int t=0;
boolean ﬂag=true,ﬂ=true;
while(f])

{

for(int y=0;y<q;y++)

{
if(processorl d[t]==pmat[y])
flag=false;
}
1f(flag)
{

pmat{q++]=processor]d [t];
System.out.print( "assigned"+pmat[q— 1;

fl=false;
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else

{ System.out.print(”sickikichu ma");

while(I<no&&task ] d[t]!=task1 d[1++]);

t=I-1 ;flag=true;

/Il P MATRIX GENERATION
package fpack;

importjava.io.*;

import java.sqI.Connection;
mport java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.ResultSetMetaData;
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1mport java.sql.Statement;
public class pimat

{

public static void main(String args[]) throws Exception

{
int 1trn=0);
DatalnputStream In=new DatalnputStream (System.in):
do
{
System.out.print("ENTER NO. OF TASKS:");
int no_tasks=Integer.parseInt(in.readLine());
antcolony.calculation(no_tasks);

$while(itrn<] 0);

S

}

class antcolony
1]
it

File f,f1;
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static File fomax;
static File fomin, ftmax, ftmin;
static int len;

int

1'O=O,1'1=O,1'2=O,i3=O,1'4=O,i5=0,i6=0,i7=0,i8=0,i9‘

static String]) temp=null;

static String str=null, fullstr="""

static Connection con=null;

static Statement st=null;

static int[] ordervector] =new int[512];
static int[] taskvectorl=new int[512];
static int[] temparr=new int[512];
int[] prO=new int[32];

int[] prl=new nt[32];

int[] pr2=new int[32];

int[] pr3=new int[32];

int[] prd=new int[32];

int[] prS=new int[32];
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int[] pré=new int[32];
int[] pr7=new nt[32];
nt[] pr8=new int[32];
int[] prO=new int[32];
int[] prl0=new int[32];
int[] prl l=new int[32];
int[] pri2=new mnt[32];
int[] prl3=new Int[32];
int[] prid4=new int[32];
nt[] prl5=new int[32];

static float[] prtime=new float[16];

static

String|]
ﬁ]eSIZ:{”CI ","02","03","

C4"7”il "7”1'211’771'3 N’YVI'4N7”p1 Y""p27¥711p3 H’Hp4ll };
int rawRandomN umber;
Int min = 1;

Static int max;

float maxl=0,m1’n1=0;

Static void calcu]ation(int no_tasks) throws Exception
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max=no_tasks-1;

for(int it10=1;it10<=10;it10++)//10 iterations loop
{
System.out.printin("\n\nI TERATION:"+it1 0);
int £12=0;
float mspan;

FileOutputStream ou=new

FileOutputStream("E:\\\"+no_tasks+"\iteration"-it1 0+"\ant\\makespan] .txt");

BufferedOutputStream bf=new BufferedOutputStream(ou);

FileOutputStream out=new

FileOutputStream("E:\\\"+no_tasks+"\iteration"-+it1 O+"\ant\\wtimel .txt");

BufteredOutputStream bfl=new BufferedOutputStream(out);
for(f12=0;f12<12;f12++) //12 files iteration
{
int itcount=0;

float[] avgwtime=new float[500];
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fomax=new

File(”E:\\\\"+no_tasks+”\\iteration"+it1 O+”\\\\order\\"+ﬁlesl 2[f1 2]+ txt");

ftmax=new

File(”E:\\\\"+no_tasks+”\\iteration"+it I O+”\\\\task\\”+ﬁles12[f1 21" axt");
ordervector] =makeint( fomax);
taskvector] =makeint( ftmax);
int itercount=0,iter=0,continuous=0;
mspan=makespan(taskvectorI files12[f12] it] 0);

