HIDING SENSITIVE ASSOCIATION RULES WITH
LIMITED SIDE EFFECTS

A PROJECT REPORT

Submitted by

C.S.PRIYADARSHINI 71206104036
D. HANU KARUNYA LAKSHMI 71206104303

In partition fulfillment for the award of the degree of
BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE

ANNA UNIVERSITY, CHENNAI-600 025

APRIL 2010

BONAFIDE CERTIFICATE

Certified that this project report entitled “Hiding Sensitive Association
Rules With Limited Side Effects” is the bonafide work of C.S.Privadarshini and
D.Hanu Karunya Lakshmi, who carried out the research under my supervision.
Certified also, that to the best of my knowledge the work reported herein does not
form part of any other project report or dissertation on the basis of which a de egree

O

or award was conferred on an earlier occasion on this or any other candidate.

‘ S - .) 7 SN -

SIGNATURE SIGNATURE [S11V0

Dr.S. Thangasamy, Ph.D Mrs. M.Anidha, M.E.

DEAN & Guide

HEAD OF THE DEPARTMENT Lecturer

Department of Department of

Computer Science & Engineering, Computer Science & Engineering,
Kumaraguru College Of Technology, Kumaraguru College Ot Technology,
Coimbatore-641006. Coimbatore-641006.

The candidates with University Register Nos. 71206104036 and
71206104303 were examined by us in the project viva-voce examination held on
-4 200

.

TERNAL EXAMINER EXTERN /\I l X/ 1 \‘I R

DECLARATION

We hereby declare that the project entitled "Hiding Sensitive Association
Rules With Limited Side Effects” is a record of original work done by us and to
the best of our knowledge, a similar work has not been submitted to Anna
University or any Institutions, for fulfillment of the requirement of the course

study.

The report is submitted in partial fulfillment of the requirement for the
award of the Degree of Bachelor of Computer Science and Engineering of Anna

University, Chennai.

Place: Coimbatore

Date : /¢ 42010

PrX’

(C.S.Priyadarshini)

(Ho\m K‘A%MM‘
(D.Hanu Karunya Lakshmi)

ACKNOWLEDGEMENT

We extend our sincere thanks to our Principal, Dr.S.Ramachandran,
Kumaraguru College Of Technology, Coimbatore, for being a constant source of

inspiration and providing us with the necessary facility to work on this project.

We would like to make a special acknowledgement and thanks to
Dr.S.Thangasamy Ph.D., Dean, Professor and Head of Department o Computer
Science &Engineering and Mrs.P.Devaki (Ph.D), project coordinator for their

support and encouragement throughout the project.

We express our deep gratitude and gratefulness to our Guide
Mrs.M.Anidha M.E., Department of Computer Science & Engineering, tor her

supervision, enduring patience, active involvement and guidance.

We would like to convey our honest thanks to all Faculties of the
Department for their enthusiasm and wealth of experience from which we have

greatly benefited.

We also thank our friends and family who helped us to complete this

project fruitfully.

ABSTRACT

With rapid advance of network and data mining techniques, the protection of
the confidentiality of sensitive information in a database becomes a critical issue to
be resolved. Association analysis is a powerful and popular tool for discovering
relationships hidden in large data sets. The relationships can be represented in a
form of frequent itemsets or association rules. One rule is categorized as sensitive
if its disclosure risk is above some given threshold. Privacy preserving data mining
is an important issue which can be applied to various domains, such as Web

commerce, crime reconnoitering, health care and customer’s consumption analvsis.

The main approach to hide a sensitive association rule is to reduce the
support of each given sensitive association rule. This is done by modifying
transactions or items in the database. However, the modifications will generate side
effects, i.e. non-sensitive data falsely generated. Furthermore, it would always take
huge computing time to solve the problem. In our work, we propose a novel
algorithm, to hide the sensitive data and generate a minimum amount of side

effects.

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.
ABSTRACT vi
LIST OF ABBREVIATIONS vii
1. INTRODUCTION i

1.1 OVERVIEW OF DATAMINING]

1.2 WHAT MOTIVATED DATA MINING i

1.3 DATA ANALYSIS TOOLS 2

1.3.1 Classification 2

1.3.1.1 Learning 2

1.3.1.2 Classification 3

1.3.2 Clustering 3

1.3.3 Regression 4

1.3.4 Association Rules 4

1.4 Frequent Itemsets S

1.4.1 Sensitive Frequent ltemsets 3

2. PROBLEM OVERVIEW 6
2.1 PROBLEM DEFINITION)

2.2 GOALS OF THE PROJECT 6

2.3 EXISTING SYSTEM 6

2.4 PROBLEMS IN EXISTING SYSTEM 7

2.5 PROPOSED SYSTEM 7

3. LITERATURE REVIEW 8

3.1 APPLICATIONS OF ASSOCIATION RULES S
3.2 UNDESIRED EFFECTS OF ASSOCIATION
RULES 8

SYSTEM CONFIGURATION

4.1 SOFTWARE CONFIGURATION

4.2 HARDWARE CONFIGURATION

4.3 FEATURES OF VISUAL BASIC NET
4.3.1 Powerful windows based applications
4.3.2 Building Web-based Applications
4.3.3 Simplified Deployment
4.3.4 Powerlul,Flexible.Simplitied Data Access
4.3.5 Improved Coding
4.3.6 Direct Access 1o Platform
4.3.7 Full Object-Oriented Constructs
4.3.8 XML Web Services
4.3.9 Mobile Applications

4.4 FEATURE OF VISUAL STUDIO NET 2010
4.4.1 New Features in the Visual Studio 2010
4.4.2 Call Hierarchy of Mcthods
4.4.3 New Quick Approach
4.4.4 Mulu-Targeting morce Accurate
4.4.5 Parallel Programming and Debugging
4.4.6 XSL Profiling and Debugging

METHODOLOGY

5.1 Data Loading

5.2 Applying ISL

5.3 Applying FHFSI

CONCLUSION

FUTURE ENHANCEMENTS

REFERENCES

V1

18
19
19
58

LIST OF ABBREVIATIONS

MST

MCT

PWT

SFI

D’

ISL

DSR

Minimum Support Threshold

Minimum Confidence Threshold

Prior Weight

Sensitive Frequent Itemsets

Database

Modified Database

Increased Support of LHS

Decreased Support of RHS

1. INTRODUCTION
1.1 Overview of Data Mining

Data mining (sometimes called data or knowledge discovery) is the process of
analyzing data from different perspectives and summarizing it into useful information
- information that can be used to increase revenue. cuts costs, or both. Data mining
tools perform data analysis and uncover important data patterns, contributing greatly
to business strategies, knowledge bases, scientific and medical research. The tools
bring out the hidden patterns from larger data sources and these patterns help in

decision making, in a process.

While data mining can be used to uncover hidden patterns in data
samples that have been ‘mined’, it is important to be aware that the use of a sample of
the data may produce results that are not indicative of the domain. Data mining will
not uncover patterns that are present in the domain, but not in the sample. There is a
tendency for insufficiently knowledgeable ‘consumers’ of the results to treat the
techniques as a sort of crystal ball and attribute ‘magical thinking’ to it. Like any other
tool, it only functions in conjunction with the appropriate raw material: in this case,
indicative and representative data that the user must first collect. Further, the
discovery of a particular pattern in a particular set of data does not necessarily mean
that pattern is representative of the whole population from which that data was drawn.
Hence, an important part of the process is the verification and validation on other

samples of data.

