Automated Tool for Software Mamtenance

p- 32
Project Report 1997 - 98

Submitted by
Y. Pradeepa
K. Srilakshmi

6. Yuvaraj

Guided by

Mrs. 8. Devaki, s e

In partial fulfilment of the requirements

for the award of the Degree of

BACHELOR OF ENGINEERING

IN COMPUTER SCIENCE AND ENGINEERING
of Bharathiar University

Department of Computer Science and Engineering

BKumaragurn College of Technology
Coimbatore - 641 006

Bepartment of Computer Science and Lngineering

Kumaragury @ollege of Technology
A oimbatore - 641 006

Hroject Work 1997 - 98

}qam G Nuovarar, K -Spiiaxsomy o V. Vesprer. gﬁegizter-ﬁn-
Wertified that this is the Bonafide Record of the
Troject Work Bone by

In partial fulfilment of the requivements for the
afoordy of the Begree of Bachelor of Tngineering
in Computer Science and Tngineering
of the Bharathiar Hnifersity.

..

Head of the Bepartment

Submitted for the Hnitersity B xamination held on, &;M~ ?’5

i

- p } ,‘
/ T A P
§ 1i— y; AV I Ve : e ‘ - ’vj““ 5y
I ANl el v .

T xterfral Txaminer

DEDICATED TO
OUR BELOVED PARENTS

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

We record our sincere thanks and profound gratitude to our beloved principal
Dr.S.Subramanian,M.Sc.,(Engg.),Ph.D.,.S.M.IEEE., for having made available all

the facilities to do this project.

We are elated to record our heartiest indebtedness to our beloved Professor and
Head of the Department of Computer Science and Engineering, Prof.P.Shanmugam
M.Sc.,(Engg.),M.S(HAWAII),S.M.IEEE,M.ILS.T.E., for his support and encouragement

during this project.

We are indeed previliged to have been under the light of Mrs.Devaki , B.E. We

thank her for enlightening our thoughts and for her remarkable guidance.

We wish to thank our department staffs for their guidance .Our thanks to our

department technicians for their extended co-operation.

We also thank Mr.Ramalingam, B.E., DSQ for his help without whom the

project would not have reached its stage.

We would like to extend our sincere thanks to our beloved parents for their

encouragement and support all through the days of the project work.

We express our special thanks to our wonderful friends for their love and support.

SYNOPSIS

SYNOPSIS

Software maintenance, like software development, requires a combination of
managerial control and technical expertise. Since software maintenance is a very
important phase of software development, the activities that a software maintainer may
become involved in span the entire spectrum of software engineering. Automated tools to
support the software maintenance include technical support tool and managerial support

tool.

Automated tools to support the technical aspects of software maintenance span
the spectrum from analysis and design tools to implementation tools. Version Control
Systems, which is one of the automated tools for software maintenance, provides basics

to our project.

Version Control System is used to track the history of each module in a system by
recording which modules and which version of which modules comprise which system
releases. This tool can also be used to associate source modules with object modules, to
record which versions use which modules, and to provide system protection by
preventing updates to master files that have not been approved by the change control
board. Also, a Version Control System can coordinate experimental versions of a system
when several maintenance programmers are simultaneously modifying the same module

or sub system.

Automated Tool for Software Maintenance

CONTENTS

CONTENTS

1.0 INTRODUCTION

1.1 Automated tools for softwarc maintenance.

1.2 Version Control System.— An Automated tool.

2.0 SYSTEM CONFIGURATION

3.0 PROJECT DESCRIPTION

3.1 What is Version Control System.

3.2 Operations of Version Control System.
3.2.1 Working Directory
3.2.2 Check In
3.2.3 Check Out
3.2.4 View file
3.2.5 Getfile
3.2.6 Difference

33 Version Control System Administration
3.3.1 User List maintenance
3.3.2 Project List maintenance

3.4 How to work with VCS?

35 Services offered by VCS

4.0 IMPLEMENTATION
41 VC++ - The powerful tool for Windows application

Page No.

S

S NG, B G IS) A B 5

U e) N o) BN o) I O

4.2

4.3

4.4
4.5

Technical notes

4.2.1 Document — View Architecture
4.2.2 Single Document Interface(SDI)
42,3 Multiple Document Interface(MDI)
424 0ODBC

425 OLE

OLE Automation Server/Client

4.3.1 Server Application

432 Client Application

Project Design

Output Screens

5.0 CONCLUSION

6.0 FUTURE EXPANSION

7.0 BIBILOGRAPHY

8.0 PARTIAL SOURCE CODE IN VC++

10
11
12

13
14

15

17
20

21
22

24

25

26

27

- INTRODUCTION

INTRODUCTION

1.1 Automated Tool for Software Maintenance

Since software maintenance is a microcosm of software development, the tools,
techniques and activities of software maintenance span the entire product life cycle.
Difficulties encountered in software maintenance and the social stigma attached to
software maintenance are largely due to lack of systematic planning for software
maintenance during the development process, the failure of programmers and mangers to
properly organize for software maintenance activities for an failure to provide the

necessary tools and techniques for software maintenance.

Planning for maintenance, developing the software product to enhance
maintainability, proper organization of maintenance programmers and maintenance
activities, and provision for maintenance tools can result in vast improvements In

software quality, programmer productivity, and programmer morale.

Automated tools for software maintenance include both technical and managerial
tools. Tools to support the technical aspects of software maintenance span the spectfum

from analysis and design tools to implementation tools to debugging and testing tools.

Automated tools include

v

Text editors
Debugging aids

Cross_ reference generator

v V V

Linkage editors

v

Comparators
Complexity metric calculators

Version control systems

v V V

Configuration management databases

Automated Tool for Software Maintenance

Version Control System, which is one of the most necessary tools for the software
maintenance, has captured our interest. This also seems to very apt. We have

developed our project based on the concepts of Version Control System.

