P- 3130

P. 3130

HIDING SENSITIVE ASSOCIATION RULES WITH LIMITED SIDE EFFECTS

A PROJECT REPORT

Submitted by

C.S.PRIYADARSHINI

71206104036

D. HANU KARUNYA LAKSHMI

71206104303

In partition fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY, COIMBATORE
ANNA UNIVERSITY, CHENNAI-600 025

APRIL 2010

BONAFIDE CERTIFICATE

Certified that this project report entitled "Hiding Sensitive Association Rules With Limited Side Effects" is the bonafide work of C.S.Priyadarshini and D.Hanu Karunya Lakshmi, who carried out the research under my supervision. Certified also, that to the best of my knowledge the work reported herein does not form part of any other project report or dissertation on the basis of which a degree or award was conferred on an earlier occasion on this or any other candidate.

S. Jegy

SIGNATURE

Dr.S.Thangasamy, Ph.D

DEAN &

HEAD OF THE DEPARTMENT

Department of

Computer Science & Engineering,

Kumaraguru College Of Technology,

Coimbatore-641006.

SIGNATURE ISIA IVO

Mrs. M.Anidha, M.E.

Guide

Lecturer

Department of

Computer Science & Engineering,

Kumaraguru College Of Technology,

Coimbatore-641006.

S. WUUGU, INTERNAL EXAMINER

EXTERNAL EXAMINER

DECLARATION

We hereby declare that the project entitled "Hiding Sensitive Association

Rules With Limited Side Effects" is a record of original work done by us and to

the best of our knowledge, a similar work has not been submitted to Anna

University or any Institutions, for fulfillment of the requirement of the course

study.

The report is submitted in partial fulfillment of the requirement for the

award of the Degree of Bachelor of Computer Science and Engineering of Anna

University, Chennai.

Place: Coimbatore

Date: 16.4.2010

(C.S.Priyadarshini)

pour.

Hame Karuf Kakki (D.Hanu Karunya Lakshmi)

ACKNOWLEDGEMENT

We extend our sincere thanks to our Principal, **Dr.S.Ramachandran**, Kumaraguru College Of Technology, Coimbatore, for being a constant source of inspiration and providing us with the necessary facility to work on this project.

We would like to make a special acknowledgement and thanks to **Dr.S.Thangasamy Ph.D.**, Dean, Professor and Head of Department of Computer Science & Engineering and **Mrs.P.Devaki (Ph.D)**, project coordinator for their support and encouragement throughout the project.

We express our deep gratitude and gratefulness to our Guide Mrs.M.Anidha M.E., Department of Computer Science & Engineering, for her supervision, enduring patience, active involvement and guidance.

We would like to convey our honest thanks to **all Faculties** of the Department for their enthusiasm and wealth of experience from which we have greatly benefited.

We also thank our **friends and family** who helped us to complete this project fruitfully.

ABSTRACT

With rapid advance of network and data mining techniques, the protection of the confidentiality of sensitive information in a database becomes a critical issue to be resolved. Association analysis is a powerful and popular tool for discovering relationships hidden in large data sets. The relationships can be represented in a form of frequent itemsets or association rules. One rule is categorized as sensitive if its disclosure risk is above some given threshold. Privacy preserving data mining is an important issue which can be applied to various domains, such as Web commerce, crime reconnoitering, health care and customer's consumption analysis.

The main approach to hide a sensitive association rule is to reduce the support of each given sensitive association rule. This is done by modifying transactions or items in the database. However, the modifications will generate side effects, i.e. non-sensitive data falsely generated. Furthermore, it would always take huge computing time to solve the problem. In our work, we propose a novel algorithm, to hide the sensitive data and generate a minimum amount of side effects.

TABLE OF CONTENTS

CHAPTER NO.		PAGE NO.	
1.	ABS	TRACT	vi
	LIST	vii	
	INTR	ODUCTION	1
	1.1	OVERVIEW OF DATAMINING	1
	1.2	WHAT MOTIVATED DATA MINING	2
	1.3	DATA ANALYSIS TOOLS	2
		1.3.1 Classification	2
		1.3.1.1 Learning	2
		1.3.1.2 Classification	3
		1.3.2 Clustering	3
		1.3.3 Regression	4
		1.3.4 Association Rules	4
	1.4	Frequent Itemsets	5
		1.4.1 Sensitive Frequent Itemsets	5
2.	PROB	6	
	2.1	PROBLEM DEFINITION	6
	2.2	GOALS OF THE PROJECT	6
	2.3	EXISTING SYSTEM	6
	2.4	PROBLEMS IN EXISTING SYSTEM	7
	2.5	PROPOSED SYSTEM	7
3.	LITEI	RATURE REVIEW	8
	3.1	APPLICATIONS OF ASSOCIATION RULE	ES 8
	3.2	UNDESIRED EFFECTS OF ASSOCIATION	1
		RULES	8

4.	5421	SYSTEM CONFIGURATION				
	4.1	SOFT	WARE CONFIGURATION	I		
	4.2	HARDWARE CONFIGURATION				
	4.3	FEAT	FEATURES OF VISUAL BASIC .NET			
		4.3.1	Powerful windows based applications	12		
		4.3.2	Building Web-based Applications	12		
		4.3.3	Simplified Deployment	13		
		4.3.4	Powerful, Flexible, Simplified Data Access	13		
		4.3.5	Improved Coding	13		
		4.3.6	Direct Access to Platform	14		
		4.3.7	Full Object-Oriented Constructs	14		
		4.3.8	XML Web Services	14		
		4.3.9	Mobile Applications	14		
	4.4	FEAT	FEATURE OF VISUAL STUDIO .NET 2010			
		4.4.1	New Features in the Visual Studio 2010	15		
		4.4.2	Call Hierarchy of Methods	15		
		4.4.3	New Quick Approach	10		
		4.4.4	Multi-Targeting more Accurate	16		
		4.4.5	Parallel Programming and Debugging	16		
		4.4.6	XSL Profiling and Debugging	16		
5.	METI	METHODOLOGY				
	5.1	Data Loading				
	5.2	Applying ISL				
	5.3	Apply	ing FHFSI	18		
6.	CONC	CONCLUSION				
7.	FUTU	FUTURE ENHANCEMENTS				
8.	REFE	REFERENCES				

LIST OF ABBREVIATIONS

MST Minimum Support Threshold

MCT Minimum Confidence Threshold

PWT Prior Weight

SFI Sensitive Frequent Itemsets

D Database

D' Modified Database

ISL Increased Support of LHS

DSR Decreased Support of RHS

1. INTRODUCTION

1.1 Overview of Data Mining

Data mining (sometimes called data or knowledge discovery) is the process of analyzing data from different perspectives and summarizing it into useful information - information that can be used to increase revenue, cuts costs, or both. Data mining tools perform data analysis and uncover important data patterns, contributing greatly to business strategies, knowledge bases, scientific and medical research. The tools bring out the hidden patterns from larger data sources and these patterns help in decision making, in a process.

