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ABSTRACT

Controlling the FI (Forwarding Infrastructures) is needed to prevent
the unauthorized third parties to have control over routing infrastructures.
The main technique that I introduce in this project is finding the possible
paths from source to destinations using the TTL(Time To Live) value and
introduces a defense mechanism based on this value so if the public key
value is available, the unauthorized user can’t view the message that

addresses the security vulnerabilities in FI (Forwarding Infrastructure).

It is possible to prevent some of attacks like impersonation and
eavesdropping on end-hosts and bound the flooding attacks that can be
launched on the infrastructure nodes to a small constant value. The
defense technique, which is based on lightweight cryptographic
constraints on forwarding entries, prevents several attacks including
eavesdropping, loops, and traffic amplification. The proposed system
improves the security of the FI that provide a diverse set of operations
such as packet replication. Here I consider source routing that means user
can specify all possible paths from source to destinations for reaching to
destination. The flexibility of forwarding infrastructures provides some
security problems. These are avoided by using a defense mechanism
based on TTL value. TTL value means the period of time for the

messages are reaching to destination.

Here 1 use the defense mechanism based on symmetric
cryptography--DES algorithm. These encrypted messages are forwarded
through the intermediate nodes up to the destination. While reaching to
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CHAPTER 1

INTRODUCTION TO NETWORK SECURITY

1.1 OVERVIEW OF NETWORK SECURITY

Network security consists of the provisions made in an underlying Computer
Network infrastructure, policies adopted by the network administrator to protect the
network and the network accessible resources from unauthorized access and the
effectiveness (or lack) of these measures combined together. Securing network
infrastructure is like securing possible entry points of attacks on a country by deploying
appropriate defense. Computer security is more like providing means to protect a single
PC against outside intrusion. The former is better and practical to protect the civilians
from getting exposed to the attacks. The preventive measures attempt to secure the access
to individual computers. The network itself thereby protecting the computers and other
shared resources such as printers, network-attached storage connected by the network.
Attacks could be stopped at their entry points before they spread. As opposed to this, in
computer security the measures taken are focused on securing individual computer hosts.
A computer host whose security is compromised is likely to infect other hosts connected
to a potentially unsecured network. A computer host's security is vulnerable to users with

higher access privileges to those hosts.

Network security starts from authenticating any user, most likely a username and a
password. Once authenticated, a stateful firewall enforces access policies such as what
services are allowed to be accessed by the network users. Though effective to prevent
unauthorized access, this component fails to check potentially harmful contents such as
computer worms being transmitted over the network. An intrusion prevention system
(IPS) helps detect and prevent such malware. IPS also monitors for suspicious network
traffic for contents, volume and anomalies to protect the network from attacks such as

denial of service. Communication between two hosts using the network could be



encrypted to maintain privacy. Individual events occurring on the network could be

tracked for audit purposes and for a later high level analysis.

Until modern times cryptography referred almost exclusively to encryption,
which is the process of converting ordinary information (plaintext) into unintelligible text
(ciphertext).Decryption is the reverse process that is moving from the unintelligible
ciphertext back to plaintext. A cipher is a pair of algorithms which create the encryption
and the reversing decryption. The detailed operation of a cipher is controlled both by the
algorithm and in each instance by a key. This is a secret parameter (ideally known only to
the communicants) for a specific message exchange context. Keys are important, as
ciphers without variable keys can be trivially broken with only the knowledge of the
cipher used and are therefore less than useful for most purposes. Historically, ciphers
were often used directly for encryption or decryption without additional procedures such

as authentication or integrity checks.

Some use the terms crypfography and cryptology .cryptography to refer
specifically to the use and practice of cryptographic techniques and cryptology to refer
to the combined study of cryptography and cryptanalysis. Before cryptography was
concerned solely with message confidentiality (i.e., encryption) — conversion of
messages from a comprehensible form into an incomprehensible one and back again at
the other end, rendering it unreadable by interceptors or eavesdroppers without secret
knowledge (namely the key needed for decryption of that message). Encryption was used
to ensure secrecy in communications .In recent decades, the field has expanded beyond
confidentiality concerns to include techniques for message integrity checking,
sender/receiver identity authentication, digital signatures, interactive proofs and secure
computation, among others. The main classical cipher types are transposition ciphers,
which rearrange the order of letters in a message (e.g., 'hello world' becomes "ehlol owrdl'
in a ftrivially simple rearrangement scheme), and substitution ciphers ,which
systematically replace letters or groups of letters with other letters or groups of letters
(e.g., 'fly at once' becomes 'gmz bu podf’ by replacing each letter with the one following

it in the Latin alphabet).



The modem field of cryptography can be divided into symmetric key crptography
and asymmetric key cryptography.

1.1.1 Symmetric-key eryptography

Symmetric-key cryptography refers to encryption methods in which both the
sender and receiver share the same key .The modern study of symmetric-key ciphers
relates mainly to the study of block ciphers and stream ciphers and to their applications.
A block cipher is, in a sense, a modern embodiment of Alberti's polyalphabetic cipher:
block ciphers take as input a block of plaintext and a key, and output a block of ciphertext
of the same size. Since messages are almost always longer than a single block, some
method of knitting together successive blocks is required. Several have been developed,
some with better security in one aspect or another than others. They are the modes of

operation and must be carefully considered when using a block cipher in a cryptosystem.

The Data Encryption Standard (DES) and the Advanced Encryption Standard (AES)
are block cipher designs which have been designated cryptography standards by the US
government (though DES's designation was finally withdrawn after the AES was
adopted). Despite its deprecation as an official standard, DES (especially its still-
approved and much more secure triple-DES variant) remains quite popular; it is used
across a wide range of applications, from ATM encryption to e-mail privacy and secure
remote access. Many other block ciphers have been designed and released, with
considerable variation in quality Stream ciphers, in contrast to the 'block’ type, create an
arbitrarily long stream of key material, which is combined with the plaintext bit-by-bit or
character-by-character, somewhat like the one-time pad. In a stream cipher, the output
stream is created based on a hidden internal state which changes as the cipher operates.
That internal state is initially set up using the secret key material. RC4 is a widely used

stream cipher; see Category: Stream ciphers' Block ciphers can be used as stream ciphers.

Cryptographic hash functions are a third type of cryptographic algorithm. They
take a message of any length as input, and output a short, fixed length hash which can be



that produce the same hash. MD4 is a long-used hash function which is now broken;

MD5, a strengthened variant of MD4, is also widely used but broken in practice
1.1.2 Public-key cryptography

Symmetric-key cryptosystems use the same key for encryption and decryption of a
message, though a message or group of messages may have a different key than others. A
significant disadvantage of symmetric ciphers is the key management necessary to use
them securely. Each distinct pair of communicating parties must, ideally, share a different
key, and perhaps each ciphertext exchanged as well. The number of keys required
increases as the square of the number of network members, which very quickly requires
complex key management schemes to keep them all straight and secret. The difficulty of
securely establishing a secret key between two communicating parties, when a secure

channel doesn't already exist between them.

public-key (also, more generally, called asymmetric key) cryptography in which two
different but mathematically related keys are used — a public key and a private key. A
public key system is so constructed that calculation of one key (the 'private key') is
computationally infeasible from the other (the 'public key'), even though they are
necessarily related. Instead, both keys are generated secretly, as an interrelated pair.In
public-key cryptosystems, the public key may be freely distributed, while its paired
private key must remain secret. The public key is typically used for encryption, while the

private or secret key is used for decryption. RSA, another public-key system.