1.2 About Version Control System

In software development environment it is essential to maintain the project files
securely, preserving the changes made by each and every user to the files. The problem
arises when two or more users try to update the same file simultaneously. Version
Control System provides solution to this problem. Version Control System supports team
application development, enabling team members to share files, modify them

independently and later merge the changes.

Version Control System only stores the changes instead of the whole file, for
every change made by the developer. This results in saving disk space for medium and
large file in most cases. It can prevent accidental replacement of information or files
themselves. Files can be shared across projects, platforms. Portability issues can be

tracked. By tracking which program use which modules, code reusablity is possible.

Version Control System keeps track of versions, changes, date and time of
modification, acting as a historian. Version Control System also assists some of the
highlighting features such as proper maintenance, co-ordination and timely completion of

the project in an efficient manner.

Version Control System administrator takes care of security measures to the
project files by providing access rights to the users. Maintenance of the user list and
project list is also an essential function of the administrator to avoid unauthorised access

to the files.”

Version Control System is flexible enough to support any size of project and any

number of users.

Automated Tool for Software Maintenance

SYSTEM CONFIGURATION

SYSTEM CONFIGURATION

Hardware

*
L4

A pentium processor with 120MHZ ,16MB RAM .
¢+ A hard disk with 1GB space.

4

< A analog RGB monitor, which can support VGA resolution.

»,

< Windows 95/Windows NT operating system.
Software

< Visual C++ 5.0
< MS Access 97.

Automated Tool for Software Maintenance

PROJECT DESCRIPTION

PROJECT DESCRIPTION

One of the automated tools for software maintenance, the Version Control System

answers the following questions,

How many versions of each file exist?
How do the versions differ?
What is the history of each component of each version of each product?

Is a given old version still used by some user?

3.1 What is Version Control System?

Version Control System, which is an automated tool for software maintenance, is
basically a project-oriented system. A’ project is collection of interrelated files that are
stored in the system. The user can add, delete, edit and share files through projects. A
project has much in common with the operating system directories, but there are
significant differences. A project can have subprojects. The project tree hierarchy has
CASERVER\PROJECT\ ... as its root project. Project paths are separated by slashes

(\), for example
CASERVER\PROJECT\newproj......

Users cannot work in the files stored in the Version Control System.The file
must be moved out of the system to work with. The user cannot work with the master
copy. The Version Control System provides each user with a copy of the file to read or
change. Each time someone checks in changes to a file, the system not only stores the

changes, but the history of changes as well.

Automated Tool for Software Maintenance

3.2 Operations of Version Control System:

3.2.1. Working Directory :

The user cannot actually work on a file within the Version Control System. When
user wants to work on a file, he must obtain a copy of the file from the VCS and have
place to put it in. That place is the user’s WORKING DIRECTORY. The working directory
is his personal base for a project. He can make changes only if the copy of the file

available in working directory.

3.2.2. Check In Operation:

The file that is stored in version control system database and not available for
modification is called the CHECKED IN file. Usually When the modification are made to
the local copy of the file available on the Working Directory, we store this file back to
the Version Control System. This process is called CHECK IN operation. This operation

stores the changes as a new version of file.

3.2.3. Check Qut Operation:
The file that is reserved for work by user, is called the CHECKED OUT file.
Usually this is the local copy of the file in working directory. The user can make changes

to this file. By default only one user at a-time can check out a file.

3.2.4. View File Operation:
View File operation opens the latest version of the file for the user. Here user can

only view the file but cannot edit it. The file is opened in the read only mode with the

help of Notepad.

3.2.5 @Get File Operation:

In Get File operation also the latest version of the file is opened, but in the edit

mode. The user can make changes only to the checked out file.

Automared Tool for Software Maintenance

3.2.6 Difference QOperation:
In the Difference operation we compare the latest version of the file with the
selected version of the file. This comparison shows all the changes that are made in the

latest version.

3.3. Version Control System Administration:

The Version Control System administrator is the person who has responsibilities

to maintain user list, security options, database and project list.

3.3.1. User List Maintenance:

Maintenance of the user list is the foremost duty of the administrator. Options are
available to add new users to the user community. The user’s name and access rights are
also specified during add operation. Assignment of project is also done while adding the
user. Deletion of user is also possible. The user’s password and the project assigned to

him can be altered when required.

3.3.2. Project List Maintenance:

The administrator has to add projects and subprojects in Version Control System.
Files must be added to the project in order to perform Check In and Check Out
operations. At the same time deletion of the unwanted files is also possible. The file can
be viewed by using Notepad. The file history that contains the number of versions created
to the file, the date and time of the version created, file status and the user who created

the version can also be displayed during the addition of the files to the project.

3.4. How to work with VCS?

The steps to be followed when working with VCS are mentioned below.
e Create one or more projects in VCS in which the files are to be organised.
e Set a working directory for each project.

e Add files form operating system directory into VCS projects.

Automated Tool for Software Maintenance

.o Check the files Out of VCS into Working Directory.
e Use an editor to make changes to the file in the Working Directory.

e Check In the files back into the VCS from the Working Directory.

3.5. Services Offered By VCS:
e Library Service
e History Service

e Security Service

3.5.1. Library Service:

This system prevents accidental deletion of information or files themselves. The
files are organised into hierarchy of projects and subprojects. Checking Out files are
made easy and comments can be added to describe the changes. It enables two or more
users to share files across projects or platforms. When multiple projects use a file
multiple copies of the files need not be used. VCS sees to that only one master copy 1s
stored and that it is the most recent version. Cross platform applications can be developed
and portability issues can be tracked. VCS helps in modular or object oriented code

development by keeping track of which programs use which module.

3.5.2. _History Service:

Protecting changes to each file is important. So it is necessary to keep a record of
changes made, who made them and where they were made. VCS keeps a detailed history

of each file and project in addition to any comment s that you enter.
As a historian, VCS performs functions like tracking versions and changes users

make to files, tracking date and time of changes to all files in the database and displaying

differences between two versions of a file.