While data mining can be used to uncover hidden patterns in data samples that have been 'mined', it is important to be aware that the use of a sample of the data may produce results that are not indicative of the domain. Data mining will not uncover patterns that are present in the domain, but not in the sample. There is a tendency for insufficiently knowledgeable 'consumers' of the results to treat the techniques as a sort of crystal ball and attribute 'magical thinking' to it. Like any other tool, it only functions in conjunction with the appropriate raw material: in this case, indicative and representative data that the user must first collect. Further, the discovery of a particular pattern in a particular set of data does not necessarily mean that pattern is representative of the whole population from which that data was drawn. Hence, an important part of the process is the verification and validation on other samples of data.

1.2 What Motivated Data Mining?

Data mining has attracted a great deal of attention in the information industry and in society as a whole in the recent years, due to the wide availability of huge amounts of data and the imminent need for turning such data into useful information and knowledge. The information gained can be used for applications ranging from market analysis, fraud detection, and customer retention, to production control and science exploration.

Data mining can be viewed as a result of natural evolution of information technology. The database system industry has witnessed an evolutionary path in the development of the following functionalities: data collection and database creation, data management (including data storage and retrieval, and database transaction processing) and advanced data analysis.

1. 3 Data Analysis Tools

Data mining commonly involves four classes of tasks:

1.3.1 Classification

Classification arranges the data into predefined groups. For example, an email program might attempt to classify an email as legitimate or spam. This helps to predict future data trends. Such analysis can help provide us with a better understanding of data at large. Data Classification is a two step process:

1.3.1.1 Learning

A classifier is built describing a set of data classes or concepts known as training set. The training data is analyzed by the classification algorithm and the learned model or classifier is represented in the form of classification algorithm.

1.3.1.2 Classification

Test data are used to estimate the accuracy of the classification rules. If the accuracy is acceptable, the rules can be applied to the classification of new data tuples.

Common algorithms include

- (1) Decision tree learning classification
- (2) Nearest neighbor classification
- (3) Naive Bayesian classification and
- (4) Neural networks.

1.3.2 Clustering

The process of grouping a set of physical or abstract objects into classes of similar objects is called clustering. A cluster is a collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in other clusters. A cluster of data objects can be treated collectively ad one group and so may be considered as a form of data compression. Although classification is an effective means fir distinguishing groups of classes of objects, it requires the often costly collection and labeling of large set of training patterns, which the classified uses to model each group. It is like classification but the groups are not predefined, so the algorithm will try to group similar items together.

In general, the major clustering methods can be classified into the following categories

- (1) Partitioning methods
- (2) Hierarchical methods

- (3) Density-based methods
- (4) Grid-based methods
- (5) Model-based methods.

1.3.3 Regression

Regression analysis is a statistical methodology that is most often used for numeric prediction. It helps us understand how the typical value of the dependent variable changes when any one of the independent variables is varied, while the other independent variables are held fixed. Most commonly, regression analysis estimates the conditional expectation of the dependent variable given the independent variables—that is, the average value of the dependent variable when the independent variables are held fixed. In all cases, the estimation target is a function of the independent variables called the regression function. In regression analysis, it is also of interest to characterize the variation of the dependent variable around the regression function, which can be described by a probability distribution.

1.3.4 Association Rules

Association rule learning is a popular and well researched method for discovering interesting relations between variables in large databases. An example for association rule is,

Computer => antivirus_ software [support=2%, confidence= 60%]

This rule indicates that customers who purchase computers also tend to buy antivirus software at the same time. Rule **support** and **confidence** are two measures of rule interestingness. They respectively reflect the usefulness and certainty of discovered rules. A support of 2% means that, 2% of all the transactions under the analysis show that computer and antivirus are purchased together. A confidence of 60% means that,

60% of the customers who purchase a computer also bought the software. Typically, association rules are considered interesting if they satisfy both minimum support threshold (MST) and minimum confidence threshold (MCT). Such threshold can be set by users of domain experts.

Such information can be used as the basis for decisions about marketing activities such as, e.g., promotional pricing or product placements. In addition to the above example from market basket analysis association rules are employed today in many application areas including Web usage mining, intrusion detection and bioinformatics.

1.4 Frequent Itemsets

Frequent patterns are patterns that appear in a data set frequently. For example, a set of items, such as milk and bread that appear frequently together in a transaction data set is a frequent itemset or association rule. For example, first buying a PC, then a digital camera, and then a memory card, if it occurs frequently in a shopping history database a frequent pattern is formed. Finding such frequent pattern plays an essential role in mining associations, correlations, clustering and other mining tasks as well.

1.4.1 Sensitive Frequent Itemsets (SFI)

Patterns that appear frequently in a data set are frequent patterns. Not all these patterns obtained are sensitive. The pattern is categorized as sensitive if its disclosure risk is above some given threshold. With an association analyzer, if an itemset above a given minimal support, we call the itemset as a frequent itemset. Protection of confidentiality of these sensitive information has become a critical issue to be resolved. If such information goes to the unintended persons, serious damage may tend to arise. So protection of such data is the main idea.

2. PROBLEM OVERVIEW

2.1 Problem Definition

The data mining technologies have been an important technology for discovering previously unknown and potentially useful information from large data sets or databases. They can be applied to various domains, such as Web commerce, crime reconnoitering, health care, and customer's consumption analysis. Although these are useful technologies, there is also a threat to data privacy. For example, the association rule analysis is a powerful and popular tool for discovering relationships hidden in large data sets. Therefore, some private information could be easily discovered by this kind of tools. The protection of the confidentiality of sensitive information in a database becomes a critical issue to be resolved.

2.2 Goals of the project

- To successfully hide the sensitive association rule, by reducing the support of the sensitive itemsets.
- To reduce the time taken for hiding the rules.

2.3 Existing System

Many existing systems successfully hide the sensitive association rules. But those algorithms have certain limitations. Vassilios S. Verykios et al. presented algorithms to hide sensitive association rules, but they generate high side effects and require multiple database scans. Instead of hiding sensitive association rules, Shyue-Liang Wang proposed algorithms to hide sensitive items. The algorithm needs less number of database scans but the side effects generated is higher. Ali Amiri also

4

presented heuristic algorithms to hide sensitive items. Finally, Yi-Hung Wu et al. proposed a heuristic method that could hide sensitive association rules with limited side effects. However, it spent a lot of time on comparing and checking if the sensitive rules are hidden and if side effects are produced. Besides, it could fail to hide some sensitive rules in some cases.

2.4 Problems in the existing system

Although the existing systems successfully hide the sensitive patterns, they produce side effects. In some cases large number of database scans is required. At times, the system could fail to hide some sensitive rules, and produces large amounts of false positives. Due to large number of database scans the time taken to hide the sensitive rules becomes high. Due to the large number of side effects produced, we go in for the proposed system.