1.2 Benefits of Network Security:

The various benefits of using Network Security are listed below

*
L 54

Network Security Auditing.

L7
.’.

Systems Security Consultations.

.
*”

Penetration Testing Services.

L}
e

Customized Network Security Systems Design.



% Fast and Efficient Systems Installation.
% Professional Network Security Management and Support.

% Enhanced System Security For Sensitive Data.



CHAPTER 2

LITERATURE SURVEY

An external attacker does not control any compromised FI node but misuses the
flexibility given by the FI. An external attacker can perform only the operations that a
legitimate host can: insert a forwarding entry and send a packet. An internal attacker is
an adversary who controls some compromised FI nodes. Ideally, we want to ensure that
an external attacker cannot eavesdrop or impersonate a host or misuse an FI network to
amplify the magnitude of a flooding attack.3 In the case of an internal attack, we want to
ensure that an attacker who compromises an FI node cannot affect other traffic that is not

forwarded through that compromised FI node.

In this existing system they transfer message for securing purpose they use
encryption and decryption process. They use public key value so intermediate user also
able to view message. Here two attacks will be occurring. That is Internal Attack and

External attack.
2.1 EXISTING METHODS
2.1.1 Constrained ID Technique

Constrained IDs is our core technique, which prevents eaves-dropping,
impersonation, and the construction of topologies that are not trees. Consider an F1 node
that updates the packet ID from id to id! We enforce a constraint on the structure of 1Ds
such that the choice of or id' vice-versa.To implement the constraints, we divide id.key
into two sub-fields: a constrained part (id.key.c)and an unconstrained part(id.key.u).
When a packet is matched at an FI node, the con-strained part must match.

2.1.1.1 Constrained IDs Rule: A packet ID ,id,can be updated to id', if and only if
either id'.key.c=h(id.node,id key.c) or id.key.c=hi(id'.node,id.key.c)hold. Functions h
and h are cryptographic hash functions mapping N -bit strings to n-bit strings, where N is



thesize of an 1D excluding the un-constrained part of the key, and n is the size of the
constrained part of the key. The properties we require of the cryptographichash functions:
1) strong collision resistance and 2)computational infeasibility of finding short cycles. Se-
cure one-way hash functions, such as SHA providethese two properties. If it is clear from
the context, we use id=h(id) and id=h(id) as a shorthand for id.key.c=h(id.node,id key.c)
and id.key.c=h(id.node,id key.c),respectively.

Intuitively, a cryptographic hash function makes it hard for an adversary to
construct malicious topologies such as loops.Since h and h are publicly-known hash
functions, any FI nodeor host can check and enforce the constraints. If packet’s 1D, id is
updated to id' and id'=h(id), and that packet ID isright-constrained ; otherwise, we say

that it is left contrained.

In short, l-constrained entries are used to protect against eavesdropping and
impersonation, whereas r-constrained entries are used to construct flexible topologies that
are resistant to amplification attacks. Next, Note however that since we allow flexibility

of choosing id.node, one can still construct confluences on end-hosts and FI nodes.

The rule that we use to constrain IDs results direcily fromthe dual goal of achieving
the desirable security properties andat the same time preserving the FI functionality.To

enumerate several alternatives to constrain [Ds considered.

1) Constraining the entire ID id' using id' .node would depend on id. Thiswould
limit the flexibility of an end-user or third-party inchoosing the nodes along a
path.

2) Constraining the entire id.key using some part of id” would be restrictive, as some
FIs require control on the value of id key.

3) Constraining id’.key using only id.key would allow an attacker to create

confluences on FI nodes by mapping all the leaf IDs to the victim node.



2.1.2 Challenge-Response

challenge-response protocol is password authentication, where the challenge is
asking for the password and the valid response is the correct password.Clearly an
adversary that can eavesdrop on a password authentication can then authenticate itself
in the same way. One solution is to issue multiple passwords, each of them marked
with an identifier. The verifier can pick any of the identifiers, and the prover must
have the correct password for that identifier. Assuming that the passwords are chosen
independently, an adversary who intercepts one challenge-response message pair has
no more chance of responding correctly to a different challenge than an adversary

who has intercepted nothing.

Bob id

Non-repeating challenge

Response R=E(S,C) , Alice

Fig 2.1: Challenge response technique

To ensure that an attacker cannot insert entries pointing to other benign end-hosts use
the well-known challenge-response technique. FI nodes challenge the insertion of

every forwarding entry using a simple three-way handshake.

The challenge-response protocol helps preventing amplification attacks on end-
hosts since an attacker cannot insert an entry pointing to an arbitrary end-host it does

not control. Hence, to replicate its traffic and direct it towards a particular host, the



attacker must itself create a malicious ID-level topology, and link all leaves with an

existing entry.

2.2 Existing System:
> An attacker should be able to eavesdrop on the traffic to an arbitrary host.
> An attacker should be able to amplify its attack on end-hosts using the FI.
> An attacker can any cause a small bounded attack on the FI.
» An attacker that has compromised an FI node can any affect traffic that the
compromised FI node forwards.

> In this existing system they didn’t avoid the hacks.

2.2 .1 Drawbacks:
In this existing system they transfer message for securing purpose they use
encryption and decryption process. They use public key value so intermediate user also
able to view message. Here two attacks will be occurring. That is Internal Attack and

External attack.

2.3 Proposed System:

Improve the security that flexible communication infrastructures that
provide a diverse set of operations (such as packet replication) allow. Our main goal in
this paper is to show that Fls are no more vulnerable than traditional communication
networks (such as IP networks) that do not export control on forwarding. To this end, we
present several mechanisms that make these FIs achieve certain specific security
properties; yet retain the essential features and efficiency of their original design. Our
main defense technique, which is based on lightweight cryptographic constraints on
forwarding entries, prevents several attacks including eavesdropping, loops, and traffic

amplification.



2.3.1 Advantages of the Proposed System:

. Here they avoid attacks.

L Here they use public key value but intermediate can’t able to view the
message because final hop identify means after check the cost value.

. The cost value match means after only the user can able to view the
message otherwise display the message Access denied.

. Here they use DES algorithm for encryption and decryption process.



CHAPTER 3
PROBLEM DEFINITION

Infrastructure have many types is there. That is DataRouter, Network Pointer, i3
and Forwarding Infrastructure. In this paper they analyzing about Forwarding
Infrastructure. Here two attacks are occurring. That is External attack and internal attack.
In this paper we use cryptographic constrain and find out the one constrain. In that

constrain we apply all type of Infrastructure then its applicable.

