8 LIBRARY o
;e
s

RENDEZVOUS SERVICE C
NETWORKS

By
S.ARUL JOTHI
Reg. No: 0820108003
of

KUMARAGURU COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University, Coimbatore)

COIMBATORE - 641 006

A PROJECT REPORT
Submitted to the

FACULTY OF INFORMATION AND COMMUNICATION
ENGINEERING

In partial fulfillment of the requirements
for the award of the degree

of

MASTER OF ENGINEERING
IN
COMPUTER SCIENCE AND ENGINEERING

MAY 2010

BONAFIDE CERTIFICATE

Certified that this project report titled “RENDEZVOUS SERVICE
COORDINATION IN MOBILE AD HOC NETWORKS” is the bonafide work of
Ms.S.ARUL JOTHI (0820108003) who carried out the project work under my supervision.
Certified further, that to the best of my knowledge the work reported hercin does not form part
of any other project report of dissertation on the basis of which a degree or ward was conferred

on an earlier occasion on this or any other candidate.

[

1. l:o i
s 05 C
GUIDE HEAD OF THE;PKI:};ME

(Mrs. J.CYNTHIA M.E.,) (Dr.S.THANGASAMY Ph.D.,)

The candidate with University Register No. 0820108003 was examined by us in

Project Viva-Voce examination held on _) ") l?l e

TN

\\‘\\b-/\/q\ - \w ST

INTERNAL EXAMINER EXTERNAL EXAMINER

wejebueweAiyjes : 30e|d

JOUBAUOD JOUDANOD-O \Cmum,_owm Burziuebio

Z '0Z - 61 yostep buunp wejebueweAyies ‘ADOjOUYDYL JO SINISU] UBWWY euueg

'0L0
‘suopeoiddy Jeyndwod jo wewpedag ou Aq peziugBio BulNdIO) PEOUBADY Ul SPUBI| PUB SONSH)

THYOMIIN ISHOY 3 TTIOH

UO ©OUBIBJUOD) [eUCHEN ,.Z U} Ul

IYITYaR

IHIoLT0dU SN/ HA /38 [YUy AJiad O stsi

ESRREINRIED

0T0% ‘UPIR 0T - 61
(OTOTV.LIN) DNILNdWOD AIDNYAAY Ni mﬂzﬂm,r dNY SdNSsl

uo
IJONIHIANOD TVNOILVYN ,.C

SNOLLYDiddyY 8331NdNOD A0 INIWLMVJ A

eIpu] NPEN [IE], 12I1SIF 3poy 10¥ 8¢9 - weEdueweiyies
(opein V WM DDVN PUt VN 4 pAIPAINY
‘2 LDTV Aq paaoaddy ‘drojequie)) - ANSIOAIU[} BUNY proy s

>On:OZXOw._ a0 3 TSN

0] POYRIYIV UCHIIISU] SROWOU0)NY UV) RN ISR

\rOO.._OZIOm._. 40 FLNLILSNI NVINIAV INVNNVE

ABSTRACT

Efficient routing and service provisioning in MANET is a big research
challenge. In centralized directory-based schemes, some mobile nodes hold the service
directory to assist the communications between service providers and clients. Although
service co-ordination is easier, such centralized management is hard to scale and the
centralized directories lead to bottlenecks. Later Hybrid and Distributed schemes
constructed local directories which form the backbone of the network. But its topology-
based scheme is still hard to scale to a Jarger network. In service provision framework,
Services are first registered with a core node and is then advertised. The service requests
are forwarded by the coordinator to the service provider and the service provider
delivers the appropriate service using some multicast algorithms. In the proposed
coordination scheme there is one coordinator for each of the zone and one rendezvous
regional coordinator that coordinates the services, service requests and service
providers. This project deals with an adaptive service coordination scheme, which
tracks the location of all nodes and delivers the service using geographic location based
routing algorithm. Using an adaptive coordinator election mechanism, only one node
per zone is elected as coordinator unlike the other methods found in the literature where
one coordinator per group per zone is selected. Though the overhead of a single node is
increased, there is overall reduction of encoding, membership maintenance and control

overhead. The coordinator changes adaptively according to the resource availability.

i

S FFH(HSHLD

Sresllwms aueneaFBFmalt@ pSHLLTUONET aUS(Pemems ClFWUsig sTeTUS)
BaUELIMY gaureures LIMUEALINEGD. GHeé BHB el LRSS L enHGUL(Huadso
fe greflwid FEHAL] MgSERSHWTETIHSGD, @(HASASETLLTETRSGHD @G
QEILIBUDHLINGS auflalns QaLANS. SHESToIL Gsmel QHRIAmeTILITETS) saflgrs
2 _giangl. RIS S L Hieuns BLDeVM ST MWD, sHLIWILIRSSLL L
a&GULGUUIrALLBHSS0 LIMSg) susnsLiSSILLL. S L &t 2 erarsnne| snsGwi(hil
Brdlast sumitiugh@ib, cemesGameau@d (PHILGIDLITG 2-6Terd. LTHSUIL L SID
alifleunemgiones cusmeECaameusiE Gemey OLMBHESNG. CFemey &L DU uEH &S
Ggemen eefluFleunsuigy) 160 HTSHUN S| Goemeaudares Banilsisn& FHaiT (LpBedeo
R(HEIS EETTLITETISHEH S HE I LRSS

UmE g ustpenstl UHISSILL (R S measd @BpaiubSs (e ng:.
fha Spad sir ppsulens (pestelmAwlu’ L (HridlenesTULTS) LOEEBTL_6u
QUERRAOSTULNSTT (pSeienld phslansiunsti auflunssgaase LfiwiHob
BoLOUMmANS. — SelsumiesdlL salet epeuonsd CoemeusGahl Eseneusenst
EINMISCISMsTeIS N GHLD, OV 2: 31 1C:)) S&HB6TM CFepausmsner Udf&snenans
QalsusMeEHD sufleusns GFLFMG). &HaT Wil sHemsr il g GLIMsy BIeueumbe Q(h
e sAMEG @b @Edamatiusti wLHb Csiey Qalw aflams QALADG.
2SO (WpGeimenownes GFueun® fHafgGgnen o mriiert ugmofluybd e
urfiormHmpd (GHEODADSI. Bz eneudBamu LoAHR &Gl e EHLD eULfl eUen HemiLl
(RIS ENETUILITETNS (55 HHAMGI-

ACKNOWLEDGEMENT

I express my profound gratitude to our Chairman Padmabhusan Arutselvar

Dr.N.Mahalingam, B.Sc., F.LE., for giving this opportunity to pursue this course.

I would like to thank to Dr.S.Ramachandran, Ph.D., Principal for providing

the necessary facilities to complete my thesis.

I take this opportunity to thank Dr.S.Thangasamy Ph.D., Dean, Head of the

Department, Computer Science and Engineering, for his precious suggestions.

[thank all project committee members for their comments and advice during the
reviews. Special thanks to Mrs.V.Vanitha M.E., (Ph.D), Assistant Professor,
Department of Computer science and Engineering, for arranging the brain storming

project review sessions.

I register my hearty appreciation to the Guide Mrs.J.Cynthia M.E., Assisstant
Professor, Department of Information Technology, my thesis advisor. I thank for her
support encouragement and ideas. I thank her for the countless hours she has spent with

me, discussing everything from research to academic choices.

I would like to convey my honest thanks to all Teaching statf members and Non
Teaching staffs of the department for their support. I would like to thank all my
classmates who gave me a proper light moments and study breaks apart from extending

some technical support whenever I needed them most.

I dedicate this project work to my parents for no reasons but feeling from

bottom of my heart, without their love this work wouldn’t possible.

TABLE OF CONTENTS

Contents

Abstract

Abstract (Tamil)

List of Figures

List of Tables

List of Abbreviations

1. Introduction
2. Literature Survey

2.1. Challenges Faced in MANET
2.2. Service Provisioning in Scalable Geographic
Service Provision Framework

2.2.1. Virtual hierarchy
2.2.2. Service Discovery
2.2.3. Service Coordination
2.2.4. Service Delivery

2.3. Service Provisioning in Efficient Geographic Multicast
Protocol for Mobile Ad Hoc Networks.
2.3.1. Service Discovery
2.3.2. Service Coordination
2.3.3. Service Delivery
2.4. Service Provisioning in Hierarchical Rendezvous Point Multicast
2.4.1. Service Discovery
2.4.2. Service Coordination

2.4.3. Service Delivery

vi

Page No.
iii
iv
viii

ix

N 1 O

10

10

10

11

11

12

2.5. Core Node Election Methods

. Methodology :

3.1. Core Node Election in Efficient Geographic Multicast

Protocol for Mobile Ad Hoc Networks

3.2. Core Node Election in Hierarchical Rendezvous Point Multicast

3.3. Core Node Election in Rendezvous Service Coordination

3.4. Service Registration

3.5. Service Advertisement

3.6. Service Discovery

3.7. Rendezvous Service Coordination

3.8. Service Delivery

. Implementation

4.1 Simulation Environment

4.1.1 Network Simulator

4.1.2 Components of Network Simulator

4.1.2.1. Nam, the Network AniMator

4.1.2.2. Pre-processing
4.1.2.3. Post-processing
4.1.3. Goals of NS
4.1.4. Two Languages
4.1.5. NS-2 Programming Languages
4.1.6. Why Two Languages?
4.1.7. NAM (Network AniMator)
4.1.8. Gnuplot
4.1.9. Trace File Formats

4.2. Simulation Scenario

vil

3

18

19

20

21

21

22

23
23

23
23
23
23
24
24
25
25
26
26
27

5. Experimental Results and Discussion

5.1. Performance Evaluation

a) Impact on network size

Network size vs Average zone Leader Change
Network size vs Average no. of Zone Leader
Network size vs Packet Delivery ratio
Network size vs Delay

Network size vs Overhead

Network size vs Forwarding cost

b) Impact on Mobility

Network size vs Average Zone Leader change
(Effect of Moving Speed)

Speed vs Packet Delivery ratio

Speed vs Delay

Speed vs Overhead

Speed vs Forwarding Cost

¢) Impact on remaining energy of zone leader

6. Conclusion and Future Work

7. Appendices

7.1. Source Code

7.2. Screen Shots

8. References

viil

31

46
66

72

FIGURE

Fig 2.1
Fig2.2
Fig2.3
Fig2.4
Fig 3.1
Fig3.2
Fig 3.3
Fig3.4
Fig 3.5
Fig 3.6

LIST IF FIGURES

TITILE

Virtual Hierarchy

Service Discovery in Regional Coordinator Layer
Rendezvous Point Group Management in HRPM
Data Delivery in HRPM

Leader Election

Location Update of all nodes (including [eader)
Service Registration

Service Announcement

Service Coordination

Service Delivery

PAGE NO

7

8
11
12
18
20
20
20
21
22

TABLE

Table 3.1

Table 3.2

Table 3.3
Table 4.1

LIST OF TABLES
TITLE

Service Provider Table

(maintained by Zone leader / Regional leader)
Service Requestor Table

(maintained by Zone Leader)

Leader Table (maintained by Regional Leader)

Wired Trace File Format

PAGE NO

I~
[am

20

25

LIST OF ABBREVIATIONS

MANET : Mobile Ad-hoc Network

QoS : Quality of service

MAC : Medium Access Control

TCP : Transmission Control Protocol

GPS : Global Positioning System

HRPM : Hierarchical Rendezvous Point
Multicast Protocol

RP : Rendezvous Point

GID : Group Identifier

AP : Access Point

ACK : Acknowledgement

SR : Service Requestor

ZID : Zone Identifier

SP 1D : Service Provider ldentifier

EF : Eligibility Factor

NS : Network Simulator

xi

CHAPTER 1

INTRODUCTION

A mobile ad hoc network (MANET), sometimes called a mobile mesh network, is
a self-configuring network of mobile devices connected by wireless links. Each device in
a MANET is free to move independently in any direction, and will therefore change its
links to other devices frequently. Each must forward traffic unrelated to its own use, and
therefore be a router. The primary challenge in building a MANET is equipping each
device to continuously maintain the information required to properly route traffic.

The growth of laptops and 802.11/Wi-Fi wireless networking have made
MANETSs a popular research topic since the mid- to late 1990s. Many literature papers
evaluate protocols and their abilities, assuming varying degrees of mobility within a
bounded space, usually with all nodes within a few hops of each other and usually with
nodes sending data at a constant rate. Routing protocols are then evaluated based on the
packet drop rate, the overhead introduced.

Multicast is a fundamental service for supporting collaborative applications
among a group of mobile users. Unlike in the wired Internet, multicast in MANETS is
faced with a more challenging environment. In particular, multicast in MANETSs needs to
deal with node mobility and, thus, frequent topology changes, a variable quality wireless
channel, constrained bandwidth, and low memory and storage capabilities of nodes.
Additionally, unlike in the wired Internet, nodes in a MANET can be modified at the
network layer to provide group communication support. This reduces the need for
overlay-based group communication that has been popular in the Internet.

Both unicast and broadcast traffic are easy for networks to implement; data
packets will either be delivered to a single unique destination, or they will be propagated
throughout the network for all end users. Supporting multicast traffic is considerably
more complex because participants must be identified, and traffic must be sent to their
specific locations.