2.5 Proposed System

We propose a simple yet very effective method novel that leads fast hiding sensitive frequent itemsets (SFI). This method can hide all SFI without generating all frequent itemsets. It only generates limited side effects. It allows any minimum support thresholds, and only one database scan is required. Within this scan all the necessary information for hiding is taken. The time taken to hide the items is optimized.

3. LITERATURE REVIEW

A variety of data mining problems have been studied to help people get an insight into the huge amount of data. One of them is association rule mining. An itemset is a set of products (items) and a transaction keeps a set of items bought at the same time. The support of an itemset I (denoted as SupI) in a transaction database is the percentage of transactions that contain I in the entire database. An itemset is frequent if its support is not lower than a minimum support threshold (denoted as MST). For two itemsets X and Y where $X \setminus Y \not = 1/4$;, the confidence of an association rule $X \not = 1/4$ Y (denoted as ConfX!Y) is the probability that Y occurs given that X occurs, and is equal to SupX[Y divided by SupX. We say that $X \not = 1/4$ Y holds in the database if X Y is frequent and its confidence is not lower than a minimum confidence threshold (denoted as MCT). Such a rule is called the strong association rule (strong rule for short). Association rule mining is to discover all the strong rules in the database. However, the misuse of them may bring undesired effects to people.

3.1 Applications of Association Rules

Association rules are typically used in market analysis (market basket analysis), primarily because of the utility and clarity of its results. They express how important products or services relate to each other, and immediately suggest particular actions. Association rules are used in mining categorical data - items. Besides the sole process of generating association rules, the process of application of association rules technique involves two important concerns:

1) Choice of the right set of items

The data used for association rule analysis is typically the detailed transaction data captured at the point of sale. Gathering and using this data is a critical part of applying association rule analysis, depending crucially on the items chosen for analysis. What constitutes a particular item depends on the business (problem) need. Items in stores usually have codes that form hierarchical categories (taxonomy). These categories help in generalization, and reduction of the volume of items used for a study. Dozens or hundreds of items may be reduced to a single generalized item, often corresponding to a single department or type of a product.

2) Practical limits imposed by a large number of items appearing in combinations large enough to be interesting

Number of combinations for larger itemsets rises exponentially with the number of items. Calculating the support, confidence, and improvement for a grocery store with thousands of different items, quickly rises to millions, as the number of items in the combinations grows. For example for 1000 products, total number of combinations of three products is:

$$\binom{n}{k} = \binom{1000}{3} = 166.167 *10^{6}$$

Calculating the counts for five or more items can be completely out of hand. In that case the use of taxonomies reduces the number of items to a manageable size.

Generally, the strengths of association rule analysis are:

- It produces clear and understandable results.
- It supports undirected data mining (no target attribute).
- It works on data of variable length.
- The computation algorithm it uses is quite simple.

_

3.2 Undesired effects due to misuse of association rules

Consider a supermarket and two beer suppliers A and B. If the transaction database of the supermarket is released, A (or B) can mine the association rules related to his/her beers and apply the rules to the sales promotion and the goods supply. As a result, a supplier is willing to exchange a lower price of goods for the database with the supermarket. From this aspect, it is good for the supermarket to release the database. However, the conclusion can be opposite if a supplier uses the mining methods in a different way. For instance, if A finds the association rules related to B's beers, saying that most customers who buy diapers also buy B's beers, he/she can run a coupon that gives a 10 percent discount when buying A's beers together with diapers. Gradually, the amount of sales on B's beers is down and B cannot give a low price to the supermarket as before.

Finally, A monopolizes the beer market and is unwilling to give a low price to the supermarket as before. From this aspect, releasing the database is bad for the supermarket. Therefore, for the supermarket, an effective way to release the database with sensitive rules hidden is required. This is not only in the case of a supermarket, this is just a small example to make us understand the importance of the confidentiality of the data present in database. More serious problems can arise when the confidentiality of the defence industry or crime database is lost.

4. SYSTEM CONFIGURATION

4.1 Software Configuration

The software used for the development of the project:

Operating System

Windows Vista Home Premium

Environment

Visual Studio .NET 2010

Language

VB.NET

Back End

:

Microsoft Access 2007

4.2 Hardware Configuration

The hardware used of the development of the project is:

Processor

: Intel Core 2 Duo 1.50Gz

RAM

2038 MB SD RAM

Hard Disk

120 GB

Monitor

15" Color

Keyboard

:

Standard American Type

4.3 Features of Visual Basic .NET

Visual Basic .NET provides the easiest, most productive language and tool for rapidly building Windows and Web applications. Visual Basic .NET comes with enhanced visual designers, increased application performance, and a powerful integrated development environment (IDE). It also supports creation of applications for wireless, Internet-enabled hand-held devices. The following are the features of Visual Basic .NET with .NET Framework 1.0 and Visual Basic .NET 2003 with .NET Framework 1.1. This also answers why should we use Visual Basic .NET, what can we do with it?

4.3.1 Powerful Windows-based Applications

Visual Basic .NET comes with features such as a powerful new forms designer, an in-place menu editor, and automatic control anchoring and docking. Visual Basic .NET delivers new productivity features for building more robust applications easily and quickly. With an improved integrated development environment (IDE) and a significantly reduced startup time, Visual Basic .NET offers fast, automatic formatting of code as you type, improved IntelliSense, an enhanced object browser and XML designer, and much more.

4.3.2 Building Web-based Applications

With Visual Basic .NET we can create Web applications using the shared Web Forms Designer and the familiar "drag and drop" feature. You can double-click and write code to respond to events. Visual Basic .NET 2003 comes with an enhanced HTML Editor for working with complex Web pages. We can also use IntelliSense

technology and tag completion, or choose the WYSIWYG editor for visual authoring of interactive Web applications.

4.3.3 Simplified Deployment

With Visual Basic .NET we can build applications more rapidly and deploy and maintain them with efficiency. Visual Basic .NET 2003 and .NET Framework 1.1 makes "DLL Hell" a thing of the past. Side-by-side versioning enables multiple versions of the same component to live safely on the same machine so that applications can use a specific version of a component. XCOPY-deployment and Web auto-download of Windows-based applications combine the simplicity of Web page deployment and maintenance with the power of rich, responsive Windows-based applications.

4.3.4 Powerful, Flexible, Simplified Data Access

You can tackle any data access scenario easily with ADO.NET and ADO data access. The flexibility of ADO.NET enables data binding to any database, as well as classes, collections, and arrays, and provides true XML representation of data. Seamless access to ADO enables simple data access for connected data binding scenarios. Using ADO.NET, Visual Basic .NET can gain high-speed access to MS SQL Server, Oracle, DB2, Microsoft Access, and more.

