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ABSTRACT

Real-time task scheduling algorithm must schedule the task according to strict
time constraints based on the priority of the tasks. Due io the advancement in
computer technology, embedded microcontrotlers of near future will have the
processing capability of today’'s servers. So, the real time scheduling
algorithm should satisfy real time requirements and also it must act fair to
other type of tasks. Researchers in the real-time system community have
designed and studied many advanced scheduling algorithms. However, most
of these algorithms have not been implemented since it is very difficult to
suppoit new scheduling algorithms on most operating systems. To solve this
problem, the scheduling mechanism in Linux is enhanced to provide a flexible
scheduling framework .The reason for choosing the Linux kernel 2.6.9.34
edition to ameliorate is that, it is designed with modularization mind, so it can
be easily transplanted to embedded system by simplifying its modules. it also
uses O(1) scheduling algorithm which tries to decrease the overall execution

time of all tasks.

The main goal of the proposed architecture is to provide a scheduling
algorithm, which makes a perfect balance between fairness and quick
response. The work involves reservation of IO waiting queue to reduce the
response time of tasks waiting for 10, by swapping the task from 1O waiting
queue to active queue as soon as it gets |0 response .The expired queue is
removed, so that the time taken for switching is reduced. Hence, the time

taken for real-time tasks to complete its execution is also reduced.
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CHAPTER 1
INTRODUCTION
1.1 PROJECT OUTLINE

Real-time computing is required in many application domains, such as avionics
systems, traffic control system, and automated factory systems. Each application has
peculiar characteristics in terms of timing constraints and computational requirements
(such as periodicity, criticality of the deadlines, response time, etc). Some mission-
critical real-time systems may suffer irreparable damages if a deadline is missed. It is
the system builder's responsibility to choose an operating system that can support and
schedule these jobs according to their timing specifications so that no deadline wili be

missed.

On the other hand, some soft real-time applications such as streaming audio/video
and multiplayer games also have timing constraints and require performance
guarantees from the underlying operating system. The application output provided to
users is optimized by meeting the maximum number of real-time constraints (e.g.,
deadlines). But unlike hard real-time applications, occasional violations of these
constraints may not result in a useless execution of the application or catastrophic

consequences.

Advances in computer technology have also dramaticaily changed the design of
many real-time controller devices that are being used on a daily basis. Many traditional

mechanical controliers have been gradually replaced by digital chips that are much
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cheaper and more powerful. In fact, computing power of future embedded digital

controllers will be at the same level as that in today’s big system servers. As a result,
future embedded devices must be able to handle complex application requirements,
real-time or otherwise. How we can design real-time operating systems (RTOSs) to
support applications with mixed real-time and non real-time performance requirements

will be an important issue.

These three types of timing requirements (hard real-time, soft real-time, and non
real-time) are all important. It is the goal of the Modified O(1) scheduling algorithm to

satisfy these different requirements for many real-time systems.



1.2 PROBLEM DEFINITION

To determine the assignment of real time tasks to the given processor such that

The response time of the real time tasks to be reduced.

The stability (task must complete it's execution within its deadline) of real time task to be

enhanced.

The overall completion time of all the tasks is to be minimized.

All priority constraints are to be satisfied for real time task.



CHAPTER 2
LITERATURE SURVEY
2.1. OVERVIEW OF REAL TIME SCHEDULING ALGORITHMS
2.1.1. INTRODUCTION

Many real-time scheduling algorithms have been proposed in literature to deal
with timing constraints, starting from the classical Rate Monotonic (RM) or Earliest
Deadline First (EDF) algorithms[2] to Least Slack First(LSF) .These algorithms priority
of tasks are all based on some special characteristic variable such as (deadiine , idle
time or value), and these algorithms was performed under very restrictive assumptions
(independent tasks, fixed execution times and periods, completely preemptive
scheduling, and so on).However, it's far from enough that the priority only bases on
some special variable. Some authors propose that modification in a conventional OS
based on a monolithic kernel approach is a better choice. They [8] modify the kernel in
order to introduce schedule the interrupt handlers, preemption model and save some
limited form of device scheduling. In general, all these works introduce a new
scheduling algorithm in the kernel. However, since cénventionai kernels provide a
quantum based resource allocation and their purpose is to make tasks running fairly, so
its very difficult to modify them for real-time system, only a few algorithms can be
implemented on them easily. Proportional Share algorithms [8], being based on a per-
quantum CPU allocation, are expressly designed to be implemented on a conventional
kernel. Another interesting technology named Resource Kernels (RK) is growing up
recently. An RK is a resource centric kernel that complements the OS kernel providing

support for QOS, and enabling the use of reservation techniques in traditional OS.



2.1.2 RATE MONOTONIC [2]:

The term rate monotonic derives from a method of assigning priorities to a set of
processes as a monotonic function of their rates. While rate monotonic scheduling
systems use rate monotonic theory for actually scheduling sets of tasks, rate monotonic
algorithm can be used on tasks scheduled by many different systems to reason about
schedulablility. We say that a task is schedulable if the sum of its preemption,
execution, and blocking is less than its deadline. A system is schedulable if all tasks
meet their deadlines. Rate monotonic algorithm provides a mathematical and scientific

model for reasoning about schedulability.

The following assumptions are made for rate monotonic algorithm:

Task switching is instantaneous.

Task interactions are not allowed.

Tasks become ready to execute precisely at the beginning of their periods and
relinquish the CPU only when execution is complete.

Task deadlines are always at the start of the next period.

