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ABSTRACT

A major threat to the information economy is denial-of-service
(DoS) attacks. These attacks are highly prevalent despite the widespread
deployment of perimeter-based countermeasures. Therefore, more
effective approaches are required to counter the threat. This requirement
has motivated to propose a novel, distributed, and scalable mechanism for
effective early detection and prevention of Do$ attacks at the router level
within a network infrastructure. This project work presents the design
details of the new mechanism. Specifically, this project shows how the
mechanism combines both stateful and stateless signatures to provide
early detection of DoS attacks and, therefore, protect the enterprise
network. More importantly, this discusses how a domain-based approach
to an attack response is used by the mechanism to block attack traffic.
This project approach enables the blockage of an attack to be gradually
propagated only through affected domains toward the attack sources. As a
result, the attack is eventually confined within its source domains, thus
avolding wasteful attack traffic overloading the network infrastructure.
This approach also provides a natural way of tracing back the attack
sources, without requiring the use of specific trace-back techniques and

additional resources for their implementation.
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW OF DENIAL OF SERVICE

1.1.1 Problem Definition

A major threat to the information economy is denial-of-service (DoS) attacks.
These attacks are highly prevalent despite the widespread deployment of perimeter-
based countermeasures. Therefore, more effective approaches are required to counter
the threat. This requirement has motivated us to propose a novel, distributed, and
scalable mechanism for effective early detection and prevention of DoS attacks at the
router level within a network infrastructure. This paper presents the design details of
the new mechanism. Specifically, this paper shows how the mechanism combines
both stateful and stateless signatures to provide early detection of DoS attacks and,
therefore, protect the enterprise network. More importantly, this paper discusses how
a domain-based approach to an attack response is used by the mechanism to block
attack traffic. This novel approach enables the blockage of an attack to be gradually
propagated only through affected domains toward the attack sources. As a result, the
attack is eventually confined within its source domains, thus avoiding wasteful attack
tratfic overloading the network infrastructure. This approach also provides a natural
way of tracing back the attack sources, without requiring the use of specilic trace-

back techniques and additional resources for their implementation.

1.2 OVERVIEW OF THE DIDDEM

This section provides an overview of our DiDDeM-based system with
particular reference to its cooperative working for early DoS detection and prevention.
The key components of the system will be presented in detail in the subsequent
sections. If DoS attacks are allowed to reach their intended targets, the attacks are able
to succeed in their objective of denying resources to legitimate users. The goal of the
DiDDeM-based system is to provide early detection and response to DoS attacks
before they denigrate the services and resources of their targets. The system integrates

a set of cooperative DiDDeM domains. Each domain is comprised of a single



command and control server and a set of prefilters (PFs)/traffic monitors. The acts as
a server, located on a designated network node or router, to the PFs within the
domain. The key services that the providers are the management of PFs, responses to
attacks detected and reported by PFs, and cooperation with adjacent domains. A PF is
mainly responsible for attack detection through stateful and stateless signatures as
well as attack reporting to the in its domain. Stateful signature analysis applies
statistical methods to collected data over a period of time. This data is then analyzed
to generate some specific values: for example, traffic thresholds or user profiles to
define normal or abnormal behavior. Stateless signature analysis compares an event,
such as a network packet, to a list of known signatures, rather than having to hold
information, or state, between events. The PF is located on a router within the domain,
and no more than one PF runs on a single router. In this paper, we assume that all and
PFs are operating in trusted environments. The issues of how to establish such trusted

environments for the protection of the PFs are beyond the scope of this paper.

DiDDeM
domain 1

DiDDeM
domain 3

DiDDeM

domain 2 i
KEY dormain 4
{MH[D e ——— Attack traffic route
: PF node - Qtherlinks
O Non-PF node ~— Intra-domain communications

~---a Inter-domain communications

Fig1.1: DiDDeM domain cooperation example.



A C? has a number of subordinate routers within its domain. To ensure that a
large worklead is not placed on the C? server by having a large number of PFs. only
the domain ingress-edge routers run PFs. That is, they are the first routers within the
domain that packets from other doriains pass through, e.g., the routers/PF nodes
highlighted by the darker shading in Fig. 1.1. The placement of PFs at the ingress
edge of the domain ensures that attack traffic is detected, reported, and blocked when
it is just entering into the domain from adjacent ones. In this way, the other routers
within the domain have no need to operate PFs for the same attack detection and

response.,

1.2.1 DIDDEM PREFILTER (PF):

This section presents the design detail of one of the key DiDDeM components,
PF. DoS attacks often require a high level of traffic throughput to achieve their
objective of reducing availability. Malicious traffic will be interspersed with benign
traffic. Therefore, a large amount of traffic must be considered within very tight
temporal constraints. In order to facilitate the ﬁlterin:g of such a large volume of
traffic, the more benign traffic that can be filtered out by identifying patterns in the
TCP/IP headers, the better. This can greatly reduce the processing load of monitoring
as the amount of suspicious traffic to be analyzed is kept low. Stateful information of
a system, such as unusual rises in traffic volume of a particular protocol, is a major
indicator of the possibility of a DoS attack. Beyond the perimeter of a local network,
the maintenance of stateful information is more complex and will lead to performance
degradation due to the much heavier workload on wider system monitoring.
Therefore, a challenge met by the PF design is the inference of state information from
stateless information in order to reduce the monitoring workload. Another important
issue of the PF design is real-time notification in that an attack alert must be generated
in real time in order that a response can be issued to counter the attack. This requires
that an attack must be detected while it is ongoing but before the attack traffic reaches

its target.
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Fig 1.2: PF modules.

The PF design ensures that it is able to infer stateful information about the network -
being monitored from stateless information for DoS$ attack detection, report a detected
attack to the corresponding C% and executes response actions instructed by the C2
The PF is located on a router. The part surrounded with the dashed line in Fig. 1.2
represents the PF running on the router. Once a high volume of traffic directed at a
particular target is detected, the PF applies stateless signatures to a statistical sample
of packets. If a signature match is found, the PT sends this information to its C? and

awaits a response decision.

» PF Comms:
This module is responsible for interaction with the overseeing. It
provides the initial authentication with its, as well as other communications

between the PF node and server.

> Monitor;
This is comprised of two sub modules: stateful signature detection and
stateless signature detection. The stateful signature detection detects unusual
rises in network traffic passing through the router directed at a particular host,

network, or domain by making use of the router’s congestion algorithm.



#» Response:

When the PF receives a response directive from its overseeing, the
module instruets the router to enforce the directive. Here, we assume that the router is
capable of dropping packets with respect to a specified set of parameters, ¢.g., a
particular packet type and destination, at a required rate. The in a DiDDeM domain is
located on a dedicated server (or router). It is responsible for the registration and
management of all the PFs within the domain, registration of the servers of all the
adjacent DiDDeM domains, issuing of attack responses to relevant PFs within the
domain, and coordination with the adjacent domains for joint responses to attacks.
The C? comprises three modules, Coordinaior, Comms and Registration, as ilfustrated

in Fig. 1.3. The functionality of these modules is described as follows.

Coordinator - »  C* Comms
| PF Handler J
F
L Joint Response Issuer J N Register

Fig. 1.3: C? modules.
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Fig 1.4: Operation process for PF response.

The response process performed by the response module is illustrated in Fig. 1.4.
When the module receives a response directive from the C2 it forms a set of
parameters in accordance with the directive received, and passes them to the router

to begin filtering attack packets to be dropped based on these parameters.

1.2.2 DIDDEM Command and Control
» Comms:
This module is similar to that located in a PF, namely, it is in charge of
authenticated communications with not only each PF within the domain but

also the in every adjacent domain.



7 Register:
This module is responsible for the registration of contact details and
connectivity for all the PFs within the domain and the servers of all the
adjacent Comains. It also provides the coordinator module with access to the

contact details as will be described below.

» Coordinator:
This module controls and coordinates attack responses once an attack
has been detected and reported by some PFs. The module is comprised of two
sub modules, PF handler and joint response issuer, as depicted in Fig. 1.3. The

operations of the two sub modules are explained in detail next.

> PF handler:

This sub module is in charge of issuing a response directive in relation
to an attack discovered and reported by a PF or an adjacent domain, and then
distributing the directive to relevant PFs within the domain for blocking the
attack fraffic. The operational process of the sub module is illustrated in
Fig.1.5.