4.3.5 Improved Coding

You can code faster and more effectively. A multitude of enhancements to the code editor, including enhanced IntelliSense, smart listing of code for greater readability and a background compiler for real-time notification of syntax errors ransforms into a rapid application development (RAD) coding machine.

4.3.6 Direct Access to the Platform

Visual Basic developers can have full access to the capabilities available in .NET Framework 1.1. Developers can easily program system services including the event log, performance counters and file system. The new Windows Service project template enables to build real Microsoft Windows NT Services. Programming against Windows Services and creating new Windows Services is not available in Visual Basic .NET Standard, it requires Visual Studio 2003 Professional, or higher.

4.3.7 Full Object-Oriented Constructs

You can create reusable, enterprise-class code using full object-oriented constructs. Language features include full implementation inheritance, encapsulation, and polymorphism. Structured exception handling provides a global error handler and eliminates spaghetti code.

4.3.8 XML Web Services

XML Web services enable you to call components running on any platform using open Internet protocols. Working with XML Web services is easier where enhancements simplify the discovery and consumption of XML Web services that are located within any firewall. XML Web services can be built as easily as you would build any class in Visual Basic 6.0. The XML Web service project template builds all underlying Web service infrastructure.

4.3.9 Mobile Applications

Visual Basic .NET 2003 and the .NET Framework 1.1 offer integrated support for developing mobile Web applications for more than 200 Internet-enabled mobile devices. These new features give developers a single, mobile Web interface and programming model to support a broad range of Web devices, including WML 1.1 for WAP—enabled cellular phones, compact HTML (cHTML) for i-Mode phones, and HTML for Pocket PC, handheld devices, and pagers. Please note. Pocket PC programming is not available in Visual Basic .NET Standard, it requires Visual Studio 2003 Professional, or higher.

4.4 Features of Visual Studio .NET 2010

Visual Studio 2008 may be better than sliced bread, but the development team at Microsoft has already been working on the next release. They have recently given us Visual Studio 2010 and the .NET Framework 4.0 as a Community Technology Preview (CTP), it boasts several features that would appeal to developers.

4.4.1 New Features in the Visual Studio 2010 IDE

- Call Hierarchy of methods
- A New Quick Search
- Multi-targeting more accurate
- Parallel Programming and Debugging
- XSLT Profiling and Debugging

4.4.2 Call Hierarchy of Methods

In complicated solutions, a single method may be used from several different places, and attempting to follow how a particular method is being called can be difficult. Call hierarchy attempts to address this problem by visually presenting the flow of method calls to and from the method which is being looked at. In other words, it can look at what calls the method and what the method calls in a treeview format.

4.4.3 A New Quick Search

A nifty little feature that Microsoft has added is the Quick Search window. This isn't the same as the Search or Search and Replace window that searches for specific textual strings. It's different in the sense that it searches across symbols (methods, properties, and class names) across the solution and filters them in the result view.

4.4.4 Multi-targeting more accurate

Although VS 2008 supports targeting different frameworks from the same IDE, one problem was that the Toolbox displayed types that were available to the .NET 3.5 Framework whether or not you were working with a .NET 3.5 project. This may have caused problems when it tried to use something, only to realize that it wasn't actually available.

4.4.5 Parallel Programming and Debugging

In addition, to make things easier, VS 2010 comes with a set of visual tools that will help you debug and view simultaneously running threads. This means that the task instances can be viewed and call the stacks for each task in parallel.

4.4.6 XSLT Profiling and Debugging

Visual Studio 2010 will offer an XSLT profiler to help with writing XSLT in the context of profiling and optimization. After writing your XSLT, you can use the "Profile XSLT" option in Visual Studio to supply it with a sample XML file that gets used for the analysis.

5. METHODOLOGY

5.1 Data Loading

The data which is required for the process is present in the text database. This cannot be used as such. First it is imported to the access database and saved. Then data is viewed as a grid format in the user interface of this system. All the fields are checked for the null value. If any field is empty, a default value is replaced instead of the null value. Here the database consists of a customer identification number and the item that he has purchased. These are the two values that are present in the database.

5.2 Appling ISL

In this module we use the ISL method of hiding the sensitive items. The following are the steps carried out in this module. From the database, generate the transaction database, in which the items are present in the form of transactions. Calculate confidence for the the and support items preset using formula: Support (X) = ||X|| / |D|, Support (XUY) = ||XUY|| / |D|, Confidence (XUY) $= \|XUY\| / \|X\|$ Where, $\|D\|$ - No. of transactions in Original Database. $\|X\|$ - No. of transactions in Database that contains the itemset X. Set the minimum support and confidence threshold levels for classifying sensitive and non-sensitive data. Select all the data items above the given threshold levels, and apply the ISL method. This method selects the item in the left hand side and replaces it on the right hand side of the rule. This automatically reduces the support count of the item on the right side and increases the support on the left hand side. So this rule will not be considered sensitive

when it is being associated. The association rule is being hidden in the process.

5.3 Applying FHFSI

In this module, we implement the FHFSI to hide the association rules in a more efficient time than ISL. The following are the steps followed in the algorithm to achieve the result. Transactions database is generated along with the prior weight (PWT). The support alone is calculated for the items in the transaction database and it is displayed. The minimum support threshold is set and the itemsets above this value is considered as sensitive. After this, the all the items above the given value is sorted out in the descending order of their prior weight. Then randomly an item is chosen and replaced with a fake item. By doing so the association rule is being modified so it does not classify under sensitive association rules. These changes are updated in the database and this is given as the output. It can be clearly seen that the time taken to complete the hiding process. This is the improvement that is obtained in the proposed system

A time stamp is inserted for the hiding process in both the methods for analysing the time taken for hiding the sensitive patterns. It is clearly seen that the new process hides the sensitive items within a short time when compared to the existing system. This proves that the proposed system is effective.

6. CONCLUSION

The goals of this project are successfully accomplished. It successfully hides all the sensitive items. It protects the confidentiality of the database, for all the minimum threshold levels this algorithm works effectively. The time taken to hide the sensitive items, is within a less amount of time compared to the existing system. Thus we can say that the computational burden had been greatly reduced.

7. FUTURE ENHANCMENTS

Every application has its own merits and demerits. The project has almost covered all requirements. But our algorithm still causes some loss rule sets and the generation of the false items cannot be avoided in this system. Certain extensions on the algorithms are to be considered to solve these problems. The project calls for further investigation into possible improvement of the undesired side effects.