The network should also refrain from sending traffic to unnecessary destinations

to avoid wasting valuable bandwidth. Service providers are concerned about the effects

o

of traffic on their networks. Service providers do not support broadcast traffic (no traftic
type needs to be delivered to all Internet users). However, multicast delivery is in
increasing demand. Applications such as data casting (news, stock tickers, etc.), video
and audio transmissions, and training seminars (also called webinars) all depend on
multicast technology. These applications are designed to deliver identical packets to a
large number of receivers. The packets must be replicated at an exponential rate — the
resulting bandwidth requirements and routing overhead associated with these applications
can be quite daunting.

Delivering multicast packets over a large network is a complex process. There are
several components of this process that must take place to successfully establish multicast
communication. The first step is the identification of the receivers. All the hosts that want
to receive a particular stream of multicast information must identify themselves to the
network. This is called the registration process, and it is facilitated with a unique set of IP
addresses (called Class D addresses) that are reserved specifically for multicast
communications. The receivers register with a particular group (for example, to attend an
individual webinar) — the concept of “groups” is central to multicast data delivery.

Once receivers join their respective groups (it is likely that a single receiver will
join several groups), the network must deliver the multicast traffic to the correct end
stations. On the Internet, a routing protocol must be used to determine the appropriate
forwarding paths to all of the registered receivers; In addition, the transmissions from the
data source must be replicated at some point, so that the information can be received in
multiple locations simultaneously. The delivery process is facilitated by a multicast
routing protocol. There are several multicast protocols that the user can choose from —
each one has its own uniqgue strengths and weaknesses.

Most multicast data transmissions are uni-directional. Typically, a single host
will transmit information (such as stock ticker updates or the content for a seminar) that
will be received by multiple end stations. Although there are some new IETF proposals
for bi-directional multicast traffic, the focus is on one-way, point-to-multipoint
transmissions.

Multicast data streams do not support reliable upper-layer protocols such as TCP.

Since a transmitter or source does not know how many downstream workstations are

J

receiving the data, it is impossible to maintain reliable TCP connections with all of the
end users. Instead, the best-effort based User Datagram Protocol (UDP) is commonly
used for multicast traffic. Whenever a packet (such as a stock ticker update) is missed by

a receiver, it is simply lost and not retransmitted.

Service provisioning:

Service related protocols in MANET are mainly focused on service discovery and
this discovery schemes are normally integrated with different kinds of routing protocols
namely reactive, proactive, hybrid, unicast, multicast and anycast protocols.

Service provisioning is closely related to routing. However, the current service
provisioning protocols are normally built on or simply extended from the existing
topology-based MANET routing protocols. Consequently, they inherit their limitations
(e.g., limited scalability, relatively high control overhead and unreliability.

In MANET routing, there is a trend to develop position-based routing schemes
which are more robust and efficient than the traditional topology-based routing schemes.
In this work, we make use of the position information in our service provisioning
mechanism to increase its scalability and efficiency. Instead of using complicated
schemes to manage network topologies, only the positions of service nodes need to be
tracked.

A service provision framework will support the following functions:

¢ Service Discovery: Locating the services based on user’s requests.

e Service Delivery: Delivering relevant service data and control messages. Unicast
routing is needed for the delivery between peer devices, while multicast routing
would be required to support efficient group communications.

Geographic Routing :Geographic unicast routing assume mobile nodes are

aware of their own positions through certain positioning system (e.g., GPS), and a

source can obtain the destinations’s position through some location service.

An intermediate node makes packet forwarding decisions based on its
knowledge of the neighbors’ positions and the destination’s position inserted in
the packet header by source. As the forwarding decisions are only based on the

local topology, geographic routing is more scalable and robust in a dynamic

environment. However, these protocols adopt a proactive beaconing scheme to
maintain the local topology no matter if there are data traffics.

To reduce control overhead under light traffic, in neighbors of the forwarding
node contend for packet forwarding according to their distances to the destination.
These simple contention-based schemes may result in redundant forwarding. And
lead to large collision probability under high traffic load.

Service coordination: A service request may need to be satisfied by several
candidate providers. To enable coordination, the service provision framework
should be able to track a group of service providers and their services. Hence
efficient and scalable service and membership management is required to
facilitate the selection of appropriate providers and the collaboration among
multiple providers.
Existing schemes for service coordination are,
Centralized and Distributed Directory: References developed a distributed
service discovery architecture, which relies on a topology. It consists of two
independent components:

* Formation of a virtual backbone and

= Distribution of service registrations, requests, and replies.

The first component creates a mesh structure from a subset of a given
network graph that includes the nodes acting as service brokers and a subset of
paths (which we refer as virtual links) connecting them. Service broker nodes
constitute a dominating set, i.e. all the nodes in the network are either in this set or
only one-hop away from at least one member of the set.

The second component establishes sub-trees rooted at service requesting
nodes and registering servers for efficient dissemination of the service discovery
probing messages.

Simulation results were provided for comparison of performance
measures, i.€. latency, success rate, and control message overhead, when different

architectures and network support mechanisms are utilized in service discovery.

Ln

CHAPTER 2

LITERATURE SURVEY

2.1.Challenges Faced in MANET [9]:

Regardless of the attractive applications, the features of Manet introduce several

challenges that must be studied carefully before a wide commercial deployment can be

expected. These include:

Routing: Since the topology of the network is constantly changing, the issue of
routing packets between any pair of nodes becomes a challenging task. Most
protocols should be based on reactive routing instead of proactive.

Security and Reliability: An ad hoc network has its particular security
problems due to nasty neighbor relaying packets. Further, wireless link
characteristics introduce also reliability problems, because of the limited
wireless transmission range, the broadcast nature of the wireless medium (e.g.
hidden terminal problem), mobility-induced packet losses, and data
transmission errors.
Quality of service (QoS): Providing different quality of service levels in a
constantly changing environment will be a challenge.
Internetworking: The coexistence of routing protocols, for the sake of
internetworking a MANET with a fixed network, in a mobile device is a
challenge for the mobility management.

Power Consumption: For most of the lightweight mobile terminals, the
communication-related functions should be optimized for less power

consumption.

MANET is a highly dynamic environment, so the traditional well established

multicasting protocols cannot be deployed directly to it. Some modification and extension

should be made while considering all the constraints, such as dynamic network topology,

limited bandwidth and power. The new protocols should avoid global flooding, should

dynamically build the routes, and should update both routes and memberships

periodically.

6

2.2. Service Provisioning in Scalable Geographic Service Provision Framework for

Mobile ad Hoc Networks [1]:

In our framework, the sending of control and data information in the service
delivery can be implemented through our unicast and multicast protocols. The other two
functions required in service provision can be supported by our hierarchical service and
resource management architecture as discussed in this subsection.

In centralized directory-based schemes, some mobile nodes hold the service
directory to assist the communications between service providers and clients. Although
service co-ordination is easier, such centralized management is hard to scale and the
centralized directories lead to bottlenecks. In, local directories are constructed and form
the backbone of the network. A request will be searched in a local directory or multiple
directories by distributed searching. Its topology-based scheme is still hard to scale to a
larger network (e.g., with several hundreds of nodes) and lead to bottle neck and

Scalability problems.

2.2.1. Virtual hierarchy:

The hierarchical structure is designed to be flexible. Specifically, the number of
management layers in the structure is adjusted according to the capability of the
coordinators, the density of service nodes and the service requirements. We define
service coordinator at each layer to facilitate service management. According to the
management range and layer, a coordinator can be classified as local, regional
coordinator. The functions supported by a coordinator are also kind of services provided
to other wireless nodes. An example of the hierarchical structure is shown in Fig. 2.2.1.
The whole network is divided into size-manageable square zones. The zone-structure is
virtual and constructed and maintained only on management need.

The RC only needs to track the aggregated information of those zones having SNs
instead of every SN. Although a two-tier structure is enough for a normal MANET, in
order to scale to a larger network or manage a larger number of SNs, more layers can be

introduced between RC and LCs.

C Motate node
O Service node
® Local coandinater

@ Reginal cootdimator

Fig. 2.1. Virtual Hierarchy

2.2.2. Service discovery:

The service discovery follows our hierarchical structure from the bottom layer to
the top layer, i.e., first searching for the services and resources locally, then regionally,
and at last globally. As our service domains are formed based on geographic information,
this searching procedure naturally follows proximity principle. Specially, when a service
requestor (SR) wants to request one or multiple services, it will send a Query message
with service descriptions (including service 1Ds and parameters) to an appropriate service
coordinator. When there is a LC in its zone, it issues the Query to its LC; otherwise, if the
SR knows RC, it will issue Query to RC. When neither LC nor RC is known, SR will
send Query to GC directly or through GCZone. If having no information on GC,
GCZone, RC or LC, SR can start an expanded ring search, which is actually a fully
distributed searching as in some service discovery protocols.

When a LC receives a Query or it itself has service requests, if any of the
requested services can be satisfied by some local SPs according to its record, the Query
will be forwarded to one or more candidate SPs. On receiving the Query, if it can provide
the service, the SP will send back a Hit message describing what it can provide to the LC
or initial SR (which one to respond to is based on the policy and the service request). If
the requested services could not be satisfied locally, the LC will follow the same
searching procedure as above and resort to its upper layer service coordinators, and the

last option is to look for SPs through expanded ring search.

When a RC or GC receives a Query, it will process the message similarly. If any
of the requested services can be satisfied by the service zones recorded, the Query will be
further forwarded to the selected candidate zones. Selection criteria such as QoS
requirements, geographic closeness will be used when multiple candidates are available.
When reaching a destined service zone, the Query will be forwarded to its LC, which will
forward the Query to appropriate SPs to check if the services can be supported. Without
receiving any Hit message, the initial SR or corresponding coordinator can retry by

reissuing the Query or resorting to another SP candidate or upper coordinator.

O Mobile node

) Service node

@ Local coordinatos

Reginal coordinator
— =g (JUery messape

— i message

Fig. 2.2. Service Discovery in Regional Coordinator Layer

We also use service cache to optimize the service discovery. Each node keeps a
service cache. Whenever a node receives a Hit or REGISTER message from a SP, it will
cache the SP’s position and service information. The information will be removed after
caching for a period Intvalcache.

During the service discovery, when a non-coordinator node receives a Query, it
will look up its service cache for the requested services, and forward the Query to
qualified SPs if available, instead of forwarding the Query to destined coordinator.

For a coordinator, if the requested services can not be satisfied by its service
records, it will try to search for nonlocal SPs in its service cache, and if this also fails, it
will forward the Query to its upper coordinator. Other caching techniques ([11]) can also

be applied to further improve the data access performance.

2.2.3. Service Coordination:

A service request may need to be satisfied by several SPs. Our membership and
service management framework can efficiently support the search of multiple SPs.
During service discovery, when a request can not be fully satisfied by the resources
tracked by a LC, it will be further issued to the RC and then GC. Based on the knowledge
of larger-range resource and service information, RC and GC can ailocate necessary

remaining resources to the SR.

22.4. Service Delivery:
When the required service is found, the coordinator sends a bit vector (ie, a hit
message specifying the position of service). Then the service requestor identifies a path

from its source to contact the required service.

2.3. Service Provisioning in Efficient Geographic Multicast Protocol for Mobile Ad
Hoc Networks [4]:

EGMP can scale to large group size and network size and can efficiently
implement multicast delivery and group membership management. EGMP uses a
hierarchical structure to achieve scalability. The network terrain is divided into
geographical non-overlapping square zones, and a leader is elected in cach zone to take
charge of the local group membership management. A zone-based bidirectional multicast
tree is built in the network range to connect those zones having group members, and such

treestructure can utilize the network resource efficiently.

2.3.1. Service Discovery:

EGMP uses a two-tier structure. The whole network is divided into square zones.
In each zone, a leader is elected and serves as a representative of its local zone on the
upper tier. The leader collects the local zone’s group membership information and
represents its associated zone to join or leave the multicast sessions as required.

As a result, a network-range core-zone-based multicast tree is built on the upper
tier to connect the member zones. The source sends the multicast packets directly onto

the tree. And then the multicast packets will flow along the multicast tree at the upper

i0

tier. When an on-tree zone leader receives the packets, it will send them to the group
members in its local zone.
2.3.2. Service Coordination:

When a source (S) has data to send and it is not a zLD, it decides whether it has
joined the multicast tree by checking the isAcked flag in its membership table. If it is on
the multicast tree, it sends the multicast packets to its zLD. When the zLD of a zone on
the multicast tree (tZone) receives multicast packets, it forwards the packets to the

upstream zone and all the downstream nodes and zones except the incoming one.

2.3.3. Service Delivery:

When a node N has a multicast packet to be forwarded to a list of destinations
(D1,D2,D3, . .), it decides the next hop towards each destination (For a zone, its center
is used) using the geographic forwarding strategy. After deciding the next hops, N inserts
the list of next hops and associated destinations in the packet header.

An example list is (V1 : D1,D3;N2 : D2; . . .), where N1 is the next hop for the
destinations D1 and D3, and N2 is the next hop for D2. And then N broadcasts the packet
promiscuously (for reliability and efficiency). Upon receiving the packet, a neighbor
node will keep the packet if it is one of the next hops or destinations, and drop the packet
otherwise. If the node is a next hop for other destinations, it will continue forwarding the
packet similarly as node N.