1.2 What Motivated Data Mining?

Data mining has attracted a great deal of attention in the information industry
and in society as a whole in the recent years, due to the wide availability of huge
amounts of data and the imminent need for turning such data into usetul information
and knowledge. The information gained can be used for applications ranging from
market analysis, traud detection, and customer retention, to production control and

science exploration.

Data mining can be viewed as a result of natural evolution of information
technology. The database system industry has witnessed an evolutionary path in the
development of the following functionalities: data collection and database creation,
data management (including data storage and retrieval, and database transaction

processing) and advanced data analysis.

1. 3 Data Analysis Tools
Data mining commonly involves four classes of tasks:
1.3.1 Classification

Classification arranges the data into predefined groups. For example, an email
program might attempt to classify an email as legitimate or spam. This helps to predict
future data trends. Such analysis can help provide us with a better understanding of

data at large. Data Classification is a two step process:
1.3.1.1 Learning

A classifier is built describing a set of data classes or concepts known as
training set. The training data is analyzed by the classification algorithm and the

learned model or classifier is represented in the form of classification algorithm.

1.3.1.2 Classification

Test data are used to estimate the accuracy of the classification rules. If the

accuracy 1s acceptable, the rules can be applied to the classification of new data tuples.
Common algorithms include

(1) Decision tree learning classification

(2) Nearest neighbor classification

(3) Naive Bayesian classification and

(4) Neural networks.
1.3.2 Clustering

The process of grouping a set of physical or abstract objects into classes of
similar objects is called clustering. A cluster is a collection of data objects that are
similar to one another within the same cluster and are dissimilar to the objects in other
clusters. A cluster of data objects can be treated collectively ad one group and so may
be considered as a form of data compression. Although classification is an effective
means fir distinguishing groups of classes of objects, it requires the often costly
collection and labeling of large set of training patterns, which the classified uses to
model each group. It is like classification but the groups are not predefined, so the

algorithm will try to group similar items together.

In general, the major clustering methods can be classified into the following

categories
(1) Partitioning methods

(2)Hierarchical methods

(3) Density-based methods

(4) Grid-based methods

(5)Model-based methods.
1.3.3 Regression

Regression analysis is a statistical methodology that is most often used for
numeric prediction. It helps us understand how the typical value of the dependent
variable changes when any one of the independent variables is varied, while the other
independent variables are held fixed. Most commonly, regression analysis estimates
the conditional expectation of the dependent variable given the independent variables
— that is, the average value of the dependent variable when the independent variables
are held fixed. In all cases, the estimation target is a function of the independent
variables called the regression function. In regression analysis, it is also of interest to
characterize the variation of the dependent variable around the regression function,

which can be described by a probability distribution.
1.3.4 Association Rules

Association rule learning is a popular and well researched method for
discovering interesting relations between variables in large databases. An example for

association rule is,

Computer => antivirus _software [support=2% , confidence= 60%]

This rule indicates that customers who purchase computers also tend to buy antivirus
software at the same time. Rule support and confidence are two measures of rule
interestingness. They respectively reflect the usefulness and certainty of discovered
rules. A support of 2% means that. 2% of all the transactions under the analvsis show

that computer and antivirus are purchased together. A confidence of 60% means that,

60% of the customers who purchase a computer also bought the software. Typically.
association rules are considered interesting if they satisty both mirimum support
threshold (MST) and minimum contidence threshold (MCT). Such threshold can be

set by users of domain experts.

Such information can be used as the basis for decisions about marketing
activities such as, e.g., promotional pricing or product placements. In addition to the
above example from market basket analysis association rules are employed today in
many application areas including Web usage mining, intrusion detection and

bioinformatics.
1.4 Frequent Itemsets

Frequent patterns are patterns that appear in a data set frequently. For example,
a set of items, such as milk and bread that appear frequently together in a transaction
data set is a frequent itemset or association rule. For example, first buying a PC. then a
digital camera, and then a memory card, if it occurs frequently in a shopping history
database a frequent pattern is formed. Finding such frequent pattern plays an essential

role in mining associations, correlations, clustering and other mining tasks as well.
1.4.1 Sensitive Frequent Itemsets (SFI)

Patterns that appear frequently in a data set are frequent patterns. Not all these
patterns obtained are sensitive. The pattern is categorized as sensitive if its disclosure
risk is above some given threshold. With an association analyzer, if an itemset above a
given minimal support, we call the itemset as a frequent itemset. Protection of
confidentiality of these sensitive information has become a critical issue to be
resolved. If such information goes to the unintended persons, serious damage may

tend to arise. So protection of such data is the main idea.

2. PROBLEM OVERVIEW

2.1 Problem Definition

The data mining technologies have been an important technology for
discovering previously unknown and potentially useful information from large data
sets or databases. They can be applied to various domains, such as Web commerce,
crime reconnoitering, health care, and customer's consumption analysis. Although
these are useful technologies, there is also a threat to data privacy. For example, the
association rule analysis is a powerful and popular tool for discovering relationships
hidden in large data sets. Therefore, some private information could be easily
discovered by this kind of tools. The protection of the confidentiality of sensitive

information in a database becomes a critical issue to be resolved.

2.2 Goals of the project

* To successfully hide the sensitive association rule, by reducing the support of

the sensitive itemsets.
* To reduce the time taken for hiding the rules.
2.3 Existing System

Many existing systems successfully hide the sensitive association rules. But
those algorithms have certain limitations. Vassilios S. Verykios et al. presented
algorithms to hide sensitive association rules, but they generate high side effects and
require multiple database scans. Instead of hiding sensitive association rules, Shyue-
Liang Wang proposed algorithms to hide sensitive items. The algorithm needs less

number of database scans but the side effects generated is higher. Ali Amiri also

presented heuristic algorithms to hide sensitive items. Finally, Yi-Hung Wu et al.
proposed a heuristic method that could hide sensitive association rules with limited
side effects. However, it spent a lot of time on comparing and checking if the sensitive
rules are hidden and if side effects are produced. Besides, it could fail to hide some

sensitive rules in some cases.

2.4 Problems in the existing system

Although the existing systems successfully hide the sensitive patterns, they
produce side effects. In some cases large number of database scans is required. At
times, the system could fail to hide some sensitive rules, and produces large amounts
of false positives. Due to large number of database scans the time taken to hide the
sensitive rules becomes high. Due to the large number of side effects produced, we 2o

in for the proposed system.

2.5 Proposed System

We propose a simple yet very effective method novel that leads fast hiding
sensitive frequent itemsets (SFI). This method can hide all SFI without generating all
frequent itemsets. It only generates limited side effects. It allows any minimum
support thresholds, and only one database scan is required. Within this scan all the
necessary information for hiding is taken. The time taken to hide the items is

optimized.

3. LITERATURE REVIEW

A variety of data mining problems have been studied to help people get
an insight into the huge amount of data. One of them is association rule mining. An
itemset is a set of products (items) and a transaction keeps a set of items bought at the
same time. The support of an itemset | (denoted as Supl) in a transaction database is
the percentage of transactions that contain I in the entire database. An itemset is
frequent if its support is not lower than a minimum support threshold (denoted as
MST). For two itemsets X and Y where X \'Y % :, the confidence of an association
rule X !'Y (denoted as ConfX!Y) is the probability that Y occurs given that X occurs,
and 1s equal to SupX[Y divided by SupX. We say that X ! Y holds in the database if X
[Y is frequent and its confidence is not lower than a minimum confidence threshold
(denoted as MCT). Such a rule is called the strong association rule (strong rule for
short). Association rule mining is to discover all the strong rules in the database.