If the message received is an attack alert or a joint response request,
the PF handler checks whether there exists a response directive still being
enforced, which is about the same attack defined in the message. This
checking is based on a specified alive period for the directive. The period
begins when the directive is issued, and it sets the minimal duration for the
directive to be implemented by relevant PFs. After the alive period, the
directive may no longer be implemented by all the PFs. Thus, if an alive
directive for the attack stated in the received message exists, there is no need
for any further response action. Otherwise, a new response directive should be

issued to relevant PFs for blocking attack traffic.
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Fig 1.5: Operation process for PF handler.

> Joint response issuer:

This sub module issues a joint response request in relation to a given
response directive and a particular PF identity, as illustrated in Fig. 1.6. The
directive helps to define attack packets to be blocked by adjacent domains.
The PF identity is used to identify a list of adjacent domains each of which
has a direct link to the router with the PF running on it, namely, the issuer
should send the joint response request only to these domains. The issuer asks
the register module to carry out this identification as the register manages the
connectivity and contact information about all the adjacent domains. It is
possible that the issuer has already sent the same joint request to an identified
adjacent domain in response to a report from a different PF, and the request is
still alive. In this case, the issuer has no need to resend the request to avoid
unnecessary communication load.

In summary, the responses decided by the C? in a DiDDeM domain
can be divided into three cases. First, if an alert about a new attack is

received from a PF within the domain, the C? defines the parameters needed



for attack packets to be blocked, and uscs them to issue a response directive to
relevant PFs in the domain to implement the blocking. Second, if a joint
response request for blocking an attack is received from an adjacent domain
and no alive response directive is for the same attack, then the C* generates a
new response directive based on the parameters given in the received request,

and sends it to relevant PF s for blocking the attack traffic.

Begin

(Geta regiiest including s regpon'ss dibctive nd & PF ID)

(iscuio ajoint responds requiésl yised 6n the diestive)

(ask Registet foF & bt of acfacent domals 1Ked t the PF nodg)

;@et an unchet ked domain on the fisf)

[Else]s
[Found)s

(Chek whetner ah alle jort reqiedt about the attack is recordsd for Ine cormain)
[Yes! )
N
(Bent the joint réquest 1o the domain's C3)

(Record the request Tof audit o future checking)

End e

Fig 1.6: Operation process for joint response issuer.



CHAPTER 2
LITERATURE SURVEY

2.1  IP TRACE BACK-BASED INTELLIGENT PACKET FILTERING:

Basic Operation:

It is a novel technique that can effectively filter out the majority of DDoS
attacks by tracking the location of the attackers. It works by performing “smart
filtering” dropping DDoS traffic with high probability while allow most of the
legitimate traffic to go through. This clearly requirés the victim to be able to
statistically distinguish legitimate traffic from DDoS traffic.

The proposed schemie leverages on and generalizes the IP trace back schemes
to obtain the information concerning whether a network edge is on the attacking path
of an attacker or not. The proposed scheme will mark the attacker edges on its path as
infected but the edges on the path of a legitimate path will mostly be clean.

1. Enhanced Probabilistic Marking (EPM) module.

™

Attack Mitigation Decision-making (AMD) module.

. Preferential Packet Filtering (PPF) module.

142

Limitations:

It is not able to mitigate the effect of the attack while it is raging on

22 TRANSIENT PERFORMANCE OF PACKET SCORE FOR

BLOCKING DDOS ATTACKS
Basic Operation:

The transient performance of the Packet Score system has been explained by
how the performance changes with different attack types, different attack intensities
and different measurement window times.

It implements a statistics-based packet scoring mechanism to distinguish between the
legitimate and non-legitimate packets there by discarding packets based on the packet
score. In Packet Score we perform online traffic profiling of the incoming traffic and

compare it with the nominal traffic profile for abnormality detection. The key concept

i0



in profiling is the notion of “Conditional Legitimatc Probability™ (CLP).CLP can be
viewed as a score which estimate the legitimacy of the suspicious packet. The
threshold used for the score-based selective packet discard decision is dynamically
adjusted based on the score distribution of recent incoming packets

A. Conditional Legitimate Probability
B. Off-line Nominal Profile Generatio

C. On-line Packet Score Operation

D. Sample score distribution

The algorithm used to implement the above method of trace back system is as

follows.
1.for ecach packet pkt
2 u = uniform{0, 1)
3 if {u < g} then
4. v := uniform(0,1}
5. if (v < r) then
6 encode mark in a way suitable for IP traceback
7 set flag te 1 to indicate signaling subchannel
8 rkt _hopcount = 0
9 else
10. encode mark in a way suitable for preferential filtering
11. set flag to 0 to indicate data subchannel
12. else
13, if {flag == 1) pkt.hopcount++
Limitations:

The packet score can be mislead by changing the attack types and

intensities.

2.3 SECURED GOSSIP-BASED MULTICAST PROTOCOL:

Basic Operation:

It is a simple gossip-based multicast protocols which eliminate single point of
failure using redundancy and random choices. Gossip-based protocols can be
extremely vulnerable to DoS attacks targeted as a small subset of the processes. Drum

is a simple gossip protocol which achieves Do§ resistance using a combination of pull

11



and push operations, separate resource bounds for different operations, and the use ol

random ports in order to reduce the chance of a port being attacked.

Limitations:

Inevitable performance degradation will be there.

24 A PACKET FILTERING SCHEME FOR DETECTION AND
PREVENTION OF DDOS ATTACKS.

Basic Operation:

This paper introduces a DDoS defense scheme that supports automated online
attack characterizations and accurate attack packet discarding based on statistical
processing, The Packet Score is used as a packet filtering scheme for detection and
prevention the DDoS attacks.

The packet score formulation is done to obtain a threshold value, there by
discarding the unwanted packets. It has been done using CLP. CLP can be viewed as
a score which estimates the legitimacy of a suspicious packet.

We have reviewed the architecture of the PacketScore scheme that defends
agamst DDoS attacks and studied its transient performance under changing attacks.
PacketScore can tackle never-seen-before DDoS attack types by providing a statistics-
based adaptive differentiation between attacking and legitimate packets. It is capable
of blocking virtually all kinds of attacks as long as the attackers can’t precisely mimic
the site’s traffic characteristics. The packets following the nominal traffic profile have

higher score while others have

Benefits:

> lItreduces the unwanted packet traffic

> Better service quality for the legitimate user request



CHAPTER 3
DETAILS OF METHODOLOGY

31 Network analysis:

The existing network should be analyzed whether there is denial of service
attack. It should be analyzed based on non legitimate and legitimate users. Analyze
whether the attack packets reaching the target i.e. the main server. Those attack

packets are from non legitimate users should be considered as shown in fig 3.1.

Organizations and users alike have become heavily dependent on their network
connections. This has given rise to the dichotomy faced by those partaking in the
information economy paradigm. The more organizations become reliant on their
networks, the more potential damage can be inflicted by attacks launched over these

networks.

Line of defense sz ....... <

, sy || avp
Penmecter routers : Ro, B3 L“*E’;‘j decision
Legtimate clients : Hy, H3, X R
Attackers :Ho, Ha

clean edge =
------------ - infected edge IMI —
Vietim

Fig 3.1: Example network as seen from the victim.



Background ftraffic was necessary to determine the false alarm rates of
intrusion detection systems. A large amount of web, telnet, and mail traffic was
generated between the inside PC’s and workstations and the outside workstations and
web sites. [n addition, there are many user automata of various types (e.g. secretaries,
programmers, managers) on outside workstations who perform work using telnet and
other services on the three inside victim machines and the other inside workstations.
The three gateway machines contain operating system kernel modifications similar to
those used in conjunction with custom software web, mail, telnet, and other servers to
allow a small number of actual hosts to appear as if they were 1000°s of hosts with
different IP addresses. The contents of network traffic such as file transfers are either
statistically similar to live traffic, or sampled from public-domain sources. For
example, some email message contents are created using statistical bigrams
frequencies to preserve word and two-word sequence statistics from a sampling of
roughly 10,000 actual email messages to and from computer professionals filtered
using a 40,000 word dictionary to remove names and other private information. Other
email messages are actual messages from a variety of public-domain mail list servers.
Similar approaches were used to produce content for FTP file transfers.