Tasks with shorter periods are assigned higher priorities; the criticality of tasks is
not considered

Task execution is always consistent with its rate monotonic priority: a lower priority

task never executes when a higher priority task is ready to execute.

It is immediately obvious that some of these assumptions do not completely
conform to actual systems. The importance of these assumptions is that they allow

reasoning with certainty about whether or not a set of tasks can be scheduled.



Given certain information about a particular set of tasks, under rate monotonic
conditions, one can evaluate certain tests to understand whether or not those tasks can
all meet their deadlines in a real time system. Because these values are known at
design time and are monotonic, any analysis and scheduling can be done statically.
Static scheduling is one advantage that the industry has a strong preference for in hard

real-time applications.

Liu & Layland (1973) proved that for a set of n periodic tasks with unique periods,
a feasible schedule that will always meet deadlines exists if the CPU utilization is below

a specific bound (depending on the number of tasks). The schedulability test for RMS is:

where G, is the computation time, T, is the release period (with deadline one period
later), and n is the number of processes to be scheduled. For example U < 0.8284 for n
= 2. When the number of processes tends towards infinity this expression will tend

towards:

lim n(¥2—1) =In2~ 0.693147. ..

n—00
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So, a rough estimate is that RMS in the general case can meet all the deadlines if CPU

utilization is 69.3%. The other 30.7% of the CPU can be dedicated to lower-priority non
real-time tasks. It is known that a randomly generated periodic task system will meet all
deadlines when the utilization is 85% or less, however this fact depends on knowing the

exact task statistics (periods, deadlines} which cannot be guaranteed for all task sets.

The rate monotonic priority assignment is optimal meaning that if any static
priority scheduling algorithm can meet all the deadlines, then the rate monotonic

algorithm can too.



2.1.3 EARLY DEADLINE FIRST [2]

Earliest Deadline First (EDF) or Least Time to Go is a dynamic scheduling
algorithm used in real-time operating systems. It places processes in a priority queue.
Whenever a scheduling event occurs (task finishes, new task released, etc.) the queue
will be searched for the process closest to its deadline. This process is the next to be

scheduled for execution.

EDF is an optimal scheduling algorithm on preemptive uniprocessors, in the
following sense: if a collection of independent jobs, each characterized by an arrival
time, an execution requirement, and a deadline, can be scheduled (by any algorithm)
such that all the jobs complete by their deadlines, the EDF will schedule this collection

of jobs such that they all complete by their deadlines.

With scheduling periodic processes that have deadlines equal to their periods,

EDF has a utilization bound of 100%. Thus, the schedulability test for EDF is:

P!

i<,

~

where the {Ci}are the worst-case computation-times of the n processes and the {:R}

are their respective inter-arrival periods (assumed to be equal to the relative deadlines).

With scheduling periodic processes that have deadlines equal to their periods,
EDF has a utilization bound of 100% i.e. EDF can guarantee that all deadlines are met

provided that the total CPU utilization is not more than 100%. So, compared to fixed
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priority scheduling techniques like rate-monotonic scheduling, EDF can guarantee all

the deadlines in the system at higher loading.

However, when the system is overloaded, the set of processes that will miss
deadlines is largely unpredictable (it will be a function of the exact deadlines and time at
which the overload occurs). This is a considerable disadvantage to a real time systems
designer. The algorithm is also difficult to implement in hardware and there is a tricky
issue of representing deadlines in different ranges (deadlines must be rounded to finite
amounts, typicaily a few bytes at most). If one uses modular arithmetic to calculate
future deadlines relative to now, the field storing a future relative deadline must
accommodate at least the value of the (("duration" {of the longest expected time to
completion} * 2} + "now"). Therefore EDF is not commonly found in industrial real-time
computer systems. Instead, most real-time computer systems use fixed priority
scheduling (usuaily rate-monotonic scheduling). With fixed priorities, it is easy to predict
that overload conditions will cause the low-priority processes to miss deadlines, while

the highest-priority process will still meet its deadiine.

There is a significant body of research dealing with EDF scheduling in real-time
computing, it is possible to calculate worst case response times of processes in EDF, to

deal with other types of processes than periodic processes and to use servers to

regulate overloads.

Undesirable deadline interchanges may occur with EDF scheduling. When a
shared resource is accessed by processes using critical sections within a process (to
prevent it from being pre-empted by another process with an earlier deadline waiting for

access to the same shared resource), it becomes important for the scheduler to
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temporarily assign the earliest deadline from amongst the other processes waiting for

the resource, to the process while it is within its critical section to prevent the processes
with earlier deadlines miss their respective deadline, especially if the process within its
critical section has a much longer time to complete and its exit from its critical section
and subsequent release of the shared resource may be delayed. Aiso it may be further
delayed by other processes with earlier deadlines which do not share the same
resource and thus can preempt it during its critical section. This hazard of deadiine
interchange within a critical section is analogous to priority inversion when using fixed

priority pre-emptive scheduling.

To speed up the search within a linked list queue, the waiting processes within
the list should be sorted according to their deadlines. When a cyclic or new process is
given a new deadline, it is then inserted before the first process with a later deadline.
This way, the processes with the earliest deadlines are always at the beginning of the

list, reducing the time to find them.