However, the misuse of them may bring undesired effects to people.

3.1 Applications of Association Rules

Association rules are typically used in market analysis (market basket analysis),
primarily because of the utility and clarity of its results. They express how important
products or services relate to each other, and immediately suggest particular actions.
Association rules are used in mining categorical data - items. Besides the sole process

of generating association rules, the process of application of association rules

technique involves two important concerns:

1) Choice of the right set of items

The data used for association rule analysis is typically the detailed transaction
data captured at the point of sale. Gathering and using this data is a critical part of
applying association rule analysis, depending crucially on the items chosen for
analysis. What constitutes a particular item depends on the business (problem) need.
Items in stores usually have codes that form hierarchical categories (taxonomy). These
categories help in generalization, and reduction of the volume of items used for a
study. Dozens or hundreds of items may be reduced to a single generalized item, often

corresponding to a single department or type of a product.

2) Practical limits imposed by a large number of items appearing in combinations

large enough to be interesting

Number of combinations for larger itemsets rises exponentially with the number
of items. Calculating the support, confidence, and improvement for a grocery store
with thousands of different items, quickly rises to millions, as the number of items in
the combinations grows. For example for 1000 products, total number of

combinations of three products is:

bl 1000

= =166.167 #1091

k 3

Calculating the counts for five or more items can be completely out of hand. In

that case the use of taxonomies reduces the number of items to a manageable size.

Generally, the strengths of association rule analysis are:

. It produces clear and understandable results.
. [t supports undirected data mining (no target attribute).
. [t works on data of variable length.

. The computation algorithm it uses is quite simple.

—~

3.2 Undesired effects due to misuse of association rules

Consider a supermarket and two beer suppliers A and B. It the transaction
database of the supermarket is released, A (or B) can mine the association rules
related to his/her beers and apply the rules to the sales promotion and the goods
supply. As a result, a supplier is willing to exchange a lower price of goods for the
database with the supermarket. From this aspect, it is good for the supermarket to
release the database. However, the conclusion can be opposite if a supplier uses the
mining methods in a different way. For instance, if A finds the association rules
related to B’s beers, saying that most customers who buy diapers also buy B’s beers,
he/she can run a coupon that gives a 10 percent discount when buying A’s beers
together with diapers. Gradually, the amount of sales on B’s beers is down and B
cannot give a low price to the supermarket as before.

Finally, A monopolizes the beer market and i unwilling to give a low price to
the supermarket as before. From this aspect, releasing the database is bad for the
supermarket. Therefore, for the supermarket, an effective way to release the database
with sensitive rules hidden is required. This is not only in the case of a supermarket,
this is just a small example to make us understand the importance of the
confidentiality of the data present in database. More serious problems can arise when

the confidentiality of the defence industry or crime database is lost.

4. SYSTEM CONFIGURATION
4.1 Software Configuration

The software used for the development of the project:

Operating System : Windows Vista Home Premium
Environment : Visual Studio .NET 2010
Language : VB.NET

Back End ; Microsoft Access 2007

4.2 Hardware Configuration

The hardware used of the development of the project is:

Processor : Intel Core 2 Duo 1.50Gz
RAM : 2038 MB SD RAM
Hard Disk ; 120 GB

Monitor ; 15°" Color

Keyboard ; Standard American Type

T 1

4.3 Features of Visual Basic .NET

Visual Basic .NET provides the easiest. most productive ianguage and
tool for rapidly building Windows and Web applications. Visual Basic .NET comes
with enhanced visual designers, increased application performance, and a powerful
integrated development environment (IDE). It also supports creation of applications
for wireless, Internet-enabled hand-held devices. The following are the features of
Visual Basic NET with .NET Framework 1.0 and Visual Basic NET 2003 with NET
Framework 1.1. This also answers why should we use Visual Basic NET, what can

we do with it?
4.3.1 Powerful Windows-based Applications

Visual Basic .NET comes with features such as a powerful new forms designer,
an in-place menu editor, and automatic control anchoring and docking. Visual Basic
NET delivers new productivity features for building more robust applications easily
and quickly. With an improved integrated development environment (IDE) and a
significantly reduced startup time, Visual Basic .NET offers fast, automatic formatting
of code as you type, improved IntelliSense, an enhanced object browser and XML

designer, and much more.
4.3.2 Building Web-based Applications

With Visual Basic .NET we can create Web applications using the shared Web
Forms Designer and the familiar "drag and drop" feature. You can double-click and
write code to respond to events. Visual Basic .NET 2003 comes with an enhanced

HTML Editor for working with complex Web pages. We can also use IntelliSense

technology and tag completion, or choose the WYSIWY(editor for visual authoring

of interactive Web applications.
4.3.3 Simplified Deployment

With Visual Basic .NET we can build applications more rapidly and deploy and
maintain them with efficiency. Visual Basic .NET 2003 and NET Framework 1.1
makes "DLL Hell" a thing of the past. Side-by-side versioning enables multiple
versions of the same component to live safely on the same machine so that
applications can use a specific version of a component. XCOPY-deployment and Web
auto-download of Windows-based applications combine the simplicity of Web page
deployment and maintenance with the power of rich, responsive Windows-based

applications.
4.3.4 Powerful, Flexible, Simplified Data Access

You can tackle any data access scenario easily with ADO.NET and ADO data
access. The flexibility of ADO.NET enables data binding to any database, as well as
classes, collections, and arrays, and provides true XML representation of data.
Seamless access to ADO enables simple data access for connected data binding
scenarios. Using ADO.NET, Visual Basic .NET can gain high-speed access to MS
SQL Server, Oracle, DB2, Microsoft Access, and more.

4.3.5 Improved Coding

You can code faster and more effectively. A multitude of enhancements to the
ode editor, including enhanced IntelliSense, smart listing of code for greater
eadability and a background compiler for real-time notification of syntax errors

ransforms into a rapid application development (RAD) coding machine.

4.3.6 Direct Access to the Platform

Visual Basic developers can have full access to the capabilities available in
NET Framework 1.1. Developers can easily program system services including the
event log, performance counters and file system. The new Windows Service project
template enables to build real Microsoft Windows NT Services. Programming against
Windows Services and creating new Windows Services is not available in Visual

Basic NET Standard, it requires Visual Studio 2003 Professional, or higher.
4.3.7 Full Object-Oriented Constructs

You can create reusable, enterprise-class code using full object-oriented
constructs. Language features include full implementation inheritance, encapsulation.
and polymorphism. Structured exception handling provides a global error handler and

eliminates spaghetti code.
4.3.8 XML Web Services

XML Web services enable you to call components running on any platform
using open Internet protocols. Working with XML Web services is casier where
enhancements simplify the discovery and consumption of XML Web services that are
located within any firewall. XML Web services can be built as easily as you would
build any class in Visual Basic 6.0. The XML Web service project template builds all

underlying Web service infrastructure.