Automated Tool for Software Maintenance

3.5.3. Security Service:

Controlling access to the files is a critical component of maintaining source
control. By default VCS maintains security on projects so that each new user has read-
write access or read-only access. There is an administrator for this system who enables
security. Access rights can be set on user and project. Whenever a user executes a
command, the system checks to determine his rights. The VCS also provides additional

security for the VCS administrator, the administration program.

Automated Tool for Software Maintenance 8

IMPLEMENTATION

IMPLEMENTATION

4.1 VC++ - The Powerful Tool for Windows Applications

Version Control System is a Windows application implemented using Microsoft
Yisual C++ 5.0 using Windows 95 operating system. Visual C++ provides a host of
features that makes developing ‘Windows applications easier. The MFC library is part of
Visual C++ provides lot of classes commonly used. The Version Control System uses the

Client/Server model. Some of the components of VC++ are described below

o Microsoft Developer Studio 97:

Developer Studio 1s a Windows-hosted Integrated Development Environment (IDE)
that’s shared by Visual C++, Microsoft Visual J++, Microsoft Visual Basic and several
other products. Docking windows and configurable toolbars, plus a customizable editor
that runs macros are one part of Developer Studio. The online help system (InfoViewer)

works like 2 Web browser.

¢ AppWizard:

AppWizard is a code generator that creates a working skeleton of a Windows
application with features, class names, and source code file names that you specify
through dialog boxes. AppWizard code 1s minimalist code; the functionality is inside the

application framework base classes.

¢ ClassWizard:

ClassWizard is a program that’s accessible from Developer Studio’s View
menu. ClassWizard takes the drudgery out of maintaining VC-++ class code. Need a new
class, a new virtual function, or a new message-handler function? ClassWizard writes the
prototypes, the function bodies, and the code to link the Windows message to the

function. ClassWizard can update that you write, so you avoid maintenance problems.

Automated Tool for Software Maintenance

¢ Microsoft Foundation Class Library (MFC):

The Microsoft Foundation Class Library (MFC) is an "application framework” for
programming in Microsoft Windows. Written in C++, MFC provides much of the code
necessary for managing windows, menus, and dialog boxes; performing basic
input/output; storing collections of data objects; and so on. All you need to do is add your
application-specific code into this framework. And, given the nature of C++ class

programming, it's €asy to extend or override the basic functionality the MFC framework

supplies.
Main features of MFC are,
¢ A C++ interface to the Windows API
¢ General-purpose classes (non—Windows-speciﬁc) class, including
4 Collection classes for lists, arrays, and maps
A useful and efficient string class
Time, time span, and date classes
File accesses classes f.or operating system independence
Support for systematic object storage and retrieval to and from disk
+ A “common root object” class hierarcy
¢ Streamlined Multiple Document Interface(MDI) application support
+ Support to OLE (Object Linking and Embedding)
4.2 Technical Notes

VCS project is dissolved into two applications, SERVER application and CLIENT
application.All the administrative operations are implemented in server application and
the remaining operation are carried dut by client application. The communication

between client and server is established through OLE automation.

Key concepts such as Document —View architecture, SDI, MDI, ODBC, OLE
automation server/client, which are used for the development of our project are explained

in detail in forthcoming sections.

Automated Tool for Software Maintenance

10

4.2.1 Document-View Architecture:

The document/view implementation in the class library separates the data itself
from its display and from user operations on the data. All changes to the data are
managed through the document class. The view calls this interface to access and update

the data.

Documents, their associated views, and the frame windows that frame the views
are created by a document template. The document template is responsible for creating

and managing all documents of one document type.

The key advantage to using the MFC document/view architecture is that the

architecture supports multiple views of the same document particularly well.

The following figures show the relationship between the document and its view

and frame and view.

Document

—

View

|

Part 8t documert currently visible

Automated Tool for Software Maintenance
11

1 Frame
Window
Object

View
Object

Document
Object

4.2.2 Single Document Interface (SDI) :

The SDI has only one document and can have multiple views. The document class
in the case of the SDI is the CDocumeﬁt class and it has one or more view classes each
ultimately derived from CView class. A complex handshaking process takes place among
the document, the view, and the rest of the application framework. The client program of

this project is implemented as SDI application.

Automated Tool for Software Maintenance
12

Objects in a SDI application

‘ ‘ Application object J
1

l

H Document Template J

I

E Document ’_\

Main Frame Window

Status Bar

4.2.3. Multiple Document Interface (MDI) :

MDI applications allow multiple document frame windows to be open in the same
instance of an application. An MDI application has a window within which multiple MDI
child windows, which are frame windows themselves, can be opened, each containing a
separate document. In some applications, the child windows can be of different types,
such as chart windows and spreadsheet windows. In that case, the menu bar can change

as MDI child windows of different typés are activated.

Automated Tool for Software Maintenance

13

MD!I Frame Windows and children

- ‘ Y \ w L FrameWwindow

~ ALY

» MDI clientMindowy

N Document frame
P Windowy

4.2.4. Open DataBase Connectivi DBC):

The Microsoft Open Database Connectivity offers programming languages like C,
C++ to access database systems like MS-Access, MS-Foxpro, Borland’s Paradox,
Powersoft’s Powerbuilder etc. The ODBC contains a powerful set of DLLs that offer
standard database applications an interface. They act as an interface between the porgram
and the database system. The server program in our project to store and access the user

and file information maintained by the MS-Access database efficiently uses ODBC.

4.2.5. Object Linking and Embeddin LE):
OLE is a mechanism that allows users to create and edit documents containing

items or "objects" created by multiple applications.