Content of the web servers was initially captured using a custom web
automaton that was run on the real Internet. This automaton was programmed to visit
thousands of web sites popular with university and government personnel with a
frequency that depended on the site’s popularity and to visit a random number of links
at each site before traversing to another site. It generated a large database of public-
domain site content, which was transferred to the evaluation test bed. This was
necessary because the evaluation test bed was disconnected from the Internet for
security reasons and live web sites could thus not be accessed. When the test bed was
run, browsing automata accessed web pages through the outside web gateway. This
gateway used custom software to emulate thousands of web sites. Telnet sessions
were generated from statistical profiles of user types that were used to generate
interactive sessions. These statistical profiles indicated the frequency of occurrence of
different UNIX commands, typical login times and telnet session durations, typical
source and destination machines, and other information. For example, programmers
primarily edited C programs, compiled these programs, sent mail, read the manual
pages, and ran programs. Secretaries edited documents, and sent mail. There were

also a large number of users who primarily sent and received mail and browsed web
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sites. Public domain sources were used to obtain software programs created by
simulated programmers, documents created by secretaries, and other content. As
suggested, a modified version of the expect language was used to create user automata
which behaved as if they were users typing at keyboards. Human actors performed
more complex tasks. They upgraded software, added users, changed passwords,
remotely accessed programs with graphical user interfaces, and performed other

system administration tasks.

3.2  Constructing PREFILTER (PF):

Constructing prefilter is to detect the attack packets from the non legitimate
users. It will maintain a count to identify the attack packets that are from the same
users.

Stateful information of a system, such as unusual rises in traffic volume of a
particular protocol, is a major indicator of the possibility of a DoS attack. Beyond the
perimeter of a local network, the maintenance of stateful information is more complex
and will lead to performance degradation due to the much heavier workload on wider
system monitoring. Therefore, a challenge met by the PF design is the inference of
state information from stateless information in order to reduce the monitoring
workload.

Another important issue of the PF design is real-time notification in that an
attack alert must be generated in real time in order that a response can be issued to
counter the attack. This requires that an attack must be detected while it is ongoing

but before the attack traffic reaches its target.

The PF design ensures that it is able to infer stateful information about the
network being monitored from stateless information for DoS attack detection, report a
detected attack to the corresponding C? and executes response actions instructed by
the C°. The PF is located on a router. The part surrounded with the dashed line
represents the PF running on the router. Once a high volume of traffic directed at a
particular target is detected, the PF applies stateless signatures to a statistical sample of
packets. If a signature match is found, the PF sends this information to its C2 and

awaits a response decision.



3.3 Command and Control server:

[t 1s responsible for the registration and management of all the PFs within the
domain. Registration of the servers of all the adjacent DiDDeM domains Issuing of
attack responses to relevant PFs within the domain Coordination with the adjacent
domains for joint responses to attacks.

If the message received is an attack alert or a joint response request, the PF
handler checks whether there exists a response directive still being enforced, which is
about the same attack defined in the message. This checking is based on a specified
alive period for the directive. The period begins when the directive is issued, and it
sets the minimal duration for the directive to be implemented by relevant PFs. After
the alive period, the directive may no longer be implemented by all the PFs. Thus, if
an alive directive for the attack stated in the received message exists, there is no need
for any further response action. Otherwise, a new response directive should be issued
to relevant PFs for blocking attack traffic. Note that it is possible that some of these
PFs are still enforcing a previous directive equivalent to the new one. In this case,
these PFs simply ignore the new directive.

When receiving a message through the C* Comms module, the PF handler
determines that the message is a report from a PF about an attack being blocked, an
attack alert from a PF, or a joint response request from an adjacent domain. The first
case indicates that an excessive amount of attack traffic is entering into the router
associated with the PF. Hence, the handler needs to call the joint response issuer sub
module to generate and send a joint response request to each adjacent domain with a
direct link to the affected router to block the attack traffic. This means that the attack
blocking is propagated from the current domain to its adjacent one closer to a
source of the attack. It is easy to see that the more such propagation is repeated by

relevant domains, the more closely to the attack source the attack blocking moves.



CHAPTER 4
EXPERIMENTAL RESULTS

4.1 C*SERVER:

C? in a domain is located in a dedicated server. It is responsible for the
registration and management of all the PFs within the domain, registration of the ¢2
servers of all the adjacent domains, issuing of attack responses to relevant PFs within
the domain, and coordination with the adjacent domains for joint responses to attacks.

The C? in a DiDDeM domain is located on a dedicated server (or router). It is
responsible for the registration and management of all the PFs within the domain,
registration of the C? servers of all the adjacent DiDDeM domains, issuing of attack
responses to relevant PFs within the domain, and coordination with the adjacent
domains for joint responses to attacks. The C? comprises three modules, Coordinator,
C? Comms and Registration.

All unnecessary services should be removed. The less there are applications
and open ports in hosts, the less there are vulnerabilitics to be exploited by an
attacker. Default installations of operating systems often include many applications
not needed by a user. Especially many home-users do not even know what services
are running on their systems. A vulnerability scanner can be used to detect what
network services (open ports) are available in a network.

A firewall (or a router with similar abilities) should be used to control access
to a network. Even if there are many services available from local hosts, not all of
these services need to be accessible from the public Internet.

All relevant security patches should be installed timely. The DDoS tool
deployment phase and many logic DoS attacks are based on exploiting vulnerabilities
in host software. Removing known security holes prevents re-exploitation of
vulnerabilities for example with publicly available scripts. In practice, this important
defense is often neglected which makes it possible for available exploits to have
lifetime.

Attackers should not be able to get unauthorized access to hosts, e.g., by
exploiting weak passwords. A minimum requirement is to use passwords which are

difficult to guess with or without existing password cracking tools.



The antivirus sofiware should be using the most recent virus definition
database. This helps detecting known worms and viruses. Antivirus software can thus
be considered as IDS.

Register module is responsible for the registration of contact details and

connectivity for all the PFs within the domain and the C? servers of all the adjacent
domains. It also provides the coordinator module with access to the contact details as
will be described below.
Joint response issuer sub module issues a joint response request in relation to a given
response directive and a particular PF identity. The directive helps to define attack
packets to be blocked by adjacent domains. The PF identity is used to identify a Iist
of adjacent domains each of which has a direct link to the router with the PF running
on it, namely, the issuer should send the joint response request only to these domains.
The issuer asks the register module to carry out this identification as the register
manages the connectivity and contact information about all the adjacent domains. It is
possible that the issuer has already sent the same joint request to an identificd
adjacent domain in response to a report from a different PF, and the request is still
altve. In this case, the issuer has no need to resend the request to avoid unnecessary
communication load.

Automatic DDoS attacks automate the use pbase in addition to the recruit,
exploit and infect phases, and thus avoid the need for any communication between
attacker and agent machines. The start time of the attack, attack type, duration and
victim are preprogrammed in the attack code. Deployment mechanisms of this attack
class minimal exposure to the attacker, since he is only involved in issuing a single
command at the start of the recruitment process. The hardcoded attack specification
suggests a single-purpose use of the DDoS network, or the inflexible nature of the
system. However, the propagation mechanisms usually leave a back door to the
compromised machine open, enabling easy future access and modification of the
attack code. Further, if agents communicate through IRC channels, these channels can
be used to modify the existing code. Coordinator module controls and coordinates
attack responses once an attack has been detected and reported by some PFs. The
module is comprised of two sub modules, PF handler and joint response issuer, as

depicted.



4.1.1 PERPETRATE DDOS ATTACKS:

The main goal is to inflict damage on the victim. Frequently the ulterior
motives are personal reasons (a significant number of DDoS attacks are perpetrated
against home computers, presumably for purposes of revenge), or prestige (successful
attacks on popular Web servers gain the respect of the hacker community). However,
some DDoS attacks are performed for material gain (damaging a competitor's
resources or blackmailing companies) or for political reasons (a country at war could
perpetrate attacks against its enemy's critical resources, potentially enlisting a
significant portion of the entire country's computing power for this action). In some
cases, the true victim of the attack might not be the actual target of the attack packets,
but others who rely on the target's correct operation.