4.3.9 Mobile Applications

Visual Basic .NET 2003 and the .NET Framework 1.1 offer integrated support
for developing mobile Web applications for more than 200 Internet-enabled mobile
devices. These new features give developers a single, mobile Web interface and
programming model to support a broad range of Web devices, including WML 1.1 for
WAP—enabled cellular phones, compact HTML (cHTML) for i-Mode phones, and
HTML for Pocket PC, handheld devices, and pagers. Please note. Pocket PC
programming is not available in Visual Basic .NET Standard, it requires Visual Studio

2003 Professional, or higher.
4.4 Features of Visual Studio .NET 2010

Visual Studio 2008 may be better than sliced bread, but the development
team at Microsoft has already been working on the next release. They have recently
given us Visual Studio 2010 and the NET Framework 4.0 as a Community

Technology Preview (CTP), it boasts several features that would appeal to developers.
4.4.1 New Features in the Visual Studio 2010 IDE

e (Call Hierarchy of methods

* A New Quick Search

® Multi-targeting more accurate

® Parallel Programming and Debugging
* XSLT Profiling and Debugging

4.4.2 Call Hierarchy of Methods

In complicated solutions, a single method may be used from several different
places, and attempting to follow how a particular method is being called can be

difficult. Call hierarchy attempts to address this problem by visually presenting the

1

flow of method calls to and from the method which is being looked at. In other words,

it can look at what calls the method and what the method calls in a treeview format.
4.4.3 A New Quick Search

A nifty little feature that Microsoft has added is the Quick Search window. This
isn't the same as the Search or Search and Replace window that searches for specific
textual strings. It's different in the sense that it searches across symbols (methods,

properties, and class names) across the solution and filters them in the result view.
4.4.4 Multi-targeting more accurate

Although VS 2008 supports targeting different frameworks from the same IDE,
one problem was that the Toolbox displayed types that were available to the NET 3.5
Framework whether or not you were working with a NET 3.5 project. This may have
caused problems when it tried to use something, only to realize that it wasn't actually

available.
4.4.5 Parallel Programming and Debugging

In addition, to make things easier, VS 2010 comes with a set of visual tools that
will help you debug and view simultaneously running threads. This means that the

task instances can be viewed and call the stacks for each task in parallel.
4.4.6 XSLT Profiling and Debugging

Visual Studio 2010 will offer an XSLT profiler to help with writing XSLT in
the context of profiling and optimization. After writing your XSLT, you can use the
"Profile XSLT" option in Visual Studio to supply it with a sample XML file that gets

used for the analysis.

5. METHODOLOGY
5.1 Data Loading

The data which is required for the process is present in the text database. This
cannot be used as such. First it is imported to the access database and saved. Then
data is viewed as a grid format in the user interface of this system. All the fields
are checked for the null value. If any field is empty, a default value is replaced
instead of the null value. Here the database consists of a customer identitication
number and the item that he has purchased. These are the two values that arc

present in the database.
5.2 Appling ISL

In this module we use the ISL method of hiding the sensitive items. The
following are the steps carried out in this module. From the database, generate the
transaction database, in which the items are present in the form of transactions.
Calculate the support and confidence for the items preset using the
formula: Support (X) = || X]| / |D|, Support (XUY) = || XUY]|| / |D| ,Confidence (XUY)
= |IXUY]| /| X | Where, |D| - No. of transactions in Original Database. ||X]|| - No. of
transactions in Database that contains the itemset X. Set the minimum support and
confidence threshold levels for classifying sensitive and non-sensitive data. Select all
the data items above the given threshold levels, and apply the ISL. method. This
method selects the item in the left hand side and replaces it on the right hand side of
the rule. This automatically reduces the support count ot the item on the right side and
increases the support on the left hand side. So this rule will not be considered sensitive

when it is being associated. The association rule is being hidden in the process.

5.3 Applying FHFSI

In this module, we implement the FHFSI to hide the association rules in a more
cfficient time than ISI. The following are the steps followed in the algorithm to
achieve the result. Transactions database is generated along with the prior weight
(PWT). The support alone is calculated for the items in the transaction database and it
is displayed. The minimum support threshold is set and the itemsets above this value
1s considered as sensitive. After this, the all the items above the given value is sorted
out in the descending order of their prior weight. Then randomly an item is chosen and
replaced with a fake item. By doing so the association rule is being modified so it does
not classify under sensitive association rules. These changes are updated in the
database and this is given as the output. It can be clearly seen that the time taken to
complete the hiding process. This is the improvement that is obtained in the proposed

system

A time stamp is inserted for the hiding process in both the methods for
analysing the time taken for hiding the sensitive patterns. It is clearly seen that the
new process hides the sensitive items within a short time when compared to the

existing system. This proves that the proposed system is effective.

6. CONCLUSION

The goals of this project are successtully accomplished. It successtully hides all
the sensitive items. It protects the confidentiality of the database, for all the minimum
threshold levels this algorithm works etfectively. The time taken to hide the sensitive
items, is within a less amount of time compared to the existing system. Fhus we can

say that the computational burden had been greatly reduced.

7. FUTURE ENHANCMENTS

Every application has its own merits and demerits. The project has almost
covered all requirements. But our algorithm still causes some loss rule sets and the
generation of the false items cannot be avoided in this system. Certain extensions on
the algorithms are to be considered to solve these problems. The proect calls for

further investigation into possible improvement of the undesired side eftfects.

SAMPLE CODING

Imports System.Net
Imports System.10
Imports System. Windows.Forms.DataVisualization.Charting
Public Class Home
Dim Datas As New List(Of PatternLib.LinkType)
Dim Orglist As New List(Of ReadData)
Dim OldOrglist As New List(Of ReadData)
Private Sub Buttonl Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button1.Click
RichTextBox1.LoadFile("D:\SensitivePatterns\Patterns\shoppingtest.txt”,
RichTextBoxStreamType.PlainText)
For 1 As Integer = 2 To prdcount
Dim Rd As New ReadData
Rd.Customerld = RichTextBox1.Lines(i).Split(",")(0). ToString()
Rd.Product = RichTextBox1.Lines(i).Split(",")(1). ToString()
Orglist. Add(Rd)
Next
Dim qry = From k In Orglist Select k
Dim conl As New System.Data.OleDb.OleDbConnection
conl.ConnectionString = "Provider=Microsoft.Jet. OLEDB.4.0;Data
Source=D:\SensitivePatterns'Patterns FrequentResultSet\ResultSet.mdb: Persist

Security Info=True"

conl.Open()

Dim delemd As New OleDb.OleDbCommand

delemd.Connection = con|

delemd.CommandText = "delete from originalset"

delcmd.ExecuteNonQuery()

conl.Close()

Dim con As New System.Data.OleDb.OleDbConnection

con.ConnectionString = "Provider=Microsoft.Jet. Ol EDB.4.0:Data

Source=D:\SensitivePattems\Pattems\FrequentResultSet\ResultSeI.1ndb;Pcrsis1
Security Info=True"

con.Open()

For Each tm In qry

Dim cmd As New System.Data.OleDb.OleDbCommand

cmd.Connection = con

cmd.CommandText = "insert into OriginalSet(Cartid,Item)

values(" & tm.Customerld & """ & tm.Product & e

cmd.ExecuteNonQuery()

Next

con.Close()
MessageBox.Show("Processed And Original Set Saved : "
&qry.Count.ToString())

End Sub
DataGridView |.DataSource = qry.ToList

Dim Transset As New List(Of TransactionSet)
Dim OldTransset As New List(Of TransactionSet)