System.out.print(mspan+”\t\t") ;

avgwtime[itcount++]=wtcl -avgwt(ordervector] taskvector], files]2 [f12],it] O,no ta

sks);
System.out.println( "avgerage waiting time:"+avgwtime[itcount—1]);
String ﬁles=ﬁ1esl2[fl2];
String mkspan=new F loat(mspan).toStri ng();
String wittab=ﬁles.concat(”:\t”);
String Witval=wittab.concat(mkspan);
String towrite=witva].concat( "\t
String wittab1=ﬁles.concat(”:\t”);
Float fObj = new Float(avgwtime[itcount—I]);

String s] = fObj.toString();
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String wttime=wittabl.concat(s1);
String towritel=wttime.concat("\t");
byte writebyte[ |[=towrite.getBytes();
bf.write(writebyte);
byte writebytel[]=towritel.getBytes();
bfl.write(writebytel);
} //12 files iteration
bf.close();
bfl.close();
}//1t10 loop ends

}

static int[] makeint(File f) throws Exception
{
int[] intarr1=new int[512];
int[] tmparr=new int[512];
if(!f.exists()&& f.length()<0)
System.out.printin("The specified file is not exist"),

else
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FileInputStream finp=new F ileInputStream();
BufferedReader in = new BufferedReader(new F ileReader(f));
str=null;
fullstr="";

while ((str = (in.readLine())) != null)

{

fullstr+=str;
}
len=0;
len=fullstr.length();
temp=null;
temp=tullstr.split(" ");
try
{
for(int i=O;i<temp.length;i++)
{

intarr] [i]=Integer.parselnt(temp[i]) ;
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finally

{
1

finp.close();

}
}
temparr=intarr];
return temparr;

}

static float makespan(int[] taskvector] ,String filename,int it10) throws Exception

{
try{
Class.forName(”sun.jdbc.odbc.JdchdbcDriver”);

con = DriverManager.getConnection( "jdbc:odbc:etc32");

st = con.createStatement();

ResultSet rs = st.executeQuery(  "Select *  from
[it"+it1 O+filename+"$]" );

int tasknum=0;
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While(rs.next())
{
if(taskvector] [tasknum]==0)
prtime[Q]+=rg. getFloat(1);
else if(taskvector] [tasknum]==] )
prtime[ ] J+=rs, getFloat(2);
else if(taskvector] [tasknum]==2)
prtime[2[+=rs. getFloat(3);
else if(taskvector] [tasknum]==3)
prtime[3]+=rs. getFloat(4);
else if(taskvector] [tasknum]==4)
prtime[4]+=rs. getFloat(5);
else if(taskvector] [tasknum]=:5)
prtime[5]+=rs.getFloat(6);
else if(taskvector] [tasknum]==6)
prtime[6 |+=rg. getFloat(7);
else if(taskvector] [tasknum]==7)

prtime[7]+=rs. getFloat(8);
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else if(taskvector][tasknum]==8)
prtime[8]+=rs.getFloat(9);
else if(taskvectorl[tasknum]==9)
prtime[9]+=rs.getFloat(10);
else if{taskvectorl[tasknum]==10)
prtime[10]+=rs.getFloat(11);
else if(taskvector] [tasknum]==11)
prtime[11]+=rs.getFloat(12);
else if(taskvectorl [tasknum]==12)
prtime[12 [+=rs.getFloat(13);
else if(taskvector] [tasknum]==13)
prtime[13]+=rs.getFloat(14);
else if(taskvector] [tasknum]==14)
prtime[14]+=rs.getFloat(15);
else if(taskvectorl[tasknum]==15)
prtime[15]+=rs.getFloat(16);

tasknum-++;

64



rs.close();
st.close();
con.close();

}

catch(Exception ex) {
System.err.print("Exception: ");

System.err.println(ex. getMessage());

5

}

float max=prtime[0];
for(int k=1;k<] 6;k++)
{

if(prtime[k]>max)

max=prtime[k];
b
for(int qq=0;qq<16;qq++)
prtime[qq]=0;

return max;
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}
}

MITWAITING TIME CALCULATION
package fpack;

import java.io.BufferedReader;
import java.io.File;

import java.io FileInputStream;
import java.io.F ileReader;