2.1.4 LEAST SLACK TIME FIRST [3]

The LSF (Least Slack First) algorithm assigns a priority to a task according to its
executing urgency. The smaller the remaining slack time of a task is, the sooner it
needs to be executed. However, LSF may frequently cause switching or serious
thrashing among tasks, which augments the overhead of a system and restricts its
application. Assigning a preemption threshold in the scheduling policy can decrease the
switching among tasks, however, the existing assigning methods are limited to the fixed
priority such that they are not applied to the LSF algorithm. In order to relieve the
thrashing caused by LSF, some applicable assigning schemes are presented to the LSF
algorithm based on the preemption threshold. Every task is dynamically assigned a
preemption threshold that is dynamically changing with the executing urgency of the
task and is not limited by the number of tasks. Simulations show that, by using the
improved LSF policy, the switching among tasks decreases greatly while the missed

deadline percentage decrease

More formally, the slack time for a process is defined as:

d-t)~¢

Where d is the process deadline, t is the real time since the cycle start, and ¢' is the
remaining computation time. LST scheduling is most useful in systems comprising
mainly aperiodic tasks, because no prior assumptions are made on the events rate of
occurrence. The main weakness of LST is that it does not look ahead, and works only
on the current system state. Thus, during a brief overload of system resources, LST can

be sub-optimal. It wili also be suboptimal when used with uninterruptible processes.



2.2 O(1) SCHEDULING ALGORITHM [10]

During the 2.5 kernel development series, the Linux kernel received a new
scheduler, commonly called the O(1)scheduler because its algorithmic behavior(O(1) is
an exampie of big-o notation. In short, it means the scheduler can do its thing in
constant time, regardless of the size of the input), solved the short comings of the
previous Linux scheduler and introduced powerful new features and performance
characteristics. A common type of scheduling algorithm is priority-based scheduling.
The idea is to rank processes based on their worth and need for processor time.
Processes with a higher priority run before those with a lower priority, whereas
processes with the same priority are scheduled round-robin (one after the next,
repeating). The processes with a higher priority also receive a longer timeslice. The
runnable process with timeslice remaining and the highest priority always runs. Both the
user and the system may set a process's priority to influence the scheduling behavior of
the system. Linux builds on this idea and provides dynamic priority-based scheduling for
non-real time tasks. This concept begins with an initial base priority and then enables
the scheduler to increase or decrease the priority dynamically to fulfill scheduling
objectives. For example, a process that is spending more time waiting on /O than
running is clearly /O bound. Under Linux, it receives an elevated dynamic priority. As a
counterexample, a process that continually uses up its entire timeslice is processor

bound it would receive a lowered dynamic priority.

There are sufficient reasons to choose the Linux 2.6.9.34 edition to modify,
Linux is open source, it's easy to understand and rewrite

It's almost supported by diversified hardware
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It's designed in a modularization mind, so it can easily transplant to an embedded

system by simplify its module.
Linux 2.6.9.34 edition’s kernel use O(1) schedule algorithm, which try to decrease
the overall execution time of all tasks. To sum up, Linux 2.6.9.34 edition match

requirements perfectly.

The reason for choosing O(1) scheduling algorithm to ameliorate because it is designed

with specific goals in mind, they are,

Implement fully O(1) scheduling: Every algorithm in the new scheduler completes in
constant-time, regardless of the number of running processes.

Implement perfect SMP scalability: Each processor has its own locking and individuai
rungueue.

Implement improved SMP affinity: Attempt to group tasks to a specific CPU and
continue to run them there. Only migrate tasks from one CPU to ancther to resolve
imbalances in rungueue sizes.

Provide good interactive performance: Even during considerable system load, the
system should react and schedule interactive tasks immediately.

Provide fairness: No process should find itself starved of timeslice for any reasonable
amount of time. Likewise, no process should receive an unfairly high amount of

timeslice.



2.2.1 Runqueues

The basic data structure in the scheduler is the runqueue. The runqueue is defined
in kernel/sched.c as struct runqueue. The runqueue is the list of runnable processes on
a given processor, there is one runqueue per processor. Each runnable process is on
exactly one runqueue. The runqueue additionailly contains per-processor scheduling
information. Consequently, the runqueue is the primary scheduling data structure for

each processor. The structure of runqueue with active array is shown in figure 2.1

Priority Array

Each runqueue contains two priority arrays, the active and the expired array. Priority
arrays are defined in kernel/sched.c as struct prio_array. Priority arrays are the data
structures that provide O(1) scheduling. Each priority array contains one queue of
runnable processes per priority level. The priority arrays also contain a priority bitmap

used to efficiently discover the highest-priority runnable task in the system.

The members of the structure priority array are nr_active ,bitmap,queue. MAX_PRIO
is the number of priority levels on the system. By default, this is 140. Thus, there is one
struct list_head for each priority. BITMAP_SIZE is the size that an array of unsigned
long typed variables would have to be to provide one bit for each valid priority level.
With 140 priorities and 32-bit words, this is five. Thus, bitmap is an array with five

elements and a total of 160 bits.
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Figure 2.1: Runqueue of O(1) scheduling algorithm with active priority array

Each priority array contains a bitmap field that has at least one bit for every priority
on the system. Initially, all the bits are zero. When a task of a given priority becomes
runnable (that is, its state is set to TASK_RUNNING), the corresponding bit in the
bitmap is set to one. For example, if a task with priority seven is runnable, then bit
seven is set. Finding the highest priority task on the system is therefore only a matter of
finding the first set bit in the bitmap. Because the number of priorities is static, the time
to complete this search is constant and unaffected by the number of running processes
on the system. Furthermore, each supported architecture in Linux implements a fast find
first set algorithm to quickly search the bitmap. This method is called

sched_find_first_bit(). Much architecture provides a find-first-set instruction that

B e i et
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operates on a given word. On these systems, finding the first set bit is as trivial as

executing this instruction at most a couple of times.

adlive

— expired

l L | priority {)
artaysto] pricrity 139

ariaysf1]

priyity 139

Figure 2.2: Runqueue with two set of runnable process

Each priority array also contains an array named queue of struct list_head queues,
one queue for each priority. Each list corresponds to a given priority and in fact contains
all the runnable processes of that priority that are on this processor's runqueue. Finding
the next task to run is as simple as selecting the next element in the list. Within a given
priority, tasks are scheduled round robin.The priority array aiso contains a counter,

nr_active. This is the number of runnable tasks in this priority array.