2.4. Service Provisioning in Hierarchical Rendezvous Point Multicast [3]:

Hierarchal routing [10] is a well known approach to reducing the protocol states
in a large scale network. The per-packet encoding overhead of a stateless location-based
multicast protocol grows with the group size as O(G), where G is the multicast group
size. So, an increase in G severely limits the 5 usability of such protocols.

The main design goal of HRPM is to limit the per-packet overhead to an
application-specified constant (@), irrespective of the increase in G. The value of @ is a
parameter of HRPM and can be adjusted based on the amount of overhead that can be
tolerated by an application.

To achieve this, HRPM recursively partitions a large multicast group into

manageable sized subgroups in which the tree-encoding overhead satisfies the

constraint. This partitioning is achieved by geographically dividing the MANET region
into smaller and smaller cells. Such cells form a hierarchy with the root representing the
entire region.

Every cell in the hierarchy has an AP (Access Poinf), and the entire region has an
RP (Rendezvous Point). All members in a leaf cell of the hierarchy form a subgroup and
are managed by that cell’s AP. Groups of APs are managed recursively, i.e., by the APs

of their parent cells. @ is an application parameter and we discuss how HRPM adjusts the

hierarchy to meet this o constraint.

e o o
(o] o T o D I L) o ~
o O s o o ol
o QO Py O O
c o © o) 5 o g
[&] o o o o oG o
Rendezvous Ppint <
<o o o v o c e
[OR; [9)
c OO/O 1 O o ©
o e c o G
©°% /58,28 o o0
Join 2 o]
o] O/o P Q o o
./ e} ’b o
A o o < * q’ Leave g S o
O e 1 o5
o © S o e © o o
c o © o © °© o 5
o] o
O O Q ® o
doin emmee - Leave

Fig. 2.3. Rendezvous point gronp managenaent in HRPM
2.4.1. Service Discovery:

Initially when a source needs a service it must be a member of the hierarchy and
sends a beacon message to RP to identify the required service location. For this initially a
node hashes its group id to get the RP of its zone, which then contacts RP.

2.4.2. Service Coordination:

The source sends an OPEN SESSION message to the RP and receives the
membership group vector from the RP. The membership vector is of size d2 bits, with a
bit ’1” for each cell that contains any group members. This vector is cached by the source.
The RP differentially updates (sending only the changes) the source whenever the RP

receives a change in membership notification from an AP.

{2
Once the group vector is received, the source can build a virtual overlay tree (the
Src ® AP tree) by assuming each active AP as a vertex in a topology graph. The tree is
virtual since the source does not need to know the actual AP node in each cell; it just
needs to hash the GID in the AP’s cell.

2.4.3. Service Delivery:
Multicast data packets are delivered down the Src @ AP tree. The per-packet

encoding overhead is limited to a constant of d2 bits. Once a data packet reaches an AP,
the AP constructs an AP @ Member overlay tree this time using member node identifiers
and their actual locations. The AP then encodes the list of destinations and their locations

under each branch of the overlay tree in each data packet sent along that branch.

O .
° e %% ©L° d o © 00 ci
‘? e|° © o © o o
Sl | © o) o i
12 AP O Tae““mw.o 11 9 & 13 T o
(@] o [@) [) o @]
o o RP‘\o?u\ .\@ o?
o o S S
o OO o o © o Sfuce AR W
8 O 9~ 16~ © 11/0/
o .- o~ o ol o ©
o o |9 © © . i
* O . oy L O C .
oK AP OQ o .“Q_» . K AP o o
4 o 5 s | JIRE O
< O
@ N Z4 o oo
[4 5 o ~
e} o) O . @] .
.—o—“"‘*‘. O o O [}
s O o ' G AP » 3 o

-———= AP-Member Tree Source-AP Tree

Fig. 2.4.Data Delivery in HRPM

On average, the number of group members in a cell is G d2 where G is the group
size. The packet then is delivered to the nodes down the tree, with each node recomputing
a tree of the remaining destinations in the list.

Note that the size of this multicast header reduces as the packets travel down the
tree and the height of the remaining multicast tree reduces.

2.5. Core Node Election Methods:
A Core Node is a Zone leader that maintains informatton about its zone

members, such as available service, its service providers and location. It gets

I3

periodical update from its member node and send its information update
periodically to the Regional Leader.

Core nodes are elected based on three algorithms from papers Scalable
Geographic Service Provision Framework, Efficient Geographic Multicast
Protocol for Mobile Ad Hoc Networks, Hierarchical Rendezvous Point Multicast.

Core node election in SGSP is by considering nodes Zone ID and Node
ID. The node with highest Zone 1D is elected as Regional Leader and node with
highest Node ID is elected as Zone leader.

Core node election in EGMP is done by the following leader election
process, when a node appears in the network, it sends out a beacon announcing its
existence. And then it waits for a Intval(min) period for the beacons from other
nodes. Every Intval(min) a node will check its neighbor table and decide its zLD
under different cases: 1) The neighbor table contains no other zNodes, and it will
announce itself as zLD, 2) All the zNodes’ flags are unset, that means no zNode
has announced the leadership role. If the node is closer to the zone center than
other zNodes, it will announce its leadership role through beacon message,
3)More than one zNodes have their flags set, the one with the largest node ID is
elected. If the nodes’ own flag is set before thechecking, but another node wins as
zLD, the node will deliver its multicast table to the zLD. 4) Just one flag is set for
its ZNodes, the node with flag set is zLD.

Core node election in HRPM is done by using a hash function that takes
group ID, number of nodes, and location of each node as input and outputs a

location. The node available in that location is considered the leader.

CHAPTER 3

METHODOLOGY

3.1 Core Node Election in Efficient Geographic Multicast Protocol for Mobile Ad
Hoc Networks [4]:

In the underneath geographic unicast routing protocols, every node periodically
broadcasts a BEACON message to distribute its position. We insert in the BEACON
message a flag indicating whether the sender is zLD to ease leader election. Since rzone <
Vr2, the broadcasting will cover the hole focal zone.

To reduce the beaconing overhead, we enhance the fixed-interval beaconing
mechanism in the underneath unicast protocol to a more flexible one. A nonleader node
will send a beacon only when its moving distance from last beaconing is larger than or
equal to Dbeacon, or it moves to a new zone, and the beaconing interval is limited
within(Intvaimin, Intvalmax). A zLLD is forced to send out a beacon every period of
Intvalmin to announce its leadership role.

A zLD is elected through the leader election process. When a node appears in the
network, it sends out a beacon announcing its existence. And then it waits for a Infvalmin
period for the beacons from other nodes.

Every Intvalmin a node will check its neighbor table and decide its zLD under
different cases:

1) The neighbor table contains no other zNodes, and it will announce itself as
zLD.

2) All the zNodes’ flags are unset, that means no zNode has announced the
leadership role. If the node is closer to the zone center than other zNodes, it wili
announce its leadership role through beacon message.

3) More than one zNodes have their flags set, the one with the largest node ID is
elected. If the node’s own flag is set before the checking, but another node wins as zL.D,
the node will deliver its multicast table to the elected zLD.

4) Just one flag is set for its zZNodes, the node with flag set is zLL.D.

Advantages:

e A zone-based bi-directional multicast tree at the upper tier provides more
efficient multicast membership management and data delivery.

e Handles the empty zone problem which is challenging for the zone-based
protocols.

s As compared to traditional multicast protocols, this scheme allows the use of
position information to reduce the overhead in tree structure maintenance and
can adapt to the topology change more quickly.

e Due to the distributed membership management and the distributed tree
structure of EGMP, the group members can join the multicast group more
quickly than the centralized protocols in which the group members are

managed only by the source.

Disadvantages:
e Routing messages preserving energy and network bandwidth is a challenging

requirement of paramount importance.
e Packet Forwarding will generally introduce more hops and these extra hops

will lead to higher transmission overhead.

3.2 Core Node Election in Hierarchical Rendezvous Point Multicast [3]:

Rendezvous point group management allows multicast group members to
leverage geographic hashing for efficient group management. Any node that wants to join
a multicast group first hashes the group identifier to obtain the RP’s location in the

physical domain of the network using a hash function:

H(GID) = {x,y} where x; y € MANETregion
This hashing function takes as input the group identifier (GID) and outputs a
location (x- and y-coordinates) contained in the region. Note that we assume that this is a
well known hash function that is known by nodes that enter the network through external
means or using some resource discovery process.
After obtaining the hashed RP location for the group it wants to join, the node

sends a JOIN message addressed to this hashed location. This JOIN message is routed by

16

geographic forwarding to the node that is currently closest to the hashed location in the
network. This node is the designated RP at this time. Since there is only one such node at
any given time, the JOIN messages from all the group members converge at a single RP
in a distributed fashion without global knowledge.

Note that computing the hashed location assumes that all nodes know the
approximate geographic boundaries of the network. Such boundary information may be
pre-configured at nodes before deployment or discovered using some simple protocol.

To join a hierarchically decomposed multicast group, a node first generates the
hashed location for the RP and sends a JOIN message to the RP, same as in the flat
domain scenario. After receiving the value of the current decomposition index d of the
hierarchy from the RP, the joining node invokes the hashing function with d and its
current location to compute the hashed location of the AP of its cell. The node then starts
periodically sending LOCATION UPDATE packets to its AP. Such location updates are
softstate and serve as a subgroup membership update, i.e., if an AP stops receiving
location update from a member, it assumes the member has migrated to another cell.

Upon receiving (or not receiving) a location update from each member, the AP
summarizes the membership inside its cell as non-empty (or empty) and further
propagates to the RP whenever the membership switches between empty and non-empty.
The state the RP needs to keep about the group is just a bit vector of d2 bits with each bit
representing whether a member exists in a particular cell or not. Thus the RP can easily
encode a large number of APs. For example, 256 APs from 256 cells can be encoded in
32 bytes. Thus for a large multicast group, a two-level HRPM reduces the state required
at the RP to d2 bits while requiring the (leaf) AP in each cell to only maintain the
addresses and locations of G d2 nodes on average where G is the original size of the
multicast group.

The frequency of location update determines the accuracy of the knowledge at the
RP/APs and consequently the accuracy of the multicast tree. We use threshold-based
updates where each node initiates a LOCATION UPDATE whenever it moves 100m
from the location of the last update. This is similar to the strategies used in location
services for MANETs. When a node moves into a new cell, it does not immediately send

an update to the new AP. Its previous AP can continue to route data using geographic

17

forwarding. When the node moves a certain distance (i.e. [00m) from the location of its
last update, it will send a new update to the AP in the new cell.

Note that the group management architecture of HRPM needs to also deal with
the situation when nodes of a group are close to each other, i.e. there is locality in the
group membership. In such a case, extra overhead is incurred in sending control
messages to an RP that may be far away from the cluster of group members. Fortunately,
a hierarchy is useful in this scenario as well since a group with locality will send updates
primarily to a small set of APs in the clustered cells where the group members are
located.

The RP is only sent one update from each AP indicating the existence of members
in its cell. Each source only needs to retrieve a bit vector from the RP once to perform
data delivery which will be done locally through the nearby APs. Thus, when group
membership has geographic locality, HRPM incurs minimal overhead in using an RP. We
believe this small overhead is justified given the overall overhead reduction made
possible by using a virtual hierarchy.

Advantages:

e HRPM significantly improves the scalability of location-based multicast in

terms of the group size.

e HRPM incorporates two key design ideas:

(1) hierarchical decomposition of multicast groups, and
(2) use of distributed geographic hashing to construct and maintain such a
hierarchy efficiently.

e HRPM constructs and maintains this hierarchy at virtually no cost using

distributed hashing; distributed hashing is recursively applied at each
subgroup for group management and avoids the potentially high cost

associated with maintaining distributed state at mobile nodes.

Disadvantages:
» Keeping track of the RP/AP would require an external location service or
some flooding-based mechanism due to mobility in MANETs. This can

potentially incur high overhead.

18

e The group management architecture of HRPM needs to also deal with the
situation when nodes of a group are close to each other, i.e. there is locality in
the group membership. In such a case, extra overhead is incurred in sending
control messages to an RP that may be far away from the cluster of group

members.

3.3 Core Node Election in Rendezvous Service Coordination:

In Rendezvous Service Coordination the leaders are elected adaptively
considering its remaining battery power, average speed, its frequency of the node
assumed the leader till that time (t), and node distance closest to the zone centre. The
node with highest Eligibility factor is considered the leader and the leader changes when
the Eligibility factor of the existing leader nodes goes down the threshold limit.

EFi(t) = ay*Vi(t)+az* I()+as*Bit) +as(1-Ei1)).
where,
Vi(t) — mobile node average speed at time t.
Ii(t) — frequency of the node assumed the leader till the time t.
Bi(t) — remaining battery power in node 7 at time t.
Ei(t) — node distance closest to the zone center.
a| to a;— weighting factor. (0 <=a; <= 1)

The node that has highest value of EF will be elected as leader.

3 [AP NODE 42 announces itself as leader to node 41 of zone 5
node 37 is elected as the &F for zone 6 N
AP NODE 37 announces itseif as leader to node 16 of zone 6

Fig. 3.1. Leader Election

Whenever a mobile node enters a zone it sends a beacon message to its nearest
neighbour to get leader’s position in the zone. If the new node does not get leader’s
position within a time interval in that zone, the node considers itself as leader and
initiates coordinator election process. The new leader broadcasts its leadership details to

all other neighbour nodes in the zone.

Advantages:

Decreases Handoft by electing Leader adaptively that holds for long time and
overhead is reduced by considering only one leader for all the group members
in the zone.