OLE documents, historically called compound documents, seamlessly integrate
various types of data, or components. Sound clips, spreadsheets, and bitmaps are typical

examples of components found in OLE documents. Supporting OLE in any application

Automated Tool for Software Maintenance

14

allows users to use OLE documents without worrying about switching between the

different applications; OLE does the switching for you.

OLE incorporates many different concepts that all work toward the goal of

seamless interaction between applications. These areas include the following:

Linking and Embedding Linking and Embedding are the two methods for storing
items created inside an OLE document that were created in another application. For
general information on the differences between the two. see the article OLE Background:

Linking and embedding.

In-Place Activation (Visual Editing) activating an embedded item in_the context
of the container document is called in-place activation or visual editing. The container
applications interface changes to incorporate the features of the component application
that created the embedded item. Linked items are never activated in-place because the
actual data for the item is contained in a separate file. out of the context of the application

containing the link.

Automation Automation allows one application to drive another application. The
driving application 1s known as an autpmation client or automation controller, and the

application being driven is known as an automation server or automation component.

Compound Files Compound files provide a standard file format thdt simplifies
structured storing of compound documents for OLE applications. Within a compound
file, storages have many features of directories and streams have many features of files.

This technology is also called structured storage.

Uniform Data Transfer Uniform Data Transfer (UDT) is a set of interfaces that
allow data to be sent and received in a standard fashion, regardless of the actual method

chosen to transfer the data. UDT forms the basis for data transfers by drag and drop. DT

Automated Tool for Software Maintenance

15

now serves as the basis for existing Windows data transfer, such as the Clipboard and

dynamic data exchange (DDE).

Drag and Drop Drag and drop is an easy-to-use, direct-manipulation technique to
transfer data between applications, between windows within an application, or even
within a single window in an application. The data to be transferred is simply selected

and dragged to the desired destination. Drag and drop is based on uniform data transfer.

Component Object Vodel The Component Object Model (COM) provides the
infrastructure used when OLE objects communicate with each other. The MFC OLE
classes simplify COM for the programmer. COM is part of ActiveX, as COM objects
underlie both OLE and ActiveX.

The VCS project is implemented using OLE automation concept even though

OLE incorporates several concepts, which are mentioned above.

Having seen the concepts used in this project, Version Control System, the MS-
Access database, the server and the client program are dealt with in detail in the

following passages.

MS-Access Database:

IVAD=AALLLOD o ale s Sr s

The server process to hold user and project information uses the MS-Access
database. The server uses a database file'by the name csdata.mdb. The tables and

their attributes are explained below.

e Table USER

Attribute Type j
User _id ‘ Varchar(15) J
User_Name i Varchar(1 5)4&
Password 1‘ Varchar(1 S)J

‘?rojName ‘ Varchar(lS)J

Automated Tool for Software Maintenance

16

The User_id field helps to identify each user in the user list. The user-type field
specifies ‘A’ for administrator and ‘C’ .for clients. The user Name fields contain the user
name. The Password field is used for security reasons. Every time the user wants to login
the password entered by the user is checked against this Password field. The proj-Name

field gives the name of the project that the user is assigned to.

e Table PROJECT

[Attribute Type

Projname Varchar(50)

CreationDate Date/Time

TotalSubDir Int

TotalFiles Int

4.3 .OLE Automation Server/Client

4.3.1 Automation Clients:

Automation makes it possible for your application to manipulate objects
implemented in another application, or to expose objects so they can be manipulated. An
automation client is an application that can manipulate exposed objects belonging to
another application. The application that exposes the objects is called the Automation
server. The client manipulates the server application's objects by accessing those objects’

properties and functions.

The class COleDispatchDriver provides the principal support for the client side of

Automation. Using ClassWizard, you create a class derived from COleDispatchDriver.

You then specify the type-library file describing the properties and functions of
the server application's object. ClassWizard reads this file and creates the

COleDispatchDriver-derived class, with member functions that your application can call

Automated Tool for Software Maintenance

17

to access the server application's objects in C++ in a type-safe manner. Additional
functionality inherited from COleDispatchDriver simplifies the process of calling the

proper Automation server.

4.3.2. Automation Server:

An Automation server is an application that exposes programmable objects to
other applications, which are called Automation clients. Exposing programmable objects
enables clients to automate certain pr'ocedures by directly accessing the objects and

functionality the server makes available.

Exposing objects this way is beneficial when applications provide functionality
that is useful for other applications. For example, a word processor might expose 1ts
spell-checking functionality so that other programs can use it. Exposure of objects thus
enables vendors to improve their applications’ functionality by using the ready-made

functionality of other applications.

Bv exposing application functionality through a common, well-defined interface,
Automation makes it possible to build applications in a single general programming
language like Microsoft Visual Basic instead of in diverse, application-specific macro

languages.
Support for Automation Servers

ClassWizard, AppWizard, and the framework all provide extensive support for
Automation servers. They handle much of the overhead involved mn making an

Automation server, so you can focus your efforts on the functionality of your application.

The framework's principal mechanism for supporting Automation is the dispatch
map, a set of macros that expands into the declarations and calls needed to expose

methods and properties for OLE. A typical dispatch map looks like this:

Automated Tool for Software Maintenance

18

BEGIN DISPATCH_MAP(CMyServerDoc, COleServerDoc)
//{{AFX_DISPATCH_MAP(CMyServerDoc)
DISP_PROPERTY(CMyServerDoc, "Msg", m_strMsg, VT_BSTR)
DISP_FUNCTION(CMyServerDoc, "SetDirty", SetDirty,.VT_EMPTY, VTS 14)
//}YAFX _DISPATCH_MAP

END_DISPATCH_MAP()

ClassWizard assists in maintaining dispatch maps. When you add a new method
or property to a class, ClassWizard adds a corresponding DISP_FUNCTION or
DISP_PROPERTY macro with parameters indicating the class name, external and

internal names of the method or property, and data types.