In this project, we propose a protocol-independent DDoS defense scheme that
1s able to dramatically improve the throughput of legitimate traffic during a DDoS
attack. It works by performing “smart filtering”: dropping DDoS traffic with high
probability while allowing most of the legitimate traffic to go through. This clearly
requires the victim to be able to statistically distinguish legitimate traffic from DDoS
traffic. The proposed scheme leverages on and extends IP traceback techniques to
gather “intelligence™: information such as whether or not a network edge is on the
path from an attacker (“infected”). By preferentially filtering out packets that are
inscribed with the mark (identity) of an “infected” edge, the proposed scheme filters
out most of the traffic from attackers since each and every edge on an attacker’s path
to the victim is infected. Packets from a legitimate client, on the other hand, with hi gh
probability will not be filtered out, since, typically, most of the edges on the client’s
path to the victim are not infected. To evaluate its effectiveness in defending against
DDoS attacks, the proposed scheme is simulated on three sets of real-world Internet
topologies with varying operating parameters. Simulation results demonstrate that the
throughput of the legitimate traffic can be increased by three to seven times. To the
best of our knowledge, this is the first research that leverages on IP traceback for
automatic DDoS response. What makes this approach more appealing is that the
operations required of routers (probabilistic marking) are fully in line with the
operations of IP traceback.

Recently there were occurrences of attacks that varied the set of agent
machines active at any one time, avoiding detection and hindering traceback. We

regard this technique as important since it invalidates assumptions underlying many
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defense mechanisms that agents are active throughout the attack and can thus be
traced back following the path of the attack traffic. We divide attacks, based on the
persistence of the agent set, into attacks with constant agent set and attacks with
variable agent set.

During attacks with a constant agent set, all agent machines act in a similar
manner, taking into account resource constraints. They receive the same set of
commands and are engaged simultaneously during the attack. Examples are an attack
in which all agents start sending attack traffic simultaneously, or they engage in a
pulsing attack but the periods for pulses match over all agent machines.

During attacks with a variable agent set, the attacker divides all available
agents into several groups and engages only one group of agents at any one time | like
the army general who deploys his battalions at different times and places. A machine
could belong to more than one group, and groups could be engaged again after a
period of inactivity. One example attack of the variable agent set type is an attack in
which several agent groups take turns pulsing, thus flooding the victim with a

constant flow of packets.

4.1.2 Application:

Application attacks target a given application on the victim host, thus
disabling legitimate client use of that application and possibly tying up resources of
the host machine. If the shared resources of the host machine are not completely
consumed, other applications and services should still be accessible to the users. For
example, a bogus signature attack on an authentication server ties up resources of the
signature verification application, but the target machine will still reply to ECHO
requests, and other applications that do not require authenticated access should still
work. Detection of application attacks is challenging because other applications on the
attacked host continue their operations undisturbed, and the attack volume is usually
small enough not to appear anomalous. The attack packels are virtually
indistinguishable from legitimate packets at the transport level (and frequently at the
application level), and the semantics of the targeted application must be heavily used
for detection. Since there are typically many applications on a host machine, each
application would have to be modeled in the defense system and then its operation
monitored to account for possible attacks. Once detection is performed, the host

machine has sufficient resources to defend against these small volume attacks,
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provided that it can separate packets that are legitimate from those that are part ol the
attack.

Host attacks disable access to the target machine completely by overloading or
disabling its communication mechanism or making a host crash, freeze or reboot. An
example of this attack is a DoS attack. All attack packets carry the destination address
of the target host. If protocols running on the host are properly patched, the host
- attacks likely to be perpetrated against it are reduced to attacks that consume network
resources. The high packet volume of such attacks facilitates detection, but the host
cannot defend against these attacks alone. It must usually request help from some
~ upstream machine.

Resource attacks target a critical resource in the victim's network such as a
specific DNS server, a router or a bottle-neck link. The paths of the attack packets
merge before or at the target resource and may diverge afterwards. These attacks can
usually be prevented by replicating critical services and designing a robust network
topology.

Network attacks consume the incoming bandwidth of a target network with
attack packets whose destination address can be chosen from the target network's
address space. These attacks can deploy various packets (since it is volume and not
content that matters) and are easily detected due to their high volume. The victim
network must request help from upstream networks for defense since it cannot handle
the attack volume itself.

Infrastructure attacks target some distributed service that is crucial for global
Internet operation. Examples include the attacks on domain name servers, large core
routers, routing protocols, certificate servers, etc. The key feature of these attacks is
not the mechanism they deploy to disable the target (e.g., from the point of view of a
single attacked core router, the attack can still be regarded as a host attack), but the
simultaneity of the attack on multiple instances of a critical service in the Internet
infrastructure. Infrastructure attacks can only be countered through the coordinated
action of multiple Internet participants.

Content of the web servers was initially captured using a custom web
automaton that was run on the real Internet. This automaton was programmed to visit
thousands of web sites popular with university and government personnel with a
frequency that depended on the site’s popularity and to visit a random number of links

at each site before traversing to another site. It gencrated a large database of public
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domain site content, which was transferred to the evaluation test bed. This was
necessary because the evaluation test bed was disconnected from the Internet for
security reasons and live web sites could thus not be accessed. When the test bed was
run, browsing automata accessed web pages through the outside web gateway. Thi;
gateway used custom software to emulate thousands of web sites. Telnet sessions
were generated from statistical profiles of user types that were used to generate
interactive sessions. These statistical profiles indicated the frequency of occurrence of
different UNIX commands, typical login times and telnet session durations, typical
source and destination machines, and other information. For example, programmers
primarily edited C programs, compiled these programs, sent mail, read UNIX manual
pages, and ran programs. Secretaries edited documents, and sent mail. There were
also a large number of users who primarily sent and received mail and browsed web
sites. Public domain sources were used to obtain software programs created by
simulated programmers, documents created by secretaries, and other content. As
suggested in a modified version of the expect language was used to create uscr
automata which behaved as if they were users typing at keyboards. Human actors
performed more complex tasks. They upgraded software, added users, changed
passwords, remotely accessed programs with graphical user interfaces, and performed

other system administration tasks.

42  ROUTER:

Router is responsible for running PFs. A C? has a number of subordinate
routers within its domain. To ensure that a large workload is not place on the ¢2
server by having a large number of PFs, only the domain ingress-edge routers run
PFs. That 1s they are the first routers within the domain that packets from other
domains pass through.

Router comprises of registration of clients in the domain, settings, signatures
List.

In the Registration all the clients in this domain is saved. For example, the IP Address

of clients, Host Name. Settings contains C? server, router, Prefilter are registered.
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Signatures List comprises of stateless and statefull virus headers. All these can be

visualized in the Router.

Internet

N N

iE"—" = ' : | Line of defense

Perimeter Routers

Protected Web Site

Fig 4.1: The perimeter router model

4.2.1 DOS ATTACKS AGAINST DNS:

Two of the most common DoS$ attacks against DNS are direct Do$ attacks and
amplification attacks. For the direct DoS attacks, attacker tries to overwhelm the
server by sending an excess traffic from single or multiple sources. Based on the
measurement of DNS during the periods of distributed DoS attacks, a huge number of
query packets were received by the target name server. Therefore, the name servers
flooded by DoS attacks will experience packet loss and cannot always respond to
every DNS request. The percentage of lost incoming DNS requests due to the
excessive load is based on the DoS attack intensity. It also points that the packet size
of DNS data flow is small and the message amount is little that make the process of
anomalous behaviors detection more difficult.

On the other hand, attackers establish the most sophisticated and modern type

of DoS attacks known as amplification attacks to increase the effect of normal DoS
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attacks. The attacks against TLD {Top-Level-Domain) namc scrvers are all forms of
DNS amplification attacks. The reason behind the name of amplification attack is that
the attacker makes use of the fact that small queries can generate much larger UDP
packets in response. Nowadays, the attackers use the recent extensic: of DNS
protocol (RFC 2671) to magnify the amplification factor. For example a 60 bytes
DNS request can be answered with responses of over 4000 bytes. This yields an
amplification factor of more than 60. Several researchers have studied the effects of
reflected amplification attacks. Based on their analyses, patterns of these attacks
include a huge number of nonstandard packets larger than the standard DNS packet
size which is 512 bytes.