Private Sub LoadTrans button Click(ByVal sender As System.Object.
ByVal ¢ As System.EventArgs)
I-nd Sub
Dim fset As New List(Of String)
Dim FSSET As New List(Of SUVal)
Private Sub Button3 Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
End Sub
Private Sub Button4_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button4.Click
Dim conl As New System.Data.OleDb.OleDbConnection
conl.ConnectionString = "Provider=Microsoft.Jet. OLEDB.4.0:Data
Source=D:\SensitivePatterns\Patterns'\FrequentResultSet\ResultSet.mdb: Persist
Security Info=True" |
conl.Open()
Dim delemd As New OleDb.OleDbCommand
delemd.Connection = con|
delcmd.CommandText = "delete from Resultset"
delemd.ExecuteNonQuery()
conl.Close()
MessageBox.Show(“Data Export Complete™)
For Each cid In SUSet
Dim ct = cid.CID
Dim inr = From k In Orglist Where k.Customerld = ct Select k
For Each t In inr

Dim con As New System.Data.OleDb.OleDbConnection

con.ConnectionString =
"Provider=Microsoft. Jet. OL.ILDB.4.0:Data
Source=D:\SensitivePatterns Patterns\FrequentResultSet ResultSet
.mdb;Persist Security Info=True"
con.Open()
Dim ecmd As New System.Data.OleDb.OleDbCommand
cmd.Connection = con
cmd.CommandText = "insert into Resultset(cartid.item)
values(" & t.Customerld & """ & t.Product & "y
cmd.ExecuteNonQuery()
con.Close()
Next
Next
FSSET.Clear()
Transset.Clear()
1=0
End Sub
Dimj=0
Dimz=0
Private Sub ButtonS Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Button5.Click
TreeView|.Nodes.Clear()
Dim Da = From k In Orglist Group k By key = k.Customerld Into
Group Select Cat = key, Movies = Group
For Each d In Da

Dim tr As New TransactionSet

=i+

[D%e)

Dim 1 As Integer = 0
TreeView!.Nodes. Add(d.Cat., d.Cat)
For Each r In d Movies
1=1+1
TreeViewl.Nodes(d.Cat) Nodes. Add(r.Product)
tr.Prds. Add(r.Product)
Next
tr.Count = 1. ToString
tr.CustomerlD = d.Cat
tr. TId = j. ToString
TreeViewl Nodes(d.Cat). Text = "[T" & j. ToString & "], ID" & d.Cat &
" ,Piror Weight =" & i.ToString
TreeView1.Nodes(d.Cat).ForeColor = Color.Blue
Transset. Add(tr)
Next
TreeView|.ExpandAll()
End Sub
Private Sub Button6_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button6.Click
Dim tl = Now
If ComboBox1.Text.Length = 0 Then
MessageBox.Show("Select Treshhold Value")
Else
DataGridView3.DataSource = Nothing
Dim k = From | In SUSet Order By | Descending Select |
Dim s = k.Distinct
Dim tset As New List(Of Double)

Dim min = Int32 MaxValue
For Each rt As NSUVal In k
tsct. Add(Double.Parse(rt. Support))
Next
Dim sset = From ss In tset Where ss > Double. Parse(ComboBox | Text)
Select ss
For Each h In sset
Dim hh =h
Dim fst = From st In SUSet Where st.Support = hh Select st
For Each hd In fst
For 1 As Integer = 0 To Orglist.Count - |
If Orglist(i).Customerld = hd.CID Then
Dim con As New System.Data.OleDb.OleDbConnection
con.ConnectionString =
"Provider=Microsott.Jet. OLEDB.4.0:Data
Source=D:\SensitivePatterns\Patterns'FrequentResultSet'
ResultSet.mdb;Persist Security Info=True"
con.Open()
Dim remd As New OleDb.OleDbCommand
remd.Connection = con
remd.CommandText = "select * from originalset where
item="" & Orglist(i).Product & "™
Dim reader As OleDb.OleDbDataReader
reader = rcmd. ExecuteReader
Dimid=0
While reader.Read

1id = Int32.Parse(reader(o).'l‘oSlring)

End While

reader.Close()

Dim cmd As New System.Data.OleDb.OleDbCommand
cmd.Connection = con

cmd.CommandText = "update originalset set item="" &

(Orglist(1).Product & "-temp") & " where id=" & id & ™"
cmd.ExecuteNonQuery()
con.Close()
Orglist.RemoveAt(i)
GoTo s
End If
Next
s:
Next
Next
Dim conl As New System.Data.OleDb.OleDbConnection
conl.ConnectionString = "Provider=Microsoft.Jet. OLEDB.4.0:Data
SourceZD:\SensitivePattems\Pattems\FrequentResultSet\
ResultSet.mdb;Persist Security Info=True"
conl.Open()
Dim da As New OleDb.OleDbDataAdapter
Dim selcmd As New System.Data.OleDb.OleDbCommand
selemd.Connection = con
selemd.CommandText = "select cartid,item from originalset"”
selemd.ExecuteNonQuery()

Dim ds As New DataSet

da.SelectCommand = selemd
da.Fill(ds, "originalset”)
DataGridView3.DataSource = ds.Tables(0)
MessageBox.Show("process completed")
End It
Dim t2 = Now
newtl =12 - ti
End Sub
Dim SUSet As New List(Of NSUVal)
Dim OldSuSet As New List(Of SUVal)
Dim tsetval As New List(Of TVal)
Private Sub Button7 Click 1(ByVal sender As System.Object, BvVal e As
System.EventArgs) Handles Button7.Click
For Each tr In Transset
[f tr.Prds.Count >= | Then
If tr.Prds.Count = | Then
Dim temp As New NSUVal
temp.TID = tr. T1d
temp.Itm = tr.Prds(0)
temp.CID = tr.CustomerID
temp.Support = ((Occurance(temp.Itm) / j) * 100). ToString
SUSet.Add(temp)
End If
If tr.Prds.Count > 2 Then
For i As Integer = 0 To tr.Prds.Count - |
Dim temp As New NSUVal
temp. TID = tr. TId

~y 7

temp.Itm = tr.Prds(i)
temp.CID = tr.CustomerlD
temp.Support = ((Occurance(temp.Itm) 1) 100). ToString
SUSet.Add(temp)
Next
For 1 As Integer = 0 To tr.Prds.Count - |
Try
Dim temp As New NSUVal
temp.TID = tr. TId
temp.Itm = "(" & tr.Prds(i) & "," & tr.Prds(i + Iy& ")"
temp.CID = tr.CustomerID
temp.Support = ((DOccurance(tr.Prds(i), tr.Prds(i + 1)/ *
100).ToString
Dim tk As New TVal tk.AssociatedItems =" " & tr.Prds(1)
&"," & trPrds(i+ 1) & " " tsetval. Add(tk)
SUSet. Add(temp)
1=1+1
Catch ex As Exception
End Try
Next
End If
End If
Next
DataGridView4.DataSource = SUSet. ToList
DataGridView9.DataSource = tsetval. ToList
End Sub

