[MPROVING INTRUSION DETECTION SYSTEM FALSE
ALARM RATIO USING HONEYPOT

A PROJECT REPORT

Submitted by
71206205011

DHIVYA.S

SARIGHA.R 71206205042

in partial fulfillment for the award of the degree
of
BACHELOR OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

KUMARAGURU COLLEGE OF TECHNOLOGY
COIMBATORE-641 006

ANNA UNIVERSITY: CHENNAI 600 025
April 2010



ANNA UNIVERSITY: CHENNAI 600 0235

BONAFIDE CERTIFICATE

Certified that this project report entitled “ Improving Intrusion Detection System

False Alarm Ratio Using Honeypot » is the bonafide work of

DHIVYA.S 71206205011
SARIGHA.R 71206205042

who carried out the project work under my Supervision.

Ny

SIGNATURE SIGNK&RE
Ms.N.Rajathi,,M.E., Dr.L.S.Jayashree, Ph.D.
Assistant Professor, Professor & Head,
Department of Department of
Information Technology, Information Technology,

Kumaraguru College of Technology, Kumaraguru College of Technology ,
Chinnavedampatti Post, Chinnavedampatti Post,

Coimbatore - 641006. Coimbatore - 641006

Submitted for viva-voice examination held on 19 -0~ 2010

N

INTERNAL EXAMINAR EXTERNAL FXAMINAR



DECLARATION

We hereby declare that the project entitled * IMPROVING INTRUSION
DETECTION SYSTEM FALSE ALARM RATIO USING

HONEYPOT” submitted in partial fulfillment to Anna University as a project
work of Bachelor of Technology ( Information Technology ) degree, is a record of
original work done by us under the supervision and guidance of Department of

Information Technology, Kumaraguru College of Technology , Coimbatore.

Place: Coimbatore

Date: 19-0y 2010

[S.DHIVYA] [R.SARIGHA]
Project Guided by

Ny

[Ms.N.Rajathi, M.E., ] [Dr.L.S.Jayashree, M.E..,Ph.D.]




ACKNOWLEDGEMENT

We express our sincere thanks to our Chairman
Padmabhushan  Arutselvar Dr.N.Mahalingam B.Sc., F.LE, and
correspondent Shri.M.Balasubramaniam,M.Com.,M.B.A., Director
Dr.J.S.Shanmugam, Ph.D for all their support and ray of strengthening
hope extended. We are immensely grateful to our Principal,
Dr.S.Ramachandran ,Ph.D, for his invaluable support to the outcome of

this project.

We are deeply obliged to Dr.S.Thangasamy, BE (HONS), Ph.D.,
Dean, Department of Computer Science and Engineering for his valuable

guidance and useful suggestions during the course of this project.

We also extend our heartfelt thanks to our project co-coordinator
Dr.L.S.Jayashree, M.E.,Ph.D, HOD, Department of Information
Technology for providing us her support which really helped us.

We are indebted to our project guide Ms.N.Rajathi,M.E., Assistant
Professor, Department of Information Technology for her helpful guidance

and valuable support given to us throughout this project.

We thank the teaching and non-teaching staffs of our Department for
providing us the technical support during the course of this project. We also

thank all our friends who hélped us to complete this project successfully.



ABSTRACT




ABSTRACT

Traditiona! firewall and intrusion detection systems (IDS}) are used to
detect possible attacks from the network, they often make wrong decisions
and block the legitimate connections and propose a new architecture which
is composed of distributed agents and honeypot. The main focus of our
approach lies in reducing the false alarm rate of the attack detection. Using
the honeypot scheme, this system is able to avoid many wrong decisions
made by IDS. In this system alarming adversaries, initially detected by the
IDS, will be rerouted to a honeypot network for a more close investigation.
If as a result of this investigation, it is found that the alarm decision made by
the IDS of the agent is wrong, the connection will be guided to the original
destination in order to continue the previous interaction. This action is
hidden to the user. Such a scheme significantly decreases the alarm rate and
provides a higher performance of IDS. In this proposed architecture , a
theoretical analysis of its behavior is given and its possible extension and

implementation are explained.