SAMPLE CODING

Security Info=True"

```
Imports System. Net
Imports System.IO
Imports System. Windows. Forms. Data Visualization. Charting
Public Class Home
  Dim Datas As New List(Of PatternLib.LinkType)
  Dim Orglist As New List(Of ReadData)
  Dim OldOrglist As New List(Of ReadData)
        Private Sub Button1 Click(ByVal sender As System.Object, ByVal e
    As System. EventArgs) Handles Button1. Click
   RichTextBox1.LoadFile("D:\SensitivePatterns\Patterns\shoppingtest.txt",
   RichTextBoxStreamType.PlainText)
    For i As Integer = 2 To prdcount
       Dim Rd As New ReadData
       Rd.CustomerId = RichTextBox1.Lines(i).Split(",")(0).ToString()
       Rd.Product = RichTextBox1.Lines(i).Split(",")(1).ToString()
       Orglist.Add(Rd)
    Next
    Dim qry = From k In Orglist Select k
    Dim con1 As New System.Data.OleDb.OleDbConnection
     con1.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=D:\SensitivePatterns\PrequentResultSet\ResultSet.mdb;Persist
```

```
con1.Open()
    Dim delcmd As New OleDb.OleDbCommand
    delemd.Connection = con1
    delcmd.CommandText = "delete from originalset"
    delcmd.ExecuteNonQuery()
    con1.Close()
    Dim con As New System.Data.OleDb.OleDbConnection
         con.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Security Info=True"
    con.Open()
    For Each tm In gry
    Dim cmd As New System.Data.OleDb.OleDbCommand
   cmd.Connection = con
                 cmd.CommandText = "insert into OriginalSet(Cartid,Item)
     values(" & tm.CustomerId & "'," & tm.Product & "')"
   cmd.ExecuteNonQuerv()
    Next
   con.Close()
MessageBox.Show("Processed And Original Set Saved: "
&qry.Count.ToString())
 End Sub
     DataGridView1.DataSource = qry.ToList
Dim Transset As New List(Of TransactionSet)
Dim OldTransset As New List(Of TransactionSet)
```

```
Private Sub LoadTrans button Click(ByVal sender As System.Object,
ByVal e As System. EventArgs)
       End Sub
      Dim fset As New List(Of String)
      Dim FSSET As New List(Of SUVal)
      Private Sub Button3 Click(ByVal sender As System.Object, ByVal e As
      System. EventArgs)
      End Sub
          Private Sub Button4 Click(ByVal sender As System.Object, ByVal e As
          System. EventArgs) Handles Button4. Click
           Dim con1 As New System.Data.OleDb.OleDbConnection
                                con1.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0:Data
Source = D: \ \ Patterns \ \ PrequentResultSet \ \ ResultSet. mdb; Persist \ \ Patterns \ \ PrequentResultSet \ \ Presist \ 
Security Info=True"
           con1.Open()
            Dim delcmd As New OleDb.OleDbCommand
           delcmd.Connection = con1
           delcmd.CommandText = "delete from Resultset"
           delcmd.ExecuteNonQuery()
           con1.Close()
           MessageBox.Show("Data Export Complete")
             For Each cid In SUSet
                    Dim ct = cid.CID
                    Dim inr = From k In Orglist Where k.CustomerId = ct Select k
                    For Each t In inr
                           Dim con As New System. Data. Ole Db. Ole Db Connection
```

```
con.ConnectionString =
                                      "Provider=Microsoft.Jet.OLEDB.4.0;Data
                                      Source = D: \label{lem:patterns} Patterns \label{lem:patterns} Frequent Result Set \label{lem:patterns} Result Set \label{lem:patterns} Set \label{lem:patterns} Patterns \label{lem:pat
                                      .mdb;Persist Security Info=True"
                           con.Open()
                            Dim cmd As New System.Data.OleDb.OleDbCommand
                           cmd.Connection = con
                                                                       cmd.CommandText = "insert into Resultset(cartid,item)
               values(" & t.CustomerId & "'," & t.Product & "')"
                          cmd.ExecuteNonQuery()
                          con.Close()
                  Next
         Next
        FSSET.Clear()
        Transset.Clear()
       i = 0
End Sub
Dim j = 0
Dim z = 0
               Private Sub Button5_Click(ByVal sender As System.Object, ByVal e
            As System. EventArgs) Handles Button5. Click
             TreeView1.Nodes.Clear()
                                 Dim Da = From k In Orglist Group k By key = k.CustomerId Into
           Group Select Cat = key, Movies = Group
           For Each d In Da
                     Dim tr As New TransactionSet
                    i = i + 1
```

```
Dim i As Integer = 0
    TreeView1.Nodes.Add(d.Cat, d.Cat)
    For Each r In d. Movies
       i = i + 1
       TreeView1.Nodes(d.Cat).Nodes.Add(r.Product)
       tr.Prds.Add(r.Product)
     Next
     tr.Count = i.ToString
     tr.CustomerID = d.Cat
     tr.TId = j.ToString
     TreeView1.Nodes(d.Cat).Text = "[T" & j.ToString & "], ID" & d.Cat &
     ",Piror Weight =" & i.ToString
     TreeView1.Nodes(d.Cat).ForeColor = Color.Blue
    Transset.Add(tr)
  Next
  TreeView1.ExpandAll()
End Sub
Private Sub Button6_Click(ByVal sender As System.Object, ByVal e As
System. EventArgs) Handles Button6. Click
  Dim t1 = Now
  If ComboBox1.Text.Length = 0 Then
    MessageBox.Show("Select Treshhold Value")
  Else
    DataGridView3.DataSource = Nothing
    Dim k = From 1 In SUSet Order By 1 Descending Select 1
    Dim s = k.Distinct
    Dim tset As New List(Of Double)
```

```
Dim min = Int32.MaxValue
For Each rt As NSUVal In k
       tset.Add(Double.Parse(rt.Support))
Next
Dim sset = From ss In tset Where ss > Double.Parse(ComboBox1.Text)
Select ss
For Each h In sset
       Dim hh = h
       Dim fst = From st In SUSet Where st.Support = hh Select st
       For Each hd In fst
               For i As Integer = 0 To Orglist.Count - 1
                       If Orglist(i).CustomerId = hd.CID Then
                               Dim con As New System.Data.OleDb.OleDbConnection
                              con.ConnectionString =
                              "Provider=Microsoft.Jet.OLEDB.4.0;Data
                                  Source = D: \label{eq:constraint} Sensitive Patterns \label{eq:patterns} \\ Frequent Result Set \\ \\ \label{eq:patterns} \\ \labelee \labe
                                  ResultSet.mdb;Persist Security Info=True"
                                    con.Open()
                                    Dim rcmd As New OleDb.OleDbCommand
                                     remd.Connection = con
                                       rcmd.CommandText = "select * from originalset where
                               item="" & Orglist(i).Product & """
                             Dim reader As OleDb.OleDbDataReader
                             reader = rcmd.ExecuteReader
                             Dim id = 0
                             While reader.Read
                                    id = Int32.Parse(reader(0).ToString)
```

```
reader.Close()
                                       Dim cmd As New System.Data.OleDb.OleDbCommand
                                       cmd.Connection = con
                                       cmd.CommandText = "update originalset set item='" &
                                      (Orglist(i).Product & "-temp") & "" where id=" & id & ""
                                      cmd.ExecuteNonQuery()
                                      con.Close()
                                      Orglist.RemoveAt(i)
                                      GoTo s
                            End If
                    Next
                s:
           Next
  Next
 Dim con1 As New System.Data.OleDb.OleDbConnection
 con1.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data
 Source = D: \label{eq:constraint} Source = D: \label{eq:constraint} Sensitive Patterns \label{eq:constraint} Patterns \label{eq:constraint} Frequent Result Set \label{eq:constraint} Sensitive Patterns \label{eq:constraint} Patterns \label{eq:constraint} Sensitive Patterns \label{eq:constraint} Patterns \label{eq:constraint} Sensitive Patterns \labeled Patterns \lab
 ResultSet.mdb;Persist Security Info=True"
con1.Open()
Dim da As New OleDb.OleDbDataAdapter
Dim selcmd As New System.Data.OleDb.OleDbCommand
 selcmd.Connection = con1
selcmd.CommandText = "select cartid, item from originalset"
selcmd.ExecuteNonQuery()
Dim ds As New DataSet
```