Private Function Occurance(ByVal st As String) As Integer

Dim temp As Integer
For Each tr In Transset
Dim ts = From k In tr.Prds Where k.Contains(st) Select k
If ts.Count > 0 Then
temp = temp + |
End If
Next
Return temp
End Function
Private Function OldOccurance(ByVal st As String) As Integer
Dim temp As Integer
For Each tr In OldTransset
Dim ts = From k In tr.Prds Where k.Contains(st) Select k
If ts.Count > 0 Then
temp = temp + |
End If
Next
Return temp
End Function
Private Function DOccurance(ByVal st As String, ByVal stl As String) As
Integer
Dim temp As Integer
For Each tr In Transset
Dim ts = From k In tr.Prds Where k.Contains(st) Select k
Dim tsI = From k1 In tr.Prds Where k1.Contains(stl) Select k1
If ts.Count > 0 And ts1.Count > 0 Then

temp = temp + |

SO

End It
Next
Return temp
End Function
Private Function OldDOccurance(ByVal st As String, ByVal stl As String)
As Integer
Dim temp As Integer
For Each tr In OldTransset
Dim ts = From k In tr.Prds Where k.Contains(st) Select k
Dim tst = From k1 In tr.Prds Where k|1 .Contains(stl) Select k
If ts.Count > 0 And ts1.Count > 0 Then
temp = temp + |
End If
Next
Return temp
End Function
Private Function Confident(ByVal st As String, ByVal st] As String) As
Integer
Dim temp As Integer
For Each tr In OldTransset
Dim ts = From k In tr.Prds Where k.Contains(st) Select k
Dim ts1 = From k1 In tr.Prds Where k1 .Contains(st]) Select k1
[f ts.Count > 0 Or ts1.Count > 0 Then
temp = temp + |
End If
Next

Return temp

End Function

Public Class NSUVal
Implements IComparable(Of NSUVal)
Public Prds As New List(Of String)
Dim str As String
Dim strl As String
Dim str2 As String
Dim str3 As String
Dim str4 As String
Public Property CID() As String
Get
Return str3
End Get
Set(ByVal value As String)
str3 = value
End Set
End Property
Public Property TID() As String
Get
Return str
End Get
Set(ByVal value As String)

str = value

End Set
End Property
Public Property Itm() As String
Get
Return strl
End Get
Set(ByVal value As String)
strl = value
End Set
End Property
Public Property Support() As String
Get
Return str2
End Get
Set(ByVal value As String)
str2 = value
End Set
End Property
Public Function CompareTo(ByVal other As NSUVal) As Integer
Implements System.IComparable(Of NSUVal).CompareTo
Return Me.Support.CompareTo(other.Support)
End Function

End Class

Public Class SUVal
Implements [Comparable(Of SUVal)
Public Prds As New List(Of String)

X

Dim str As String
Dim strl As String
Dim str2 As String
Dim str3 As String
Dim str4 As String
Public Property CID() As String
Get
Return str3
End Get
Set(ByVal value As String)
str3 = value
End Set
End Property
Public Property TID() As String
Get
Return str
End Get
Set(ByVal value As String)
str = value
End Set
End Property
Public Property Itm() As String
Get
Return strl
End Get
Set(ByVal value As String)

strl = value

o Es])

End Sect

End Property

Public Property Support() As String
Get
Return str2
End Get
Set(ByVal value As String)
str2 = value
End Set
End Property
Public Property Confidence() As String
Get
Return str4
End Get
Set(ByVal value As String)
strd = value
End Set
End Property

Public Function CompareTo(ByVal other As SUVal) As Integer Implements
System.IComparable(Of SUVal).CompareTo
Return Me.Support.CompareTo(other.Support)
End Function

End Class

Data.vb

Public Class Dataltem

Implements IComparable

Public Sub New()

End Sub

Public Sub New(ByVal id As Integer)
Me.ld = id

End Sub

Public Sub New(ByVal id As Integer, ByVal itemName As String)
Me.ld = id
Me.ItemName = itemName
End Sub
Private m_itemName As String
Public Property ItemName() As String
Get
Return m_itemName
End Get
Set(ByVal value As String)
m_itemName = value
End Set
End Property
Private m id As Integer
Public Property Id() As Integer
Get
Return m_id
End Get
Set(ByVal value As Integer)

-

m_1d = value
End Set
End Property

Public Overloads Overrides Function Equals(ByVal obj As Object) As
Boolean
Dim di As Dataltem = DirectCast(obj, Dataltem)
Return di.Id. Equals(Me.Id)
End Function
#Region "[Comparable Members"
Public Function CompareTo(ByVal obj As Object) As Integer Implements
System.IComparable.CompareTo
Dim di As Dataltem = DirectCast(obj, Dataltem)
Return Me.Id.CompareTo(di.ld)
End Function
#End Region
End Class

Dataread.vb

Imports System.10

Imports System.Text

Class CSVReader
Public Function Read(ByVal fileName As String) As ItemSet

Dim rowSet As New ItemSet()

Dim colSet As ItemSet = Nothing

YA

Dim col As String =""
Dim head As String() = Nothing

If File Exists(fileName) Then

' Create a file to write to.
Dim sr As New StreamReader(File.OpenRead(fileName).
Encoding.[Detault], True)
Dim row As String =""
Dim k As Integer = 0
While Not sr. EndOfStream
k+=1
row = sr.ReadLine()
Dim cols As String() = row.Split(",". ToCharArray())
Itk =1 Then
head = cols
Else
colSet = New ItemSet()
For1 As Integer = 1 To cols.Length
col = cols(i - 1)
If col.Equals("1") Then
colSet. Add(New Dataltem(i, head(i - 1)))
End If
Next
rowSet.Add(colSet)
End If
End While

sr.Close()

End If
Return rowSet
E-nd Function
End Class

Itemset.vb

Public Class ItemSet
Inherits Arraylist
Private m_icount As Integer = 0
Public Property ICount() As Integer
Get
Return m_icount
End Get
Set(ByVal value As Integer)
m_icount = value
End Set
End Property
Public Overloads Overrides Function Clone() As Object
Dim al As ArrayList = DirectCast(MyBase.Clone(), ArrayList)
Dim [set] As New ItemSet()
For 1 As Integer = 0 To al.Count - |
[set].Add(al(i))
Next
[set].ICount = Me.m_icount
Return [set]
End Function
Public Overloads Overrides Function Equals(ByVal obj As Object) As

Boolean

SO

Dim al As ArrayList = DirectCast(obj, ArrayList)

If al.Count <> Me.Count Then
Return False

End If

For 1 As Integer = 0 To al.Count - |
If Not al(i).Equals(Me(i)) Then

Return False

End If

Next

Return True

End Function

End Class

ReadData.vb

Public Class ReadData
Dim ID As String
Dim Movie As String
Public Property Customerld() As String
Get
Return ID
End Get
Set(ByVal value As String)
ID = value
End Set
End Property
Public Property Product() As String
Get

Y)Y

Return Movie
End Get
Set(ByVal value As String)
Movie = value
End Set
End Property
End Class

STrans.vb
Public Class STrans
Implements IComparable(Of STrans)
Dim id As String
Dim Ct As String
Dim cid As String
Dim sper As String
Public Property TId() As String
Get
Return id
End Get
Set(ByVal value As String)
id = value
End Set
End Property
Public Property Count() As String
Get
Return Ct
End Get