CONTENTS




TABLE OF CONTENTS

CHAPTER NO TITLE PAGE NO
Abstract i
List of Figures Vil
List of Abbreviations viil
1. Introduction
1.1 Introduction to IDS 2
1.2 Introduction to Honeypot 3
1.3 Objective 4
2. Literature Review
2.1 Intrusion Detection System 6
2.2 Major Network Attacks
2.2.1 Denial of Service 8
2.2.2 IP Spoofing 10
223 NIMDA Attack 12
2.3 Existing System 15
16

2.4 Proposed System



System Requirements
3.1 Hardware Requirements
3.2 Software Requirements
3.3 Software Description
3.3.1 Java
3.3.2 Java Platform
Details of Methodology Employed
4.1 Input Design
4.2 System Flow Diagram
Performance Evaluation
Conclusion
Future Work
Appendix
8.1 Sample Source Code
8.2 Screen Shots

References

18

22

24

23

32

34

36

38

59

66



LIST OF FIGURES

o

S.NO TITLE FIGURE NO PAGE NO \
-
1 System Flow 1 25
Diagram
2 System 2 26
L Architecture L



TCP

IP

JDBC

UDP

RMI

CORBA

HTTP

GIDO

IMA

LIST OF ABBREVIATIONS

Transport Control Protocol

Internet Protocol

Java database Connectivity

User Datagram Protocol

Remote Method Invocation

Common Object Request Broker Architecture
Hypertext Transfer Protocol Secure
Generalised Intrusion Detection Object

Investigative Mobile Agents



INTRODUCTION




1.INTRODUCTION

1.1 INTRODUCTION TO IDS

By increasing the usage of the Internet and implementing commonly used
tasks through it, the concept of distributed applications has been considerably
grown. Currently firewall and Intrusion Detection Systems (IDS) have been
practically developed to block variety of threats through incoming port
connections Intrusion detection technology in general helps to find out the illegal
intrusions from inside and outside of the local network by tracking the intruders’
trail, such as the records of failure access trails. A typical IDS consists of the
following parts: event generator, event analyzer, response units and event
databases The data are exchanged in form of GIDOs (Generalized Intrusion
Detection Objects) which are represented by a standard common format CIDF
between the parts. GIDO is the specification of messaging as its encoded content
is either some particular occurrence happened at some particular time, Or some
conclusion about a set of events or an intrusion to carry out an action. Each part
might be implemented as a single process on a computer (or even a thread), or
might be a collection of many processes on a number of computers.

The event generator obtains events from data outside the intrusion
detection system, generates events based on the traffic thereon and handovers
them in GIDO format to the other parts. Event generators provide events as soon
as they occur with the possible exception of transport queuing and based on some
predefined rules which are dynamically updated. Storage of events is handled in
related event databases. When the event generator obtains the required
information, it sends an analysis request to its relevant event analyzer. The
packets in the monitored network are compared against a repository of signatures
which define characteristics of the intrusion while event analyzer analyzes the

data and senerates new GIDOs which presumably represent some kind of



1.2 INTRODUCTION TO HONEYPOT

The honeypot 1s a trap set to detect, deflect, or in some manner
counteract attempts at unauthorized use of information systems. Generally it
consists of a computer, data, or a network site that appears to be part of a
network, but is actually isolated, (un)protected, and monitored, and which seems
to contain information or a resource of value to attackers.

A honeypot is valuable as a surveillance and early-warning tool. While it
is often a computer, a honeypot can take other forms, such as files or data
records, or even unused IP address space. A honeypot that masquerades as an
open proxy to monitor and record those using the system Is a sugarcane.
Honeypots should have no production value, and hence should not see any
Jegitimate traffic or activity. Whatever they capture can then be surmised as
malicious or unauthorized. Honeypots can carry risks to a network, and must be
handled with care. If they are not properly walled off, an attacker can use them to
break into a system.

Victim hosts are an active network counter-intrusion tool. These
computers run special software, designed to appear to an intruder as being
important and worth looking into. In reality, these programs are dummies, and
their patterns are constructed specifically to foster interest in attackers. The
software installed on, and tun by, victim hosts is dual purpose. First, these
dummy programs keep a network intruder occupied looking for valuable
information where none exists, effectively convincing him or her to isolate
themselves in what is truly an unimportant part of the network. This decoy
strategy is designed to keep an intruder from getting bored and heading into truly
security-critical systems. The second part of the victim host strategy is
intelligence gathering. Once an intruder has broken into the victim host, the

L e o avamrine the intrusion methods used by



the intruder. This intelligence can be used to build specific countermeasures 10
intrusion techniques, making truly important systems on the network less

vulnerable to intrusion.

1.3 OBJECTIVE

The main aim of the proposed architecture is to decrease false positives of
the network. There are two types of errors concerns, Typel and Typell. Typel
error named false positive is the error of rejecting a null hypothesis when it 1S
actually true, in other word, it is the error of rejecting a hypothesis that should
have been accepted. Typell error named false negative is the error of accepting a
null hypothesis that should have been rejected. In this paper we cope with false
positive errors.

The main focus of our approach lies in reducing the false alarm rate of the
attack detection. Using the honeypot scheme, this system is able to avoid many
wrong decisions made by IDS. In this system alarming adversaries, initially
detected by the 1DS, will be rerouted to 2 honeypot network for a more close
investigation. If as a result of this investigation, it is found that the alarm decision
made by the IDS of the agent is wrong, the connection will be guided to the
original destination in order to continue the previous interaction. This action 1s
hidden to the user. Such a scheme significantly decreases the alarm rate and

provides a higher performance of 1IDS.