The scheduler maintains two priority arrays for each processor: both an active array
and an expired array. The active array contains all the tasks in the associated runqueue

that have timeslice left. The expired array contains all the tasks in the associated
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runqueue that have exhausted their timeslice. When each task's timeslice reaches zero,

its timeslice is recalculated before it is moved to the expired array. Recalculating all the
timeslices is then as simple as just switching the active and expired arrays. Because the
arrays are accessed only via pointer, switching them is as fast as swapping two

pointers. Figure 2.4 shows the rungueue with two sets of runnable tasks.

schedule(}

sched_find_first_set{)

I

bit O priority 0 ( )
& N £ G 7 (profity 7) e ]

~d

lists ¢l all runnabie
tasks. by priority

i
140-bit priority array t ;

j
" bit 139 (priority 139} ‘
e

e

list of runnable tasks
for priority 7

run the first process in the #ist - o
Figure 2.3: Selecting the highest priority task in runqueue

2.2.2 Timeslice

The timeslice is the numeric value that represents how long a task can run until it is

preempted. The scheduler policy must dictate a defauit timeslice, which is not a trivial
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exercise. Too long a timeslice causes the system to have poor interactive performance;

the system will no longer feel as if applications are concurrently executed. Too short a
timeslice causes significant amounts of processor time to be wasted on the overhead of
switching processes because a significant percentage of the system's time is spent
switching from one process with a short timeslice to the next. Furthermore, the
conflicting goals of I/0-bound versus processor-bound processes again arise: 1/O-bound
processes do not need longer timeslices (although they do like to run often), whereas

processor-bound processes crave long timeslices

With this argument, it would seem that any long timeslice would resuit in poor
interactive performance. In many operating systems, this observation is taken to heart,
and the default timeslice is rather low for example, 20ms. Linux, however, takes
advantage of the fact that the highest priority process always runs. The Linux scheduler
bumps the priority of interactive tasks, enabling them to run more frequently.
Consequently, the Linux scheduler offers a relatively high default timeslice.
Furthermore, the Linux scheduler dynamically determines the timeslice of a process
based on priority. This enables higher-pricrity (allegedly more important) processes to
run longer and more often. Implementing dynamic timeslices and priorities provides

robust scheduling performance.

Note that a process does not have to use all its timeslice at once. For example, a
process with a 100-millisecond timeslice does not have to run for 100 milliseconds in
one go or risk losing the remaining timeslice. Instead, the process can run on five

different reschedules for 20 milliseconds each. Thus, a large timeslice also benefits
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interactive tasks: Although they do not need such a large timeslice all at once, it

ensures they remain runnable for as long as possible.

Recaiculating timeslice for non real time tasks

When a process’s timeslice runs out, the process is considered expired. A
process with no timeslice is not eligible to run until all other processes have exhausted
their timeslices (that is, they all have zero timeslice remaining). At that point, the

timeslices for all processes are recalculated.

Processes have an initial priority that is called the nice value. This value ranges
from 20 to +19 with a default of zero. Nineteen is the lowest and 20 is the highest
priority. This value is stored in the static_prio member of the process's task_struct. The
variable is called the static priority because it does not change from what the user
specifies. The scheduler, in turn, bases its decisions on the dynamic priority that is
stored in prio. The dynamic priority is calculated as a function of the static priority and

the task's interactivity.

The method effective_prio() returns a task's dynamic priority. The method begins
with the task's nice value and computes a bonus or penalty in the range 5 to +5 based
on the interactivity of the task. For example, a highly interactive task with a nice value of
ten can have a dynamic priority of five. Conversely, a mild processor hog with a nice
value of ten can have a dynamic priority of 12. Tasks that are only mildly interactive at
some theoretical equilibrium of 1/O versus processor usage receive no bonus or penalty

and their dynamic priority is equal to their nice value.
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Of course, the scheduler does not magically know whether a process is interactive. It

must use some heuristic that is capable of accurately reflecting whether a task is /O
bound or processor bound. The most indicative metric is how long the task sleeps. If a
task spends most of its time asleep, then it is IO bound. If a task spends more time
runnable than sleeping, it is certainly not interactive. This extends to the extreme: A task
that spends nearly all the time sleeping is completely /O bound, whereas a task that

spends nearly all its time runnable is completely processor bound.

To implement this heuristic, Linux keeps a running tab on how much time a
process is spent sleeping versus how much time the process spends in a runnable
state. This value is stored in the sleep_avg member of the task_struct. It ranges from
zero to MAX_SLEEP_AVG, which defaults to 10 milliseconds. When a task becomes
runnable after sleeping, sleep_avg is incremented by how long it slept, until the value
reaches MAX_SLEEP_AVG. For every timer tick the task runs, sleep avg is

decremented until it reaches zero.