In this existing system they transfer message for securing purpose they use
encryption and decryption process. They use public key value so intermediate user also
able to view message. Here two attacks will be occurring. That is Internal Attack and

External attack.

An external attacker does not control any compromised FI node but misuses the
flexibility given by the FL. An external attacker can perform only the operations that a
legitimate host can: insert a forwarding entry and send a packet. An internal attacker is
an adversary who controls some compromised FI nodes. Ideally, we want to ensure that
an external attacker cannot eavesdrop or impersonate a host or misuse an FI network to
amplify the magnitude of a flooding attack.3 In the case of an internal attack, we want to
ensure that an attacker who compromises an FI node cannot affect other traffic that is not

forwarded through that compromised FI node.




CHAPTER 4
PROPOSED METHODOLOGY

Infrastructure have many types is there. That is Data Router, Network Pointer, 13
and Forwarding Infrastructure. In this paper they analyzing about Forwarding
[nfrastructure. Here two attacks are occurring. That is External attack and internal attack.
In this paper we use cryptographic constrain and find out the one constrain. In that
constrain we apply all type of Infrastructure then its applicable. Cryptographic constrain
means Encryption and Decryption process. Here they use DES algorithm for Encryption
and Decryption process. In this algorithm they use public key value. Here they avoid the

existing drawbacks.

An external attacker does not control any compromised FI node but misuses the
flexibility given by the FI. An external attacker can perform only the operations that a
legitimate host can: insert a forwarding entry and send a packet. An infernal aitacker is
an adversary who controls some compromised ¥l nodes. Ideally, we want to ensure that
an external attacker cannot eavesdrop or impersonate a host or misuse an FI network to
amplify the magnitude of a flooding attack.3 In the case of an internal attack, we want to
ensure that an attacker who compromises an FI node cannot affect other traffic that is not

forwarded through that compromised FI node.

4.1 Threat Model

We consider two attacker types: internal and external attackers. An external attacker
does not control any compromised FI node but misuses the flexibility given by the FI. An
external attacker can perform only the operations that a legitimate host can: insert a
forwarding entry and send a packet. An internal attacker is an adversary who conirols

some compromised FI nodes.
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Fig 4.1: Attack examples. (a) Eavesdropping. (b) Cycle. (c) End-host confluence.
(d) Dead end.

Cycles involving FI nodes. An attacker can form a loop by inserting

forwarding entries [see Fig. 1(b)]. This cycle indefinitely consume FI resources.

Dead-ends. An attacker can construct a chain of forwarding entries, or even a multicast
tree, which do not point to a valid end-host [see Fig. 1(d)). Data packets sent on such a

topology would be forwarded and replicated only to be dropped at the dead ends.

FI confluence. An attacker can refine a dead-ends attack by constructing a multicast
tree with m leaves, all pointing to a victim FI node. For every packet sent by the attacker,

the victim will receive m duplicates.

Ideally, we want to ensure that an external attacker cannot eavesdrop or
impersonate a host or misuse an FI net- work to amplify the magnitude of a flooding
attack. In the case of an internal attack, we want to ensure that an attacker who
compromises an FI node cannot affect other traffic that is not forwarded through that

compromised FI node.



4.3 PROPOSED SYSTEM STRUCTURE

Here we consider the source routing that means the user can specify the path
from source to destination through the intermediate nodes and also use public key value
but intermediate can’t able to view the message because final hop identify means after
check the cost value. The cost value match means after only the user can able to view the
message otherwise display the message Access denied. Then use DES algorithm for

encryption and decryption process.

User

:

Topology Creation
and Path selection

:

HOP Login

File Transfer

Encryption

Value equal | Decrvption Process
to Hop o1 _ yd

Forward

n .
\\m'st ? p yd
BN s

S

ni

4

Fig 4.3: Proposed system structure



4.3.1 Constructing a acyclic Topology and Path Selection

Fig 4.4 acyclic topology Fig 4.5 path selection using TTL value

Firstly construct a acyclic topology. This topology is constructed by getting the
names of the nodes and the connections among the nodes as input from the user. While
getting each of the nodes, their associated port and ip address is also obtained. For
successive nodes, the node to which it should be connected to it parent node. While
adding nodes, comparison will be done so that there would be no node duplication. Then
identify the source and the destinations. In this module, I find the possible path for each
of the destinations from the source. After finding the possible paths, find the cost

associated with each of those paths.
4.3.2 Hop Login:
In this module, we Login the Hops for Message Transfer and validate hop name,

hop password and port number. These value are equal means separate server listen for

transfer Message.



4.3.3 Defense Mechanism

In this module a file to be encrypted is chosen. The chosen file is given as the
message transfer to Destination Hop. A key governs the encryption and the key must be
of 8 digits. The Next Hop with in the Network means entered the correct key value after
the header information decrypted to view the user. The users can rights to modify the
path value. After again encrypted the header information then transfer to next Hop. These
it continues up to final Hop identify. In this module decrypt to view header information.
The next Hop users enter the § digit key value. The key value same means only the

header information decrypt to view the user. After the user change the path value.
4.3.4 Message View

After changing path value identified that is final Hop means check the cost
value.The cost value is same means message decrypt to view the destination. Not same

cost value means its display Access Denied.



CHAPTER 5

IMPLEMENTATION

This project is the implementation of DES algorithm by which a file can be
encrypted and decrypted. The encryption and decryption can be done under provision of a
key. The key must be a 8 digit integer. DES encrypts and decrypts data in 64-bit blocks,
using a 64-bit key (although the effective key strength is only 56 bits, as explained
below). It takes a 64-bit block of plaintext as input and outputs a 64-bit block of cipher
text. Since it always operates on blocks of equal size and it uses both permutations and

substitutions in the algorithm, DES is both a block cipher and a product cipher.

DES has 16 rounds, meaning the main algorithm is repeated 16 times to produce
the cipher text. It has been found that the number of rounds is exponentially proportional
to the amount of time required to find a key using a brute-force attack. So as the number

of rounds increases, the security of the algorithm increases exponentially.

5.1 FORWARDING INFRASTRUCTURE MODEL

k k K k

HI1 H2 H3 H4

16 12 20 15

Fig 5.1: Architecture of forwarding infrastructure

TTL value from H1 to H4 = 10+124+20+15 =57

Updated TTL value at HI=57-10



Updated TTL value at H2=47-12
=35

Updated TTL value at H3=35-20
=15

Updated TTL value at H4=15-15
=0

5.1.1 Create Topology and Path Selection

Create new node

» Update
DB
Check
whether Yes Node available

Node

Node is there

Path Selection

Database

Fig 5.2: Flowchart for topology creation and path selection

In the Forwarding infrastructure model, consider 4 hosts. They are H1, H2, H3,
and H4. These are constructed by getting the name of nodes and connections among the
nodes as input from the user. And these values are stored in the database. After that the

source routing is applies that means user can specify the path from source to destination.



Here all the users use the same key value. but unauthorized user can’t view the message

because messages are decrypted when hop count becomes zero.

5.2 Hop Login

Check
values?