Data collection is usually a basic requirement for any DoS. The type of data
that we should collect is based on the type of DoS. There are two approaches for
normal and intrusion traffic simulations. One is to simulate using a tested in a real
environment. The other is to simulate using simulator softwares. When accessing to a
real environment for traffic simulation is hard, we exploit the power of network
simulators. According to our knbwlcdge, there are no available generated dataset for
DoS attacks against DNS. Therefore, the required data for our experiments was
generated using a network simulator. The network topelogy of our simulation
contains a single legitimate client, an attacker, and two servers. All nodes are
connected to the same router. All the links are 100Mbps and 10ms except the link
between target server and router that is 10Mbps and 10ms delay. A queue size of 100
packets, with a drop-tail queuing strategy was used. There are two types of traffic
generated in the network which are legitimate traffic and attack traffic. A modified
version of Agent/Ping with a maximum of 3 retransmissions with 5-second timeouts
is used for DNS as implemented. The request inter arrival period is fixed at 10s. The
attacker is expected to flood the target name server with excess traffic. We chose
different values of delay for applying to the attack start time in order to achieve
variability.

This router describes two different types of DoS attacks against attack packets
and their patterns. Based on these patterns the required traffic data was simulated. We
proposed a machine learning based system for detecting and classifying DoS attacks
against DNS. For this purpose three different neural networks were evaluated. The

results show that a three layered BP neural network with a structure can give us good
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accuracy and a good classification rate for direct DoS and amplification attacks
comparing to Trace back and Gossip-Based Multicast networks.

Similar to the off-line packet profile, an on-line profile is generated as packets
arrive. Rather than performing expensive calculation of the CLP on the fly, we
employ a scorebook approach. A frozen set of recent histograms in period is used
along with the stored oft-line nominal profile to generate a set of "scorebooks” which
maps a specific combination of attribute values to its corresponding "score".

Most intrusion detection systems provide some degree of configuration to
allow experts to customize the system to a given environment. To avoid learning how
to run and customize each intrusion detection system, to reduce the time required to
perform the evaluation, and to perform a fair comparison, we elected to perform an
off-line blind evaluation of all systems. Two sets of data were provided to
participants. First, seven weeks of training data were provided from July to mid
September 1998. This training data contained normal background traffic and labeled
attacks. Expert users or system developers configured their systems and trained any
learning algorithms to achieve the highest detection rates and the lowest false alarm’
rates on this training data. Then two weeks of unlabeled test data was provided at the
end. Participants ran their intrusion detection systems on this test data and retumed a
list of all attacks detected, without knowledge of the locations or of the types of
attacks. This approach made it casy to participate ensured that all participants are
evaluated fairly and with minimum bias, and lead to the development of evaluation
corpora that can be used by many researches for system design and refinement.

Practical

4,2.2 INTERNET RESOURCES ARE LIMITED:

Each Internet entity (host, network, service) has limited resources that can be
consumed by too many users.

An end-to-end communication paradigm led to storing most of the intelligence
needed for service guarantees with end hosts, limiting the amount of processing in the
intermediate network so that packets could be forwarded quickly and at minimal cost.
At the same time, a desire for large throughput led to the design of high bandwidth
pathways in the intermediate network, while the end networks invested in only as

much bandwidth as they thought they might need. Thus, malicious clients can misuse
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the abundant resourccs of the unwitting intermediate network for delivery of
numerous messages to a less provisioned victim.

Attacks with indirect communication use some legitimate communication
service to synchronize agent actions. Recent attacks have user! IRC (Internet chat
program) channels. The use of IRC services replaces the function of a handler, since
the IRC channel users sufficient anonymity to the attacker. The agents do not actively
listen to network connections (which means they cannot be discovered by scanners),
but instead use the legitimate service and their control packets cannot be easily
differentiated from legitimate chat trace. The discovery of a single agent may lead no
further than the identification of one or more IRC servers and channel names used by
the DDoS network. From there, identification of the DDoS network depends on the
ability to track agents currently connected to the IRC server (which may be the subset
of all subverted machines). To further avoid discovery, attackers frequently deploy
channel- hopping, using any given IRC channel for short periods of time. Since IRC
service is maintained in a distributed manner, and the IRC server hosting a particular
IRC channel may be located anywhere in the world, this hinders investigation.
Although the IRC service is the only known example of indirect communication so
far, there is nothing to prevent attackers from subverting other legitimate services for
similar purposes.

Although the proposed scheme may leverage on any of the existing IP
traceback schemes in this paper, we show how it builds on the Advanced Marking
Scheme proposed. The advantage of the AMS is that it provides faster reconstruction
and higher accuracy (hence, fewer false positives in identifying attackers) than other
IP traceback schemes, when there are more than one attackers. However, it assumes
that the victim is able to obtain a map of upstream routers, which is a stronger
(arguably less practical) assumption than used in other IP traceback. Our future
research will study how our scheme works with other IP traceback techniques.

AMS employs a technique similar to the Bloom filter as follows: It uses eight
independent hash functions to encode network edges. When a packet goes through an
edge ¢ and the identity of the edge is to be marked, it will be chosen uniformly
between 1 and 8, and the mark is written into the IP header of the packet (representing
concatenation). The reconstruction algorithm determines that an attacker has e on its
path if and only if the algorithm has received attacking packets with at least k out of

the eight mark values. The tunable parameter larger k results in longer “attack graph”
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reconstruction time, but fewer false positives when identifying infected cdges. We
view this as a variant of Bloom filter since zll the edges that an attacker has traversed
can be viewed as a set, and it is represented by a bit array indexed by the valucs
generated by these hash functions.

We begin by evaluating the three protocols in a failure-free scenario, and in situations
where crash failures occur. We assume that the crashes occur before M is generated,
and that the source does not crash. We also assume that the crashes are not detected
by the correct processes, i.e., they try to gossip with crashed processes as well. Qur
aim is to validate two known results: 1) the propagation time of gossip-based
multicast protocols can be seen, with a logarithmic x-axis, and 2) the performance of
such protocols degrades gracefully as crash failures amount, as depicted. We can see
that Push and Pull slightly outperforms Drum in these experiments. This is due to the
fact that the bounds on the pull and push channels in Drum are strict, i.e., even if in a
specific round, no messages have arrived via the push channels, only requests from at
most two distinct processes will be handled, although the process is capable of
handling four such requests. Conversely, Push and Pull have only one bound, which
guarantees that messages will not be discarded if they can be processed. The ability to
perform well even when many processes crash stems from the random choice of

communication partners each round.

4.3  PREFILTER:

PF ensures that it is able to infer stateful information about the network being
monitored from stateless information for Dos attack detection, report a detected attack
to the corresponding ¢2, and executes response actions instructed by the ¢2.The PF is
located on a router. Once high volume of traffic directed at a particular target is
detected, the PF applies stateless match is found, the PF sends this information to its
C2 and awaits a response decision. PF comprises of three modules. Monitor, PF
Comms and Response.

Monitor is comprised of the two sub modules statefull signature detection and

stateless detection. The stateful signature detection detects unusual risks in network
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traffic passing through the router directed at a particular host, network, or domain by
making use of the router’s congestion algorithm.

PF Comms module is responsible for interaction with the overseeing C2. It
provides the initial authentication with its C? as -vell as other communications
between the PF node and C? server. Response is received from C? by the PF. This
module instructs the router to enforce the directive. Here the router is capable of
dropping packets with respect to a specific set of perimeters eg: a particular packet
type and destination.

Having observed the vulnerabilities of traditional protocols, we turn to search
for ways to eliminate these vulnerabilities. Specifically, our goal is to design a
protocol that does not allow an attacker to increase the damage it causes by focusing
on a subset of the processes. We are not familiar with any previous protocol that
achieves this goal. We are familiar with only one previous work that addresses DoS
attacks on a DoS based protocol. However, the problem they consider differs from
ours in a way that renders their approach inapplicable to our setting and, moreover,
they only deal with limited attack strengths. |

As a first defense, one may protect a system against DoS attacks using
network-level mechanisms. These mechanisms involve rate-limiting incoming traffic
and filtering packets according to their headers. However, network-level filters cannot
detect DoS attacks at the application level, when the traffic scen;s legitimate. Even if
means are in place to protect against network-level DoS, an attack can still be
performed at the application level, as the bandwidth needed to perform such an attack
is usually lower. This is especially true if the application performs intensive
computations for each message, as occurs, e.g., with secure protocols based on digital
signatures.