This metric is surprisingly accurate. It is computed based not only on how long
the task sleeps but alsc on how little it runs. Therefore, a task that spends a great deal
of time sleeping, but also continually exhausts its timeslice, will not be awarded a huge
bonusthe meftric works not just to award interactive tasks but also to punish processor-
bound tasks. it is also not vulnerable to abuse. A task thai receives a boosted priority
and timeslice quickly loses the bonus if it turns around and hogs the processor. Finally,
the metric provides quick response. A newly created interactive process quickly

receives a large sleep_avg. Despite this, because the bonus or penalty is applied
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against the initial nice value, the user can still influence the system's scheduling

decisions by changing the process’s nice value.

Timeslice, on the other hand, is a much simpler calculation. It is based on the
static priority. When a process is first created, the new child and the parent split the
parent's remaining timeslice. This provides faimess and prevents users from forking
new children to get unlimited timeslice. After a task's timeslice is exhausted, however, it
is recalculated based on the task's static priority. The function task_timeslice() returns a
new timeslice for the given task. The calculation is a simple scaling of the static priority
into a range of timeslices. The higher a task’s priority, the more timeslice it receives per

round of execution.
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CHAPTER 3

DETAILS OF MODIFIED O(1) SCHEDULING ALGORITHM

3.1 Improvement of queue management

The basic data structure in the scheduler is the runqueue. The runqueue is defined
in kernel/sched.c as struct runqueue. The runqueue is the list of runnable processes on
a given processor, there is one runqueue per processor. Each runnable process is on
exactly one runqueue. The runqueue “additionally contains per-processor scheduling
" information, Consequently, the runqueue is the primary scheduling data structure for

each processor
Priority Array

Each runqueue contains one priority array, the active array. Priority arrays are
defined in kernel/sched.c as struct prio_array. Priority arrays are the data structures that
provide O(1) scheduling. Priority array contains one queue of runnable processes per
priority level. The priority arrays aiso contain a priority bitmap used to efficiently discover

the highest-priority runnable task in the system.

The members of the structure priority array are nr_active bitmap,queue. MAX_PRIO
is the number of priority levels on the system. By default, this is 140. Thus, there is one
struct list_head for each priority. BITMAP_SIZE is the size that an array of unsigned
long typed variables would have to be to provide one bit for each valid priority level.
With 140 priorities and 32-bit words, this is five. Thus, bitmap is an array with five

elements and a total of 160 bits.
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The priority array contains a bitmap field that has at least one bit for every priority on

the system. Initially, all the bits are zero. When a task of a given priority becomes
runnable (that is, its state is set to TASK RUNNING), the corresponding bit in the
bitmap is set to one. For example, if a task with priority seven is runnable, then bit
seven is set. Finding the highest priority task on the system is therefore only a matter of
finding the first set bit in the bitmap. Because the number of priorities is static, the time
to complete this search is constant and unaffected by the number of running processes
on the system. Furthermore, each supported architecture in Linux implements a fast find
first set algorithm to quickly search the bitmap. This method is called
sched_find_first_bit(). Much architecture provides a find-first-set instruction that
operates on a given word. On these systems, finding the first set bit is as trivial as

executing this instruction at most a couple of times.

Each priority array also contains an array named queue of struct list_head queues,
one queue for each priority. Each list corresponds to a given priority and in fact contains
all the runnable processes of that priority that are on this processor's runqueue. Finding
the next task to run is as simple as selecting the next element in the iist. Within a given
priority, tasks are scheduled round robin. The priority array also contains a counter,
nr_active. This is the number of runnable tasks in this priority array. The scheduler
maintains one priority array for the processor; an active array. The active array contains
all the tasks in the associated runqueue that have timeslice left. When each task's
timeslice reaches zero, its timeslice is recalculated before it is moved to the tail of the
queue. By using one priority array, we save time caused by context switching and

arrays swapping. When a process’s time reach zero, it will be moved to the tail of its
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priority rungueue, and wait for next timeslice. This method will improve the efficiency of

real-time tasks obviously.

The act of picking the next task to run and switching to it is implemented via the
schedule() function. This function is called explicitly by kernel code that wants to sleep
and it is invoked whenever a task is to be preempted. The schedule() function is run by
processor, which makes its own decisions on what process to run next. First, the active
priority array is searched to find the first set bit. This bit corresponds to the highest
priority task that is runnable. Next, the scheduler selects the first task in the list at that
priority. This is the highest priority runnable task on the system and is the task the
scheduler will run. Two important points should be noted from the previous code. First, it
is very simple and consequently quite fast. Second, the number of processes on the
system has no effect on how long this code takes to execute. There is no loop over any
list to find the most suitable process. In fact, nothing affects how long the schedule()

code takes to find a new task. it is constant in execution time.
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3.2 Improvement of Process analysis

The key feature of this algorithm in process analysis is that the algorithm
distributes timeslice dynamically. Processes can be classified as either I/O-bound or
processor-bound. 1/0-bound is characterized as a process that spends much of its time
waiting on /O requests. Consequently, such a process is often runnable. Conversely,
processor-bound processes spend much of their time executing code. The scheduling
policy in a system must attempt to satisfy two conflicting goals: fast process response
time (low latency) and maximal system utilization (high throughput). The project aims to
provide good interactive response, optimizes for process response (low latency), thus
favoring I/O-bound processes over processor-bound processors. An /O queue array is
made. Each array contains one queue of 1/O-bound processes. Each queue
corresponds to one I/O response. When the I/O finish, the waiting process is swapped

quickly from IO queue runqueue in a short time.