Hop Login | Yes Separate server

listens

Unauthorized
Person. Access

Fig 5.3: login the hops for message transfer

In the forwarding infrastructure model all the 4 hops are login for message transfer.
If the user specify the source is H1 and destination is H4, all intermediate nodes like H2
and H3 are login including H1 and H4. Check the entering values like IP address hop
name and port number with stored values in database .If they are equals separate servers

are listen for transferring the message up to the destination.

5.3 Encryption and Decryption

Nowadays when more and more sensitive information is stored on computers and

transmitted over the Internet, we need to ensure information security and safely.

One of the most common uses of encryption is encrypting emails. Sending sensitive
messages, documents and files over the Internet is like sending a postcard as all emails
are transmitted in an unsecured form. It doesn't depend on if you send emails via public
and private networks. Your message is totally open to interception by anyone along the

way .Even if you connect to your server and send your emails via SSL, it only means that



email reaches your server, your email service provider can see it. Then your server
usually sends your email to the recipient in an unsecured way and your email can also be

easily seen by anyone.

Private network, where email goes directly to a mail server and resides there until it
is retrieved, also doesn't provide necessary security level, as you email can be seen Of
course, you may believe that your personal email does not contain any private
information, but everyone has got something to keep in secret from his family, neighbors
or colleagues. It could be financial, sexual, social, political, or professional secrets. There

is really only one sure way to protect Your email privacy-using encryption.

Sending sensitive messages and files over the Internet is very dangerous as all
emails are transmitted in an unsecured form. If you need to send sensitive information
Over the internet you should encrypt it first. Encryption and Decryption Pro allows you
easily encrypt and decrypt your messages and files. For more security you can use
multiple encryption. If you want to send sensitive information via email, simply paste the
encrypted text into your email or attach the encrypted file - the entire recipient has to do

is to decrypt your text or file.

The DES (Data Encryption Standard) algorithm is the most widely used encryption
algorithm in the world. For many years, and among many people, "secret code making"
and DES have been synonymous. And despite the recent coup by the Electronic Frontier
Foundation in creating a $220,000 machine to crack DES-encrypted messages, DES will
live on in government and banking for years to come through a life- extending version

called "triple-DES."

DES is the block cipher algorithm— an algorithm that takes a fixed-length string of
plaintext bits and transforms it through a series of complicated operations into another
cipher text bit string of the same length. In the case of DES, the block size is 64 bits. DES
also uses a key to customize the transformation, so that decryption can supposedly only
be performed by those who know the particular key used to encrypt. The key ostensibly
consists of 64 bits; however, only 56 of these are actually used by the algorithm. Eight



bits are used solely for checking parity, and are thereafter discarded. Hence the effective

key length is 56 bits, and it is usually quoted as such.
Three phases are:

» Initial permutation
» Round function

> Inverse initial permutation

There are 16 identical stages of processing, termed rounds. There is also an initial
and final permutation, termed /P and FP, which are inverses (IP "undoes" the action of
FP, and vice versa). IP and FP have almost no cryptographic significance, but were
apparently included in order to facilitate loading blocks in and out of mid-1970s

hardware, as well as to make DES run slower in software.

Before the main rounds, the block is divided into two 32-bit halves and processed
alternately; this criss-crossing is known as the Feistel scheme. The Feistel structure
ensures that decryption and encryption are very similar processes — the only difference
is that the subkeys are applied in the reverse order when decrypting. The rest of the
algorithm is identical. This greatly simplifies implementation, particularly in hardware, as

there is no need for separate encryption and decryption algorithms.

The F-function scrambles half a block together with some of the key. The output
from the F-function is then combined with the other half of the block, and the halves are
swapped before the next round. After the final round, the halves are not swapped; thisisa

feature of the Feistel structure which makes encryption and decryption similar processes
Round function:
® Expansion : the 32-bit half-block is expanded to 438 bits.

® Key mixing : the result is combined with a subkey using an XOR operation.

Sixteen 48-bit subkeys — one for each round — are derived from the main key



® Substitution: after mixing in the subkey, the block is divided into eight 6-bit

pieces before processing by s-boxes.

® permutation :finally, the 32 outputs from the S-boxes are rearranged according to

a fixed permutation.

DES is a block cipher—meaning it operates on plaintext blocks of a given size (64-
bits) and returns ciphertext blocks of the same size. Thus DES results in a permutation
among the 264 (read this as: "2 to the 64th power") possible arrangements of 64 bits,
each of which may be either 0 or 1. Each block of 64 bits is divided into two blocks of 32
bits each, a left half block L and a right half R. (This division is only used in certain

operations.)

5.3.1 DES algorithm

1 process the key.

1.1 Get a 64-bit key from the user. (Every 8th bit (the least significant bit of each byte)
is considered a parity bit. For a key to have correct parity, each byte should contain an

odd number of "1" bits.)
1.2 Calculate the key shedule.

1.3 Perform the following permutation on the 64-bit key. (The parity bits are
discarded reducing the key to 56 bits.

Permuted Choice 1 (PC-1)

5749413325179
1585042342618
1025951433527
1911 3 60 52 44 36
635547393123 15
7 62 54 46 38 30 22
146 61 33 453729
211352820124



1.2.2 Split the permuted key into two halves. The first 28 bits are called C[0] and the last
28 bits are called D[0].

1.2.3 Calculate the 16 sub keys. Start with i = 1.

1.2.3.1 Perform one or two circular left shifts on both C[i-1] and D[i-1] to get C[i] and
D[il, respectively. The number of shifts per iteration are given in the table below.

1.2.3.2 Permute the concatenation C[i]D[i] as indicated below. This will yield K[i],
which is 48 bits long.

Permuted Choice 2 (PC-2)

1417112415
3281562110
2319124268
1672720132
41 5231374755
304051453348
44 49 39 56 34 53
46 42 5036 29 32

1.2.3.3 Loop back to 1.2.3.1 until K[16] has been calculated.
2 Process a 64-bit data block.

2.1 Get a 64-bit data block. If the block is shorter than 64 bits, it should be padded as
appropriate for the application.

2.2 Perform the following permutation on the data block.

Initial Permutation (IP)

585042342618102
605244362820124
625446383022 146



64 564840322416 8
57494133251791
595143352719113
615345372921 135
635547393123157

2.3 Split the block into two halves. The first 32 bits are called L[0], and the last 32 bits
are called R[0].
2.4 Apply the 16 sub keys to the data block. Start with i = 1.
2.4.1 Expand the 32-bit R[i-1] into 48 bits according to the bit-selection function
below.
Expansion (E)
3212345
456789
8910111213
1213141516 17
1617 18 192021
202122232425

242526272829
28293031321

2.4.2 Exclusive-or E(R[i-1]) with K[i].

2.4.3 Break E(R[i-1]) xor K[i] into eight 6-bit blocks. Bits 1-6 are B[1], bits
7-12 are B[2], and so on with bits 43-48 being B[8].

2.4.4 Substitute the values found in the S-boxes for all B[j]. Start with j =
1. All values in the S-boxes should be considered 4 bits wide.