The aggregated Tree structure avoids more confusion, since only one tree is
built between the service requestor and service provider of that service closest
to requestor.

Even if the leader node crashes a backup node will be existing maintaining all

the information about services, requestors and providers.

Disadvantages:

More data structures must be maintained by leader node, thus the capability of
leader must be considered strictly.
The leader node must have to save more energy to leads its life and handle

coordination.

3.4, Service Registration:

When the Zone Leader is elected, the Service Provider in that Zone Registers its

Services with that Zone Leader. Then the Zone Leaders information’s are stored,

containing the information about Service Providers, location and all services

available in that Zone. The following information’s are registered,

Table 3.1: Service Provider Table (maintained by Zone leader / Regional

leader)

SPID | SPLoc | ZID | AP Loc | Service ID | Seq No | Lifetime of service

Table 3.2: Service Requestor Table (maintained by Zone Leader)

Member ID | Loc | GroupID’s

Table 3.3: Zone Leader Table (maintained by Regional Leader)

Zone Leader | Loc | ZID | EF | (ordered by EF} | Time Stamp

. i -~ o -
&) .\ - s o~ L o o . H
o [- - o Lo
< . . -y . o R -/' N
R > -
e, ol Py
Zone Leader ‘*_\ [A [o i L
= .y N o
Mgy RS C,ﬂ_ € RL < » . s, ,.
2 -~ \A"”‘M-w- g™ T o
< [(’/,,‘! w, S .ﬁ '\:-'-c,)
i ~ ; . .
o @ ¢ o & olh, o | zee O
< o 7 : It “7 | Leader ¢
~ . / [IS N P I] o~ O
i) o —~ [\ i [y -
o ™ b 7 - S
C e < VP Zeme Y o 5
A o~ L - -
(] o L f Leader kO O
. o o o T o
Zone Leader / L =
H Y
o ; o <
S . b ¢ O S0
tp] " -
e o o -C; \ r o b e [-
o TS, h O «©)
© © | Zone Leader » O
----- wZone Leader RIL Update
Update

Fig. 3.2. Location Update of all nodes

(including leader)

-5 |SP NODE 32 REGISTERS its SERVICES WITH AP NODE 35 of zone 9
5P HODE 40 REGISTERS its SERVICES WITH AP NODE 2 of zone 1
Neighbor 34 is updated in 0 's neighbor table

Fig. 3.3. Service Registration

3.5. Service Advertisement:

The Service Nodes in each Zone advertises its availability and about its service
type, its Service provider and its location to the Zone Leader periodically. When the

service moves to other Zone it informs its old Zone Leader and advertises its services

to the new Zone Leader of its new Zone.

&P LIODE 42 aunownces tseff as leader 1o node 41 of zove 5
[nade 37 is elected as the AP for zone 6
2 |AP NODE 37 announces itself as leader to node 16 of Zone §

Fig. 3.4. Service Announcement

3.6. Service Discovery:

When a Service Requestor has query for service, it identifies its zone location and
requests for a Zone Leader location in the zone. After the Zone Leader location is
acquired by the requestor, it sends request message to its Zone Leader node. In turn
the Zone Leader checks for service availability in its zone and forwards the query to
the respective service provider of that service. If the service provider is not available

it forwards the query to Regional Leader.

3.7. Rendezvous Service Coordination:

In Rendezvous Based Service Coordination, information about services and the
node that provides services are maintained and for efficient tracking and coordination of
services, rendezvous node is created so as to reduce overhead and network traffic. Thus
the services that can be grouped are identified and coordinated based on the source
request.

Initially all the available services are advertised to all Zone Leaders. When a
service is needed the Service Requestor contacts Zone Leader by sending a request
message, if the service is available the Zone Leader sends a hit message back to the
requestor. If the service is not available then the Zone Leader contacts Regional Leader
and the Regional Leader confirms the service availability by sending a Hit message to the
requestor.

If more than one Service Provider can provide service for the Service Requestor,
using (SGSP) [1] the distance between the Zone Leader of Service Requestor and Zone
Leader of all the Service Provider is calculated. After this Service Provider with least
distance is chosen to provide the required service (i.e., the Service Provider closest to the

Service Requestor).

AW 110DE 3.4 responds writh beacou me3sage to 19
P NODE 0 REFRESHES its SERVICE 2 WITH AP MODE 38 of 2one 8
P NODE 4 REFRESHES &> SERVICE 0 WITH AP NODE 40 of zone 3

Fig. 3.5. Service Coordination
The Service Provider advertises lifetime of service and registers the service details

with Regional Leader. Service Provider maintains bit vector of service requestors for

[R]
(]

each of service. Service Provider periodically delivers service to Service Requestor. Also

Service Provider sends service updates to Service Requestor’s and Regional Leader.

3.8. Service Delivery:

Only one coordinator is elected in each zone for ali groups. The coordinator (i.c.
Leader) is changed whenever Eligibility Factor of the node is less than the threshold
value, by initiating new election process. If a Service Provider provides *n’ services only

one tree is constructed.

\ INODE 16 responds with beacon message to 48 _
SH EODE 13 sendsd a rayuest message to ks AP NODE 6
Service 45 available outside the zone

Fig.3.6. Service Delivery

Multicast data packets are delivered down the Source > Zone Leader tree. Once a
data packet reaches a Zone Leader, the Zone Leader constructs a Zone Leader -> Member
overlay tree this time using member node identifier and their actual locations. The Zone
Leader then encodes the list of destinations and their locations under each branch of the
overlay tree in each data packet sent along that branch. The packet then is delivered to the
nodes down the tree, with each node recomputing a tree of the remaining destinations in

the list.

i~
0

CHAPTER 4

Implementation
4.1, Simulation Environment:

4.1.1. Network simulator (NS):
Ns-2 stands for Network Simulator Version 2. Ns-2 is a discrete event

simulator targeted at network research. Focused on modeling network protocols.

E - DT!:I :Tclinterpfeter - E - Q
with OQ extention Analysis

OTcl Script Simulation
Simulation NS Simulator Library Resulis 4
Program « Event Scheduler Objects S

* Network Component Objects

* Network Setup Helping leﬂrk
Mo dules (Plumbing Mo dules) Arimator

4.1.2. Components of NS
4.1.2.1. Nam, the Network AniMator
® Visualize ns (or other) output
* GUI input simple ns scenarios
4.1.2.2. Pre-processing
* Traffic and topology generators
4.1.2.3. Post-processing

= Simple trace analysis, often in Awk, Perl, or Tcl

4.1.3. Goals of NS
= Support networking research and education
- Protocol design, traffic studies, etc.
- Protocol comparison

» Provide a collaborative environment

- Freely distributed, open source

- Share code, protocols, models, etc.

- Allow easy comparison of similar protocols

- Increase confidence in results

- Models provide useful results in several situations
= [t covers multiple layers,
- Application layer, transport layer, network layer and
link layer.

» Supports the simulation of Intserv/diffserv, Multicast, Transport,

Applications Wireless(fixed, mobile, satellite)

4.1.4. Two languages:
o Ct++:
» Detailed protocol simulations require systems programming language.
» Byte manipulation, packet processing, algorithm implementations.
= Runtime speed is important.
* Turn around time(Run simulation, find bug, fix bug, re-compile) is

slower.

= Simulations of slightly varying parameters or configurations.
» Quickly exploring a number of scenarios.

= [teration time{change the model and re-run) is more.

4.1.5. NS-2 Programming Languages
o NS-2:
[t is an object oriented simulator, written in C++, with an

OTecl(Object Tool Command Language) interpreter as a front-end.

¢ Back-end C++:
- Defining new agents, protocols and framework.
- Manipulations at the byte/bit levels.
- If you have to change the behavior of an existing C++ class n ways that

weren’t anticipated.

[
L

s Front-end Otcl
- Topologies, scenarios, simulations, ...
- Script language (easy topology modifications)
- If you can do what you want by manipulating existing C++ objects.
4.1.6. Why Two Languages

« Simulator had two distinct requirements
- Detailed simulation of Protocol (Run-time speed)
- Varying parameters or configuration (Change model & rerun)

e C++ is fast to run but slower to change
e Otcl runs much slower but can be changed quickly.

4.1.7. Nam (Network AniMator)
“Nam is a Tcl/TK based animation tool for viewing network simulation

traces and real world packet traces.”

4.1.8. Gnuplot:
Gnuplot is a command-driven, interactive, function and data plotting
program. Gnuplot supports many types of plots in either 2D and 3D. It can
draw using lines, points, boxes, contours, vector fields, surfaces, and
various associated text. It also supports various specialized plot types.

Eg: Gnuplot> plot ‘graph.dat’.

4.1.9. Trace File Formats:
Used to trace packets on all links
set tracefd [open simple.tr w]
$ns_trace-all $tracefd
1) Wired trace file format:

This trace format is normally used for normal wired operations.

Event Abbreviation Type | | Value

$c 34 34 %3 3d Ba 54 34,39 34,34 3d &3

double Time

int iLink-layer} Source Mode

int iLink-layer} Destinati"c'ﬁu Hede a

string iF’acket Name

¢ Recete int Packet Size
4 Drop sting Flags
Hormal Event 'e: Error :
; + Enqueus imt Flow I
- Degueue int ;(l\ietwork-layer} Source Address
int ?Seurce Pod
int §iNetwork-!ayar} Dastinaticn Address
int Destination Port
int ‘Sequence Number
int Unigue Packet iD

Table. 4.1. Wired Trace File Format

2) Wireless trace file format:

An example of wireless trace output is,
r 40.639943289 1 AGT --- 1569 tcp 1032 [a2 1 2 800] --—--- [0:0
1:0321][350]20

The first field is a letter that can have the values r;s,f,D for
“received” , “sent” , “forwarded” and dropped. Also M for
movement indication.

The second field is the time.

The third field is the node number.

The fourth field is MAC to indicate if the packet concerns a MAC
layer, AGT to indicate transport layer, or RTR if it concerns routed
packet.

After the dashes come global sequence number indicator.

Next field comes for more information on packet type. (tcp, ack, or
udp).

Then comes packet size in bytes.

Next concerns with MAC layer information. a2 specifies expected
time to send data packet, 1 stands for MAC-id, 2 is that for
receiving node, and 800 specifies that MAC type is
ETHERTYPE IP.

The next numbers concern with IP source and destination address.
The last numbers concemns the tcp information: its sequence

number and acknowledgement number.

4.2. Simulation Scenario:

The simulation was performed using the network simulator ns-2. The network

field size is 2400mx 2400m, containing 15,20,30,40,50,60 mobile nodes. All the

nodes follow the random waypoint mobility model with AODV as the default routing

protocol with TCP traffic.

The experimentation is particularly interested in the scalability of multicast

routing protocols and service provisioning. The geographic multicasting algorithm is

28

used to deliver the data packets to the group member. The input to this algorithm is
service packets with sources and destinations. The output of this algorithm is to
deliver the service packet data to the group member.

» Defining wireless options

initial configuration

set val(chan) Channel/WirelessChannel ;#Channel Type
set val(prop) Propagation/TwoRayGround;# radio-propagation model
set val(netif) Phy/WirelessPhy :# network interface type
set val(mac) Mac/802 11 ;# MAC type
set val(ifq) Queue/DropTail/PriQueue ;# interface queue type
set val(ll) LL J# link layer type
set val(ant) Antennz/OmniAntenna :# antenna model
set val(ifglen) 15 ;# max packet in ifg
set val(nn) 15 ;# number of mobilenodes
set val(rp) AODV :# routing protocol
set val(x) 2400 ;# x dimension of topography
set val(y) 2400 ;# y dimension of topography
set val(seed) 2.0

set val(stop) 100 ;#time of simulation end
set val(sc) "output-13-scen”

set val(intvallocal) 4

set val(intvalglobal) 6
set val(energymodel} EnergyModel
set val(initialenergy) 0.5

set ns_ [new Simulator}

settracefd [open tree.tr w]

$ns_ trace-all $tracefd

set namtrace [open tree.nam w]

$ns_ namtrace-all-wireless

» set up topography object
settopo [new Topography]
$topo load_flatgrid $val(x) $val(y)

» Create God — General Operations Descriptor

create-god $val(nn)
» Configure node:

$ns_ node-config -adhocRouting $val(rp) \

-lIType $val(ll) \
-macType $val(mac)\
-ifqType $val(ifg) \
-ifqLen $val(ifglen) \
-antType $val(ant) \
-propType $val(prop) \
- phyType $val(netif) \
-topolnstance $topo \
-agentTrace ON\
-routerTrace ON \
-macTrace ON\
-movementTrace OFF \
-energyModel $val{energymodel i
-rxPower 0.3\
-txPower 0.6\
-initialEnergy $val(initialenergy)\
-batteryModel RTBattery\
-alpha 35220\
-beta 0.637\
-voltage 4.1
= creation of nodes
for { seti0 } { $i <$val(nn) } {incri} {
global n
set node_($i) [$ns_ node]
}
®* To set the random motion
for {setiQ} { $i <$val(nn) } { incri} {
$node ($i) random-motion 0
}
» To set the size of the nodes
for { seti0} {$i < Sval(nn)} {incri} {

$ns_ initial_node_pos $node ($i) 60
b

Loading Scenario File
loading the initial positions and node movements
puts "Loading scenario pattern..."
source $val(sc)

Assigning Service Provider and its Services
#assigning every 4th node as a service provider
global sp -
setj O
for {seti0} {$i <4} {incri} {
set sp($i) $j
set j [expr $j+4]

}

$node (0) set services(0) 1
$node (0} set services(1) 3
$node (0) set services(2) 9
$node (0) set services(3) 13
$node (0) set services(4) 17

$node (0) set service count 5

D

5.1.