10 Waiting Queue

Tasks that are sleeping (blocked) are in a special non-runnable state. This is
important because without this special state, the scheduler would select tasks that did
not want to run or, worse, sleeping would have to be implemented as busy looping. A
task sleeps for a number of reasons, but always while it is waiting for some event. The
event can be a specified amount of time, more data from a file I/O, or another hardware
event. A task can also involuntarily go to sleep when it tries to obtain a contended
semaphore in the kernel .A common reason to sleep is file I/O for example, the task
issued a read() request on a file, which needs to be read in from disk. As another

example, the task could be waiting for keyboard input. Whatever the case, the kernel
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behavior is the same:The task marks itself as sleeping, puts itself on a wait queue,

removes itself from the runqueue, and calls schedule() to select a new process to
execute. Waking back up is the inverse: the task is set as runnable removed from the

wait queue, and added back to the runqueue.

Sleeping is handled via wait queues. A wait queue is a simple list of processes
waiting for an event to occur. Processes put themselves on a wait queue and mark
themselves not runnabie. When the event associated with the wait queue occurs, the
processes on the queue are awakened. It is important to implement sleeping and

waking correctly, to avoid race conditions.

[Pt 7
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Figure 3.1:Runqueue of Modified O(1) Scheduling algorithm
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The task performs the following steps to add itself to a wait queue:

. Creates a wait queue entry.

. Adds itself to a wait queue via add_wait_queue(). This wait queue awakens the process

when the condition for which it is waiting occurs. Of course, there needs to be code

elsewhere that calls wake_up() on the queue when the event actually does occur.

. Changes the process state to TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE.

. If the state is set to TASK_INTERRUPTIBLE, a signal wakes the process up. This is

called a spurious wake up (a wake-up not caused by the occurrence of the event). So

check and handle signals.

. Tests whether the condition is true. If it is, there is no need to sleep. If it is not true, the

task calls schedule().

. When the task awakens, it again checks whether the condition is true. If it is, it exits the

loop. Otherwise, it again calls schedule() and repeats.

. Now that the condition is true, the task can set itself to TASK_RUNNING and remove

itself from the wait queue via remove_wait_queue().

If race condition occurs before the task goes to sleep, the loop terminates, and
the task does not erroneously go to sleep. Note that kernel code often has to perform
various other tasks in the body of the loop. For example, it might need to release locks

before calling schedule() and reacquire them after or react to other events.

Waking is handled via wake_up(), which wakes up all the tasks waiting on the

given wait queue. It calls try to wake up(), which sets the task's state to
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TASK_RUNNING, calls activate_task() to add the task to a runqueue, and sets

need_resched if the awakened task's priority is higher than the priority of the current
task. The code that causes the event to occur typicaily calls wake_up() afterward. For
example, when data arrives from the hard disk, the VFS calls wake_up() on the wait

gueue that holds the processes waiting for the data.

An important note about sleeping is that there are spurious wake-ups. Just
because a task is awakened does not mean that the event for which the task is waiting
has occurred; sleeping should always be handled in a loop that ensures that the

condition for which the task is waiting has indeed occurred.
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CHAPTER 4

SIMULATION AND ANALYSIS

Experiment environment is based on CPU: 1.73 GHz, Memory: 256MB, Hard
Disk: 8GB. The test program to test Modified algorithm and Linux 2.6.9.34, creates a
group of tasks. Each client/server pair listens on a socket, the writer (client) send 10000
messages to each socket and the receiver (server) listens on the socket. These are
typical real-time tasks. We use a shell script to run 20, 40, 60 tasks in Linux 2.6.9.34
and Modified algorithm. The Results are shown in Figure 4.1 and Figure 4.2. The results
show that the overall completion time of all the tasks and the response time of each task

in Modified algorithm are less compared to that of Linux 2.6.9-34.
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CHAPTER 5

CONCLUSION AND FUTURE ENHANCEMENTS

In this project, A Modified O(1) Scheduling Algorithm for Real-time Tasks
based on Linux 2.6.9.34 kernel, a scheduling algorithm which is a mixture of normal
operating system scheduling and real-time operating system scheduling is presented.
Due to the madvancement in computer technology, embedded microcontrollers of near
future will have the processing capability of today’s servers, thus the need for real-time
operating system to support applications with mixed real-time and non real-time
performance requirements increases. Linux is modified to satisfy this demand. This
modified algorithm deals with the real-time tasks rapidly and accurately, it also

considers other kinds of tasks.

For further work, the work needed to be improved, to make real time tasks
execute within their deadline and test more complex real-time processes. Also the

modified algorithms compatibility with other Real time systems must be improved.
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APPENDIX

Code for Runqueue

struct runqueue

spintock_t lock;

*
* nr_running and cpu_load should be in the same cacheline because
* remote CPUs use both these fields when doing load calculation.