As network-level DoS-mitigation solutions are increasingly available,
application level DoS attacks are becoming a major concern. Consequently, vendors
have begun employing some measures against DoS attacks at the application layer.
Such solutions are commonly deployed at the network/firewall level, although they
are application-specific. However, these measures are usually just hard-coded validity
checks for well-known protocols, and do not contain means to deal with resource
exhaustion caused by the application. In this paper, we are concerned with coping

with DoS attacks in application-level multicast protocols. The basic idea is to assume



simple and general mechanisms at the network/firewall level and to exploit them at

the application (multicast protocol) level.

Another important issue of the PF desigr is real-time notification in that an
attack alert must be generated in real time in order that a response can be issued to
counter the attack. This requires that an attack must be detected while it is ongoing
but before the attack traffic reaches its target.

We now explain how the combination of push, pull, random port selections,
and resource bounds achieves resistance to targeted DoS attacks. A DoS attack can
flood a port with fabricated messages. Since the number of messages accepted on
each port in a round is bounded, the probability of successfully receiving a given valid
message M in a given round is inversely proportional to the total number of messages
arriving on the same port as M in that round. Thanks to the separate resource bounds,
an attack on one port does not reduce the probability for receiving valid messages on
other ports.

In order to prevent a process from sending its messages using a push
operation, one must attack (flood) the push offer targets, the ports where push-replies
are awaited, or the ports where data messages are awaited. However, the push
destinations are randomly chosen in each round, as are the push-reply and data ports.
Thus, the attacker has no way of predicting these choices.

Similarly, in order to prevent a process from receiving messages during a pull
operation, one needs to target the destination of the pull-requests or the ports on
which pull replies arrive. However, the destinations and ports are randomly chosen.
Thus, using the push operation, Drum achieves resilience to targeted attacks aimed at
preventing a process from sending messages, and using the pull operation, it

withstands attacks that try to prevent a process from receiving messages.

4.3.1 DDeoS attacks performance:

A DDoS attack is carried out in several phases. The attacker first recruits
multiple agent machines. This process is usually performed automatically through
scanning of remote machines, looking for security holes that will enable subversion.
The discovered vuinerability is then exploited to break into recruited machines and
infect them with the attack code. The exploit/infect phase is frequently automated, and

the infected machines can be used for further recruitment of new agents. Another
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recruit/exploit/infect strategy consists of distributing attack software under disguise of
a useful application (these software copies are called Trojans). This distribution can
be performed, for instance, by sending E-mail messages with infected attachments.
Subverted agent machines are used to send t! e attack packets. Attackers often hide the
tdentity of subverted machines during the attack through spoofing of the source
address yield in attack packets. Note, however, that spoofing is not always required
for a successful DDoS attack. With the exception of reflector attacks, all other attack
types use spoofing only to hinder attack detection and characterization, and the

discovery of agent machines.

44  CLIENT:

After all the settings done in the Router and C? server all the clients in the
domain are run. Thereafter the communication between clients is happened. All the
packets from clients are directed to destination through Router. Router will enforce
PF to check the incoming packets. Here the checking is to identify the packet type and
destination. Here before sending any packets to router they have to join by enter host
name as username.

In all of our evaluations, we stage various DoS attacks. We¢ assume that the
DoS attacks are launched from outside the system. DoS from inside the group is
essentially just one source (or more) generating excessive traffic. This can happen
regardless of any malicious nodes being part of the multicast group, e.g., in a
heterogeneous system. Consequently, this is, in fact, a flow-control problem, as one
cannot differentiate between a malicious attack and legitimate excessive traffic. Flow
control in gossip-based multicast has been dealt with.

In each DoS attack, the adversary focuses on a fraction of the processes and
sends each of them x fabricated messages per round. We note that randomly choosing
the attack targets every round does not make any difference, as the communication
partners are re chosen uniformly at random each round. We denote the total attack
strengthens. We assume that the message source is being attacked (this has no impact
on the results of Push). We consider attacks either of a fixed strength, where B is
fixed and increases or of increasing strength, where either x is fixed and increases, or
vice versa. Examining fixed strength attacks allows us to identify protocol

vulnerabilities, e.g., whether an adversary can benefit from targeting a subset of the
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processes. Increasing strength attacks enable us to asscss the protocols” performance
degradation due to increasing attack intensity.

In a case study implemented in ns2 and detailed in the above method for the
derivation of stateful information was implemented. During the simulation,
approximately 19 500 attack packets were directed at a victim node by two attacking
nodes. This represents an attack consisting of approximately 1000 packets/s. Once
the congestion algorithm was invoked by the router, 798 attacks and legitimate
packets were to be dropped. Of this number, 742 packets were actual attack packets
while the remainders were legitimate traffic. Therefore, out of a total of 19 500 attack
packets, only about 4% of this volume was inspected. The 697 packets detected out
of the 742 inspected by the DiDDeM-enhanced router ensure a 94% detection rate. In
addition, only two legitimate packets were detected as attack packets, thus providing a
false positive rate of 4%. In a simulation of stateless signature detection, stateless TCP
SYN flood signatures were applied to 432 packets, of which 50 were actual attack
packets. For TCP SYN flood detection, packets were searched for instances of SYN
flags within the header, which are indicative of an attack. If a flag is found, it is
compared with other packets within the stream to ascertain whether neighboring flags
also have the same flag set. For example, the stream was searched for flags within three
packets of one another. The 50 attack packets and eight benign packets were all
identified, providing a 100% detection rate.

The objective of DoS is to prioritize the packets based on their CLP values and
discarding the most likely attack packets. Since an exact prioritization would require
offline, multiple-pass operations, e.g., sorting, we take the following alternative
approach to realize an online, one-pass operation. First, all the incoming packets
during are scored. Second, we construct a cumulative distribution function (CDF)
with the CLP scores of the packets. Then a congestion algorithm is used to determine
the fraction of arriving packets to be discarded in order to control the utilization of the
victim to be below a target value. Once the required packet-discarding percentage is
determined, the corresponding CLP discarding threshold is looked up from the CDF
of the CLP scores. We then discard a suspicious packet if it’s CLP score is below the
threshold. While CLP-computation is always performed for each incoming packet,
selective packet discarding only happens when the system is operating beyond its safe
(target) utilization level target. Otherwise, the overload control scheme will set to
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4.4.1 Client implementation:

A demal-of-service attack s characterized by an explicit attempt to prevent the
legitimate use of a service. A distributed denial-of-service attack deploys multiple
attacking entities to attain this goal. This paper is solely concerned with DDoS attacks
in the computer realm, perpetrated by causing the victim to receive malicious trace
and some damage as a consequence.

One frequently exercised manner to perform a DDoS attack is for the attacker
to send a stream of packets to a victim; this stream consumes some key resource, thus
rendering it unavailable to the victim's legitimate clients. Another common approach
is for the attacker to send a few malformed packets that confuse an application or a
protocol on the victim machine and force it to freeze or reboot. In September 2002
there was an onset of attacks that over-loaded the Internet infrastructure rather than
targeting special victims. Yet another possible way to deny service is to subvert
machines in a victim network and consume some key resource so that legitimate
clients from the same network cannot obtain some inside or outside service. This list
is far from exhaustive. It is certain that there are many other ways to deny service on
the Internet, some of which we cannot predict, and these will only be discovered after

they have been exploited in a large attack.

If the average queue size exceeds the maximum threshold, congestion occurs.
Prior to dropping packets, as would occur, the packets to be dropped are inspected by
the cotresponding PF. Within the prototype, this is set to two packets being compared.
However, this variable may be set to a different number by a system administrator to
ensure effective packet comparisons. A packet to be dropped is drawn from the queue
based on the congestion algorithm used by the router. The destination address is
compared with the previous inspected packet’s destination address, which is stored by
the router for this type of comparison. If both destination addresses match, then these
packets are passed for stateless signature analysis. If they do not match, the current
destination address is stored for comparison with the next packet and the current
packet is dropped.