End While

```
da.SelectCommand = selemd
    da.Fill(ds, "originalset")
    DataGridView3.DataSource = ds.Tables(0)
    MessageBox.Show("process completed")
  End If
  Dim t2 = Now
  newt1 = t2 - t1
End Sub
Dim SUSet As New List(Of NSUVal)
Dim OldSuSet As New List(Of SUVal)
Dim tsetval As New List(Of TVal)
Private Sub Button7_Click_1(ByVal sender As System.Object, ByVal e As
System. EventArgs) Handles Button7. Click
  For Each tr In Transset
    If tr.Prds.Count >= 1 Then
      If tr.Prds.Count = 1 Then
         Dim temp As New NSUVal
        temp.TID = tr.TId
        temp.Itm = tr.Prds(0)
        temp.CID = tr.CustomerID
        temp.Support = ((Occurance(temp.Itm) / j) * 100).ToString
        SUSet.Add(temp)
      End If
      If tr.Prds.Count > 2 Then
        For i As Integer = 0 To tr.Prds.Count - 1
          Dim temp As New NSUVal
          temp.TID = tr.TId
```

```
temp.CID = tr.CustomerID
             temp.Support = ((Occurance(temp.Itm) / j) * 100).ToString
             SUSet.Add(temp)
          Next
          For i As Integer = 0 To tr.Prds.Count - 1
            Try
               Dim temp As New NSUVal
               temp.TID = tr.TId
               temp.Itm = "( " & tr.Prds(i) & "," & tr.Prds(i + 1) & " )"
               temp.CID = tr.CustomerID
               temp.Support = ((DOccurance(tr.Prds(i), tr.Prds(i+1)) / j) *
               100).ToString
               Dim tk As New TVal tk.AssociatedItems = " " & tr.Prds(i)
              & ", " & tr.Prds(i + 1) & " " tsetval.Add(tk)
              SUSet.Add(temp)
              i = i + 1
            Catch ex As Exception
            End Try
         Next
       End If
     End If
  Next
  DataGridView4.DataSource = SUSet.ToList
  DataGridView9.DataSource = tsetval.ToList
End Sub
Private Function Occurance(ByVal st As String) As Integer
```

temp.Itm = tr.Prds(i)

00

```
Dim temp As Integer
   For Each tr In Transset
     Dim ts = From k In tr.Prds Where k.Contains(st) Select k
     If ts.Count > 0 Then
       temp = temp + 1
     End If
   Next
   Return temp
End Function
Private Function OldOccurance(ByVal st As String) As Integer
   Dim temp As Integer
  For Each tr In OldTransset
     Dim ts = From k In tr.Prds Where k.Contains(st) Select k
     If ts.Count > 0 Then
       temp = temp + 1
     End If
  Next
  Return temp
End Function
Private Function DOccurance(ByVal st As String, ByVal st1 As String) As
Integer
  Dim temp As Integer
  For Each tr In Transset
    Dim ts = From k In tr.Prds Where k.Contains(st) Select k
    Dim ts1 = From k1 In tr.Prds Where k1.Contains(st1) Select k1
    If ts.Count > 0 And ts1.Count > 0 Then
      temp = temp + 1
```

```
End If
           Next
           Return temp
        End Function
        Private Function OldDOccurance(ByVal st As String, ByVal st1 As String)
As Integer
          Dim temp As Integer
          For Each tr In OldTransset
             Dim ts = From k In tr.Prds Where k.Contains(st) Select k
             Dim ts1 = From k1 In tr.Prds Where k1.Contains(st1) Select k1
             If ts.Count > 0 And ts1.Count > 0 Then
               temp = temp + 1
             End If
          Next
          Return temp
        End Function
        Private Function Confident(ByVal st As String, ByVal st1 As String) As
     Integer
          Dim temp As Integer
          For Each tr In OldTransset
            Dim ts = From k In tr.Prds Where k.Contains(st) Select k
            Dim ts1 = From k1 In tr.Prds Where k1.Contains(st1) Select k1
            If ts.Count > 0 Or ts1.Count > 0 Then
              temp = temp + 1
            End If
          Next
         Return temp
```

End Function

```
Public Class NSUVal
  Implements IComparable(Of NSUVal)
  Public Prds As New List(Of String)
  Dim str As String
  Dim strl As String
 Dim str2 As String
 Dim str3 As String
 Dim str4 As String
 Public Property CID() As String
    Get
      Return str3
   End Get
   Set(ByVal value As String)
      str3 = value
   End Set
 End Property
 Public Property TID() As String
   Get
     Return str
   End Get
   Set(ByVal value As String)
     str = value
```

```
End Set
  End Property
  Public Property Itm() As String
     Get
       Return str1
     End Get
     Set(ByVal value As String)
       str1 = value
     End Set
  End Property
  Public Property Support() As String
     Get
       Return str2
     End Get
     Set(ByVal value As String)
       str2 = value
     End Set
  End Property
  Public Function CompareTo(ByVal other As NSUVal) As Integer
Implements System.IComparable(Of NSUVal).CompareTo
    Return Me.Support.CompareTo(other.Support)
  End Function
End Class
Public Class SUVal
  Implements IComparable(Of SUVal)
  Public Prds As New List(Of String)
```

```
Dim str As String
 Dim str1 As String
 Dim str2 As String
 Dim str3 As String
 Dim str4 As String
 Public Property CID() As String
   Get
      Return str3
   End Get
   Set(ByVal value As String)
     str3 = value
   End Set
End Property
Public Property TID() As String
  Get
     Return str
  End Get
  Set(ByVal value As String)
     str = value
  End Set
End Property
Public Property Itm() As String
  Get
    Return str1
  End Get
  Set(ByVal value As String)
    strl = value
```

```
End Set
  End Property
  Public Property Support() As String
    Get
       Return str2
    End Get
    Set(ByVal value As String)
       str2 = value
    End Set
  End Property
  Public Property Confidence() As String
    Get
       Return str4
    End Get
    Set(ByVal value As String)
       str4 = value
    End Set
  End Property
  Public Function CompareTo(ByVal other As SUVal) As Integer Implements
System.IComparable(Of SUVal).CompareTo
    Return Me.Support.CompareTo(other.Support)
  End Function
End Class
```