*f

unsigned long nr_running;

#ifdef CONFIG_SMP
unsigned long cpu_load;
#endif

unsigned long long nr_switches;

/*
* This is part of a global counter where only the total sum

* over all CPUs matters. A task can increase this counter on
*one CPU and if it got migrated afterwards it may decrease

* it on another CPU. Always updated under the runqueue lock:
*f

unsigned long nr_uninterruptible;



unsigned long fong timestamp_last _tick;
task_t *curr, *idie,
struct mm_struct *prev_mm;

rio_array t *active, arrays;
_ y_

atomic_t nr_iowait;

#ifdef CONFIG_SMP

struct sched_domain *sd;

* For active balancing */
int active_balance;

int push_cpu;

task_t *migration_thread;
struct list_head migration_queue;

#endif

#ifdef CONFIG_SCHEDSTATS
/* latency stats */

struct sched_info rq_sched_info;

/* sys_sched_yield() stats */

unsigned long yld_exp_empty;
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unsigned iong yld_act_empty;
unsigned long yld_both_empty;

unsigned long yld_cnt;

/* schedule() stats */

unsigned long sched _noswitch;
unsigned long sched_switch;
unsigned long sched_cnt;

unsigned long sched_goidle;

/* pull_task() stats */
unsigned long pt_gained[MAX_IDLE_TYPES];

unsigned long pt_lost{MAX_IDLE_TYPES];

/" active_load_balance() stats */
unsigned long alb_cnt;
unsigned long alb_lost;
unsigned long alb_gained;

unsigned long alb_failed;

/* try_to_wake_up() stats */
unsigned long ttwu_cnt;
unsigned long ttwu_attempts;

unsigned long ttwu_moved;
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/* wake_up_new_task() stats */
unsigned long wunt_cnt;

unsigned long wunt_moved;

/* sched_migrate task() stats */

unsigned long smt_cnt;

/I* sched_balance_exec() stats */
unsigned long sbe_cnt;
#endif

Code for Priority Array

struct prio_array

{
unsigned int nr_active;
unsigned long bitmap{BITMAP_SIZE];
struct list_head queue[MAX_PRIQ];

h

Code for 10 Waiting Queue

add_wait_queue(q, &wait);
while (lcondition) {  /* condition is the event that we are waiting for */

set_current_state(TASK_INTERRUPTIBLEY); /* or TASK_UNINTERRUPTIBLE ¥
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if (signal_pending(current))

/* handle signal */

scheduie();

}
set_current_state(TASK_RUNNING);

remove_wait_queue(q, &wait);

Code for recalculating timeslice

static void recalc_task_prio(task_t *p, unsigned long tong now)

{

unsigned long long __sleep_time = now - p->timestamp;

unsigned long sleep_time;

if (__sleep time > NS_MAX_SLEEP_AVG)
sleep_time = NS_MAX_SLEEP AVG;
else

sleep_time = (unsigned long)__sleep_time;

if (likely(sleep_time > 0)) {
/*
* User tasks that sleep a long time are categorised as
* idle and will get just interactive status to stay active &
* prevent them suddenly becoming cpu hogs and starving
* other processes.

*f



if (p->mm && p->activated != -1 &&
sleep_time > INTERACTIVE_SLEEP(p)) {
p->sieep_avg = JIFFIES TO NS(MAX SLEEP AVG -
DEF_TIMESLICEY),
}else {
Iz
* The lower the sleep avg a task has the more
* rapidly it will rise with sleep time.
*f

sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) 7 : 1;

*
* Tasks waking from uninterruptible sleep are
* limited in their sleep_avg rise as they
* are likely to be waiting on I/O
*/
if (p->activated == -1 && p->mm) {
if (p->sleep_avg >= INTERACTIVE_SLEEP{p))
sleep_time = 0;
else if (p->sleep_avg + sleep_time >=
INTERACTIVE_SLEEP(p)) {
p->sleep_avg = INTERACTIVE_SLEEP(p);

sleep_time = 0;
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h

Iz
* This code gives a bonus to interactive tasks.

* The boost works by updating the 'average sleep time'
* value here, based on ->timestamp. The more time a
* task spends sleeping, the higher the average gets -

* and the higher the priority boost gets as well.

*/

p->sleep_avg += sleep_time;

if (p->sleep_avg > NS_MAX_SLEEP_AVG)

p->sleep_avg = NS_MAX_SLEEP_AVG;

p->prio = effective_prio(p);

Code for Real Time Task Scheduling

void scheduler_tick(void)

{
int cpu = smp_processor_id();
runqueue_t *rq = this_rq();

task_t *p = current;



unsigned long long now = sched_clock();

update_cpu_clock(p, rq, now);

rq->timestamp_last_tick = now:

if (p == rg->idle) {
if (wake_priority_sleeper(rq})
goto out;
rebalance_tick(cpu, rq, SCHED _IDLE);

return;

f* Task might have expired already, but not scheduled off yet */
if (p->array != rg->active) {
set_tsk_need_resched(p);
goto out;
}
spin_lock{&rg->lock);
I
* The task was running during this tick - update the
* time slice counter. Note: we do not update a thread's
* priority until it either goes to sleep or uses up its
* timeslice. This makes it possible for interactive tasks
* to use up their timeslices at their highest priority levels.

i

39



if (rt_task(p)) {

I

“ RR tasks need a special form of timeslice management.

* FIFO tasks have no timeslices.