CHAPTER 5

Experimental Results and Discussion

Performance Evaluation:

The performance analyzed are,

Packet Delivery Ratio (PDR) — Number of packets delivered to the destination by
the number of packets expected to be received.

Delay — Number of packets sent by Average time received by all receivers.
Forwarding Cost — Number of packets transmitted by total number of packets
received by all members.

Overhead — Total number of bytes transmitted at MAC layer including ACK in

case of unicast transmission.

a) Impact on network size:

o Network size vs Average zone Leader Change:

The performances of the three algorithms (SGSP, HRPM, and Adaptive)
are evaluated based on the Average Zone Leader Change. The Average Zone
Leader Change is calculated by Electing Zone Leader for 900ms with time
interval (100ms) by changing the pause time (2,4,5,6,8) of the simulation on
an average of 5 sirnulations.

The graph is plotted by considering network size (15, 20, 30, 40, 50, and

60) on x-axis and Average Zone Leader Change on y-axis.

fverage Zone Leader Change

HRPH
Adaptive —

40
Hetwork Size

Inference:

From the above graph it is inferred that Zone Leader changes as when the
pause time of each simulation is changed, the Adaptive Leader election
algorithm is found comparatively efficient than SGSP and HRPM based
Leader election.

Because the leaders elected in adaptive leader election algorithm consider
their remaining battery power, mobility, and its distance, thus by minimizing

the leader change.

¢ Network size vs Average no. of Zone leader:

The graph is plotted by considering network size (15, 20, 30, 40, 50, and
60) on x-axis and Average Zone Leader Change on y-axis. The Average no. of

Zone Leader is calculated by Electing Zone Leader for 900ms with time

S
ad

interval (100ms) by changing the seed value (0.0, 1.0, and 2.0) of the

simulation on an average of 5 simulations.

Gnupiot S

fiverage No,of Zone Leader
s L)) L] 13

s
HREM - -
fidaptive —n—

fvg No,of Zone Leader
(4]

2% o
1} J
0 3 z E [} 2
10 20 20 40 50 g0 70
Network Size
l 48,5006, G E2247
Inference:

From the above graph it is inferred that no. of Zone Leader as when the seed
value is changed for each simulation, the Adaptive Leader election algorithm is
found comparatively efficient than SGSP and HRPM based Leader election.

Because the leaders elected in adaptive leader election algorithm is based on
their remaining battery power, mobility, and its distance, thus by minimizing no.

of leaders.

(]
e

e Network size vs Packet delivery Ratio:
The graph is plotted by considering network size (20, 30, 40, and 50)
on x-axis and Packet Delivery Ratio on y-axis. The packet delivery ratio is

analyzed by changing seed value (0.0, 1.0, and 2.0).

Gnuplot

Netuork size vs Packet delviery ratio

120 L] + L] 1]
sgsp —+—
Hrpm
fdaptive —-x—
100 y

Packst dalivery ratio
24

10 20 30 40 50 80

Inference:

From the above graph it is inferred that adaptive algorithm provides about
81.59% of packet delivery ratio which is comparatively efficient than SGSP
giving 77.21% packet delivery ratio and HRPM giving 69.64% packet delivery
ratio. Also Adaptive algorithm is 19.86% higher than HRPM and 34.92% higher
than SGSP.

Thus the adaptive algorithm is efficient because in adaptive coordinator
election algorithm the leader nodes are elected based on nodes average speed,

distance closest to the centre of zone and remaining energy.

L
tn

* Network size vs Delay:

The graph is plotted by considering network size (20, 30, 40, and 50) on x-

axis and Delay on y-axis. The Delay of nodes is analyzed by changing seed

value (0.0, 1.0, and 2.0).

Gnuplot

Network size vs Delay

45 k] L] & LS
598 —b—

Rdaptive —s—

falay

10 20 30 40 50
Network size

Inference:

From the above graph it is inferred that adaptive algorithm provides about 82.79%
of minimized delay which is comparatively efficient than SGSP giving 77.63%
minimized delay and HRPM giving 75.42% minimized delay. Also Adaptive
algorithm is 5.32% higher than HRPM and 13.83% higher than SGSP.

Thus the adaptive algorithm is efficient because in adaptive coordinator election
algorithm the leader nodes are elected based on nodes average speed, distance closest

to the centre of zone and remaining energy.

80

¢ Network size vs Overhead:
The graph is plotted by considering network size (20, 30, 40, and 50) on x-
axis and Overhead on y-axis. The Overhead of nodes is analyzed by changing

seed value (0.0, 1.0, and 2.0).

Gnﬁp[ot

Network size vs Overhead
Em L) L] T)

Network size

Inference:

From the above graph it is inferred that adaptive algorithm provides about
80.09% of minimized overhead which is comparatively efficient than SGSP
giving 73.44% minimized overhead and HRPM giving 78.47% minimized
overhead. Also Adaptive algorithm is 22.41% higher than HRPM and 13.28%
higher than SGSP.

Thus the adaptive algorithm is efficient because in adaptive coordinator
election algorithm the leader nodes are elected based on nodes average speed,

distance closest to the centre of zone and remaining energy.

¢ Network size vs Forwarding Cost:
The graph is plotted by considering network size (20, 30, 40, and 350)
on x-axis and Forwarding cost on y-axis. The Forwarding cost of nodes is

analyzed by changing seed value (0.0, 1.0, and 2.0).

' Gnuplot

Network size vs Forwarding Cost

Inference:

From the above graph it is inferred that adaptive algorithm provides about
85.43% of less forwarding cost which is comparatively efficient than SGSP
giving 72.79% less forwarding cost and HRPM giving 69.45% less forwarding
cost. Also Adaptive algorithm is 12.82% higher than HRPM and 22.44% higher
than SGSP.

Thus the adaptive algorithm is efficient because in adaptive coordinator
election algorithm the leader nodes are elected based on nodes average speed,

distance closest to the centre of zone and remaining energy.

b) Impact on Mobility:
¢ Network size vs Average Zone Leader change (Effect of Moving
Speed) :
The graph is plotted by considering network size (15, 20, 30, 40, 50, and
60) on x-axis and Average Zone Leader Change on y-axis.
The Effect of Moving Speed of a node is analyzed by considering average
Zone Leader Change for network size for simulation 900ms with time
interval (100ms) by changing the speed (20,40,60,80,100) of the simulation

scenario and taking an average of 5 simulations.

Gnupiot

Effect of Moving Speed

s L4 L] L) L] L
S65P aonpn

HREN oo
Bdaptive ——

0 ' 1 L 2 A
10 20 £ 40 5¢ B0
Metwork Size

50,4588 -0, 713430

70

Inference:
From the above graph it is inferred that adaptive algorithm provides about

85.43% of minimized overhead which is comparatively efficient than SGSP

39

giving 72.79% minimized overhead and HRPM giving 69.45% minimized
overhead. Also Adaptive algorithm is 12.82% higher than HRPM and 22.44%
higher than SGSP.

Because the leaders elected in adaptive leader election algorithm considers the
mobility of the leader node and thus the average leader change minimized

efficiently.

¢ Speed vs Packet Delivery Ratio:
The graph is plotted by considering speed (50, 100, 150, 200, and 250) on

x-axis and Packet Delivery Ratio on y-axis. The packet delivery ratio is

analyzed by changing Pause time (5, 10, 15, 20, and 25).

' Gnuplot

Speed ve Packst delviery ratio
% L] Ll L] L] L]

Hrpm —sieme
Adaptive —e—

5 p 4

Packet dellvery ratio

m i Fl A k'l 4
50 100 150 200 250 300
speed

40

Inference:

From the above graph it is inferred that adaptive algorithm provides about
88.26% of packet delivery ratio which is comparatively efficient than SGSP
giving 83.69% packet delivery ratio and HRPM giving 75.53% packet delivery
ratio. Also Adaptive algorithm is 35.73% higher than HRPM and 25.29% higher
than SGSP.

Thus the adaptive algorithm is efficient because in adaptive coordinator

election algorithm the leader nodes are clected based on nodes average speed.

¢ Speed vs Delay:
The graph is plotted by considering speed (50, 100, 150, 200, and 250) on
x-axis and Delay on y-axis. The packet delivery ratio is analyzed by changing
Pause time (5, 10, 15, 20, and 25).

h ”Gnuplot,

an* v

Adaptive ——x—

40

Delay
&
i
H
i
1

LIZ5.827, 23,1024

41

Inference:

From the above graph it is inferred that adaptive algorithm provides about
79.68% of minimized delay which is comparatively efficient than SGSP giving
67.92% minimized delay and HRPM giving 61.56% minimized delay. Also
Adaptive algorithm is 20.74% higher than HRPM and 27.62% higher than SGSP.

Thus the adaptive algorithm is efficient because in adaptive coordinator

election algorithm the leader nodes are elected based on nodes average speed.

¢ Speed vs Overhead:
The graph is plotted by considering speed (50, 100, 150, 200, and 250) on
x-axis and Overhead on y-axis. The packet delivery ratio is analyzed by

changing Pause time (5, 10, 15, 20, and 25).

6ﬁﬁplot)

®Op e Adaptive —— -

SYEp —be
Hrpm F—

Inference:

From the above graph it is inferred that adaptive algorithm provides about
84.41% of minimized overhead which is comparatively efficient than SGSP
giving 74.62% minimized overhead and HRPM giving 79.41% minimized
overhead. Also Adaptive algorithm is 17.43% higher than HRPM and 10.84%
higher than SGSP.

Thus the adaptive algorithm is efficient because in adaptive coordinator

election algorithm the leader nodes are elected based on nodes average speed.

o Speed vs Forwarding cost:
The graph is plotted by considering speed (50, 100, 150, 200, and 250) on
x-axis and Forwarding cost on y-axis. The Forwarding cost of nodes is

analyzed by changing Pause time (5, 10, 15, 20, and 25).

Gnuplot

Network size vs Forwarding Cost

Inference:

From the above graph it is inferred that adaptive algorithm provides about
82.92% of less forwarding cost which is comparatively efficient than SGSP
giving 73.44% less forwarding cost and HRPM giving 78.47% less forwarding
cost. Also Adaptive algorithm is 21.62% higher than HRPM and 14.12% higher
than SGSP.

Thus the adaptive algorithm is efficient because in adaptive coordinator

election algorithm the leader nodes are elected based on nodes average speed.

¢) Impact on Remaining Energy of the Zone Leader:
The graph is plotted by considering network size (15, 20, 30, 40, 50, and
60) on x-axis and Average Zone Leader Change on y-axis.
The Remaining Energy of the Zone Leader is analyzed by considering

remaining energy of zone leader for at time (25, 45, 65, 85, and 95).

— Gm:p ot
fverage Remaining Energy of Zone Leader

HRPH <o
Adaptive —u—

i
!
1
:
i
z

44

Inference:

From the above graph it is inferred that adaptive algorithm provides about
86.77% of remaining energy which is comparatively efficient than SGSP giving
78.41% less forwarding cost and HRPM giving 71.62% less forwarding cost. Also
Adaptive algorithm is 16.93% higher than HRPM and 9.89% hi gher than SGSP,

Because the leaders changes only if the eligibility factor existing Zone Leader
is less than the threshold limit, and this eligibility factor mainly depends on the
zone leaders remaining energy.

Thus the zone leader in adaptive leader election algorithm holds as leader for

longer time which is advantageous in minimizin g the overhead.

45

CHAPTER 6
CONCLUSION AND FUTURE WORK

A scalable and efficient service coordination scheme for MANET has been
proposed. The scheme is adaptable to the changing topology and management
requirements of the network. The system also accomplishes a scalable resource tracking,
service membership management mechanism to support timely and coordinative service
provisioning.

It has compared and analyzed the three algorithms for the service coordinator
election and has arrived at the conclusion justifying the efficiency of the adaptive leader
election algorithm and the proficient routing of data packets through the leader elected by
that algorithm. The justification is supported evidently by the performance evaluation of
impact on network size with Average Zone Leader Change, also with Average No. of
Zone Leader, with impact on Effect of Moving Speed of Zone Leader and impact on

Remaining Energy of Zone Leader.

The system is more scalable in terms of number of multicast groups compared to

other protocols. Still the future research can be made in the following directions:

(a) More efficient schemes for service discovery to be considered supporting better

resource tracking.

(b) Intend to maintain a proper group membership management and Location updates.