ClassWizard also simplifies the declaration of Automation classes and the
management of their properties and operations. When you use ClassWizard to add a class
to your project, you specify its base class. If the base class allows Automation,
ClassWizard displays controls you use to specify whether the new class should support
Automation, whether it is "OLE Createable” (that is, whether objects of the class can be

created on a request from an OLE client), and the external name for the OLE client to

use.

ClassWizard then creates a class declaration, including the appropriate macros for
the OLE features you have specified. ClassWizard also adds the skeleton code for

implementation of your class's member functions.

AppWizard simplifies the steps involved in getting your automation server
application off the ground. If you select Automation support in AppWizard's OLE

Options page, AppWizard adds to your application’s InitInstance function the calls

Automated Tool for Software Maintenance

19

required to register your Automation objects and run your application as an Automation

server.

SERVER APPLICATION:

The server program is a MDI application .It is implemented as a full-fledged OLE
server. A single copy of the server has to be running before the clients get to run. Apart
from the Administration activities it takes care of User Setup and project Setup.The
server program recevies requests from the OLE clients and processes their requests. It
also maintains an MS-Access database as a backend to store the user and project
infomation. The server uses ODBC connectivity to access the database from the VC++

program. The server offers a neat to the administrator.

The interface is achieved by making the server a simple MDI application. Two
views are provided in the server window. Splitter window 1s used to create a neat
interface with multiple views. The two views provided are Tree view (derived from
CTreeView MFC class) and List-view (derived from CListview class) help in simulating
a file explorer .The treeview is used to display the projects in the Version Control
System. It also displays the hierarchy of projects and subprojects. The list-view 1s used to
display the list of files in the project cuurently expanded in the tree-view. The details of

the porjects are accessed from MS-Access database via ODBC. The user list can be

viewed when needed.

Since our server program is made full-fledged OLE server and client program
OLE enabledclient, CLIENT\SERVER model is enforced by default. OLE provides
uniform data transfer between clients and server. The communication required between
the server and clients such as the server receiving requests from the clients. server
sending back results to the clients is taken care of the OLE server and OLE client

generated by VC++.

Automated Tool for Software Maintenance

20

The server maintains an MS-Access database and accesses it using ODBC.When
user list needs to be displayed, the USER table in the database is accessed and the result
of the query is displayed. The administrator using the server process may need to update
The user list, either by adding users aﬁd modifying the user details. For these activites

the table USER is updated. The server program uses user setup porcess to associate the

project files with the user.

CLIENT APPLICATION:

The client program is implemented as a SDI application. This prografn uses OLE
to embed client information from server. Many instances of client program can run at he
same time. The clients send requests to the server program and receive the result. It
brovides a neat interface to display different versions of a file. The cilent program aiso
integrates a good text editor that the user can use to change the checked out files in ais

working directory.

The user has various options provided by the client. The client program interizce
uses Splitter window to show multiple views. He may want to give a file to the Version
Control System, check out file, check in file etc. The client is required to pass to the
server some data regarding the user’s request. Since the client is an OLE enabled client it

embeds the data into the OLE server and thus the client and server communicate.

Automated Tool for Software Maintenance

21

PROJECT DESIGN

4.4 Project Design
Server Design:

[SERVER APPLICATION U

.|
| |
ﬂr PROJECT SETUP | &USER SETUP [

r — 7 |

§ SUBPROJECT | { ADDFILES | § DELETE FILES l i vErsions]

SELECT

ADD USER

]

—
g ADD DELETE

Client Design:

L
[CILENT APPLICATION l |

ﬂ CONNECT TO SERVER | Lr DISCONNECT FROM SERVER

OPEN PROJECT

R S 0 FEEES
VERSIONS

|

L L l |
CHECK IN g CHECK OUT g GET FILE g VIEW FILE é

l DIFFERENCE J [REPORT l { DETAILS E

Automated Tool for Software Maintenance

22

INTERFACE DESIGN:

ODBC

FULL FLEDGED OLE . MS-ACCESS DATABASE
SERVER

OLE AUTOMATION

ENABLED OLE ENABLED OLE
CLIENTI CLIENT2

Automated tool for Software Maintenance

23

OQUTPUT SCREENS

CONCLUSION

CONCLUSION

A breakthrough in the software industry is necessary to cope with the exploding
IT Industry. There is absolute necessity for a proper co-ordination between the
developers of the software. There is also necessity to assure the speedy completion of the
project and satisfactory customer services. Our project succeeds in satisfying this
requirement. Implementing the concepts like file sharing, code reusability and proper

security measures are some of the objectives that are aimed at and they are achieved.

We also came to a conclusion that the windows graphic user interface was
excellent and is suitable for our application. Windows also facilitated us to make the
software easily understandable by any lame user, no prior knowledge of computing 1s

necessary.

Automated Tool for Software Maintenance

24

FUTURE EXPANSION

FUTURE SCOPE

“There are miles to go before we sleep “. We have just made a start. It is the job

of the future engineers to enhance this project to attain its final colors.

The software attains its final étage only after the integration of the dirfzrent
modules of the developers. Integration requires merging of different version ot z file.
Merging is not a easy task. When two or more different changes are made to the s:ame
line of the file a conflict occurs. Merging becomes tedious during conflict. Finding >ut a

better way to resolve the conflict is left to the future development.

Multiple CheckOut is another criteria in Version Control System that is
simultaneous checkouts of same file by two or more users. Multiple check out s not
possible unless it is enabled by the Version Control System Adminstrator. By
implementing this idea the project may reach its pinnacle. It is the future developers who

have to facilitate multiple check out.

Automatic Tool for Sofrware Maintenance

25

BIBLIOGRAPHY

BIBILIOGRAPHY

1. Inside Visual C++ (Fourth edition) —David J.Kruglinski

2. Microsoft Visual C++ 5 (power tool kit) — Richard C.Leinecker

(OS]

. Teach yourself Visual C++in 21 days - Ori Gurewich and Nathan Gurewich

4. Visual Source Safe Manual

Automated Tool for Software maintenance

26

PARTIAL SOURCE CODE IN VC++

// CSServer.cpp Defines the class pehaviors for the application.