1mport java.sql.Connection;

import java.sql.DriverManager;
Import java.sql.ResultSet;

import java.sql.ResultSetMetaData;
import java.sql.Statement;

public class wtcl {

public static void main(String args[]) throws Exception

f
1

}

public static float avgwt(int[] ordervector,int[] taskvector,String fi

it10,int no_tasks)
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float[] etimepO=new float[512];
float[][] timearrl=new float[512][16];
float[] timearr=new float[512];
float[] taskwt=new float[512]:
Connection con=null;
Statement st=null;
int
1en,iO=O,i1=O,i2=0,i3=O,i4=0,i5=0,i6=0,i7=0,i8=0,i9=0,i 10=0,111=0,i12=0,113=0,i
14=0,115=0;

String[] temp=null;
int[] prino=new int[512];
float[][] time=new float[512][17];

int[][] pr=new int[16][512];

String columnValue[][]=new String[512][16];
for(int r=0;r<512;r++)

for(int c=0;c<16;c++)
time[r][c]=0;

int rc=0;
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Int i=(;
try{
Class.forN ame("

sun.jdbc.odbc.JdchdbcDriver");

con = DriverManager. getConnection( "jdbc:odbc:etc48”);

St = con.createStatement();

int [=0;
ResultSet s = st.executeQuery( "Select * from
[it”+it10+ﬁlename+”$]” );
ResultSetMetaData rsmd = rg, getMetaData();

int numberOfColumns =rsmd. getCqumnCount();

while (rs.next())

{

for (int j= ;)<= nun1berOfColumns;j++)

{

time[i][j]=rs.getFloat(j);

i+
st.close();

con.close();
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f
catch(Exception ex)

{

System.err.print("Exception: ");

System.err.println(ex. getMessage()):

}
for(int J=0;j<32;j++)
{
if(taskvector[j]==0)
pr[i0++][0]=j;
else if(taskvector[j]==1)
prlil++][1]=;
else if(taskvector[j]==2)
prli2++][2]=j;
else if(taskvector[j]==3)
pr[i3++][3]=j;
else if(taskvector[j]==4)

prlid++][4]=j;
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else if(taskvector[i]==5)
prliS++][5]=j;
else if(taskvector[j]==6)
prli6++][6]=j;
else if(taskvector[j]==7)
prli7++][7]=j;
else if(taskvector[j]==8)
pr[i8++][8]=j;
else if(taskvector[j]==9)
pr[i9+-+][9]=j;
else if(taskvector[j]==l 0)
pr[il0++][10]=j;
else if(taskvector[j]=:l 1)
priil I++][11]=j;
else if(taskvector[j]==l 2)
priil2++][12]=j;
else if(taskvectorU]==l 3)

pr[il3++][1 31=5;
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else if(taskvector[j]== 14)
priil4++][ 14]=j;
else if(taskvector[j]==1 5)

Pr{il5++H][15]=;

int k=0,pcount=0;
for(pcount=0;pcount<l 6;pcount++)
for(int 1=0;]<j] ;14++)
{
int tno=pr{l] [pcount];
nt ono=ordervector[tno];
prino[ono]:tno;
etimep() [k]ztime[tno] [1];
k++;
]
float wt[|=new float[512];
int kl;

for(k1=0:k1 <k;k1++)
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{
if(k1==0);
else
wtlk1]=wt[k1 -1]+etimepO[k1-17;
}
int total=0;
float avgwtime=0;
for(int k2=0;k2<k;k2++)
total+=wt[k2];

avgwtime=total/no_tasks;

return avgwtime;
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CHAPTER 1V

Experimental Results and Discussion

Comparison Metrics:

4.1 Makespan : Makespan is a measure of the throughput of the heterogeneous
computing systems, such as grid. It can be calculated as the following relation:
Makespan=MAX(CT,)

The less the makespan of a scheduling algorithm, the better it works. 2]