APPENDICES

Source Code

initial configuration
set val(chan)
set val(prop)
set val(netif)
set val(mac)

Channel/WirelessChannel
Propagation/TwoRayGround
Phy/WirelessPhy

Mac/802 11

set val(ifq) Queue/DropTail/PriQueue
set val(ll) LL

set val(ant) Antenna/OmniAntenna
set val(ifqlen) 15

set val(nn) 15

set val(rp) AQODV

set val(x) 2400

set val(y) 2400

set val(seed) 2.0

set val(stop) 100

set val(sc) "output-15-scen”

set val(intvallocal) 4

set val(intvalglobal) 6
set val(energymodel) EnergyModel
set val(initialenergy) 0.5

Initialize network simulator
set ns_ [new Simulator]

tracefile creation
set tracefilel [open 15-m-idbased.tr w]
$ns_trace-all $tracefilel

channel #1 and #2 creation
set chan_1_ [new $val(chan))

nam creation

set namfile [open 15-m-idbased.nam w]

$ns_ namtrace-all-wireless $namfile $val(x) $val(y)
set up topography object

settopo [new Topography]

$topo load_flatgrid $val(x) $val(y)

Create god
set god [create-god $Sval(nn)]

#setting color for data flow

46

;#Channel Type

;# radio-propagation model
;# network interface type

MAC type

;# interface queue type

;# link layer type

;# antenna model

;# max packet in ifgq

;# number of mobilenodes

;# routing protocol

;# x dimension of topography
;# y dimension of topography

;#time of simulation end

$ns_ color O blue

node configuration

$ns_ node-config -adhocR »uting $val(rp) \
-lIType $val(ll) \
-macType $val(mac) \
-ifqType $val(ifg) \
-ifqLen $val(ifglen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-topolnstance $topo \
-agentTrace ON\
-routerTrace ON \
-macTrace ON
-movementTrace OFF \
-channel $chan_1_}\
-energyModel $val{energymodel)
-rxPower .3\
-txPower 0.6\
-initialEnergy Sval(initialenergy)\
-batteryModel RTBattery\
-alpha 35220\
-beta 0.637\
-voltage 4.1

creation of nodes

for {seti0®} {$i<I5} {incri}{

global node_
set node_(8i) [$ns_ node]

#disable random motion

$node_($i) random-motion 0

3

loading the initial positions and node movements
puts "Loading scenario pattern..."

source $val(sc)

create inititial node position in nam

#size of node is 15

for {setiO} {$i< 15} {incri} {
$ns_ initial node pos $node ($i) 15

}

#origin

set x0 0.00

set y0 0.00

#total number of nodes

47

global tot_nodes
set tot_nodes $val(nn)

#buffer node for service cache
set node (15) [$ns_ node]
$ns_ initial node_pos $node (15) 15
$node (15} set speed 20
#setting frequency for the nodes
for{seti0O} {$i<15} {incri}{
$node ($i) set freq 0

$node_($i) set type 3

}
#assigning every 4th node as a service provider
global sp

setj O

for {seti 0} {$i <4} {incri} {

set sp($i) §}

set j [expr $j+4]

}

#service provisioning

for {seti 0} {Si< 15} {incri} {
$node_($i) set type 2

$node_($i) set sr_count 0
seti[expr$i+3]

}

$node_(0) set services(0) 1
$node (0) set services(1) 5
$node (0) set services(2) 9
$node_(0) set services(3) 13
$node (0) set services(4) 17
$node_(0) set service_count 5

$node_(4) set services(0) 2
$node (4) set services(1) 6
$node_(4) set services(2) 10
$node_(4) set services(3) 14
$node (4) set services(4) 18
$node (4) set service_count 5

#setting lifetime for services
$node (0) set life_time(0) 80
$node (0) set life_time(i) 140
$node_(0) set life_time(2) 270
$node (0) set life_time(3) 400
$node_(0) set life_time(4) 130

49

$node (4) set life_time(0) 90
$node (4) set life_time(1) 115
$node (4) set life_time(2) 280
$node (4) set life_time(3) 70
$node (4) set life_time(4) 120

#data structure that stores the access points in each zone
global leader
set Iptr 0
#global param
global countl count2 count3 count4 count5 count6é count? count8 count9
global back upl back up2 back up3 back up4 back up5 back up6é back up7 back up8
back up9
global cx cy
global a b
global count5
global rp
global initx inity id za zb inita initb
setrp O
#storing initial positions
for {seti0} {$i<15} {incri}
set initx($i) "[$node ($i) set X "
set inity($i) "[$node ($i) set Y "
set id($i) $node ($i)
set inita($i) [expr abs(floor(("[$node_($i) set X_]" - $x0)/ 800.0))]
set initb($1) [expr abs(floor(("[$node ($i) set Y _]" - $y0)/ 800.0))]

}

#virtual zone construction
proc zone_construct { tz } {
global ns node xy x0 y0 cx cy tot_nodes
global a b
puts " -
puts " VIRTUAL ZONE CONSTRUCTION"
p'l.ltS Li] _—
calculation of a and b which form the zone id
for {seti 0} {$i < $tot nodes} {incri} {
set a($i) [expr abs(floor(("[$node_($i) set X_}" - $x0)/ 800.0))]
$node ($i) set a $a($i)
$node_($i) set zid(0) $a(Si)
set b($i) [expr abs(floor(("[$node ($i) set Y 1" - $y0)/ 800.0))]
$node_(3i) set b $b($i)
$node ($i) set zid(1) $b($i)
#$ns_ at $tz "puts [$node_($i) set en]"
3

#calculating centre of each zone

set temp 0

for {set i} {$i <3} {incri} {
for {setj 0} {$j <3} {incrj} {
set cx(Stemp) [expr ($x0+ (($i+0.5)* 800.0))]
set cy($Stemp) [expr ($y0 + ((§ +0.5) * 800.0)) |
set temp [expr $temp + |]
}
}

#parameters containing the number of nodes in each zone and the zone array
global r1 12 r3 r4 r5 r6 r7 r8 19 z1 72 z3 z4 25 z6 27 z8 z9 index lead s

setrl O

for {seti 0} {$i < $tot_nodes} {incri} {

if { $a($i) == 0 && $b($i) =0} {
set z1($rl) $i
$node ($i) setzn 1
setrl [expr$rl+1]

}

if { $a($i) == 0 && $b($)==11 {
set z2($r2) $i
$node ($i) set zn 2
setr2 [expr $12 + 1]

}

if { $a(3i)=—2 && bSi)=2} {
set z9($r9) $i
$node ($i) setzn 9
set r9 [expr $r9 + 1]

i

}

#displaying the nodes in each zone
puts "Nodes in Zone 1"

puts "Number of nodes in zonel : $r1"
for {seti0} {$i < $rl} {incri} {
puts "$z1($1)"

}

¥

#zonel - leader election and service registration
proc electl {tsl tel } {

global ns_

global node_

global z1 rl1

global sp

global leader Iptr cx cy

setjO
global back_up1 velocity frequency ef

#ID BASED LEADER ELECTION FOR ZONE 1
#node id
if{$rl>111¢
for {seti 0} {$i <S8rl} {incri} {
set index $z1($1)
set nid($i) Snode_(Sindex)
}
#sorting id
for {seti 0} {$i<S$rl} {incri} {
set nodel($i) $z1($i)
}
for {seti 0} {$i <3$r1} {incri} {
for {setj 1} {$j < $r1} {incrj} {
if { $nid($i) < $nid($)) } {
set temp1 $nid($i)
set nid($i) $nid($))
set nid(§j) $templ
set temp2 $nodel($i)
set nodel($i) $nodel($))
set node1($j) $temp2

}

#puts "$nid($i)"

¥
#leader election

set lead $nodel(0)

set back_upl $nodel(1)

}

if{8rl=1}{

set lead $z1(0)

¥

if{$rl==01}{

set lead 15

}
set leader($Iptr) $lead

$node_($lead) set type 1

$node_($lead) set mem_count 0

$node_(Slead) set Ic $lead

set Iptr [expr $lptr + 1]

if { $lead 1=15} ¢{

$ns_at $ts1 "$ns_ trace-annotate \" node $lead is elected as the AP for zone | \"

for {seti0} {$i <$r1} {incri}{
if { $z1($1) != $leader(0) } {
set index $leader(0)
set udp_($index) [new Agent/UDP]

$ns_ attach-agent $node_($index) Sudp (Sindex)

set null_($index) [new Agent/Null]

$ns_ attach-agent $node_($z1($1)) $nuil_($index)

set cbr_($index) [new Application/Traffic/CBR]
$cbr ($index) set packetSize 512
$cbr_($index) set interval 4.0

$cbr_(Sindex) set random_ 1

$cbr_($index) set maxpkts 10000
$cbr_(Sindex) attach-agent $udp_($index)

$ns_ connect $Sudp (Sindex) $null (Sindex)
$ns_at $tsl "$cbr_($index) start”

$ns_at Stel "$cbr_($index) stop”

$ns_ at Sts1 "$ns_ trace-annotate \"AP NODE $leader(0) announces itself as leader to

node $z1($i) of zone 1 \""
$node ($z1($i)) set lc $index
}
}
}
puts "Leader of Zonel: $lead "

}

Election of rendezvous point
proc elect_rp { time } {
global ns_ node_
global s
global leader
global rp
set maxval $node_($leader(0))
for {setil} {$i <9} {incri} {
set j $leader($i)
if {$node_($j) > $maxval} {
set maxval $node_($j)
setrp
}

}
$node_($rp) set type 0

$node_($rp) set freq [expr "[$node ($rp) set freq "+ 1]

puts "Node $rp is the current rp"
}

proc update_table_ap { timel time2 } {

global countl count2 count3 count4 count5 count6 count? count8 count9

th
[

global z1 22 23 z4 z5 26 z7 z8 z9
global r1 12 13 4 £5 16 17 18 r9
global ns_node_
globalspab
global count lptr
global leader
#SERVICE REGISTRATION FOR ZONE 1
if { $leader(0) =15} {
for {seti 0} {$i < $rl} {incri} {
if { $z1(8i) != $Sleader(0) } {
for {set k 0} {$k <4} {incrk} {
if { $z1($1) == $sp($k) } {
set index $z1(8i)
set udp_($index) [new Agent/UDP]
$ns_ attach-agent $node_(Sindex) $udp ($index)
set null_($index) [new Agent/Null]
$ns_ attach-agent $node_(Sleader(0)) $null_($index)
set cbr_($index) [new Application/Traffic/CBR]
$cbr_($index) set packetSize 512
$cbr_($index) set interval 4.0
$cbr_($index) set random 1
$cbr_($index) set maxpkts 10000
$cbr_($index) attach-agent $udp (Sindex)
$ns_ connect $udp_($index) $null_($index)
$ns_ at $timel "$cbr (Sindex) start”
$ns_ at $time2 "$cbr_($index) stop”
$ns_ at $timel "$ns_ trace-annotate \"SP NODE $index REGISTERS its SERVICES
WITH AP NODE $leader(0) of zone 1 \""

set timel [expr $timel + 0.02]
set time2 [expr $time2 + 0.02]
3
#storing information of access point |
set countl 0
if { $leader(0)==15} {
$node_($leader(0)) set sp($countl) 15
$node_($leader(0)) set sp_loc($count,0) $ns_ at $timel "[$node (15) set X_]"
$node_($leader(0)) set sp_loc($countl,1) Sns_ at $timel "[$node (15) set Y 7"
$node_($leader(0)) set sp_services($countl,0) 0
$node ($leader(0)) set sp_count $countl
} else {
for {set m 0} {$m < $rl } {incrm} {
if{ $z1($m) % 4==01} {
#storing the service providers of apl
$node_($leader(0)) set sp($countl) $z1($m)
#storing the locations

54

$node_(Sleader(0)) set sp_loc($countl,0) $ns_ at $timel "[$node ($z1($m)) set X 1"
$node_($leader(0)) set sp_loc($countl, 1) $ns_ at $timel "[$node_($z1($m)) set Y "

#storing all the services

$node_($leader(0)) set sp_services_count($countl) " [$node ($z1($m)) set
service_count | "

for { seti 0} { $i <" [$node ($z1($m)) set service count]" } {incri} {

$node_($leader(0)) set sp_services($count1,$i) "[Snode_($z1($m)) set services($i) |
$node_($leader(0)) set sp_services_life(Scountl,$i) "[$node ($z1($m)) set
life_time($7)]"
}

set countl [expr $countl +]

1
$node_(Sleader(0)) set sp_count $countl

proc update_table rp {tr } {
global node ns_
global rp leader
set temp 0
for {setk0} { $k<9} {incrk} {
set spcount 0
if { $leader($k) 1= 15 } {
if {$leader($k) != $rp} {
set index $rp
set index2 $leader($k)
set udp_($index) [new Agent/UDP]
$ns_ attach-agent $node ($index) Sudp ($index)
set null_($index) [new Agent/Null]
$ns_ attach-agent $node_($index2) $null_($index)
set cbr_($index) [new Application/Traffic/CBR]
Scbr_($index) set packetSize 512
$cbr_($index) set interval 4.0
$cbr_(Sindex) set random_ 1
$cbr_($index) set maxpkts_ 10000
$cbr_($index) attach-agent $udp ($index)
$ns_ connect $udp_($index) $null_($index)
$ns_ at $tr "$cbr_($index) start"
$ns_ at [expr $tr + 0.02] "$cbr_($index) stop”
$ns_ at $tr "$ns_ trace-annotate \"RP NODE $index announces itself as RP to the AP
$index2 \""
}
set templ " [$node_($leader($k)) set sp_count] "
$node_(S1p) set ap($k) $leader($k)
$node ($rp) set ap_zid($k,0) [$node_($leader($k)) set zid(0)]"
$node_($rp) set ap_zid($k.1) "[$node (Sleader($k)) set zid(1) 1"