LITERATURE REVIEW




2. LITERATURE REVIEW

2.1 INTRUSION DETECTION SYSTEM
COMPONENTS OF THE IDS IN A SUBNET

The fundamental design of our proposed hybrid model in each subnet
consists of four main components namely IDS Control Center, Agency, Static
Agent Detectors, and Specialized Investigative Mobile Agent Detectors.
Agency

Mobile Agents need an environment to become alive. That environment 1s
called Agency. An agency is responsible for hosting and executing agents in
parallel and provides them with environment so that they can access services,
communicate with each other, and migrate to other agencies. An agency also
controls the execution of agents and protects the underlying hardware from

unauthorized access by malicious agents.

Static Agent Detectors

Static Agent Detectors (SAD) act like host monitors, generating 1D events
whenever traces of an attack is detected, and these events are sent in the form of
structured messages to 1DS Control Center . For example, when SAD identifies
failed password guessing attempts as a suspicious activity, an ID event is
generated to check for corresponding attack. SAD is capable of monitoring the
host for different classes of attacks. The SAD is responsible for parsing the log
files, checking for intrusion related data pattern in log files, separating data
related to the attack from the rest of the data and formatting the data as required
by the investigative MA. The architecture of our IDS allows applying
components of other project as an intrusion detection sensor. In that case static
agent detectors will work on top of those sensors. For instance the SNORT

network intrusion detection system and its sensors can be used to do packet



Investigative Mobile Agents

Investigative Mobile Agents (IMA) are responsible for collecting
evidences of an attack from all the attacked hosts for further analysis. Then, they
have to correlate and aggregate that data to detect distributed attacks. Each IMA
is only responsible for detecting certain types of intrusions. This makes it easier
for updating when new types of intrusion is found or new types of detection
method is invented. In addition, it lets Mobile agents carry less data and code. In
addition, the IDS can also be updated and extended by adding new MAs. The
investigative MA uses List of Compromised Agency (LCA) to identify its

itinerary for visiting Hosts.

IDS Control Center

An Intrusion Detection System Control Center is a central point of IDS

components administration in each subnet. It includes following components:

. Databases: There should be a database of all intrusion patterns which can be
used by Alerting Console to raise the alarm if patterns matched with the detected
suspicious activities. All events IDs which reported by SA are stored in another
database. In addition all related system logs should be stored in a database as

well.

- Alerting Console: This component compare the spotted suspicious activity

with intrusions’ database and raise the alarm if they are matched.

. Agent generator: Functions to generate task specific agent for detecting
intrusions even new ones by using knowledge that is generated by data mining

inference engine obtained from previous experience.



- Mobile agent dispatcher: Dispatched investigative mobile agents to the host
based on the ID of event or suspicious determines list of compromised Agencies

(LCA) for investigative MAs.

- Data mining inference engine: Uses machine learning to deduce knowledge to
detect new intrusions from System databases which contains detected intrusion

and system logs and coming information from SAs.

« Trust level manager: Defines trust level for all agencies in the subnet,
furthermore it keep the trust level of the other IDS control centers in the same

neighborhood of network

2.2 MAJOR NETWORK ATTACKS
2.2.1 DENIAL OF SERVICE

Denial of Services Attacks (DOS) is a constant danger to web sites. DOS
has received increased attention as it can lead to a severe lost of revenue if a site
is taken offline for a substantial amount of time. There are many types of denial
of service attacks but two of the most common are Ping of Death and TCP SYN
Flood. We have chosen to implement these two techniques and add Distributed
DOS (DDOS) as well. In a Ping of Death attack, a host sends hundreds of ping
requests (ICMP Echo Requests) with a large or illegal packet size to another host
in attempt to knock it offline or to keep it so busy responding with ICMP Echo

replies that it cannot service its clients.

A TCP SYN Flood attack takes advantage of the standard TCP three-way
handshake by sending a request for connection with an invalid return address. In
this paper we demonstrate DDOS by creating a worm like program that installs

proerams on remote machines to attack a particular server. These attackers listen



in the background for a message from a master program that will tell these
attackers to launch a DOS attack against a machine.

DDOS attacks are difficult to stop because they can be coming from
anywhere in the world. We will implement a DDOS attack by launching the Ping
of Death implementation against a victim computer from several other

workstations.