A

Set(ByVal value As String)
Ct = value
End Set
End Property
Public Property CustomerID() As String
Get
Return cid
End Get
Set(ByVal value As String)
cid = value
End Set
End Property
Public Property SPercentage() As String
Get
Return sper
End Get
Set(ByVal value As String)
sper = value
End Set
End Property
Public Function CompareTo(ByVal other As STrans) As Integer Implements
System.IComparable(Of STrans).CompareTo
Return Me.SPercentage.CompareTo(other.SPercentage)
End Function

End Class

TimeData.vb

Public Class TimeData
Dim id As String
Dim Ct As String
Dim cid As String
Public Prds As New List(Of String)
Public Property Items As String
Get
Return id
End Get
Set(ByVal value As String)
id = value
End Set
End Property
Public Property OldTime As String
Get
Return Ct
End Get
Set(ByVal value As String)
Ct = value
End Set
End Property
Public Property NewTime As String
Get
Return cid
End Get
Set(ByVal value As String)

cid = value
End Set
End Property

End Class

TransactionSet.vb

Public Class TransactionSet
Implements IComparable(Of TransactionSet)
Dim 1d As String
Dim Ct As String
Dim cid As String
Public Prds As New List(Of String)
Public Property TId() As String

Get
Return id
End Get
Set(ByVal value As String)
id = value
End Set
End Property
Public Property Count() As String
Get
Return Ct
End Get
Set(ByVal value As String)

Ct = value

End Set
End Property
Public Property CustomerlD() As String
Get
Return cid
End Get
Set(ByVal value As String)
cid = value
End Set
End Property
Public Function CompareTo(ByVal other As TransactionSet) As Integer
Implements System.lComparable(Of TransactionSet).CompareTo
Return Me.Count.CompareTo(other.Count)
End Function

End Class

NAP SHOTS

Existing Process Proposed System Time Analysis

0B Size | Set

! Min_Support !~ Min_Confidence v
pp

; T
Start Process “ lProcess Patterns

PR |

; -

|
}[Process Support Hiding Patterns ! ExportPatterns |
L - - S

Load Processed Data Transaction DB Suppor & Confidence Associated items Changed Set

e;ﬁw:r:r‘-:

E.1.1 Start Screen

Existing Process Froposed System Time Ans ysis

DBSize 106 . Set

Min_Support - Min_Canfidence .

Start Proc

Load Processed Data

cardid Product
10150 softdrink
10150 fruitveg
10236 frozenmeal
10236 beer

10360 fish

10360 cannedveg
10360.beer

10360 frozenmeal
10451 confectionery
10451 frozenmeal
10451 beer

10451 cannedveg
10609.5sh

10609 fruitveg
10614 softdrink
10645 fruitveg
10645 frozenmeal
10645 beer

10645 cannedveg
10645 freshmeat
10717 4ish

10717 fruntveg
10717 freshmeat
10872 fish

10872 frozenmeal
10872 cannedveg
10872 beer

10902 fruitveg
10902 wine

10915 fruitveg
10915.cannedmeat
10915 fish

10915 dairy

1NQ1E fraranmanal

Co -
! Process Support | | Hiding Patterns
H ! I

I Export Patterns

Iransachon DB Support & Confidence Associated ltems Changed Set

E.1.2 Data Loading

tasting Process Proposed System Time Analysis

OB Size 100 | _Set_ } Min_Support ~ Min_Confidence

e | .
! Start Process | Process Patterns | Process Support ! Hiding Patierns
| [pp 9

} .

, Expor Patens

Load Processed Data Transaclion DB Support & Confidence Associated lteris Changed Set

| Customerld Product

> fruitveg
10236 frozenmeatl
10226 heer
10260 fish
10360 cannedveg
10260 teer
10350 frozenmeal
10451 confection
i 10251 frozenmeal
1 10451 beer
10451 cannedveg
10603 fish
; 10609 fruitveg
i 10614 softdnnk
| 10645 fruitveg
3 10645 frozenmeal
10645 beer
10645 cannedveg
; 10645 freshmeat
| 10717 fish
! 10717 fiuitveg
; 10717 freshmeat
i 10872 fish
} 10872 frozenmeal

E.1.3 Grid View

Existing Process Proposed System Time Analysis

08 Size 100 Set J Min_Suppont - Min_Corfidence -

! i i N [o) H
} Start Pracess ‘ i Process Pafterns ‘ Process Support } Hiding Patterns t-xport Patterns

Load Processed Data Transaction DB Suppont & Confidence Asscciated Hems Changed Set

frutveg

frozenmeal
beer

fish
cannedveg
beer
frozenmeal

confectionery
frozenmeal
beer
cannedveg

fish
fruitveg

softdrink

fruitveg
frozenmeal
beer
cannedveg
freshmeat

fish

fruitveg
freshmeat

E.1.4 Transaction

RS

Existing Pracess Proposed System Tine Analysis

DB Size 100

L

Min_Support - M n_Confidence -

. R —
ss Suppori ‘ t Hiding Patterns | ! Export Paterns

Stan Pro

Load Processed Data T-ansacton DB Support & Confidence Associated ftems Changed Set

ih cio D Jtm Support Confidence
» i frutyeq 40625
10360 3 fish 10,625
i 10360 3 cannudveg 34375
10360 3 secr 10,625
10360 3 fozenmenl 375
10360 3 Asheanned 125 26
10360 3 beerfroren 28125 5625
10451 4 confection 3 375
10451 4 frozenmeal 376
10451 a eer 10625
10451 1 cannedveg 34375
10451 a cortection 626 552380952
10451 4 beercanne 78 126 60
10614 6 softdnnk 125
10645 7 irutveg 40625
10645 7 ozenmesl 375
10645 7 beer 10625
10645 7 cannedveg 3375
10645 7 ireshmeat 25
10645 7 fruitveg.fro 9 375 13.6363636
10645 7 beer.canne 28 125 60
10717 8 fish 10625
10717 8 frunveg 10625

16717 8 freshmeat 25

E.1.5 Calculation of Support and Confidence

WW"

Existing Process Proposed System Time Analysis

DB Size 100 lf Set | Min_Support v Min_Cenfidence -

StartProcess ! ‘ Process Patterns ; Process Support ! , Hiding Patterns
| J) |

i Export Patterns

toad Processed Data fransaction DB Support & Confidence Associated ltems Changed Set

[oh19) TID Itm Support Confidence
0 3 fish.canned 125 20
i 10360 3 teerfrozen 28125 56.25
10451 4 confection 625 9 52380357
10451 4 beercanne. 28125 60
10645 7 fruitveq.fro 9.375 136363636
10645 7 teercanne 28 125 60
10717 § fish.frutveg 1875 30
10872 9 fish frozen 125 18.047619C
10872 9 cannedveg 28 125 60
10§15 11 fruitveg.ca 3125 714285714
10915 11 fish.dairy 125 26 6666666
10944 12 dairy froze.. 625 12.5
10944 12 beerfresh 125 235294117
i 10987 13 dairy.confe 9.375 214285714
| 10987 13 fruitveg.wine 125 26.6666666
! 1119 14 softdrink fish 3.125 6.25
! 11220 15 canfection 625 952380952
11220 15 teefrcanne 28125 60
11230 16 cairy fish 125 26.6666666
1241 17 fish frozen 12.5 19.0476190
11241 7 beer.fresh 125 235294117
: 124 17 frutveg.ca 625 9.0909090%
i 11565 20 fish dairy 125 26 6666666
11566 20 cannedveg.. 3.125 6.25