Ln
Lh

for { seti 0} { $i<S$templ } { incri} {
set temp2 " { $node_($leader(Sk)) set sp_services count($i)] "
for {setj0} {$ <Stemp2 } {incrj} {
$node ($rp) set ap_services($k,$spcount) " [$node (Sleader($k)) set
sp_services(3L.8) 1"
set spcount [expr $spcount + 1]

1)

$node ($rp) set ap_service count($k) $spcount

3

proc refresh { tf } {
global ns_ sp node_ leader
for {seti0} {$i< 3} {incri} {
set index $sp($i)
for {set j 0} {$j <" [$node_($index) set service_count] "} {incrj} {
if { " [$node_(Sindex) set life_time($j)]" =01} {
if { [expr " [$node_(Sindex) set life_time($j) 1" % $tf] == 0} {
set temp [expr " { $node ($index)setzn]"-1]
set udp_($index) [new Agent/UDP]
$ns_ attach-agent $node_($index) Sudp_($index)
set null_($index) [new Agent/Null]
$ns_attach-agent $node ($leader($temp)) $null_($index)
set cbr_($index) [new Application/Traffic/CBR]
$cbr ($index) set packetSize 512
$cbr_($index) set interval 4.0
$cbr_($index) set random__ |
$cbr_($index) set maxpkts_ 10000
$cbr_($index) attach-agent $udp ($index)
$ns_ connect $udp_($index) $null_($index)
$ns_ at $tf "$cbr_($index) start”
set end [expr $tf + 0.02]
$ns_ at $end "Scbr_($index) stop”
$ns_ at $tf "$ns_ trace-annotate \"SP NODE $index REFRESHES its SERVICE $;j
WITH AP NODE $leader($temp) of zone [expr $temp + 1 | \""

1

proc add_sp {tm } {
global ns_node_
global leader count5 ser5 ap5_ser z5 r5
set te fexpr $tm + 0.05]
set templ [expr $t5 - 1]
set temp2 $z5($templ)
if { Stemp2 % 4==01} {
set templ [expr Stempl - 1]
set temp2 $z5($temp1)
}

set scount "[$node_($leader(4)) set sp_count 1"
$node ($temp2) set type 2

$node_($temp2) set services(0) 4

$node ($temp2) set services(1) 5

$node ($temp2) set services(2) 12
$node_($temp?2) set life_time(2) 115

$node (Stemp?2) set life_time(3) 170
$node_(Stemp?2) set service count 4

#registering services with ap of zone $temp
set udp_($temp2) fnew Agent/UDP]
$ns_ attach-agent $node_($temp2) Sudp_($temp2)
set null_($temp2) [new Agent/Null]
$ns_ attach-agent $node_($leader(4)) $null_($temp2)
set cbr_($temp2) [new Application/Traffic/CBR]
$cbr_(Stemp?2) set packetSize 512
$cbr_($temp?2) set interval 4.0
$cbr_($temp2) set random_ 1
$cbr_($temp2) set maxpkts 10000
$cbr_($temp?2) attach-agent $udp ($temp2)
$ns_ connect Sudp_($temp2) Snull_($temp2)
$ns_at $tm "Scbr_($temp2) start"
$ns_ at $te "$cbr_($temp?2) stop”
$ns_at $tm "Sns_ trace-annotate \"A new SP NODE $temp2 REGISTERS its

SERVICES WITH AP NODE $leader(4) of zone 5\""
#updating ap table

}

$node_($leader(4)) set sp($scount) $temp?2

$node_($leader(4)) set sp_count [expr $scount + 1]

$node_(S$leader(4)) set sp_loc($scount,0) $ns_ at $tm "[Snode_($temp?2) set X_ "
$node_($leader(4)) set sp_loc($scount,1) $ns_ at $tm "[$node_($temp2) set Y _ 1"
$node_($leader(4)) set sp_services($scount,0) 4

$node_($leader(4)) set sp_services($scount,1) 5

$node_(Sleader(4)) set sp_services_life($scount,2) 115

$node_($leader(4)) set sp_services_life($scount,3) 170

$node_($leader(4)) set sp_services count($scount) 4

set $count3 [expr Scount5 + 1]

procdel sp {td } {

global ns_ node_ leader count2 ser2 ap2_ser
set ind [expr $count2 - 1]

set temp2 "[$node_($leader(1)) set sp($ind)]”
$node_($temp2) set service count 0

$node ($temp2) set type 3

for {seti0} {$i<5} {incri}{

$node_($temp2) set services($i) 0
$node ($temp?2) set life_time($i) 0

}

set temp [expr " [$node_($leader(1)) set sp_count] " - 1]
$node_($leader(1)) set sp_count $temp
set count2 [expr $count2 - 1]
$ns_at $td "$ns_ trace-annotate \"SP NODE $temp2 DELETES its SERVICES FROM
AP NODE $leader(1) of zone 2 \""

}

proc ap_fail { timef } {
global ns_node back up4 leader z4 r4 rp
$ns_at Stimef "$ns_ trace-annotate \"AP NODE $leader(3) of zone 4 fails due to system
crash \""
if { $leader(3) % 4==01} {
$node_($leader(3)) set type 2
}else {
$node ($leader(3)) set type 3

}
$node_($leader(3)) set speed_ 0
set $leader(3) $back_up4
for {setiO} {$i <$rd4 } {incri} {
if { $z4($1) = $leader(3) } {
set index $leader(3)
set udp_($index) [new Agent/UDP]
$ns_ attach-agent $node_($index) Sudp ($index)
set null_($index) [new Agent/Null]
$ns_ attach-agent $node ($z4($i)) $null_(Sindex)
set cbr_(Sindex) [new Application/Traffic/CBR]
$cbr_(Sindex) set packetSize 512
$cbr_($index) set interval _ 4.0
$cbr_(Sindex) set random_ 1
$cbr_($index) set maxpkts 10000
$cbr_($index) attach-agent $udp ($index)
$ns connect $udp ($index) $null_($index)
$ns_at $timef "$cbr_($index) start"
$ns_ at [expr $timef + 0.05] "$cbr_($index) stop"
$ns_ at $timef "$ns_ trace-annotate \"BACK UP NODE $leader(3) announces itself as
AP to node $z4(8$i) of zone 4 \""
$node ($z4($i)) set lc $index
}
!
$node ($leader(3)) set type 1
$node ($leader(3)) set mem_count 0
$node ($leader(3)) set freq [expr "[$node ($leader(3)) set freq " + 1]
set index $leader(3)
set udp (Sindex) [new Agent/UDP]
$ns attach-agent $node ($index) $udp ($index)

set null_($index) [new Agent/Null]

$ns_ attach-agent $node (Srp) $null_(Sindex)

set cbr_($index) [new Application/Traffic/CBR]

$ebr_(Sindex) set packetSize 512

$cbr_($index) set interval 4.0

$cbr_($index) set random_ |

$cbr_(Sindex) set maxpkts 10000

$cbr_($index) attach-agent $udp ($index)

$ns_ connect $udp_($index) $null (Sindex)

$ns_ at $timef "$cbr_($index) start”

$ns_ at [expr Stimef + 0.05] "$cbr_($index) stop"

$ns_ at $timef "$ns_ trace-annotate \"BACK UP NODE $leader(3) updates itself with
the RP NODE $rp \""

$node_($rp) set ap(3) $leader(3)

}

#neighbor table creation
proc update_neighbor { timen } {
global abnode ns_
for {setiQ} { $i< 15} {incri} {
setcnt 0
settx1 "[$node_($i) set X "
settyl "[$node_($i)set Y 1"
for {setj O} {$i <15} {incrj} {
set tx2 "[Snode_($j) set X_ 1"
setty2 "[$node (§j)setY 1"
set xd [expr $txI - $tx2]
set yd [expr $tyl - $ty2]
setd [expr sqrt (($xd * $xd) + ($yd * Syd))]
if { $d <251 && $d =0} {
$ns_at Stimen "$ns _ trace-annotate \" Neighbor $j is updated in $i 's neighbor table\"

$node_($i) set nid($ent) $j
$node_($i) set n_ap(Scnt) [$node_($j) set Ic)"
$node_($i) set pos($cnt,0) $tx2
$node_(3i) set pos($ent, 1) $ty2
$node_($i) set n_zid($cnt,0) "[$node ($j) set a]"
$node_($i) set n_zid($ent,1) "[$node ($j) set b |"
if { "[$node_(§j) set type |"==11} {

$node_($i) set flag($ent) 1
}else {

$node_(3i) set flag($ent) 0

}

set cnt [expr $ent + 1]

1}

$node_($1) set ncount $ent

i}

#neighbor table updation
proc hello_beacon { timebl timeb2} {
global node ns_ initx inity id inita initb
for {setiO} {$i<15} {incri} {
set newx($i) "[$node ($i) set X_]"
set newy($i) "[$node (Si)set Y_]"
;
for {setiO} {$i<15} {incri} {
set xd1 [expr $initx($i) - Snewx($i) 1
set yd1 [expr $inity($i) - Snewy($i)]
set d1 [expr sqrt ({ $xd1 * $xd1 } + ($ydl * $yd1))]
if { $d1> 215} {
set initx($1) $newx($i)
set inity($i) $newy($i)
set nent "[$node_($i) set ncount 1"
for {setjO} {$j<Sncnt} {incrj} {
set index $i
set index2 "[$node_($i) set nid($j) 1"
set udp_($index) [new Agent/UDP]
$ns_attach-agent $node_($index) Sudp_($index) .
set null_($index) [new Agent/Null]
$ns_ attach-agent Snode_($index2} $null_(Sindex)
set cbr_($index) [new Application/Traffic/CBR]
$cbr ($index) set packetSize 512
$cbr ($index) set interval 4.0
$cbr_($index) set random_ 1
$cbr_($index) set maxpkts_ 10000
$cbr_($index) attach-agent $udp_($index)
$ns_ connect $udp_(Sindex) $null_($index)
$ns_ at $timeb1 "$cbr_(Sindex) start"
$ns_ at [expr $timebl + 0.02] "$cbr_($index) stop”
$ns_ at $timeb1 "$ns_ trace-annotate \"NODE S$index sends hello message to $index2

\Hﬂ
1t

proc rp_move { timer } {

global node_ ns_ initx inity id inita initb rp

set newxrp "[$node_($rp) set X_ 1"

set newyrp "[$node ($rp)setY_]"

set xd1 [expr $initx($rp) - Snewxrp]

set ydl [expr $inity($rp) - Snewyrp]

set d1 [expr sqrt (($xd1 * $xd1) + (Sydl * $ydl))]
if { $d1 > 100} ¢
set initx($rp) $newxrp
set inity($rp) $newyrp

60

for {setj0} {% <9} {incrj}{
set index $rp
set index2 "f $node_($rp) set ap($j) 1"
set udp_($index) [new Agent/UDP]
$ns_ attach-agent $node_($index) Sudp_($index)
set null_($index) [new Agent/Null}
$ns_ attach-agent $node ($index2) $null_($index)
set cbr_($index) [new Application/Traffic/CBR]
$cbr_($index) set packetSize 512
$cbr_($index) set interval 4.0
$cbr_($index) set random_ 1
$cbr_($index) set maxpkts 10000
$cbr_($index) attach-agent $udp (Sindex)
|33
proc new_node { timex timey } {
global ns_ node leader inita initb
for {seti0} {$i<15} {incri} {
if {"[Snode_($i) set a]" = $inita($i) || "[$node_(Si) set b]" = $initb($i) } {
set nent [$node ($i) set ncount |"
for {setjO} {$j <$nent} {incrj} {
if { ("[$node_($i) set a]" =="[$node_($i) set n_zid($j,0) ") && ([$node_($i) set b
]"=="[$node_(3$i) set n_zid($j,1)1") } {
set index $i
set index2 "[$node_($i) set nid($j) 1"

set udp_($index) [new Agent/UDP]

$ns_ attach-agent $node_($index) Sudp ($index)

set null_($index) [new Agent/Null]

$ns_ attach-agent $node (Sindex2) $null_($index)

set cbr_(Sindex) [new Application/Traffic/CBR]

$cbr_(Sindex) set packetSize 512

$cbr_($index) set interval 4.0

$cbr_($index) set random_ 1

Scbr_($index) set maxpkts 10000

$cbr_($index) attach-agent $udp ($index)

$ns_ connect $udp_($index) $null_($index)

$ns_ at $timex "Scbr_($index) start”

$ns_ at [expr $timex + 0.02] "$cbr_($index) stop”

$ns_ at $timex "$ns_ trace-annotate \"NODE $index sends hello message to its
neighbor Sindex2 \""

3388

proc service_discovery { timed sr serv} {
global ns_ node_ leader rp
#SR sends its request to its AP
set access_point "[$node_($sr) set le]"