DISTRIBUTED DENIAL OF SERVICE WITH PING OF DEATH
PAYLOAD IMPLEMENTATION

To implement DDOS, a worm like program is created to simulate self-
propagation onto many hosts on a network. However, creating an actual worm is
beyond therefore, we used a small Java program to simulate such a worm.
Though it carries the payload and waits to receive orders from a master program,
the worm does not self propagate. We simply placed the application on each host
machine manually for simulation purposes. The worm-like zombie program will
launch a Ping of Death attack from multiple hosts coordinated by a master
program. The applications handle all communication between each other. When
the master program orders the attack, a message is sent to all the zombies that
makes them release their Ping of Death payload against a victim host that is

specified by the master program.

The Java implementation has been built using TCP sockets and serializable
Java objects. Serializable Java objects can be transferred to remote servers and
then executed with all of its information intact. The serializable Java objects have
all the instructions needed to launch a particular type of attack. When a user
wishes to initiate an attack, he or she starts up the master program and specifies
which server to attack. The master program then looks up the IP addresses of all

known zombie programs and what ports they are listening on by accessing a



attack type specified, and sends it to every zombie listed in its configuration file

over a TCP socket.

The zombie program recognizes that it has received a message and reads
from a TCP socket the serializable java object. It then deserializes i1t and executes
it, which in turn will launch the DOS attack.

Most of mobile agent based intrusion detection systems, such as
Autonomous Agents for Intrusion Detection (AAFID) follow a hierarchical
structure. In this type of IDS, data is collected both at the host and network levels
by reviewing audit trails and or monitoring packets in a network. All collected
data are sent to the central data coordinator. The coordinator then analyzes all the
information received to decide the status of the system, and actions that need to
be taken.

The mentioned system can perform intrusion detection task, however 1t 18
vulnerable. If any part of the internal nodes (or even the root node) 1s disabled,
the functioning of that of branch of IDS will be disqualified. In addition they are
not flexible, and not completely distributed. Furthermore, in those hierarchical
models no approach has been taken to respond to attack against intrusion
detection system itself. As a result, if intruder can gain access to IDS coordinator
(IDS control center), the whole system will be affected. The performance of IDS

with mobile agents is considerably relying on the produced network load by the

agents.

2.2.2 1P SPOOFING
IP spoofing refers to the creation of Internet Protocol (IP) packets with a
forged source IP address, called spoofing, with the purpose of concealing the

identity of the sender or impersonating another computing system.



The basic protocol for sending data over the Internet network and many
other computer networks is the Internet Protocol ("IP"). The header of each IP
packet contains, among other things, the numerical source and destination
address of the packet. The source address is normally the address that the packet
was sent from. By forging the header so it contains a different address, an
attacker can make it appear that the packet was sent by a different machine. The
machine that receives spoofed packets will send response back to the forged
source address, which means that this technique is mainly used when the attacker
does not care about the response or the attacker has some way of guessing the
responses. In certain cases, it might be possible for the attacker to see or redirect
the response to his own machine. The most usual case is when the attacker is
spoofing an address on the same LAN or WAN. Hence the attackers have an

unauthorized access over computers.

IP spoofing can also be a method of attack used by network intruders to
defeat network security measures, such as authentication based on IP addresses.
This method of attack on a remote system can be extremely difficult, as it
involves modifying thousands of packets at a time. This type of attack i1s most
effective where trust relationships exist between machines. For example, it is
common on some corporate networks to have internal systems trust each other, so
that users can log in without a username Or password provided they arc
connecting from another machine on the internal network (and so must already be
logged in). By spoofing a connection from a trusted machine, an attacker may be

able to access the target machine without an authentication.

Configuration and services that is vulnerable to [P spoofing are

< RPC (Remote Procedure Call services)

< Any service that uses IP address authentication



Packet filtering is one defense against IP spoofing attacks. The
gateway to a network usually performs ingress filtering, which 1s blocking of
packets from outside the network with a source address inside the network.
This prevents an outside attacker spoofing the address of an internal machine.
Ideally the gateway would also perform egress filtering on outgoing packets,
which is blocking of packets from inside the network with a source address
that is not inside. This prevents an attacker within the network performing
filtering from launching IP spoofing attacks against external machines. It 1s
also recommended to design network protocols and services so that they do

not rely on the IP source address for authentication.
2.2.3 NIMDA ATTACK

Nimda is a computer worm, and is also a file infector. It quickly spread,
eclipsing the economic damage caused by past outbreaks such as Code Red.
Multiple propagation vectors allowed Nimda to become the Internet’s most
widespread virus/worm within 22 minutes.The worm was released on September
18, 2001. Due to the release date, exactly 1 week after the attacks on the World
Trade Center and Pentagon, some media quickly began speculating a link

between the virus and Al Qaeda, though this theory ended up proving unfounded.

Nimda affected both user workstations (clients) running Windows 95, 08,
Me, NT, 2000 or XP and servers running Windows NT and 2000.The worm's

name spelled backwards is "admin”.