*/

if ((p->policy == SCHED_RR) && I--p->time_slice) {
p->time_slice = task_timeslice(p);
p->first_time_slice = 0;

set_tsk_need_resched(p):

/* put it at the end of the queue: */
requeue_task(p, rg->active);
}
goto out_unlock;
}
if (I--p->time_slice) {
dequeue_task(p, rg->active);
sel_tsk_need_resched(p);
p->prio = effective_prio(p);
p->time_slice = task_timeslice(p):

p->first_time_slice = 0;

if (Irg->expired_timestamp)

rq->expired_timestamp = jiffies;
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if {TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
enqueue_task(p, rg->expired);
if (p->static_prio < rg->best_expired_prio)
rq->best_expired_prio = p->static_prio;
}else
enqueue_task(p, rg->active);
}else {
IS
* Prevent a too long timeslice allowing a task to monopolize
* the CPU. We do this by splitting up the timeslice into
* smaller pieces.
* Note: this does not mean the task's timeslices expire or
* get lost in any way, they just might be preempted by
* another task of equal priority. (one with higher
* priority would have preempted this task already.) We
* requeue this task to the end of the list on this priority
* level, which is in essence a round-robin of tasks with
* equal priority.
* This only applies to tasks in the interactive
* delta range with at least TIMESLICE_GRANULARITY to requeue.
*/

if (TASK_INTERACTIVE(p) && K(task_timeslice(p) -
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p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
(p->time_slice >= TIMESLICE_GRANULARITY(p)) &&

(p->array == rg->active)) {

requeue_task(p, rg->active);

set_tsk_need_resched(p);

}

out_unlock:
spin_unlock(&rg->lock);
out:

rebaiance_tick(cpu, rq, NOT_IDLE);
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Shell script to run many real time tasks

echo -n "Enter the directory Path where Server/Client program resides:”
read i

s_dir=3i

dir=/tmp/temp

if [ -d $dir ]; then

echo "TEMP Directory present”
else

mkdir -p $dir/fobject

echo "Directory created”

Is -1 $s_dir | awk '{print $9} | grep -v '*$' > $dir/tmp.txt

YTotal=$(cat $dirtmp.txtjwc -1}

YLINES=1
if [ ${YTotal} -gt 0] ;then

while [ $YLINES -le ${YTotal} ] ;do



done

line=$(head -$YLINES $dirtmp.txt] taii -1)

echo "$line" >> $dir/summary.tog

cd $s_dir

start_time="date +%S’ >> $dir/summary.log

gcc -o $line.o $line 2>> $dir/error.log >> $dir'summary.log

$line.o 2>> $dir/error.log >> $dirfoutput.log

mv *.o $dir/object

end_time="date +%S" >> $dir/summary.log

program_rt=$({($end_time-$start_time))

echo "Program run time in seconds: $program_rt" >> $dir/summary.log

YLINES=%(expr $YLINES + 1)
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TEST PROGRAM:
SERVER:

#include <time.h>
#include <sched.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>

#include <netinet/in.h>

void error(char *msg)
{
perror(msg);

exit(1);

int main()
{
int priority = 10;
FILE *fp,*tp;
time_t now;
time( &now );
if(fp = fopen("/homelsst.txt","a"))

fprintf(fp, "\npri=%d start time= %.245",priority,ctime(&now))

1



46
struct sched_param sp;

int ret;
sp.sched_priority = priority;

ret = sched_setscheduler(0, SCHED_RR, &sp);

int sockfd, newsockfd, portno, clilen,i;
char buffer[2586];
struct sockaddr_in serv_addr, cli_addr;
int n;
sockfd = socket(AF_INET, SOCK_STREAM, 0):
if (sockfd < 0)
error("ERROR opening socket");
bzero((char *) &serv_addr, sizeof(serv_addr));
portno = 2010;
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(portno);
if (bind(sockfd, (struct sockaddr *) &serv_addr,sizeof(serv_addr)) < 0)
error("ERROR on binding");
listen(sockfd,5);
clilen = sizeof(cli_addr);
newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr,&clilen);

if (newsockfd < Q)
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error("ERROR on accept");
bzero(buffer,256);
n = read(newsockfd,buffer,255):
if (n < Q)

error("ERROR reading from socket");

time( &now ):
if(tp = fopen("lhome(set.txt","a"))
fprintf(tp,"\nmain : priority = %d end time=%.24s",pri0rity,ctime(&now));

return Q;
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CLIENT:

#include <stdio.h>
#include <time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#include<sched.h>

void error(char *msg)
{
perror(msg);

exit(0);

int main()
{
int priority = 10;
FILE *fp,*tp;
time_t now;
time( &now );
if(fp = fopen("/home/cst.txt" "a"))

fprintf(fp, \npri=%d start time= %.243",priority,ctime(&now))

+



struct sched param sp;
int ret:
sp.sched_priority = priority;

ret = sched_setscheduier(o, SCHED RR, &sp):

int sockfd, portno, n, i:
struct sockaddr_in serv_addr:

struct hostent *server:

char buffer[256];

portno = 2010;

sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)
error{("ERROR opening socket");
server = gethostbyname("localhost"),‘
if (server == NULL)
{
fprintf(stderr,"ERROR, no such hostin");
exit(0);
}
bzero((char *) &serv_addr, sizeof(servﬁaddr));

Serv_addr.sin_family = AF_INET:
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5C
bcopy((char *)server->h_addr,( char “)&serv_addr.sin_addr.s_addr, server-

>h_length);
serv_addr.sin_port = htons(portno);
if(connect(sockfd,(struct sockaddr *) &serv_addr,sizeof(serv_add r)<0j)
error("ERROR connecting™);
for(i=0;i<10000;i++)
{
bzero(buffer,256);
strepy(buffer,"a");

n= write(sockfd,buffer,str!en(buffer));

}

if (n < Q)
error("ERROR writing to socket™);
bzero(buffer,256);
time( &now );

if(tp = fopen("/home/cet.txt" "a"))

fprintf(tp,"\npriority = %d, end time=%.24s",priority,ctime(&now))

return Q;
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