61

set index Saccess point
set index2 $sr
set udp_($index2) [new Agent/UDP]
$ns_ attach-agent $node_($index2) $udp (Sindex2)
set null_($index2) [new Agent/Null]
$ns_ attach-agent $node_($index) $null_($index2)
set cbr_($index2) [new Application/Traffic/CBR]
$cbr_($index2) set packetSize 512
$cbr_(Sindex2) set interval 4.0
$cbr_($index2) set random_ 1
$cbr_($index2) set maxpkts 10000
$cbr_(Sindex2) attach-agent Sudp ($index2)
$ns_connect $udp_($index2) $nuil ($index2)
Sns_ at $timed "$cbr_($index2) start"
$ns_ at [expr $timed + 0.01] "Scbr_(Sindex2) stop”
$ns_at $timed "$ns_ trace-annotate \"SR NODE $sr sends a request message to its AP
NODE S$index \""
set timed [expr $timed + 0.01]
set cn "[$node_($access_point) set mem_count]"
$node_($access_point) set sr_id($cn) $sr
set flag 0
#if service available in the requestor table
if { "[$node_(8access_point) set mem_count]" >0 } {
for { seti0 } { $i < "[$node_($access_point) set mem_count]" } {incr i e
if { $serv == "[$node_($access_point) set service id($i) 1" [
set flag 1
#AP forwards the request to the SP
Sns_ at Stimed "$ns_ trace-annotate \” Service $serv available in the AP NODE
$access_point (requestor table) \""
set index "[$node_($access_point) set sp_id($i)]"
set index2 $access point
set udp_($index2) [new Agent/UDP]
$ns_ attach-agent $node_($index2) Sudp ($index2)
set null_($index2) [new Agent/Nulil]
$ns_ attach-agent $node_(Sindex) $null_($index2)
set cbr_($index2) [new Application/Traffic/CBR]
$cbr_($index?2) set packetSize 512
$cbr_($index2) set interval 4.0
$cbr_($index?) set random 1
$cbr_($index2) set maxpkts 10000
$cbr_($index2) attach-agent $udp_($index2)
$ns_ connect $udp_($index2) $null ($index2)
$ns_ at $timed "$cbr_($index?2) start"
$ns_ at [expr $timed + 0.01] "$cbr_($index2) stop”
$ns_ at Stimed "$ns_ trace-annotate \"AP NODE $index2 forwards the request
message to SP NODE Sindex \""

set timed [expr $timed + 0.01]
$node ($access point) set sr_id($i) $sr
3

service available within the same zone
if { $flag 1= 1} {
setn " [$node ($access point) set sp_count]”
setent O
for {setiO} {$i<$n} {incri}{
set k "[$node ($access_point) set sp_services_count($i)]"
for {setjO} {$§j <%k} {incrj} {
if { $serv == "[$node_($access_point) set sp_services($i,$)) 1" } {
set flag 2
set temp_arr($cnt) $i
set temp_id($cnt) "[$node ($access_point) set sp($i)]"
set temp_life(Scnt) "[$node ($access point) set sp_services_life($i,$j) 1"
set cnt [expr $ent + 1]
133
if { $flag==2} {
for {seti0} { $i<$ent } {incri} {
set xdiff [expr "[$node_(Ssr) set X 1" - "[Snode_($temp_id($i)) set X 1"]
set ydiff [expr "[$node_($sr) set Y_]" - [$node_($temp_id($i)) set Y_]"]
set dist($1) [expr sqrt (($xdiff * $xdiff) + ($ydiff * $ydiff))]
}
set period 0.04
set min_dist 1000 ‘
for {seti0} { $i<S$ent } {incri} {
if { $temp_life($i) > $period && $dist($i) < $min_dist } {
set min $temp_arr($i)
set min_dist $dist($i)
b}
if { $flag==31} {
for {seti0} { $i <Scent } {incri} {
set xdiff [expr "[$node ($sr) set X 1" - "[$node ($temp id($i)) set X 1"]
set ydiff [expr "[$node_($sr) set Y _]" - "[$node ($temp_id(Si)) set Y 1"]
set dist($i) [expr sqrt (($xdiff * $xdiff) + (Sydiff * $ydiff))]
}
set min_dist 1000
for {setiO} { $i<$ent } {incri} {
if { $dist($i) < $min_dist } {
set min $temp_arr($i)
set min_dist $dist($i)
1}
if { $ent==1}{
set temp $temp_arr(0)
yelse §
set temp $min

62

3
set period 0.04

set min $temp1_arr(0)
for { setiO } { $i<S$ent } {incri} {
if { $templ_life($i) > $Speriod} {
set min $templ_arr($i)
13

if { $ent==17}{
set temp1 $templ_arr(0)
} else {
set templ $min
)
#AP forwards the request to the SP
set index "[$node_($leader($temp)) set sp($templ) 1"
set index2 $leader($temp)
set udp_($index2) [new Agent/UDP]
$ns_ attach-agent $node ($index2) Sudp_($index2)
set null_($index2) [new Agent/Null]
$ns_ attach-agent $node ($index) $null_($index2)
set cbr_($index2) [new Application/Traffic/CBR]
$cbr_(Sindex2) set packetSize 512
$cbr_($index2) set interval 4.0
$cbr_(Sindex2) set random_ |
$cbr_($index?) set maxpkts 10000
$cbr_($index2) attach-agent $udp_($index2)
$ns_ connect $udp_($index2) $null_($index2)
$ns_at $timed "$cbr_(Sindex2) start"
$ns_ at [expr $timed + 0.01] "$cbr_($index2) stop”
$ns_ at $timed "$ns_ trace-annotate \"AP NODE $index2 of zone $temp forwards
request message to SP NODE $index \""
set timed [expr $timed + 0.02]
$node ($access point) set sp_id{$cn) $index
$node (Saccess point) set service_id($cn) $serv
seten{expr$en+ 1)
$node ($access point) set mem_count $cn

#SP sends hit message to SR
set index2 "[$node_($leader($temp)) set sp($temp1)]"
set index $sr
set udp ($index2) [new Agent/UDP]
$ns_ attach-agent $node ($index2) Sudp ($index2)
set null_($index2) [new Agent/Null]
$ns_ attach-agent $node_($index) $null_($index2)
set cbr_($index2) [new Application/Traffic/CBR)
$cbr_($index2) set packetSize 512
$cbr_($index2) set interval 4.0

04

$cbr_($index2) set random_ |
$cbr_($index?) set maxpkts 10000
$cbr_($index2) attach-agent $udp (Sindex2)
$ns_ connect Sudp ($index2) $null_(Sindex2)
$ns_ at $timed "$cbr ($index?) start"
$ns_ at [expr $timed + 0.01] "$cbr_($index2) stop"
$ns_ at $timed "$ns_ trace-annotate \"SP NODE $index2 sends hit message to SR
NODE $index \""
set timed [expr $timed + 0.02]
set ¢ "[$node ($index2) set sr_count]"
$node_($index2) set req_id($c) $index
$node_($index2) set req_ap($¢) "[$node ($index) set Ic |"
set ¢ [expr $¢ + 1]
$node_($index2) set sr_count $¢

#3R responds to SP with an acknowledgement(delivery)
set index2 $sr
set index "[$node_($leader(Stemp)) set sp($templ) |"
set udp_(Sindex2) [new Agent/UDP]
$ns_ attach-agent Snode_($index2) $udp ($index2)
set null_($index2) [new Agent/Nuli]
$ns_ attach-agent $node ($index) $null ($index2)
set cbr_($index2) [new Application/Traffic/CBR]
$cbr_($index2) set packetSize 512
$cbr_($index?) set interval 4.0
$cbr_($index2) set random_ 1
$cbr_(Sindex2) set maxpkts_ 10000
$cbr_($index2) attach-agent $udp ($index2)
$ns_ connect $udp_($index2) $null_($index2)
$ns_ at $timed "Scbr_($index2) start"
$ns_ at [expr $timed + 0.01] "$cbr_($index2) stop"
$ns_ at $timed "$ns_ trace-annotate \"SR NODE $index? sends response message
to SP NODE Sindex \""
}else {
$ns_ at $timed "$ns_ trace-annotate \"Service $serv not available.... Retry later....
o

333,

Tell nodes when the simulation ends
for {set i 0} {$i < $val(nn) } {incr i} {
$ns_ at 99.05 "Snode_($i) reset”;

3

$ns_at 20.2 "zone construct 20.2"
$ns_at 20.2 " elect] 20.2020.28 "
$ns at 20.2 " elect2 20.20 20.24 "
$ns at 20.2 " elect9 20.51 20.55 "

$ns_at 31.2 "update table ap 31.2 31.3"
$ns_at31.2 "update_neighbor 31.2"
$ns_at 31.2 "elect rp 31.2"

$ns_at 31.2 "update_table rp 31.2"
$ns at32.0 "ap_fail 32.0"

$ns_at 32.9 "service discovery 32.9 15 19"
$ns at 35.2 "add sp 35.2"

$ns_at 37.2 "del sp 37.2"

$ns_at 39.2 "new_node 39.2 40.2 "
$ns_at 52.9 "service discovery 52.99 1"
$ns_at 95.9 "service discovery 95.9 3 4"

for {seti26 } {$1<99} {incri} {

$ns_at $i "zone construct $i"

$ns_at $i "update neighbor $i"

$ns_at $i " elect] [expr $i +0.02] [expr $i+0.04] "
$ns_at $i " elect2 [expr $i +0.03] [expr $i + 0.05]
seti[expr$i+15]

}

for {setk 32 } {$k <99 } {incr k} {

$ns_at $k "hello_beacon $k [expr $k + 0.02]"
setk [expr $k + 11]

}

for {set k 33 } {$k <99 } {incr k} {
$ns_at $k " rp_move $k"
set k [expr $k + 1]

}
$ns_at 99.92 "stop"

$ns_at 99.93 "puts \"NS EXITING...\" ; $ns_ halt"

proc stop {} §
global ns_ tracefilel

$ns_ flush-trace

close $tracefilel

puts "running nam..."
exec nam 15-m-idbased &

b

puts "Starting Simulation..."
$ns_run

05

60

APPENDIX
SCREENSHOTS

Service Registration

" pam: 50-m-ldbased.nam

| e fows Amsipsis \ Show-ifbusedm
1 4 i [] » 13 . magsn Stegllies
¥ # £ ¢ H seoonrt
% £ # b '
& .
i s i
4.1 -
:j i W 4 ®
E] #
j %] v
[3
]
¢ ., o
@
¥
0 ° ;
-4)) E-]
L
© ® N i :
? Ers gzo
" %
b2
£ °
W4y
i
* 3:
B

67

Service Announcement

m Yiews Assiysis i Sh-m-idbasedaam T
“ : X] >)
;_Gj e s i g
% |
il:l " ®
11
9
| @
1
¥
*
7 . ﬁ_@ &
»
#
* 4 o #
S
5

AP FODE 42 annorices Hael 4y eaes to node
Tis tluched as the AP for 2o §

5 JAP HODE 37 annemnces R0l a3 leasior to 30dn 16 of 2one
a]

68

Leader Election

6Y

Service request

nam: 50-m-idbased.nam

mmmb[Shm-idhasednng

" : « i [| > M w2517 | Sl

Le 1ol |QID l]

INODE 16 respends with beacou wessage 1o 45

70

Service Coordination

nam: 5¢-m-idbased, nam

Lo lo =z (@D ||

HULE T responds with eacor wessapebi s
[AP HODE & HEFHESHES its SEHVICE 2 WITH AP NODE 38 of 2eme B
NODE 4 BEFRESHES Mo SERVICE § WITH AP HODE 4 of 7on 3

71

Service Delivery

" nam: 50-m-idbased.nam

Sh-m-idbasednum
“ n > (2] won Swidiw
% s L 8
- . . 41
f? " ' & 2 1§
Ej %
.EJ a4 k-] o
-] bl
0
<]
% ® s o
0 F
, o
Ga a
& Bl % ki
2 70
%
B % " .
o # ¢

REFERENCES

[1] Xiaojing Xiang and Xin Wang, “A Scalable Geographic Service provision
framework for Mobile Adhoc Networks”, in PerCom *07 IEEE,2007.

[2] Guo Song , Gerard Parr and Bryan Scotney, *“ A conceptual Framework for
bandwidth Protection in Mobile Adhoc Networks”, in MOBICOM [EEE,2006.

[3] Saumitra M.Das, Himabindu Pucha and Y.Charlie Hu, “Distributed Hashing for
Scalable Multicast in Wireless Adhoc Networks”, in WowMom'06 IEEE, 2006.

[4] Xiaojing Xiang and Xin Wang, “An Efficient Geographic Multicast Protocol for
Mobile Adhoc Networks”, in WoWMoM’06 [EEE, 2006.

[5] Dimitrios Koutsonikolas, Saumitra M.Das, Y.Charlie Hu, Ivan Stojmenovic,
“Hierarchical geographic multicast routing for wireless sensor networks”, in
Wireless networks Springer, Oct 2008.

[6] Fei Li, Shile Zhang, Xin Wang, Xiangyang Xue, and Hong Shen, “ Vote-based
Clustering Algorithm in Mobile Ad-hoc Networks”, in MANET, 2004,

[7] Jaspreet Kaur, Cheng Li, “ Simulation and Analysis of Multicast protocols in
Mobile Ad Hoc Networks using NS-2”, in MANET.

(8] Ranwa Al Mallah and Alejandro Quintero, “ A Light-Weight Service Discovery
Protocol for Ad Hoc Networks™, in Mobile Computing and Networking Research
Laboratory, Journal of computer Science 5 (4):330-337, 2009.

[9] Shuhui Yang and Jie Wu, “New Technologies of Multicasting in MANET™, in
IEEE,2004.

[10] L. Kleinrock and F. Kamoun, “Hierarchical routing for large networks:
performance evaluation and optimization”, Computer Networks, 1:155-174, 1977.
[11] I.. Yin and G. Cao, “Supporting cooperative caching in ad hoc networks”,

IEEE Trans. Mobile Computing, 5(1), January 2006.