Methods of Infection

Nimda was so effective partially because it—unlike other infamous

malware like the Morris worm or Code Red—uses five different infection

vectors:

Via email

Via open network shares

Via browsing of compromised web sites

Exploitation of various Microsoft IIS 4.0/5.0 directory traversal
vulnerabilities.

Via back doors left behind by the "Code Red 11"

Nimda's payload appears to be the traffic slowdown itself - that 1s, it does

not appear to destroy files or cause harm other than the considerable time that

may be lost to the slowing or loss of traffic known as denial-of-service and the

restoring of infected systems. With its muiti-pronged attack, Nimda appears to be

the most troublesome virus of its type that has yet appeared. Its name (backwards

for "admin") apparently refers to an "admin.DLL" file that, when run, continues

to propagate the virus.

To briefly summarize what Nimda does:

+ It probes each IP address within a randomly-selected range of IP addresses,

>,
‘.0

attempting to exploit weaknesses that, unless already patched, are known
to exist in computers with Microsoft's Internet Information Server. A
system with an exposed IIS Web server will read a Web page containing
an embedded JavaScript that automatically executes, causing the same
JavaScript code to propagate to all Web pages on that server.

As people (those with Microsoft Internet Explorer browsers at the 5.01 or

- = - 3 - T r 1 1

Y



download pages with the JavaScript that automatically executes, causing
the virus to be sent to other computers on the Internet in a somewhat
random fashion.

+ Nimda also can infect users within the Web server's own internal network
that have been given a network share (a portion of file space).

+ Finally, one of the things that Nimda has an infected system do is to send
an e-mail with a "readme.exe”" attachment to the addresses in the local
Windows address book. A user who opens or previews this attachment

(which is a Web page with the JavaScript) propagates the virus further.
To summarize the preventive action:

& Server administrators should get and apply the cumulative IS patch that
Microsoft has provided for previous viruses and ensure that no onc at the
server opens e-mail.

& PC users should never open a "readme.exe” attachment sent by e-mail.
They should also update their Internet Explorer version to 1E 55SP2orIE
6.0.



2.3 EXISTING SYSTEM

Intrusion detection system helps to find out the illegal intrusions from
inside and outside of the local network by tracking the intruders’ trail, such as the
records of failure access trails. A typical IDS consists of the following parts:
event generator, event analyzer, response units and event databases The event
generator obtains events from data outside the intrusion detection system,
generates events based on the traffic thereon and handovers them in GIDO format
to the other parts. Event generators provide events as soon as they occur with the
possible exception of transport queuing and based on some predefined rules
which are dynamically updated. Storage of events is handled in related event
databases. When the event generator obtains the required information, it sends an
analysis request to its relevant event analyzer. The packets in the monitored
network are compared against a repository of signatures which define
characteristics of the intrusion while event analyzer analyzes the data and
generates new GIDOs which presumably represent some Kind of synthesis or

summary of the input events.

We use honey pot together with IDS in order to observe the suspected
attacker’s activities in more details. The reason for this combination 1s that honey
pot is able to log the files and analyze them but it will be overloaded by the
normal traffic analysis. However IDS is used for attack detection but it generates

lots of false alarms which are not really attacks



2.4 PROPOSED SYSTEM

OQutline the requirements of the proposed infrastructure which is considered
as a solution to decrease false positives of the network . There are two types of
errors concerns, Typel and Typell. Typel error named false positive 1s the error
of rejecting a null hypothesis when it is actually true, in other word, it 1s the error
of rejecting a hypothesis that should have been accepted. Typell error named
false negative is the error of accepting a null hypothesis that should have been

rejected. The proposed work dealt with false positive errors.

This topology consists of distributed agents (clients or servers), each with
associated with an IDS. The architecture can be software resides on an individual
computer or a set of computers. The Honey Pot, as a main part of the topology,
cooperates with honey pot when a suspected threat is detected through the IDS of
one of the agents. As a matter of fact the manager provides an attractive but
diversionary playground for the suspected hacker in which honey pot interacts

and obtains the required information from the end user.

A new system on a distributed agent based network. The system, in case of
suspended adversaries, changes the path of connection to the honey pot system
for a more close investigation. Decreasing false alarms rate is the system’s
objective. The system also tries to store any necessary information about the
identified attacker. In the simulated system we obtained good results which were
declaring the decreasing in false positive ratio. Due to the filtering of IDS the
load of the system directed to the Honey pot is decreased leading the Honey pot

to better performance in packet dropping



SYSTEM REQUIREMENTS




3.SYSTEM REQUIREMENTS

A complete specification of hardware and software requirements 1S
essential for the success of software development. This software has been
developed with very powerful and high performance muiti-user computing
system. It is applicable in the areas where much processing speed is required.3.1