//

#include ngtdafx.h"
#include ncgServer .

#include "MainFrm.h"
#include nchildFrm.h"
#include wIpFrame.h"
#include ncgServerboc.h”
#include vcggerverView.h!"
#include "OpenProjDialog.h“
#include ndirect.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS FILE

static char THIS_FILE[l = __FILE_
#endif

///
// CCSServerApp

BEGIN_MESSAGE_MAP(CCSServerApp, CWinApp)
//{{AFX_MSG_MAP(CCSServerApp)
ON_COMMAND (ID_APP_RBOUT, OnAppAbout)
ON_COMMAND(ID_FILE_OPEN, OnFileOpen)
//} }AFX_MSG_MAP
// Standard file based document commands
ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
//ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
// Standard print setup command
ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)
END_MESSAGE_MAP()

///

// CCSServerRpp construction

CCSServerApp::CCSServerApp()

{
// TODO: add construction code here,
// Place all significant initializatien in TnitInstance
m_TotalUsers = 0o; // RARMU
m_UserSet = new CUserSet(&m_CSDataBase);
m_ProjectSet = new CProjectSet(&m_CSDataBase);
m_FilesSet = new CFilesSet(&m_CSDataBase);

m_TotalProj = 0;

pathDirectory = "C:\\CSServer\\Project\\“;

27

sTempDirPath = "C:\\CSServer\\Temp\\";

pOpenFile = FALSE;

}

CCSServerApp::”CCSServerApp()
{
// TODO: add construction code here,
// Place all significant jnitialization in InitInstance
if (m_UserSet != NULL)
delete m_UserSet;
if (m_ProjectSet 1= NULL)
deleate m_ProjectSet;
if (m_FilesSet != NULL)
delete m_FilesSet;
m_CSDataBase.Close();

///
// The one and only CCSServerApp object

CCSServerApp theApp:;

// This identifier was generated to pe statistically unique for your app.
// You may change it if you prefer to choose a specific identifier.

// {37683OOB—ACD9—11D0—8D9D-0000C0283725}
static const CLSID clsid =
{ 0x3768300b, oxacd9, 0x1140, { ox8d, ox9d, 0x0, 0xO0, oxc0O, 0x28, 0x37, 0x25 } }i

///

// CCSServerApp initialization

BOOL CCSServerApp::InitInstance()
{
// Initialize OLE libraries
if (!AfxOleInit())
{
AfoessageBox(IDP_OLE‘INIT_FAILED);
return FALSE;

}

AfxEnableControlContainer();

// Standard initialization

// If you are not using these features and wish to reduce the size
// of your final executable, Yyou should remove from the following
// the specific initialization routines you do not need.

28

#ifdef _AFXDLL

#else

#endif

Enable3dControIs(); // Call this when using MFC
in a shared DLL

Enable3dControlsStatic(); // Call this when 1inking to MFC
statically
LoadSthrofileSettingsf>; // Load standard INI file options

(including MRU)

// Register the application's document templates. Document templates
// serve as the connection between documents, frame windows and views.

cMultiDocTemplate” pDocTemplate;
pDocTemplate = new cMultiDocTemplate (
IDR_CSSERVTYPE,
RUNTIME_CLASS(CCSServerDoc),
RUNTIME_CLASS(CChildFrame), // custom MDI child frame
RUNTIME_CLASS(CCSServerView));
pDocTemplate->SetServerInfo(
IDR_CSSERVTYPE_SRVR_EMB, IDR_CSSERVTYPE_SRVR_IP,
RUNTIME_CLASS(CInPlaceFrame));
AddDocTemplate(pDocTemplate);

// Connect the CcOleTemplateServer to the document template.
// The CcOleTemplateServer creates new documents on benalf
// of requesting OLE containers by using information

// specified in the document template.
m_server.ConnectTemplate(clsid, pDocTemplate, FALSE) ;

// Register all OLE server factories as running. This enables the
// OLE libraries to create cbjects from other applications.
COleTemplateServer::RegisterAll();
// Note: MDI applications register all server objects
without regard
// to the /Embedding or /Butomation orn the command line.

// create main MDI Frame window

CMainFrame* pMainFrame = new CMainFrame;

if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
return FALSE;

m_pMainWnd = pMainFrame;

// Parse command line for standard shell commands, DDE, file open
cCommandLineInfo cmdInfo;

ParseCommandLine(cdenfo);

// Check to see 1f launched as OLE server

29

if (cdenfo.m_bRunEmbedded | cdenfo.m_bRunAutomated)

{

// Application was run with /Embedding OT /Automation.
Don't show the

// mwain window in this case.

return TRUE;

}

// When a server application is iaunched stand-alone, it

is a good idea
// to update the system registry in case it has been damaged.
m_server.UpdateRegistry(OAT_INPLACE_SERVER);
COleObjectFactory::UpdateRegistryAll();

// The following line will stcop the application from creating 2
// new document at startup

Cdenfo.m_nShellCommand = CComma:dLineInfo::FileNothing;

// Dispatch commands specified c= the command line
if (!ProcessShellCommand(cdenfc,)
return FALSE;

m_nCmdShow = SW_SHOWMAX IMIZED;

// The main window has been inicialized, sO show and update it.
pMainFrame—>ShowWindow(m_nCmdShow);
pMainFrame—>UpdateWindow();

// RAMU
if (m_CSDataBase.IsOpen())
m_CSDataBase.Close();

cstring strConnect("ODBC;“);

strConnect += "JID=";
strConnect += wn .
gtrConnect += W,

strConnect += "DPWD=";
strConnect +
gtrConnect += wow

cry {
m_CSDataBase.Open(_T("Student Registration"). FALSE, FALSE,
strConnect) ;

catch (CDBException* pEx)