Data.vb

```
Public Class DataItem
  Implements IComparable
  Public Sub New()
  End Sub
 Public Sub New(ByVal id As Integer)
    Me.Id = id
  End Sub
 Public Sub New(ByVal id As Integer, ByVal itemName As String)
    Me.Id = id
    Me.ItemName = itemName
 End Sub
 Private m_itemName As String
 Public Property ItemName() As String
   Get
      Return m itemName
   End Get
   Set(ByVal value As String)
     m itemName = value
   End Set
 End Property
 Private m_id As Integer
 Public Property Id() As Integer
   Get
     Return m id
   End Get
   Set(ByVal value As Integer)
```

```
m id = value
     End Set
   End Property
  Public Overloads Overrides Function Equals(ByVal obj As Object) As
Boolean
     Dim di As DataItem = DirectCast(obj, DataItem)
     Return di.Id.Equals(Me.Id)
  End Function
#Region "IComparable Members"
  Public Function CompareTo(ByVal obj As Object) As Integer Implements
System.IComparable.CompareTo
    Dim di As DataItem = DirectCast(obj, DataItem)
    Return Me.Id.CompareTo(di.Id)
  End Function
#End Region
End Class
Dataread.vb
Imports System.IO
Imports System. Text
Class CSVReader
  Public Function Read(ByVal fileName As String) As ItemSet
```

Dim rowSet As New ItemSet()

Dim colSet As ItemSet = Nothing

```
Dim col As String = ""
    Dim head As String() = Nothing
    If File.Exists(fileName) Then
            'Create a file to write to
       Dim sr As New StreamReader(File.OpenRead(fileName).
Encoding.[Default], True)
       Dim row As String = ""
       Dim k As Integer = 0
       While Not sr.EndOfStream
         k += 1
         row = sr.ReadLine()
         Dim cols As String() = row.Split(",".ToCharArray())
         If k = 1 Then
            head = cols
         Else
           colSet = New ItemSet()
            For i As Integer = 1 To cols.Length
              col = cols(i - 1)
              If col.Equals("1") Then
                colSet.Add(New DataItem(i, head(i - 1)))
             End If
           Next
           rowSet.Add(colSet)
         End If
       End While
      sr.Close()
```

```
End If
      Return rowSet
   End Function
 End Class
 Itemset.vb
 Public Class ItemSet
   Inherits ArrayList
   Private m_icount As Integer = 0
   Public Property ICount() As Integer
     Get
        Return m icount
     End Get
     Set(ByVal value As Integer)
        m icount = value
     End Set
   End Property
   Public Overloads Overrides Function Clone() As Object
     Dim al As ArrayList = DirectCast(MyBase.Clone(), ArrayList)
     Dim [set] As New ItemSet()
     For i As Integer = 0 To al.Count - 1
       [set].Add(al(i))
     Next
     [set].ICount = Me.m icount
    Return [set]
  End Function
  Public Overloads Overrides Function Equals(ByVal obj As Object) As
Boolean
```

```
Dim al As ArrayList = DirectCast(obj, ArrayList)
     If al.Count <> Me.Count Then
       Return False
     End If
     For i As Integer = 0 To al. Count - 1
       If Not al(i).Equals(Me(i)) Then
         Return False
       End If
     Next
    Return True
  End Function
End Class
ReadData.vb
Public Class ReadData
  Dim ID As String
  Dim Movie As String
   Public Property CustomerId() As String
    Get
       Return ID
    End Get
    Set(ByVal value As String)
       ID = value
    End Set
 End Property
 Public Property Product() As String
```

Get

```
Return Movie
     End Get
    Set(ByVal value As String)
       Movie = value
    End Set
  End Property
 End Class
STrans.vb
Public Class STrans
  Implements IComparable(Of STrans)
  Dim id As String
  Dim Ct As String
  Dim cid As String
  Dim sper As String
  Public Property TId() As String
    Get
      Return id
    End Get
    Set(ByVal value As String)
      id = value
    End Set
 End Property
 Public Property Count() As String
    Get
      Return Ct
    End Get
```

```
Set(ByVal value As String)
       Ct = value
     End Set
  End Property
  Public Property CustomerID() As String
     Get
       Return cid
     End Get
     Set(ByVal value As String)
       cid = value
     End Set
  End Property
  Public Property SPercentage() As String
    Get
       Return sper
    End Get
    Set(ByVal value As String)
       sper = value
    End Set
  End Property
  Public Function CompareTo(ByVal other As STrans) As Integer Implements
System.IComparable(Of STrans).CompareTo
    Return Me.SPercentage.CompareTo(other.SPercentage)
  End Function
End Class
```

TimeData.vb

```
Public Class TimeData
  Dim id As String
  Dim Ct As String
  Dim cid As String
  Public Prds As New List(Of String)
  Public Property Items As String
    Get
       Return id
    End Get
    Set(ByVal value As String)
       id = value
    End Set
  End Property
  Public Property OldTime As String
     Get
       Return Ct
     End Get
     Set(ByVal value As String)
       Ct = value
     End Set
  End Property
  Public Property NewTime As String
     Get
       Return cid
     End Get
     Set(ByVal value As String)
```

```
cid = value
     End Set
  End Property
End Class
TransactionSet.vb
Public Class TransactionSet
  Implements IComparable(Of TransactionSet)
  Dim id As String
  Dim Ct As String
  Dim cid As String
  Public Prds As New List(Of String)
  Public Property TId() As String
    Get
       Return id
    End Get
    Set(ByVal value As String)
      id = value
    End Set
  End Property
  Public Property Count() As String
    Get
       Return Ct
    End Get
    Set(ByVal value As String)
      Ct = value
```

```
End Property
Public Property CustomerID() As String
Get
Return cid
End Get
Set(ByVal value As String)
cid = value
End Set
End Property
Public Function CompareTo(ByVal other As TransactionSet) As Integer
Implements System.IComparable(Of TransactionSet).CompareTo
Return Me.Count.CompareTo(other.Count)
End Function
End Class
```