E.1.6 Associated Items

Existing Pracess Proposed System Time Analysis

0B Size 100 Sel Min_Support 14+ Min_Confidence 3 -
Start Process ! ’ Process Patterns 1 Process Support ‘7 Hiding Patterns }L Export Patterns ‘
Load Processed Data Transaction DB Support & Confidence Associsted ltems Changed Set
1 ciD TiD Itm Support Confiderce
Y 3 fish.canned 125 20
10360 3 beerfrozer 28125 56 25
10451 4 caonfection 625 9 52328095
10451 4 teercanne 28125 60
10645 7 fruitveg.fro.. 9.375 13.636363¢
10645 7 teercanne 28125 60
10717 8 tish fruitveq 8§75 30
10872 9 fish frozen 125 19 476190
10872 9 cannedveg 28125 60
10915 11 fruitveq.ca... 3125 7.14285714
10815 1 fish.dairy 125 26 6666666
10944 12 cairy froze 625 125
10944 12 beer.fresh 125 235294117
10987 13 dairy.confe 9375 21.4285714
10987 13 fruitveg wine 125 26 6666666
i 11119 14 softdrink fish 3.125 625
i 11220 15 confectian 625 9.52380952
i 11220 15 beer.canne 28 125 60
: 11230 16 dairy fish 25 26 6666665
i 11241 17 fish frozen 125 19 047619
! 11241 17 heer fresh 125 235294117
i‘ 11241 17 fruitveg.ca 625 9.09050305
1 11565 20 fish.dairy 125 26 6666666
1 11565 20 cannedveg 3125 625

E.1.7 Hiding Process

Existing Process

DB Size 100

—— ey —— —

Start Pracess i Process Patterns

Proposed System Time Anziysis

[Set | Min_Suppert 14« Min_Confidence 30 ~

[i T
|

Process Support ‘ ‘ Hiding Patierns Export Patterns

Load Processed Data Traasaction DB 3uppornt & Confidence Associaled tems Changed Se:

H canid nem

: 10457 confectionery

\ 10451

C 0853 beer
10451 cannedveg
10609 fish
10609 fruitveg
10614 softdrink
10645 fruitveg
10645 beercd
10645 beer
10645
10645 freshmeat
10717 fish
10717 fruitveq
10717 freshmeat
10872 fish
10872 beercd
10872
10872
10902 frustveg
10802 wine
10915 fruitveg

> 10915
10Q1E. fick

E.1.8 Modified Database

txisting Process

S

|
|
|
L

Proposed System Tine Analysis

Min _Support e

tart Process i
J

Process

1
; ‘L Process Patterns
1

Process Support ‘

Load

cannedv
:)

Processed Data

fruitveg

PREEY
irozenmeal
peer
i LRENEN i i
fish
cannedvieqg
beer
frozenmeal

RN R R
confectionery
frozenmeal
beer
ey

truitveq

ETE A S IR TR

OO T Har W
Sioann s

P

softdiink
16

fruitveg
frozenmeal
beer
cannedveg
freshmeat

fish
fruitveg
freshmeat

A VE Parer Wiy

Pror Weight

ol

Caic_Support

Association Rule

P.1.]1 Transactions and prior weight

Changed Set

Hiding Patterns ‘ bxport Patierns !

Existing Process

{ Start Pracess

Proposed System Time Analysis

J

-
Process j(Process Patterns

Load

Processed Data PrnorWeight Calc_Support Association Rule Changed Set

Lz
s
el
3
g
i

Associatedltems

fish , cannedveg
beer . frozenmea!
confect:onery frozenmeal
beer . cannedveg
fruitveg . frozenmeal
beer . cannedveg
fish . fruitveg

fish . frozeameal
cannedveg . beer
frutveg . cannedmeat
fish . datry

dairy . frozenmeal
beer . fresameat
dairy . confectionery
fruitveg . wine
softdrink . fish
coonfectionery . frozenmeal
beer . cannedveg
dairy . fish

fish . frozenmeali

beer. freshmeat

’
fish . dairy
cannedveg . wine
dairy . fish
£ frauh .

| Export Patterns

P.1.2 Associated [tems Sets

T R

el

Existing Process Proposed System Time Analysis

Min_Support -

1

¢ Export Patterns

- i
il Process Patterns || Process Support
PR 4

Start Process || Process Hiding Patterns

— I =

Load Processed Data Prior Weight Calc_Support Association Rule Changed Set

CID TiD Itm Suppont
10150 1 fruitveq 40.625
i »
| 10360 3 beer 40625

10360 3 frozermeal 375
10360 3 [beedfrozenmenl) 28125
10451 4 contectionery 34 375
10451 4 frczenmeal 375
10451 4 beer 40.625
10451 4 cannedveg 34375
10451 4 { confectionery frozenmeszl) 625
10451 4 { beercannedveq } 28125
10614 6 softdnink 125
10645 7 fruitveg 40.625
10645 7 frozenmeal 375

i 10645 7 beer 40625

i 10645 7 cannedveg 34 375

10645 7 freshreat 25
10645 7 { frutveg.frozenmeal) 9375
10645 7 { beer.cannedveag) 28.125
10717 b fish 40.625
10717 8 frutveg 40.625
10717 3 ireshmeat 25
10717 8 { fish fruitveg) 18.75

P.1.3 Support calculation

f2nsting Process

Pioposed System Time Analysis

Min_Support 15 ~

Start Process | i Process ‘ ¢ Process Patterns

Process Support . Hiding Pattens | Export Patterns
i Cod e

Load Ptocessed Dats Prior Weight Calc_Support Association Rule Changed Se:

cand item
10451 confecthionery

| 10451 beer

| 10603 fish
10609 fruitveg
10634 softdrnk
10645 fruitveg
10645 beenemp

»

10645 freshmeattemp
10717 fish
10717 fruitvegtemp
10717 ‘reshmeatiemp
10872 fishtemp
10872 frozenmealtemp
10872 cannedvegtemp
10872 beertemp

i 10902 fruitvegtemp
10902 wine
10915 iruitvegtemp
10915 cannedmeattemp

: 10915 fishtemp

| 10915 darytemp

hIsie By 4 1.

P.1.4 Modified Database

—ome

Existing Process Proposed System Time Analysis

Store Time Result J l Show Time Result
1D ltems OldTime NewTime f
» 500 00001272 00008548 ‘
8 250 00:00:2125... 00:00:12.74 |
200 00:0023161. 0000 1095
13 100 000028 65.. 0000:0717

P.1.5 Time Analysis Result

8. REFERENCES

1. Jiawei Han and Micheline Kamber “Data Mining concepts and
Techniques’.

2, David [.Schenider ‘An Introduction to Programming using Visual Basic
NET".

3. Shyue-Liang Wang, “Hiding sensitive predictive association rules”,

Systems, Man and Cvbernetics, 2005 [EEE International Conference on

Information Reuse und Integration, vol. 1, pp. 164-169, 2005.

4. Ali Amiri, “Dare to share: Protecting sensitive knowledge with data
sanitization", Decision Support Systems archive vol. 43, issue |, pp. 181-191,

2007.

5. Yi-Hung Wu, Chia-Ming Chiang, and Arbee L.P. Chen,"Hiding
Sensitive Association Rules with Limited Side Effects™, [EEE Transactions on

Knowledge and Data Engineering, vol. 19, issue 1, pp. 29 - 42, 2007.

6. www.google.co.in