{

csString strMessage(_T(“Could not open database: ")

30

strMessage += "CSDATA";
AfoessageBox(strMessage);
pEx->Delete();

return FALSE;

}

return TRUE;

}

///
// ChboutDlg dialog used for ApPp About

class ChAboutDlg : public Chialog
{
public:

caboutDlg () ; -

// Dialog Data
//{{AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
//} }AFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CAboutDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX) ; // DDX/DDV support
//}}AFX_VIRTUAL

// Implementation
protected:
//{{AFX_MSG(CAboutDlg)
// No message handlers
//}}AFX_MSG
DECLARE_MESSAGE_MAP ()

Vs
CaboutDlg: : CAboutDlg () : CDialog(CAboutDlg::IDD)

//{{AFX_DATA_INIT(CAboutDlg)
//}}AFX_DATA_INIT

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)

{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDlg)
//} }AFX_DATA_MAP :

}

BEGIN_MESSAGE_MAP(CAboutDlg, Chialog)

31

//{{AFX_MSG_MAP(CAboutDlg)
// No message handlers
//) }AFX_MSG_MAP
END_MESSAGE_MAP)

// BApp command to run the dialog
void CCSServerApp::OnAppAbout()

{

CcaboutDlg aboutDlg;
aboutDlg.DoModal();

}

///
/] CCSServerRpp commands

void CCSServerApp::OnFileOpen()

{
COpenProjDialog projectblg;
if(projectDlg.DoModal() == IDOK)
{
//CWinApp::OnFileOpen();
//Cstring tempCString;
//tempCString = pathDirectory;
//tempCString += theApp.m_OpenedProj[theApp.m_TotalProj - il
if(!TestWhetherProjDirExists()) // If the project directories
{ // doesn't exist, return
AfoessageBox("Project directory doesn't exists");
return;
}
theApp.bOpenFile = TRUE;
OpenDocumentFile("readme.txt");
}
}

// Test whether the project directory exists
BOOL CCSServerApp::TestWhetherProjDirExists()
{
BOOL return_value;
TCHAR gszcurr dir(256];
cstring proj_path = theApp.pathDirectory;
proj_path += theApp.m_OpenedProj[theApp.m_TotalProj - 1};

// Save the current working directory
::GetCurrentDirectory(sizeof(szcurr_dir),szcurr_dir);
if(_chdir(proj_path) == -1)

return_value = FALSE;
else

return_value = TRUE;

32

rrent working directory

// Restore the cu
(szcurr_dir) i

::SetCurrentDirectory
return return_value;

33

// CSServer.h : main header file for the CSSERVER application
!/

#ifndef _ AFXWIN H__
#error include 1gtdafx.h' before including this file for PCH

#endif
#include "resource.hn" // main symbols

// RAMU

#include "UserSet.h"
#include "ProjectSet.h"
#include nriljesSet.h"

///
// CCSSexrverApp:
// See CSServer.cpp for the implementation of this class

/!
class CCSServerApp : public CWinApp
{
public:
cCcsServerApp () ;
~CCSServerApp () ;
// RAMU

int m_TotalUsers; // This keeps track of number of clients connected
// to the server

CDatabase m_CSDataBase;

CUserSet *m _UserSet;

CProjectSet *m_ProjectSet;
CFilesSet *m_FilesSet;

CString m_OpenedProj[25]; // Maximum 25 projects can be opened
int m_TotalProj;
BOOL bOpenFile;

¢String pathDirectory;
CString sSelectedNodePath;
CString sTempDirPath;

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CCSServerApp)
public:
virtual BOOL InitInstance();
//}}AFX_VIRTUAL

// Implementation

34

}i

coleTemplateServer m_server;

// Server object for document creation

//{{AFX_MSG(CCSServerApp)
afx_msg void onappAbout () ;
afx_msg void onFileOpen():
//} }AFX_MSG

BOOL TestWhetherProjDirExists();

DECLARE MESSAGE_MAP ()

extern CCSServerApp thehpp; // RAMU

/11777

////////////////////////////////////

35

///////////////////////////////////

// csServer .odl

// This file will be
// produce the type

type library

processe
library (csServer.tlb) .

source for CSServer.exe

d by the Make Type Library (mktyplib) ool to

{ uuid(3768300C-ACD9-11DO-8D9D—0000C0283725), version(1.0) 1

library CSServer

; {
§ importlib(“stdole32.tlb“);
: // Primary dispatch interface for CCSServerDocC
[uuid(3768300D-ACDI- 11D0-8D9D- 0000C0283725)]
dispinterface ICSServ
{
properties:
// NOTE - ClassWizard will maintain property
information here.
// Use extreme caution when editing this section.
//{{AFX_ODL_PROF (ccsserverDoC)
//}}AFX_ODL_PROP
methods:
// NOTE - ClassWizard will maintain method
information here.
// Use extreme caution when editing this sectiocn.
//{{AFX_ODL_METHOD(CCSServerDoc)
[id{(1)] boolean validateUser (BSTR” Userinto);
[id(2)1 void DisconnectUser () ;
{id(3)] boolean CheckInFile (BSTR* FileInfo):
{id{(4)] boolean CheckOQutFile (BSTR* FileInfo):
[id(5)] boolean GetFile (BSTR* FileInfo):
[id(6)] boclean GetVersion (BSTR* verInfo) ;
[id(7)] boolean GetFileInfo (BSTR* FileInfo);
[id({8)] boolean GetReserveFnl (BSTR GeneralInfo);
[(id(9)] boolean GetReserveFn2 (BSTR* Generallnfo);
[id(10)] boolean GetReserveFn3 (BSTR* GeneralInfo);
//}}AFX_ODL_METHOD
};
// Class information for ccsServerDoC
{ uuid(37683008—ACD9-11DO-8D9D—OOOOCO283725))
coclass Document
{
[default] dispinterface I1CSServ;
}i
/74 {AFX_APPEND__ODL}}
};