SNAP SHOTS

E.1.1 Start Screen

THE RESIDENCE OF THE PARTY OF T Existing Process Proposed System Time Analysis DB Size 100 Set Min_Confidence Min_Support Hiding Patterns Export Patterns Process Patterns Start Process Process Support Load Processed Data Transaction DB Support & Confidence Associated Items Changed Set cardid.Product cardid Product 10150 softdrink 10150.fruitveg 10236.frozenmeal 10236.beer 10360.fish 10360.cannedveg 10360.beer 10360,0661 10360,frozenmeal 10451,confectionery 10451,frozenmeal 10451 frozenmeal 10451 beer 10451 cannedveg 10609 fish 10609 fruitveg 10614 softdrink 10645 fruitveg 10645 frozenmeal 10645 frozenmeal 10645 frozenmeal 10645 beer 10645 cannedveg 10645 freshmeat 10717 fish 10712 fruitveg 10717 freshmeat 10872 fish 10872,fish 10872,frozenmeal 10872,cannedveg 10872,beer 10902,frutveg 10902,wine 10915,frutveg 10915,cannedmeat 10915,cannedmeat 10915 fish 10915 dairy 10915 frozennesi

Tanganda Maria

E.1.2 Data Loading

DB Si	ze 100	Set Min_Support → Min_Confidence →
	Start Process	S Process Patterns Process Support Hiding Patterns Export Patterns
Load	Processed	I Data - Transaction DB - Support & Confidence - Associated Herris - Changed Ser
	Customerld	Product
•		fruitveg
	10236	frozenmeal
	10236	beer
	10360	fish
	10360	cannedveg
	10360	beer
	10360	frozenmeal
	10451	confection
	10451	frozenmeal
	10451	peer
	10451	cannedveg
1	10609	fish
	10609	fruitveg
1	10614	softdink
	10645	fruitveg
i	10645	frozenmeal
1	10645	beer
1	10645	cannedveg
i	10645	feshmeat
1	10717	fish
1	10717	futveg
1	10717	feshme at
1	10872 10872	fish frozenneal

E.1.3 Grid View

Existing Process Proposed System Time Analysis DB Size 100 Set Min_Support + Min_Confidence + Export Patterns Start Process Process Patterns Process Support Hiding Patterns Load Processed Data Transaction DB Support & Confidence Associated Items Changed Set fruitveg frozenmeal beer cannedveg beer frozenmeal confectionery frozenmeal beer cannedveg fruitveg softdrink fruitveg frozenmeal beer cannedveg freshmeat fruitveg

E.1.4 Transaction

freshmeat

E.1.5 Calculation of Support and Confidence

E.1.6 Associated Items

E.1.7 Hiding Process

E.1.8 Modified Database

P.1.1 Transactions and prior weight

			Min_Support	•		
Start Process	Process	Process Patterns	Process Support	Hiding Patterns	Export Patterns	
				J 41-4		
d Processed E AssociatedItem		Int Calc_Suppor A	Association Rule Change			
fish , cannedve						
beer , frozenme	-					
confectionery						
beer canned						
fruitveg , frozer	•					
beer, cannedy						
fish , fruitveg	- 3					
fish , frozenme:	al					
cannedveg , be	er					
fruitveg , canne	dmeat					
fish , dairy						
dairy , frozenm	eal					
beer, freshme:	∍ t					
dairy , confecti	onery					
fruitveg , wine						
softdrink , fish						
confectionery .						
beer, canned	eg					
dairy , fish						
fish , frozenme						
beer , fresnme	at					
F-6 - d						
fish , dairy						
cannedveg . w	ine					
dairy , fish						

P.1.2 Associated Items Sets

Min_Support →					
Start Proces	es Pro	ocess Process Patterns I	ocess Support Hiding Patterns Export Patterns		
ad Proces	sed Data F	Prior Weight Calc_Support Asso	ation Rule Changed Set		
CID	TID	ltm	Support		
10150	1	fruitveg	40.625		
10360	3	beer	40 625		
10360	3	frozermeal	37 5		
10360	3	(beer,frozenmeal)	28 125		
10451	4	confectionery	34 375		
10451	4	frozenmeal	37.5		
10451	4	beer	40.625		
10451	4	cannedveg	34 375		
10451	4	(confectionery,frozenmeal)	6 25		
10451	4	(beer,cannedveg)	28 125		
10614	6	softdrink	12 5		
10645	7	fruitveg	40.625		
10645	7	frozenmeal	37.5		
10645	7	beer	40.625		
10645	7	cannedveg	34 375		
10645	7	freshmeat	25		
10645	7	(fruitveg,frozenmeal)	9 375		
10645	7	{ beer,cannedveg }	28.125		
10717	8	fish	40.625		
10717	8	fruitveg	40.625		
10717	8	freshmeat	25		
10717	8	(fish,fruitveg)	18.75		

P.1.3 Support calculation

e ng Process	Proposed System Time Analysis				
		Min_Support	15 🕶		
Start Proces	ss Process Process Pa	etterns Process Support	Hiding Patterns	Export Patterns	
d Proces	sed Data Prior Weight Calc_Supp	port Association Rule Char	nged Set		
cartid	item				
10451	confectionery				
10451	beer				
10609	fish				
10609	fruitveg				
10614	softdrink				
10645	fruitveg				
10645	beertemp				
10645	freshmeattemp				
10717	fish				
10717	fruitvegtemp				
10717	freshmeattemp				
10872	fishtemp				
10872	frozenmealtemp				
10872	cannedvegtemp				
10872	beertemp				
10902	fruitvegtemp				
10902	wine				
10915	fruitvegtemp				
10915	cannedmeattemp				
10915	fishtemp				
10915	dawytemp				

P.1.4 Modified Database

Existing Process Proposed System Time Analysis

Store Time Result

Show Time Result

	ID	Items	OldTime	NewTime
•		500	00:00:13 72.	00:00:8.548
	8	250	00:00:21.25	00:00:12.74
	9	200	00:00.31.61	00:00 10:95
	13	100	00:00:28.65	00'00:07 17
*				

P.1.5 Time Analysis Result

8. REFERENCES

- 1. Jiawei Han and Micheline Kamber 'Data Mining concepts and Techniques'.
- 2. David I.Schenider 'An Introduction to Programming using Visual Basic .NET'.
- 3. Shyue-Liang Wang, "Hiding sensitive predictive association rules", *Systems, Man and Cybernetics, 2005 IEEE International Conference on Information Reuse and Integration,* vol. 1, pp. 164-169, 2005.
- 4. Ali Amiri, "Dare to share: Protecting sensitive knowledge with data sanitization", *Decision Support Systems archive* vol. 43, issue 1, pp. 181-191, 2007.
- 5. Yi-Hung Wu, Chia-Ming Chiang, and Arbee L.P. Chen, "Hiding Sensitive Association Rules with Limited Side Effects", *IEEE Transactions on Knowledge and Data Engineering*, vol. 19, issue 1, pp. 29 42, 2007.
 - 6. www.google.co.in