2.4.4.1 Take the 1st and 6th bits of B[j] together as a 2-bit value (call it m)

indicating the row in S[j} to look in for the substitution.

2.4.4.2 Take the 2nd through 5th bits of B[j] together as a 4-bit value (call



it n) indicating the column in S[j] to find the substitution.

2.4.4.3 Replace B[j] with S[j][m][n].

Substitution Box 1 (5[1])

1441312151183106125907
01574142131106121195338
4114813621115129731050
1512824917511314100613

S[2]

1518146113497213120510
3134715281412011069115
0147111041315812693215
1381013154211671205149

S[3]

1009146315511312711428
1370934610285141211151
1364981530111212510147
1101306987415143115212

(4]

7131430691012851112415
1381156150347212110149
1069012117131513145284
3150610113894511127214

S[5]

2124171011685315130149
1411212471315015103986
4211110137815912563014
1181271142136150910453



S[é]

1211015926801334 147511
1015427129561131401138
9141552812370410113116
4321295151011141760813

S[7]

4112141508133129751061
13011 74911014351221586
1411131237141015680592
6111381410795015142312

SI8]

1328461511110931450127
1151381037412561101492
71141912142061013153538
2114741081315129035611

2.4.4.4 Loop back to 2.4.4.1 until all 8 blocks have been replaced.

2.4.5 Permute the concatenation of B[1] through B[8] as indicated below.

Permutation P

1672021
291228 17
1152326
5183110
282414
322739
1913306
22114725



2.4.6 Exclusive-or the resulting value with L(i-1]. Thus, all together, your R[i] = L[i-!]
xor P(S[11(B[1])...S[81(B[8])), where B[j] is a 6-bit block of E(R[i-1]) xor K[i]. {The
function for R[i] is more concisely written as, R[i] = L[i-1] xor f(R[i-1], K[i]).)

2.4.7 L[i] = R[i-1].
2.4.8 Loop back to 2.4.1 until K[16] has been applied.

2.5 Perform the following permutation on the block R[16]L[16].

Final Permutation (IP**-1)

40 8 48 16 56 24 64 32
3974715552363 31
38646 1454226230
375451353216129
36444 1252206028
35343 1151195927
34242105018 5826
33141949175723

Key schedule:
C[0]D[0] = PCl(key)
for} <=i<=16

C[i] = LSHJ(C[i-1])
D[i] = LS[i}(D[i-1])
K[i] = PC2(C[i]D[i])

Encipherment:

L{0]R[0] = IP(plain block)

for 1 <=i<=16

L[i] = R[i-1]

R{i] = L[i-1] xor f(R[i-1], K[i]}
cipher block = FP(R[16]L[16]}

Decipherment:

R[16]L[16] = IP(cipher block)
forl <=i<=16

R[i-1] = L[i}

L{i-1] = R[i] xor f{L[i], K[i]}
plain block = FP(L[0]R[0])



Example: Let M be the plain text message M = 0123456789ABCDEF, where M is in
hexadecimal (base 16) format. Rewriting M in binary format, we get the 64-bit block of

text:

M = 0000 0001 0010 0011 0100 0101 01100111 1000 1001 1010 1011 1100 1101 1110
1111

L = 0000 0001 0010 0011 0100 0101 0110 0111

R = 1000 1001 1010 1011 1100 1101 1110 1111

The first bit of M is "0". The last bit is "1". We read from left to right.

DES operates on the 64-bit blocks using key sizes of 56- bits. The keys are actually stored
as being 64 bits long, but every 8th bit in the key is not used (i.e. bits numbered 8, 16, 24,
32, 40, 48, 56, and 64). However, we will nevertheless number the bits from 1 to 64,
going left to right, in the following calculations. But, as you will see, the eight bits just

mentioned get eliminated when we create subkeys.

Example: Let K be the hexadecimal key K = 133457799BBCDFF1. This gives us as the
binary key (setting 1 = 0001, 3 = 0011, etc., and grouping together every eight bits, of

which the last one in each group will be unused):
K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001
The DES algorithm uses the following steps:

Step 1: Create 16 subkeys, each of which is 48-bits long.

The 64-bit key is permuted according to the following table, PC-1. Since the first entry in
the table is "57", this means that the 57th bit of the original key K becomes the first bit of
the permuted key K+. The 49th bit of the original key becomes the second bit of the
permuted key. The 4th bit of the original key is the last bit of the permuted key. Note
only 56 bits of the original key appear in the permuted key.

PC-1

57 49 41 33 25 17 9
1 58 50 42 34 26 18



19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

Example: From the original 64-bit key

K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001
we get the 56-bit permutation

K+= 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111

Next, split this key into left and right halves, Cp and Dy, where each half has 28 bits.
Example: From the permuted key K+, we get

Cp=1111000 0110011 0010101 0101111

D,=0101010 1011001 1001111 0001111

With C, and Dy defined, we now create sixteen blocks C, and Dy, 1<=n<=16. Each pair
of blocks C, and D, is formed from the previous pair C,.; and D, ;, respectively, for n =
1,2, ..., 16, using the following schedule of "left shifts” of the previous block. To do a
left shift, move each bit one place to the left, except for the first bit, which is cycled to the
end of the block.

Iteration Number of
Number  Left Shifts

1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1
10 2
11 2
12 2

2



15 2

16 1
This means, for example, C; and D; are obtained from C; and D, respectively, by two
left shifts, and Cjs and Dys are obtained from Cjs and Dys, respectively, by one left shift.
In all cases, by a single left shift is meant a rotation of the bits one place to the left, so
that after one left shift the bits in the 28 positions are the bits that were previously in

positions 2, 3,..., 28, 1.

Example: From original pair pair Cp and Dy we obtain:

C,=1111000011001100101010101111
Dy,=0101010101100110011110001111

C;=1110000110011001010101011111
D;=1010101011001100111100011110

C>=110000110011001010101011111%1
D,=010101011001100111100011110t

C;=0000110011001010101011111111
D;=0101011001100111100011110101

C,=0011001100101010101111111100
D,=0101100110011110001111010101

Cs=1100110010101010111111110000
Ds;=0110011001111000111101010101

Cs=0011001010101011111111000011
Ds=1001100111100011110101010101

C>,=1100101010101111111100001100
D;=0110011110001111010101010110

Cs=0010101010111111110000110011
Dg=1001111000111101010101011001

Cy,=0101010101111111100001100110
Do=0011110001111010101010110011

Ci;p=0101010111111110000110011001
D;p=1111000111101010101011001100



C;;=0101011111111000011001100101
D;;=11000111101010101011001 10011

C;z=0101111111100001100110010101
D;;=0001111010101010110011001111

Ci3=0111111110000110011001010101
D;;=0111101010101011001100111100

Ci¢=1111111000011001100101010101
D;,=1110101010101100110011110001

C;5=1111100001100110010101010111
D,;s=1010101010110011001111000111

Cis=1111000011001100101010101111
D;s=0101010101100110011110001111
We now form the keys K,, for 1<=n<=16, by applying the following permutation table to
each of the concatenated pairs C,D,. Each pair has 56 bits, but PC-2 only uses 48 of

these.