36

// DiffDlg.cpp : implementation file
//

#include vgrdafx.h"
#include vcgClient . h”
#include »piffDlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE_ i
#endif

///
// CDiffDlg dialog

CDiffDlg::CDiffDlg(CWnd* pParent /*=NULL*/)
: CDialog(CDiffDlg::IDD, pParent)
{

//{{AFX_DATA_INIT(CDiffDlg)
// NOTE: the ClassWizard will add member initialization here

//}}AFX_DATA_INIT

}
void CDiffDlg::DoDataExchange(CDataExchange* pDX}
{
CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CDiffDlg)
// NOTE: the ClassWizard will add DDX and DDV calls here
//} }AFX_DATA_MAP
}

BEGIN MESSAGE_MAP (CDiffDlg, CDhialog)
//{{AFX_MSG_MAP(CDiffDlg)
//)} }AFX_MSG_MAP
END_MESSAGE_MAP ()

///
// CDiffDlg message handlers

BOOL CDiffDlg::OnInitDialog()

{

CDialog::OnInitDialog();
char *file=new char [100];
char *t=new char [100];

char al[80][2],62[80][2];

37

CStringArray f1,£2;

int z=0;
strcpy(t,theApp.nVersions);

while(t[z]!:‘\O‘)

filelzl=t[z+3];

Z++;

}
cstring filel,file2;
filel:theApp.sProjectPath;
filel+=theApp.sProjectName;
filel+="\\";
file2=filel;
filel+=theApp.nVersions;
file2+=file;
delete (1 file;
delete [l ©;

¢stdioFile fpl(filel,CFile::modeReadWrite);

cstdioFile fpz(fileZ,CFile::modeReadWri:e);

£1.SetSize(80);
£2.8etSize (80);

int 1i=0;
while(fpl.ReadString(fl[i])!=NULL)

{
}

AfoessageBox(fl[i]);

++1i;

int k=0;
while(pr.ReadString(f2[k])!=NULL)
{ A
++K;

}

int m=0,pos=0,c,p1=0,ml=0;

while (m<i && ml<k)

{

c=strcmpi(fl[m],f2[ml]);
if (c==0)

strcpy(al[m],“n");

38

strcpy(az[mll,"n");

}
if(c!=0)
{
pos=ml;
++pOS;
while (c!=0 && pos<=k)
{
c=strcmpi(fl[m],f2[pos]);
if (c==0 && strcmpi(a2[ml—11,"n")==0)
{
for (int S=ml; S<pPOS;++S)
{
//strcpytallsl, "i");
strepy (a2 (sl,"i");
//alls+1]="\0";
a2(s] [11="\0";
}
break;
}
else if (c==0)
{
for (int S=ml;S<pOS; ++8)
{

//strcpy(al[s],"c");
strepy (a2 (sl, "c");
al(s] [11="\0";

a2(s}(11="\0";
}
break;
}
++POS;
}//while
if (pos<=k && m<i)
{ /
++M;
++pOS;
ml=pos;
}
// else
/7 A
// pos=0;
//}
V//if

39

if(c!=0 && pos>k)
{
pl=m;
++pl;
while(c!=0 && pl<=1)

{
c=strcmpi(fl[p1],f2[m1]);

if(c==0 && strcmpi(az[ml_l],un">==o;
{
for (int s=m;s<pl;++S/
{
strcpy (allsl, "=
all
//a2(s+11="\C";
//Strcpy(a2{s},uin);

}
break;
}
else if (c==0)
{
for {(int s=m;s<pl;++S)
{
szreopy(allsl,"c");
// strepy (a2lsl, "c")
alls] [11='\0";
a2 (s} {11="\C";
}
break;
}
++pl;
}//while
if (pl<=i && ml<k)
{
++ml;
++pl;
m=p1l;
}
// else
/74
// p1=0;
//}

V//1if

if (pl>i && pos>k)

40

{

strcpy(al[m],"c");
strcpy (a2 [mi}, "c");

++m;
++ml;
}
else if ((pos==0 && pl==0) [l c==0)
{
++mM;
++ml;
}
}
if (i>k)
{
for (int h=m;h<=1i;++h)
{
strepy (al(hl,"d");
alfhl [11="\0";
}
}
if (i<k)
{
for (int h=ml;h<=k;++h)
{
strepy (allhl,"i");
allhl [11="\0";
}
}

AfxMessageBox ("Listcontrol") ;

int LineIndex=0;

CListCtrl *List=(CListCtrl*)GetDlgItem(IDC_LISTDIFF);
for(int qg=0;g<=1i;++q)

{

if (strcmpi (allqgl,"d")==0)

{ List—>InsertItem(LineIndex,"deleted");
//cout<<"d ~ne<fl[q) <<endl;

} else if (strcmpi(allqgl,"c")==0)

41

|

List—>InsertItem(LineIndex,"changed");

//cout<<"cC -necfl (gl <<endl;

else
List—>InsertItem(LineIndex,fl[q]);

//Cout<<f1[q]<<endl;

LineIndex++;

}

/*for (int ql=0;gl<=k;++ql)

{

if (strcmpi (a2 (qll, i) ==0)
cout<<"i -"<<f2[gll<<endl;
else if (strcompi(a2lgll,"c")==0)

cout<<"c -"<<£2[gll<<endl;

else
cout<<f2{gll<<endl;

// TODO: Add extra initialization here

return TRUE; // return TRUE unless you set the focus
// EXCEPTION: OCX Property Pages should

42

!L).LULCL;L.CU <

// Generated message map functions
//{{AFX_MSG (CDiffD1lg)

L m emmmr o T T, T A~ Y .

to a control
return FALSE