HARDWARE REQUIREMENTS

Processor ; Intel Pentium 1V
Processor Speed : 1.4 GHz

Memory (RAM) : 512MB

Hard disk : 40GB

Monitor ; 14 “IBM color monitor
Input Device : Keyboard (104)

3.2 SOFTWARE REQUIREMENTS

Operating System ; Windows XP
Language : JAVA
Development Kit : JDK1.5 and above
Platform : independent

3.3 SOFTWARE DESCRIPTION

3.3.1 JAVA

Java is a new computer programming language developed by Sun
Microsystems. Java has a good chance to be the first really successful new
computer language in several decades. Advanced programmers like it because it

has a clean, well-designed definition. Business likes it because it dominates an



Java has several important features:

< A Java program runs exactly the same way on all computers. Most other

languages allow smail differences in interpretation of the standards.

% It is not just the source that is portable. A Java program is a stream of bytes
that can be run on any machine. An interpreter program is built into Web
browsers, though it can run separately. Java programs can be distributed
through the Web to any client computer.

< Java applets are safe. The interpreter program does not allow Java code
loaded from the network to access local disk files, other machines on the
local network, or local databases. The code can display information on the

screen and communicate back to the server from which it was loaded.
FEATURES
Java is simple:

The most important simplification is that Java does not use pointers and
implements automatic garbage collection so that we don't need to worry about
dangling pointers, invalid pointer references, and memory leaks and memory

management.
Java is object-oriented:

This means that the programmer can focus on the data in his application
and the interface to it. In Java, everything must be done via method invocation

for a Java object.



Java is distributed:

Java is designed to support applications on networks. Java supports various
levels of network connectivity through classes in java. net. For instance, the URL

class provides a very simple interface to networking.
Java is robust:

Java is designed for writing highly reliable or robust software. Java puts a
lot of emphasis on early checking for possible problems, later dynamic checking,
and eliminating situations that are error prone. The removal of pointers eliminates

the possibility of overwriting memory and corrupting data.
Java is secure:

Java is intended to be used in networked environments. Toward that end,
Java implements several security mechanisms to protect us against malicious
code that might try to invade your file system. Java provides a fircwall between a

networked application and our computer.
Java is architecture-neutral:

Java program are compiled to an architecture neutral byte-code format.
The primary advantage of this approach is that it allows a Java application to run

on any system that implements the Java Virtual Machine.
Java is portable:

The portability actually comes from architecture-neutrality. But Java goes
even further by explicitly specifying the size of each of the primitive data types to

eliminate implementation-dependence.



Java is interpreted:

The Java compiler generates byte-codes. The Java interpreter executes the
translated byte codes directly on system that implements the Java Virtual

Machine

Java is high-performance:

Compared to those high-level, fully interpreted scripting languages, Java is
high-performance. If the just-in-time compilers are used, Sun claims that the
performance of byte-codes converted to machine code are nearly as good as

native C or C++.
Java is multithreaded:

Java provides support for multiple threads of execution that can handle
different tasks with a Thread class in the java.lang Package. The thread class
supports methods to start a thread, run a thread, stop a thread, and check on the

status of a thread.
Java is dynamic:

Java loads in classes, as they are needed, even from across a network. This
makes an upgrade to software much easier and effectively. The interpreter
parses and runs each Java byte code instruction on the computer. Compilation

happen s just once; interpretation occurs each time the program is executed.



3.2 JAVA Platform
A platform is the hardware or software environment in which a program

runs. Most Platforms can be described as a combination of the operating system
and hardware. The Java platform differs from most other platforms in that 1t’s
software —only platform that runs on top of other hardware-based platforms.
The Java platform has two components:

% The Java Virtual Machine (JVM),

+» The Java Application Pfogramming Interfaces (Java API),

The JVM has been explained above. It’s the base for the Java platform and
is ported onto various hardware-based platforms. The Java API is a large
collection of ready-made software components that provide many useful
capabilities, such as GUIL. The Java APl is grouped into libraries of related
classes and interfaces; these libraries are known as packages.

Native code is code that after you compile it, the compiled code
runs on a specific hardware platform. As a platform-independent environment,
the Java platform can be bit slower than native code. However, smart compilers,
well-tuned interpreters, and just-in-time byte code compilers can bring

performance close to that of native code without threatening portability.



DETAILS OF METHODOLOGY EMPLOYED




4. DETAILS OF METHODOLOGY EMPLOYED

System Design

System design is a solution to the creation of a new system. It provides the
understanding and procedural details necessary for implementing the system. The
emphasis is on ftranslating the performance requirements into design
specification. Design goes through logical and physical stages of the

development.

4.1 INPUT DESIGN

Input Design is one of the most important phase system designs. Input
design is the process where. The Input received in the system are planned and
designed, so as to get only necessary information from the user, eliminating the
information that is not required. The aim of the input design is to ensurc the
maximum possible levels of accuracy and also ensures that the input is accessible

that is understood by the user.