PC-2

14 17 11 24 1 5
3 2815 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Therefore, the first bit of K,, is the 14th bit of C,D,, the second bit the 17th, and so on,
ending with the 48th bit of K,, being the 32th bit of C,D,.

Example: For the first key we have C;Dy = 1110000 1100110 0101010 1011111
1010101 0110011 0011110 0011110

which, after we apply the permutation PC-2, becomes

K;=000110 110000 001011 101111 111111 000111 000001 110010



For the other keys we have

K;=011110011010 111011 011001 110110 111100 100111 100101
K;=010101 011111 110010 001010 010000 101100 111110 011001
K,=011100 101010 110111 010110 110110 110011 010100 011101
Ks=011111 001110 110000 000111 111010 110101 001110 101000
Ks=011000 111010010100 111110010100 000111 101100 101111
K,=111011 001000 010010 110111 111101 100001 100010 111100
Ky=111101 111000 101000 111010 110000 010011 101111 111011
Ky=111000 001101 101111 101011 111011 011110 011110 000001
K;p=101100011111 001101 000111 101110 100100 011001 001111
K;;=001000 010101 111111 010011 110111 10£101 001110 000110
K;;=011101 010111 000111 110101 100101 000110011111 101001
K;;=100101 111100010111 010001 111110 101011 101001 000001
K;4=010111 110100001110 110111 111100 101110 011100 111010
K;s=101111 111001 000110 001101 001111 010011 111100 001010
K;s=110010 110011 110110 001011 000011 100001 011111 110101

So much for the subkeys. Now we look at the message itself.
Step 2: Encode each 64-bit block of data.

There is an initial permutation TP of the 64 bits of the message data M. This rearranges
the bits according to the following table, where the entries in the table show the new
arrangement of the bits from their initial order. The 58th bit of M becomes the first bit of
IP. The 50th bit of M becomes the second bit of IP. The 7th bit of M is the last bit of IP.

IP

58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 24 16
57 49 41 33 25 17 9
59 51 43 35 27 19 li
61 53 45 37 29 21 13
63 55 47 39 31 23 15 7
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Example: Applying the initial permutation to the block of text M, given previously, we
get

M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110
1111



IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010
1010

Here the 58th bit of M is "1", which becomes the first bit of IP. The 50th bitof M is "1",
which becomes the second bit of IP. The 7th bit of M is "0", which becomes the last bit
of IP.

Next divide the permuted block IP into a left half L, of 32 bits, and a right half Ry of 32
bits.

Example: From IP, we get Ly and Ry

Ly = 1100 1100 0000 0000 1100 1100 1111 I111
R,= 111100001010 1010 1111 0000 1010 1010

We now proceed through 16 iterations, for |<=n<=16, using a function f which operates
on two blocks-a data block of 32 bits and a key K, of 48 bits—-to produce a block of 32
bits. Let + denote XOR addition, (bit-by-bit addition modulo 2). Then for n going

from 1 to 16 we calculate

Ly=Ry.;
Rn = Ln—] +f(Rn-1,Kn)

This results in a final block, for n = 16, of L;sR;s. That is, in each iteration, we take the
right 32 bits of the previous result and make them the left 32 bits of the current step. For
the right 32 bits in the current step, we XOR the left 32 bits of the previous step with the

calculation f .
Example: For » =1, we have

K, = 000110 110000 001011 101111 1}illl 000111 000001 110010
L, = Ry, = 1111 0000 1010 1010 1111 0000 1010 1010

R;=Lo+ flRe.K})



It remains to explain how the function f works. To calculate £, we first expand each block
R,.; from 32 bits to 48 bits. This is done by using a selection table that repeats some of
the bits in R,.; . We'll call the use of this selection table the function E. Thus E(R,.;) has
a 32 bit input block, and a 48 bit output block.

Let E be such that the 48 bits of its output, written as 8 blocks of 6 bits each, are obtained

by selecting the bits in its inputs in order according to the following table:

E BIT-SELECTION TABLE

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Thus the first three bits of E(R,.;) are the bits in positions 32, | and 2 of Ry, while the

last 2 bits of E(R.;) are the bits in positions 32 and 1.
Example: We calculate E(Rg) from Ry as follows:

Ry = 1111 0000 1010 1010 1111 0000 1010 1010
E(Rg) = 011110 100001 010101 010101 011110 100001 010101 010101

(Note that each block of 4 original bits has been expanded to a block of 6 output bits.)
Next in the f calculation, we XOR the output E(R,. 7) with the key K,:

Kn + E(Rp-)-

Example: For X, , E(Ry), we have

K; = 000110 110000 001011 101111 111111 000111 000001 110010
E(R;) = 011110 100001 010101 010101 011110 100001 010101 010101
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We have not yet finished calculating the function f. To this point we have expanded R,.;
from 32 bits to 48 bits, using the selection table, and XORed the result with the key K, .
We now have 48 bits, or eight groups of six bits. We now do something strange with each
group of six bits: we use them as addresses in tables called "S boxes". Each group of six
bits will give us an address in a different S box. Located at that address will be a 4 bit
number. This 4 bit number will replace the original 6 bits. The net result is that the eight
groups of 6 bits are transformed into eight groups of 4 bits (the 4-bit outputs from the S
boxes) for 32 bits total.

Write the previous result, which is 48 bits, in the form:
K, + E(R,.;) =B;B:B;BB;sBsBBs,

where each B; is a group of six bits. We now calculate
S1(B1)S2(B2)S3(B3)S«By)Ss5(Bs)Ss(Bs)SHB7)Ss(Bs)
where Si(B;) referres to the output of the i-th S box.

To repeat, each of the functions S1, §2,..., §8, takes a 6-bit block as input and yields a 4-

bit block as output. The table to determine §; is shown and explained below:

S1

Column Number
Row

No. 01 23 45 67 891011 1213 1415

0 144131 215118 310 612 59 07
1 015 741421311061211 95 38
2 41148136 2111512 97 310 50
3 1512 82 49 17 511 314100 613

If §; is the function defined in this table and B is a block of 6 bits, then §;(B) is
determined as follows: The first and last bits of B represent in base 2 a number in the

decimal ranece O to 3 (or binary 00 to 11). Let that number be i. The middle 4 bits of B



represent in base 2 a number in the decimal range 0 to 15 (binary 0000 to 1111). Let that
number be j. Look up in the table the number in the i-th row and j-th column. It is a
number in the range 0 to 15 and is uniquely represented by a 4 bit block. That block is the
output $;(B) of 8; for the input B. For example, for input block B = 011011 the first bit is
"0" and the last bit "1" giving 01 as the row. This is row 1. The middle four bits are
"1101". This is the binary equivalent of decimal 13, so the column is column number 13.
In row 1, column 13 appears 5. This determines the output; 5 is binary 0101, so that the

output is 0101. Hence 5;(011011) = 0101.