4.2 Average Waiting Time:

The tasks allotted to the processor have to be executed in a sequence. The
tasks in the sequence can be executed only when the preceding tasks in the
sequence finish their execution. The time lapse between the task allocation and the
start of execution of the task gives the waiting time of the task. The average of the
waiting time computed for all the tasks should be a minimum for the algorithm to

be efficient.
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CHAPTER V

5. Comparison Graphs

S.1Makespan Comparison

LOW LOW:

TIME

900
800 -
700
600

500
400 —&— MAX-MIN

300 - —= MIN-MIN
200 ANT COLONY
100

32 48 64 80 96 112 128 144 160 176

NO OF TASKS

Fig 5.1: INCONSISTENT

74



TIME

900
800
700
600
500
400
300
200
100

32 48 64 80 96 112 128 144 160 176

NO OF TASKS

Fig 5.2: PARTIALLY CONSISTENT

TIME

1000

800
700
600
500
400
300
200
100

32 48 64 80 96 112 128 144 16C 175

NO OF TASKS

Fig 5.3: CONSISTENT

75

e MAX-MIN
~—— MIN-MIN
ANT COLONY

s MAAX-IHN
== [VHN - ITN

ANTCULUNY



LOW HIGH:

TIME

1200

1000

800

600 - swselm NAAX NN

i MIN-MIN

400
ANT COLONY

200

32 48 64 80 96 112 128 144 16C 176

NO OF TASKS

TIME

Fig 5.4: INCONSISTENT

1200
1000

&00

600 woos MAX-MIN

400 e MIN-MIN

ANTCOLONY

200

oo

3?2 48 64 80 96 117 128 144 160 174

NO OF TASKS

Fig 5.5: PARTIALLY CONSISTENT

76



1200

1000
80U -
TIME 600 e D AX NN
200 =& \IIN-MIN
‘ M"“““@ ANTCOLONY
200 -
0 i o

3Z 48 b4 80 Y6 112 178 144 160 1/

NO OF TASKS

Fig 5.6: CONSISTENT

HIGH LOW:

1400
1200
1000

800
TIME s TAAX- NN
600
i NIN - M N
400 ANTCOLONY

200

G
32 48 64 30 96 112 128 144 160 176

NO OF TASKS

Fig 5.7: INCONSISTENT

77



1400
1200
1000

800
TIME e NAX-IITN
600
il VI IN -V N

400 - ANTCULONY

200

32 48 64 30 96 112 128 144 16C 176
NO OF TASKS

Fig 5.8: PARTIALLY CONSISTENT

1400

1200

1000

800
TIME st FAAX- N
600

i NN -MIN

400 ANTCOLONY

200

NO OF TASKS

Fig 5.9: CONSISTENT

78



HIGH HIGH

1600
| 1400
1200

1000

600

400

TIME 800 -

200 -

e MIAX-MIN

/%\,@ el MIN-MIN

ANT COLONY

32 48 64 80 95 112 128 144 16C 176

NO OF TASKS

Fig 5.10: INCONSISTENT

1600
1400
1200

1000

TIME 800
! 600
; 400

200

s (1] A X BTN
i NIN-MIN
ANTCOLONY

3748 64 80 95 112 128 144 140 174

NO OF TASKS

HgilkPARHALLYCONSBTENT

79



1600
1400
1200
1000

TIME 800

; g MAAX-MIN

600 e VTN -PATN

400 ANT CULONY

200

0
32 48 64 80 96 112 128 144 16C 176

NO OF TASKS

Fig 5.12: CONSISTENT
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Fig 6.7: INCONSISTENT
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Fig 6.9: CONSISTENT
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5.3Conclusion

We have taken up Min-Min strategy and Max Min strategy in order to
compare the performance of ant algorithm. The ant colony algorithm
implementation shows that it yields better performance than the already existing
strategies taken up for comparison (i.e.) ant colony algorithm has given lesser
make span and lesser waiting time for almost all cases when compared to Min-
Min and Max Min strategies. The pheromone update functions do balance the
system load. ACO is compared with two different algorithms and it is found to the

best. The makespan is much reduced which is the aim of this project.
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