The input design is the part of overall system design, which requires very
careful attention. If the data going into the system is incorrect then the processing
and output will magnify the errors.

The objectives considered during input designation

» Nature of validation.
» Flexibility of validation rules
» Handling of properties within the input documents

» Screen design to ensure accuracy and efficiency of input

wrnlati ol sxirith filec



4.2 SYSTEM FLOW DIAGRAM

Network Architecture

Source

Router

Destination

DS

A

Scan Packets

Attack
Found?
YES NO
b h 4
Honey pot Forward
Y
Honey Script
h v
Analysis Packet
PaCket > Reports

Figure 1 System Flow Diagram




The topology consists of distributed agents (clients or servers), cach
with associated with an IDS. The architecture can be software resides on an

individual computer or a set of computers.

The honey pot when a suspected threat is detected through the IDS of
one of the agents. As a matter of fact an attractive but diversionary playground
for the suspected hacker in which honey pot interacts and obtains the required
information from the end user. In this configuration, main network is a "TCP/IP
based network” which contains clients and servers. Honey Pot is a honey pot
system that is configured within the system. We assume a “switched network” in
our approach, with a configurable switch which is supposed to mirror ali the

traffic to the specific port; its duty is to send a copy of all packets to the port of

the honey pot .
Input Packets > Intrusion » Final Processing
: Detection System -
Attacks Detected Normal'
Interaction
L4 Continues
Honey pot
Attacks
Attacks Approved Disapproved

b4

Alarm Analysis

—— >  Relevant Alarm
Generation

Figure 2. System Architecture



A variety of servers and services can be supported by this system such as
application, authentication and authorization, database servers, firewalls,

gateways and workstations. Figure 2 illustrates the main structure’s functionality.

Intrusion Detection System

The main task of intrusion detection systems is defense of a computer
system by detecting an attack and possibly repelling it. Detecting hostile attacks
depends on the number and type of appropriate actions. Diverting the intruders
attention from protected resources is another task. Both the real system and a
possible trap system are constantly monitored. Data generated by intrusion
detection systems is carefully examined (this is the main task of each IDS) for

detection of possible attacks (intrusions).

Once an Iintrusion has been detected, IDS issues alerts notifying
administrators of this fact. The next step is undertaken by the Honey pot. Among
various IDS tasks, intruder identification is one of the fundamental ones. It can be
useful in the forensic research of incidents and installing appropriate patches to
enable the detection of future attack attempts targeted on spectfic persons or

TESouUrces.

Intrusion detection may sometimes produce false alarms, for example as a
result of malfunctioning network interface or sending attack description or
signatures via email. Hence the attack is directed to the honey pot to improve the

accuracy of the system.



Honey Pot

As a virtual unreal network, Honey Pot has been used in this topology.
Honey Pot is generally designed for networks. Its duty is to detect unauthorized
activities by monitoring all the unused IPs in the network. It 1s capable of
controlling all the unused [Ps at the same time. Any time Honey Pot generates an
alert, it is most likely a real attack not a false alarm, thus the director approves the
attack. Honey Pot can also detect unknown attacks such as new RPC (-day as
well. With Honey Pot, we have additional option of creating emulated Services
that interact with the attacker. The emulated services allow the director to
determine what the attacker is attempting to do, what he is looking for. This is
done by creating scripts that listen to specific ports and then interact with the
attacker in a predetermined manner. We have additional option of creating
emulated services that interact with the attacker. The emulated services allow the
director to determine what the attacker is attempting to do, what he is looking for.
This is done by creating scripts that listen to specific ports and then interact with
the attacker in a predetermined manner. It continuously monitors the unused [P

space. Honey Pot is only able to interact with attackers.

Records

The records provide a database including a crime table, policy table,
reports and event logs. The honey pot for making decisions refers to this database
and also enters new rules and signatures derived from new attack. The honey pot
constantly modifies the signature lists that are used by external agents. Records
part is equipped with a system which organizes the signatures coming through the
database and enables to get access to the current signatures and update them or
insert new ones. Therefore all the important attacks are lead to Honey Pot for a

more close investigation.



External Agents

The first step of the detection process is done via agents, the real
intrusion detection systems used for the primary detection. Considerable point in
this system is that the agent handles all the network connections of the computer
which has been installed on in addition to act as IDS. The IDS records all
incoming and outgoing packages in tcpdump binary format. The use of this

standard format simplifies all data manipulations.