The tables defining the functions Sj,...,85 are the following:

131 10 6 1211
11 1512 97
7 511 314 1

D Oy B
[l A
=R N

151 814 611 3 4
313 47152 814
014 711104 131
138101 315 421

— Ln b

5113127114 28
0 28 5141211151
0111 212 510 14 7
7

41514 3115 212

713 3
13 8 5
106 90

06



212 41 710116 85 315 13
1411 212 47131 501510 3
42 1111013 78159125 6
118127 114 213 615 09 10

0149
9 86
3 014
4 53
S6

1211015 9
1015 42 7
914 155 2
43 212 9

13 34147 511
11314 011 3 8
0 410 113116
14 17 60 813

26

12 9

8 12

5151
S7

411 214150 813 312 97 5

130117 49 110143 512 2

141113123 7141015 68 05
611 138 14107 95 015142

0
5

S8

132 84 615111
115138103 74
711 41 912142 06
21147 410 813 151

314 50127
611 014 9 2
1013 153 53
90 35 611

09
25

2

Example: For the first round, we obtain as the output of the eight S boxes:

K;+ E(Rz)= 011000 010001 011110 111010 100001 100110 010100 100111.

S1(B1)S:(B2)S5(B3)S«(B)Ss(Bs)Ss(Be)S+(B)Ss(Bg) = 0101 1100 1000 0010 1011 0101

1001 0111

The final stage in the calculation of £ is to do a permutation P of the S-box output o

obtain the final value of f:

f=P(Si(BYS:B)...Ss(By))

The permutation P is defined in the following table. P yields a 32-bit output from a 32-bit

input by permuting the bits of the input block.



16 7 20 21
29 12 28 17
1 15 23 26
518 31 10
2 824 14
3227 3 9
19 13 30 6
22 11 4 25

Example: From the output of the eight S boxes:

S1(B1)S:(B2)S3(B3)SH{B4)Ss(Bs)Se(Bs)SAB7)Ss(Bg) = 0101 1100 1000 0010 1011 0101

1001 0111

we get

f=001000110100 1010 1010 1001 1011 1011

Ri=Ly+flRy,K;)

= 1100 1100 0000 0000 1100
+ 0010 0011 0100 1010 1010
=11101111 0100 1010 0110 0101 0100 0100

1100 1111 1111
1001 1011 1011

In the next round, we will have Lz = R;, which is the block we just calculated, and then

we must calculate B2 =L; + f{Ry, K2), and so on for 16 rounds. At the end of the sixteenth

round we have the blocks Ljs and R;4. We then reverse the order of the two blocks into

the 64-bit block

Rl s

and apply a final permutation 1P as defined by the following table:



P!

40 8 48 16 56 24 6432
39 7 47 15 55 23 6331
38 6 46 14 54 22 6230
37 5 45 13 53 21 6129
36 4 44 12 52 20 6028
35 3 43 11 51 19 5927
34 2 42 10 50 18 5826
33 1 41 9 49 17 5725

That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit 8
as its second bit, and so on, until bit 25 of the preoutput block is the last bit of the output.

Example: If we process all 16 blocks using the method defined previously, we get, on

the 16th round,

L = 0100 0011 0100 0010 0011 0010 0011 0100
R;s=0000 1010 0100 1100 1101 1001 1001 0101

We reverse the order of these two blocks and apply the final permutation to

Ryislis = 00001010 01001100 11011001 10010101 01000011 01000010 001106010
00110100

IP! = 10000101 11101000 00010011 01010100 00001111 00001010 10110100
00000101

which in hexadecimal format is
85E813540F0AB405.

This is the encrypted form of M = 0123456789ABCDEF: namely, C =
85E813540F0AB405.

Decryption is simply the inverse of encryption, follwing the same steps as above, but

reversing the order in which the subkeys are applied.
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CHAPTER 6

6.1 CONCLUSION

Giving hosts control over forwarding in the infrastructure has become one of the
promising approaches in designing flexible network architectures. In this paper, we

addressed the security concerns of these forwarding infrastructures.

We presented a general FI model, analyzed potential security vulnerabilities, and
presented a defense mechanism based on TTL value. Our key defense mechanism, based
on TTL value, prevent external and internal attacks on end-host as well as intermediate
nodes. By this system, if public key value is available the unauthorized person can’t view

the message
6.2 FUTURE WORK

In the process of designing security mechanisms for Fls, we have leveraged a
defense mechanism based on TTL value. By this mechanism overcome the security
problems on end-host as well as intermediate nodes. But here we consider only one path
from source to destination. As a future work we wish to provide all possible paths and

also select a best path for reaching to destination based upon the smallest TTL value.
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SAMPLE CODING

import java.awt.*;
import java.awt.event.®;
import javax.swing.*;
import java.sql.*;
import java.io.*;

JE®

* Summary description for SecTopology
*®

*/
public class SecTopology extends JFrame
{ :
/f Variables declaration
private JLabel ITitle;
private JLabel lImage;
private JLabel IHopName;
private JLabel IHopPass;
private JLabel IHopCost;
private JLabel lHst Name;
private JLabel |Port;
private JTextField tfHopNa;
private JTextField tfHoCos;
private JTextField tfHo Name;
private JPasswordField pfHoPass;
private JTextField tfPort_Num;
private JButton bSub;
private JComboBox cbConList;
private JButton bLogin;
private JPanel contentPane;
private JLabel 1ConHop;
String Nodename,pass,cost,ipaddress,portnum,aa="",conval=""
ResultSet rs;
Statement st;
Connection con;
/f End of variables declaration

public SecTopology()

{
super();
initializeComponent();
/f

Ed



// TODO: Add any constructor code after initializeComponent call
I

this.setVisible(true);
this.setSize(850, 600);
this.setVisible(true);
this.setResizable(false);

private void initializeComponent()

{
ITitle = new JLabel();
IImage = new JLabel();
IHopName = new JLabel();
IHopPass = new JLabel();
IHopCost = new JLabel();
IHst Name = new JLabel();
|Port = new JLabel();
tfHopNa = new JTextField();
tfHoCos = new JTextField();
tfHo Name = new JTextField();
pfHoPass = new JPasswordField();
cbConList = new JComboBox();
tfPort Num = new JTextField();
1ConHop = new JLabel();
bSub = new JButton();
bLogin = new JButton();
contentPane = (JPanel)this.getContentPane();
this.setDefaultCloseOperation{fEXIT ON_CLOSE);
i
// 1Title
/
ITitle.setForeground(new Color(153, 0, 153));
ITitle.setText("Topology Creation™);
1
// llmage
"
IImage.setlcon{new Imagelcon("topology.jpg™));
i
/ IHopName
i
[HopName.setForeground(new Color(153, 0, 153));
I[HopName.setText("Hop Name");
"
// IHopPass



/

IHopPass.setForeground(new Color(153, 0, 153));

IHopPass.setText("Hop Password");

i

// IHopCost

i

IHopCost.setForeground(new Color(153, 0, 153));