The analysis and simulations measure latency in terms of gossip rounds: We

measure the message’s propagation time, which is the expected number of rounds it
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takes a given protocol to propagate a message to all (in the closed-form analysis) or to
99 percent (in the simulations) of the correct processes. We chose a threshold of 99
percent since the message may fail to reach some of the correct processes due to old
message purging or link loss. Note that correct processes can be either attacked or non
attacked. In both cases, they should be able to send and receive data messages. We
turn to measure actual performance on a cluster of workstations. Qur goal for this
evaluation is twofold: First, we wish to ensure that the simplifying assumptions made
in the analysis and simulations have little impact on their results. For example, in the
implementation, rounds are not synchronized and the push-offer mechanism is used.
Second, we seek to measure the consequences of DoS attacks not only on actual
latency, but also on the throughput of a real system, where multiple messages are sent,

and old messages are purged from processes message buffers.

4.4.2 Enhanced Probabilistic Marking (EPM) module:

This module is an extension of the probabilistic marking module in IP
traceback schemes. This lightweight module is running on each participating Internct
router, whether or not there are DDoS attacks. Recall that in [P traceback, each
Internet router needs to inscribe, with a certain probability, a mark into infrequently-
used [P header fields. Our scheme further splits such marks into two types, described
later. Packets of the first type are used by the AMD module below for IP traceback
and packets of the second type are used by the PPF module below for intelligent

filtering.

4.4.3 Attack Mitigation Decision-making (AMD) module:

Running on the victim or the border gateway device (e.g.. firewall) of the
victim site, this module implements two functions: 1) reconstructing attack paths
using existing IP traceback algorithms based on information contained in the
aforementioned marks of the first type once an attack is detected, and 2) making
algorithmic decisions on the probability of dropping a packet based on the mark
inscribed into its header and the results from 1). The decisions from 2) will be
conveyed to the perimeter routers to be carried out. We will show that there is little

communication overhead in transporting such information.
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4.4.4 Preferential Packet Filtering (PPF) module:

This module ir running on every petimeter router. These modules will
differentially filter a packet (destined for the victim) that contains the aforementioned
marks of the first type, based on the instructions issued to them from the AMD
module, once an attack is detected. We will show that little processing overhead is
incurred at the perimeter routers: Each filter/pass decision requires only the

computation of a hash value and a table lookup.

The proposed scheme extends and leverages on existing IP traceback schemes.
In IP traceback, each Internet router inscribes, in a probabilistic way, a mark into a
low-entropy IP header field (called “mark field” hereafter) set aside for this purpose.
These marks collectively allow the victim to reconstruct the “attack graph,” which
consists of the network edges that the packets from the attackers have traversed. We
can view the marked fields inscribed at the packet headers by IP traceback schemes as
a communication channel. IP traceback uses this channel for only one purpose: to
convey the encoded information about the “attack graph.” Our scheme, on the other
hand, splits this channel into the following two subchannels.

One subchannel, called the signaling subchannel, will continue to carry the
same Information needed for IP traceback. It occupies about 5 percent of the channel
bandwidth, i.e., only 5 percent of the marks are signaling marks. This implies that the
reconstruction of the whole attack graph will be 20 times slower than in the
underlying IP traceback scheme. Fortunately, the preferential filtering becomes very
effective in improving the throughput of legitimate traffic as soon as a critical portion
of the attack graph is reconstructed. As we will show, the nature of the probabilistic
marking used in IP traceback determines that it takes much less (less than 10 percent
of the latter) packets/time to obtain this critical portion than obtaining the whole
attack graph.

The other subchannel, called the data subchannel, will consume the remaining
95 percent of the channel bandwidth. Information contained in the data subchannel,
combined with the “attack graph™ reconstructed from the signaling subchannel, will

allow the perimeter routers to infer whether the packet is more likely to come from an
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attacker or a legitimate host. A packet will be preferentially filtered out or passcd by
the perimeter routers if it is determined to be more likely to come from the attackers
or legitimate hosts, respectively.

The marks contained in packet headers will correspondingly be split into two
types, namely, signaling marks and data marks. They carry signaling and data
subchannel information, respectively. The enhanced marking algorithm that performs
such splitting is shown. When a packet pkt arrives at a router, the router decides
whether it will overwrite the current mark with marking probability. If it decides to
overwrite the mark, the router then decides whether this mark should be a signaling
mark or a data mark, with probability, respectively. For a signaling mark, the hop
count is maintained in the same way as in IP traceback; it will be reset to 0 if the
router overwrites the mark, or simply incremented by 1 otherwise. For a data mark,
there 15 no hop count field.

These approaches to DoS attacks have several weaknesses. Hence, there is a
requirement for an alternative, yet complementary, approach to the DoS problem. To
meet this challenge, we have proposed a system for early defense against DoS. At the
heart of this system is a novel Distributed DoS Detection Mechanism (DiDDeM)
providing the means by which DoS attacks are detected early, beyond the perimeter
of the network under attack, so as to enable an early propagated response to block the
attack through net- work routers, particularly those close to the attack sources. This
approach has been implemented as a prototype, further details of which are discussed.

This paper is focused mainly on the presentation of the new mechanism design.
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CHAPTER 5
CONCLUSION AND FUTURE OUTLOOK

The flow >f information is the most valuable commodity for organizations and
users alike, and DoS attacks pose a great threat to this flow. These attacks are highly
prevalent despite the widespread deployment of network security countermeasures
such as firewalls and intrusion detection systems. Current countermeasures find
DoS extremely problematic, therefore, a number of other approaches have been
proposed to counter the problem. However, these approaches are not without their
problems, so a new approach to more effective detection and prevention of DoS
attacks 1s required.

This requirement has motivated us to propose the novel distributed mechanism,
DiDDeM, for effective early detection and prevention of DoS attacks. In this paper,
we have demonstrated that the DiDDeM makes use of stateful and stateless
signatures in conjunction for attack detection, which differs from the other related
work that mainly employs one of the two signature approaches. The main benefit
from the combination of the two approaches is that not all malicious packets have
to be inspected in order to ascertain the presence of an attack, thus improving
detection efficiency and making attack detection feasible within the routing
infrastructure. Moreover, the DiDDeM offers a novel, distributed and scalable

approach to attack responses.

Our future work is to take two directions. First, we will refine the DiDDeM-based
system for improved defense against DoS$ attacks. For example, we will continue our
implementation and experiment on a wider range of attack scenarios, expand the PF
deployment to routers not at the ingress edge of a domain, and further explore
congestion algorithms for stateful signature analysis and its closer integration with
stateless signature analysis. These will help to reduce false alarm rates and improve the
system efficiency. Second, we will exploit the potential of the DiDDeM approach for
its application to attack scenarios other than DoS. For example, utilizing the
DiDDeM within an organizational boundary may enhance the detection and
prevention of network worms, as these programs require a high volume of traffic

during their spreading periods.
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An analysis of the research systems and experiments with the baseline system
suggest that two characteristics of the research systems and of the evaluation led to
improved performance of the research systems. First, attack signatures werc similar
betweer training and test data. Although new attacks in the test data exploited
different system weaknesses, the visible signature in tcp dump data was similar to that
in training data. It was primarily caused by attackers creating interactive shells with
root-level privilege and by stealthy techniques used to prepare for the attack and run
the attack. Second, examples of normal sessions and of both clear and stealthy attacks
were provided in training. These examples were used by system developers to create
rules or signatures with low false alarm rates and high detection rates. For example,
one system specifically extracted features to detect root-level shells including typical
root-shell command-line prompts and a string printed out by some of the buffer-
overflow attacks to indicate when a root-level shell was successfully created. This
same system also used discriminate training, which relied heavily on normal and
attack training data, to extract rules with high detection rates and low false alarm
rates. Experiments were performed to determine whether selecting new attack-specific
keywords and using discriminate training with keyword counts as Input features could
improve the performance of the simple baseline system. Neither approach alone was
sufficient to obtain the good performance demonstrated by the two best research
systems. A combination of adding new keywords and using discriminate training,
however, increased the performance of the baseline system on attacks to be similar to

that of the two best research systems.
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APPENDICES
Appendix A