IHopCost.setText{"Hop Cost™);

i

// 1Hst_Name

i

IHst Name.setForeground(new Color(153, 0, 153));

IHst Name.setText("IP Address™);

/f

// 1Port

/

IConHop.setForeground(new Color(153, 0, 153));

IConHop.setText("Connected Hop");

1ConHop.setFont(new Font("Serif", Font.PLAIN, 15));

i

|Port.setForeground(new Color(153, 0, 153));

|Port.setText{"Port Number"};

i

// tfHopNa

i

tfHopNa.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ¢)

{
}

tfHopNa_actionPerformed(e);

1)
cbConList.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ¢)

{
cbConList_actionPerformed(e);
}
1)
/
/f tfHoCos
I

tfHoCos.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e)

{

tfHoCos_actionPerformed(e);



i
// tfHo_Name
1

i

/
tfHo Name.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ¢)

{
tfHo Name actionPerformed(e);
}
s
//
// pfHoPass
1

pfHoPass.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ¢)

{
pfHoPass_actionPerformed(e);
}
1
/
/f tfPort_ Num
i

tfPort Num.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent €)

{
tfPort Num_actionPerformed(e);
}
s
1
// bSub
1

bSub.setForeground(new Color(153, 0, 153));

bSub.setText("Create Topology");

bSub.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent €)

{
}

bSub_actionPerformed(e);

s
/



// blogin
i
bLogin.setForeground(new Color(153, 0, 153));
blLogin.setText("Path Selection");
bLogin.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e)

{
}

bLogin_actionPerformed(e);

35

I

/! contentPane

I

contentPane.setLayout(null);
contentPane.setBackground(new Color(255, 255, 255));
addComponent(contentPane, ITitle, 210,54,160,40);
addComponent(contentPane, 1Image, 480,99,297,369);
addComponent(contentPane, IHopName, 152,151,98,29};
addComponent(contentPane, I[HopPass, 152,216,108,28);
addComponent(contentPane, IHopCost, 152,278,90,26);
addComponent(contentPane, [Hst Name, 152,337,96,30);
addComponent(contentPane, [Port, 152,460,96,30);
addComponent(contentPane, tfHopNa, 300,155,100,22);
addComponent(contentPane, tfHoCos, 300,280,100,22);
addComponent{contentPane, tfHo Name, 300,341,100,22);
addComponent(contentPane, pfHoPass, 300,216,100,22);
addComponent(contentPane, tfPort Num, 300,461,100,22);
addComponent(contentPane, bSub, 127,519,150,35);
addComponent(contentPane, bLogin, 326,519,150,35);
addComponent(contentPane, 1IConHop, 152,397,94,26);
addComponent(contentPane, cbConList, 300,397,100,22);
IConHop.setVisible(false);

cbConList.setVisible(false);

this.setTitle("SecTopology - extends JFrame™);
this.setLocation(new Point(11, 21));

this.setSize(new Dimension(653, 518));

private void addComponent(Container container,Component c,int x,int
y,int width,int height)
{
c.setBounds(x,y,width,height);
container.add(c);



1

private void tfHopNa_actionPerformed(ActionEvent e}

{ System.out.println("\ntfHopNa_actionPerformed(ActionEvent e) called.");

}

private void tfHoCos_actionPerformed(ActionEvent ¢)

{ System.out.printin("\ntfHoCos_actionPerformed({ActionEvent ¢) called.”);

}

private void tfHo Name_actionPerformed(ActionEvent e)

{ System.out.println("\ntfHo Name _actionPerformed(ActionEvent e)
called.");

}

private void pfHoPass_actionPerformed(ActionEvent €)

{ System.out.printin("\npfHoPass_actionPerformed(ActionEvent e)
called.");

3

private void tfPort Num_actionPerformed(ActionEvent €)

{ System.out.println("\ntfPort Num_actionPerformed(ActionEvent ¢)
called.");

}

private void cbConList_actionPerformed(ActionEvent ¢)

ed j System.out.println{"\ncbConlL.ist_actionPerformed(ActionEvent ¢)

called.");

Object 0 = cbConList.getSelectedltem();
System.out.println(">>" + ((o==null)? "null" : o.toString()) + " is
selected.");
being selected
conval = (String)o;



j

private void bSub_actionPerformed(ActionEvent €)

{
System.out.printin("\nbSub_actionPerformed(ActionEvent ¢) called.");

try
{
DB(;

Nodename=tfHopNa.getText();
pass=pfHoPass.getText();
cost=tfHoCos.getText();
ipaddress=tfHo_Name.getText();
portnum=tfPort Num.getText();
rs=st.executeQuery("select count(*) from topology");
while(rs.next(})
{
int count=Integer.parselnt(rs.getString(1));
System.out.println("Count :"+count);
if{count==0)

{

st.executeUpdate("insert into topology
values('"+Nodename+"'"+pass+",'"+cost+",""+ipaddress+"',""+Nodename+"",""+portnum
+ll|)f|);

JOptionPane.showMessageDialog(this,"Hop Inserted
Sucessfully!!! Hop Name : "+Nodename);

1ConHop.setVisible(true);

cbConList.setVisible(true);

cbConList.addItem(Nodename);

tfHopNa.setText("");

pfHoPass.setText("");

tfHoCos.setText("");

tfHo Name.setText("");

tfPort Num.setText("");

}

else if(count>=1)

{

rs=st.executeQuery("select * from topology™);
while(rs.next(})

{

aa = rs.getString(5).trim();
System.out.printin("FIVETH VALUE :"+aa);



modify1();

h
catch (Exception ee)
{
ge.printStack Trace();
}
}
private void bLogin_actionPerformed(ActionEvent ¢}
{
System.out.println("\nbLogin_actionPerformed(ActionEvent ) called.");
new PathSelection();
}
public void DB()
{
try

Class.forName("sun.jdbc.odbc.JdbeOdbeDriver™);
con=DriverManager.getConnection("Jdbc:Odbc:secure”,"sa","");
st=con.createStatement();

3
catch (Exception ep)
{
ep.printStackTrace();
3
public void modify1()
{
try
{

String name,pass,cost,ipval,portVal;



name = tfHopNa.getText().trim();
System.out.printin("NAME :"+name);
pass = pfHoPass.getText(}).trim();

cost = tfHoCos.getText().trim();

ipval = tfHo Name.getText().trim();
portVal = tfPort_ Num.getText().trim();

String rr = aa + "#" + name;
System.out.println("Final Value "+rr);
cbConList.addItem(name);

String ww = ("insert into topology
values('"+name+"‘,‘"+pass+"','"+cost+"‘,‘"+ipval+"',"'+rr+"’,’"+portVal+“‘)");

st.executeUpdate(ww),

System.out.printIn("second insert "+wWw);

JOptionPane.showMessageDialog(this,"Hop Inserted Sucessfully!!! Hop Name :

"+Nodename);

tfHopNa.setText("");

pfHoPass.setText("");

tfHoCos.setText("");

tfHo Name.setText("");

tfPort_Num.setText("");

catch(Exception f)
{

}

f.printStackTrace();
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