Source Code:

Sample Coding C? server:
import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import java.sql.*;

import java.lang.*;

import java.util.*;

public class C2Server implements ActionListener
{

se s;

C28ServerThread td;

C2Stateless st;

C2Statefull stf;

Cserver_router cr;

Cserver_prefilter cp;

JTextArea output;
JScrollPane scrollPane;

boolean flag;

JMenuBar menuBar;
JMenu menu,menul,menu2,menu3, menud;

JMenultem menultem],menultem?.menultem3,mi4,mi5,mi6,mi7,mi8 mi9,mil 0;

public JMenuBar createMenuBar()

{

/{Create the menu bar.
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menuBar = new JMenuBar();

//Build the first menu.

menu = new JMenu("Actions");

menu.setMnemonic(KeyEvent. VK 0);
menu.getAccessibleContext().setAccessibleDescription("The only menu in  this
program that has menu items");

menuBar.add(menu);

//a group of JMenultems

menultem! = new JMenultem("Start” KeyEvent. VK_S);
/menultem.setMnemonic(KeyEvent. VK_T); //used constructor instead

" menultem] setAccelerator(KeyStroke. getK ey Stroke(

KeyEvent. VK_1, ActionEvent. ALT_MASK));
menultem].getAccessibleContext().setAccessibleDescription("This doesn't really do
anything");

menultem].addActionListener(this);

menu.add(menultem1);

/fa group of IMenultems

menultem?2 = new JMenultem("Stop” KeyEvent. VK_T);
//menultem.setMnemonic(KeyEvent. VK_T); //used constructor instead
menultem?2.setAccelerator(KeyStroke. getKeyStroke(

KeyEvent.VK_1, ActionEvent. ALT MASK));
menuItem2.getAccessibleContext().sen&ccessibleDescription("This doesn't really do
anything");

menultem?2.addActionListener(this);

menu.add(menultem?);

/fa group of JMenultems
menultem3 = new JMenultem("Exit",KeyEvent. VK_E);
frame.setContentPane(c.createContentPane());
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/fDisplay the window.

frame.setBounds(300,150,550,550);

frame.setVisible(true);

}

public static void main(String[] args)

{

//Schedule a job for the event-dispatching thread:
/fcreating and showing this application's GUI

javax.swing.SwingUtilities.invokeLater(new Runnable()

{

public void run()

{
createAndShowGUI();
}

)

}

3

Sample coding of Router:

import java.awt.*;
import java.applet.*;
import javax.swing.*;
import java.awt.event.*;
import java.net.* ;
import java.io.* ;
import java.lang.* ;
import java.util.* ;

import java.sgl.*;

//main class



public class Router extends JFrame

d

public Router()
{

Container c=getContentPane();

JTabbedPane tp=new JTabbedPane();

tp.add("Register”,new Register());
tp.add("Action", new Action());
tp.add("Requests”, new Requests());
tp.add("Virus Signatures”, new SignatureList());
tp.add("settings",new settings());

tp.add("Help", new Help());
tp.add("Exit",new Exit(}));

c.add(tp);

}

public static void main(String args[])

{

Router rout=new Router();
rout.setTitle("Router");
rout.pack();

rout.setBounds(200,50,650,650);
rout.setVisible(true);

}
}

//For Registration tab

class Register extends JPanel

{

add a;
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Cancel c;
Modify m;
View v;

Register()
{

JButton bl=new JButton("Add");
add(bl);

JButton b2=new JButton("Cancel");
add(b2);

JButton b3=new JButton{"Modify");
add(b3);

JButton b4=new JButton("View™);
add(b4);

bl.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent ¢)

{

a=new add();
h
1)

b2.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent &)

{

c=new Cancel();
}
1)

b3.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent ¢)

{

m=new Modify();
}

3
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bd.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)
{

v=new View();

}

D

Sample coding of prefilter:

import java.net.* ;

import java.io.* ;

import java.lang.* ;

import java.util.* ;

import java.sql.*;

public class ChatServerThread extends Thread

{

static final int BUFFER SIZE =512; //Sets Max Packet Size
private DatagramPacket IncomingPacket;  //Socket to Communicate with
ClientsTableEntry CTE;

DatagramSocket OutToClientSocket;

Hashtable ClientsTable;

byte[] RecievedBuffer = new byte[BUFFER_SIZE];

byte[] SendAliBuffer = new byte[BUFFER_SIZE];

byte[] SendPrivateBuffer = new byte[BUFFER_SIZE];

/fvariables for statfull operaion

String arr{]=new String{100];
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String arr1[|=new String[100];
String arr2[ J=new String[100];
String temp="";

int temp_count=0;

String sign="";

String signl;

String SendPrivateString;
String SendAliString;

String Blank =" ";

String Username;

String RecieverName;

String SenderName;

String Message;

InetAddress RecieverIPAddress;
InetAddress ClientIPAddress;

int RecieverPort;

int ClientPort;

boolean check=false;

Socket s;

String message;

BufferedReader in;

PrintWriter out;

int length=0;

int i;

public ChatServerThread(DatagramPacket ArrivedPacket, Hashtable
MasterClientsTable, Socket s1)

//Create buffers to hold incoming & outgoing messages
SendPrivate = false;

SendAll = true;
}
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//Incoming Packet is a Message Packet: Must validate Sender and Reciever,

/fot decide if the message is to be broadcast

else if (PacketType == 3)
{

System.out.println("conversation between clients");
if(ULength==0)
__{

System.out.println("Message is to be broadcast”);

¥
catch(Exception ae)
{
}

}

else

{

SendPrivateBuffer = MakePacket(3, SenderName, Message);
SendPrivate = true;

SendAll = false;

PrivateTo = true;

try

{
Class.forName("sun.jdbc.odbe.JdbeOdbceDriver");

Connection con=DriverManager. getConnection("jdbe:odbe:dsn”,"","");
Statement stmt=con.createStatement();
boolean checkk3=CheckSenderID(ClientIPAddress,CIientPort);

boolean checkk4=CheckRecieverID(Username):
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stmt.executeUpdate("insert into IntraDomain
values(""+SenderName+","+ClientIPAddress+","+ClientPort+".""+RecieverName+"
"+CTE.GetClientIP()+",""+Message+"")");

stmt.executeUpdate("insert into IntraDomain_full
values('"+SenderName+”','"+ClienﬂPAddress+"',“+ClientPort+",”‘+RecieverName+'”,
"+CTE.GetClientIP(}+",'""+Message+"")");

System.out.printin("Values inserted sucessfully");

stmt.close();

con.close();

}

catch(Exception a)

{
}
}
3

//packet exceeds the queue size
SendAll = false;

}
}
}

Sample coding of Client:
import javax.swing.UIManager;
import java.awt.*;

import java.net.*;

import java.util. *;

tmport java.io.*;

public class ClientInterface {
boolean packFrame = false;
DatagramSocket ChatSocket;
/**Construct the application*/
public Clientinterface() §

try{
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/fcreate the master thread for the new client interface
ChatSocket = new DatagramSocket();

}

catch (SocketException se)

{

System.err.println(se);

}
catch (IOException ¢)

{

System.err.println(e);

}

//create the new Ul frame and recieving thread.

/**¥Main method*/

public static void main(String[] args) {

try

{

UlIManager.setLookAndFeel(UIManager. getSystemLook AndFeelClassName());

}

catch(Exception €)

{

e.printStack Trace();
}

new ClientInterface();

}
}
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Appendix B

SCREENSHOTS:

% CZ Server

Fig 7.1: C2 Server Actions
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No of PFs: [1 . C2server IP [192.168.06

C2server Name c2 i Close

Fig 7.10: Configuration of Router,Prefilter,C? server

£ Clientlnterface

i Router Machine:Port
le}z.‘.-':3:3.11'.5,::5(&:31] : _
i Username

{ Sevintival ] ;

Receiver Username
i [
Typa Massage Here

L [ sed )

Router> devipriyal, vou have been c_{‘:_]

e )

Fig 7.11: Client 1 Interface
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i Clientinterface

| e

i:l@!cn:u:.em:'} deviprivaz, yvou have beepn ¢~

Fig 7.12: Client 2 Interface
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