The Detection process

By initializing the system, the IDS detect the attack and transfer the
information to honey pot in the main network, and then Honey Pot is ready to
interact with the suspected adversaries. When the IDS in external agents detect an
attack, they report the event to the honey pot which will decide how to manage it.
Such attacks can be listed as follows; Nimda, Spoofing. Attempts to execute
cmd.exe, Attempts to open a new network socket in order to download further
hacking utilities, A warm that starts on each infected system an email relying
server which it uses for its further spreading like Nimda and Dental of Services.
Honey pot orders switch to send a copy of all packages which their destination 1s
the said agent, and also commands the agent not to answer, thus will receive the
trail of suspended threat packages. All ofthe process must be hidden to the end-
user. Indeed, the connection will be shifted to the Honey Pot. Before processing,
the dispatcher of the Honey Pot queries the contiguration database to find a
previous configuration that corresponds to the destination IP address. If there is
no specific configuration, a default template is used. Thus a packet together with
corresponding configuration is handed to the verified protocol. The ICMP

protocol supports most ICMP messages. By default, all honey pot configurations

o R T I T T I T T [N FUth JN (IR [N T i A



messages. For TCP and UDP, the framework establishes a connection to arbitrary
services.

When a connection request is received, the protocol checks if the
packet is established before, then any new data is sent to the already initiated
service application. If the packet request is new, a new process is created to run
the appropriate service application. The corresponding protocol responds like a
normal network to the end-user. If the Honey Pot found out that the detection was
wrong, without breaking up the connection via IDS, it will ask external agents to
carry on connection. It will also send all saved information relevant to the
connection to the previous destination. Therefore the number of false positives
will be decreased. It is a crucial factor to show the precision and accuracy of the

detection.



PERFORMANCE EVALUATION




5. PERFORMANCE EVALUATION

Comparison of False Alarm Rate: IDS with Honey Pot and IDS

P05 DETECTION

000 05 050 095 100 1% 150 175 200 255 250 275 300 35 350 375 400
& IDS with HoneyPot ¢ IDS|———= No of Transachons

N A minm




CONCLUSION




6. CONCLUSION

This project presents a new system on a distributed agent based network.
The system, in case of suspended adversaries, changes the path of connection to
the honey pot system for a more close investigation. Decreasing false alarms rate
is the system’s objective. The system also tries to store any necessary information
about the identified attacker. In the simulated system we obtained good results
which were declaring the decreasing in false positive ratio. Due to the filtering of
IDS the load of the system directed to the Honey Pot 1s decreased leading the
Honey Pot to better performance in packet dropping. We tested the proposed

system with different number of packets we generated.

In order to test the scalability of the system we did the testing with three
different network loads which were the rate for generation of the packets. We
should pay more attention to the following problems: How to shift the connection
with the all related data in more details. We have to expose director to more
aggressive traffic patterns to get a better understanding of its performance. The
system has intelligent to deal with the data communication between honey pot

and the end user.



FUTURE WORK




7. FUTURE WORK

Tests show that the proposed system can manage to improve the detection
accuracy in Comparison with the conventional honeyd and [DS. As it is clear, in
the proposed system the objective 1s to recheck the attacking packets in order to
avoid the false positives while both honeyd and IDS have their own false positive
ratio which is definitely greater than what we gained as a cooperation of these
two systems.

In future the attacks are dynamically updated the all the attacks such as
Massive scans, Targeted attacks, IRC wars, Unusual root kits, Covert back doors
,New exploits, Worm spreading The Hybrid design could even detect attack
against IDS control centers while agents roam through the network to spot
intrusions. Nonetheless, weaknesses are unavoidable in a new design, and many
areas discussed in this paper would benefit from further efforts to clarify the
destign fine points and implementation details. Further work should also look into
mobile agent’s intercommunication and negotiation which can help investigative
mobile agents to share their knowledge. In addition intrusion pattern’s knowledge

sharing between IDS control centers can be considered for further studies.



APPENDIX



8. APPENDIX

8.1 SAMPLE SOURCE CODE

SOURCEGUIMAIN.java

import java.awt.Dimension;
import java.awt. Toolkit;
import java.awt.event.ActionEvent;
import java.awt.event. ActionListener;
import java.beans.PropertyVetoException;
import javax.swing.*;
class SourceGUIMain extends JFrame implements ActionListener
{
private static final long serialVersionUID = 11.;
JMenuBar menuBar = new JMenuBar();
JMenu mnuFile,mnuTools,mnuProcess;
JMenultem mtmExit,mtmRouting;
JMenultem fileTransfer,pktTrans;
static JDesktopPane deskView;
public SourceGUIMain() {
tolnitialize();

setDefaultCloseOperation(EXIT _ON_CLOSE);



Toolkit.getDefaultToolkit().getScreenSize();
setSize(dimension.width,dimension.height-30);
setTitle("IMPROVED INTRUSION DETECTION SYSTEM");
set)MenuBar{addMenuBar(}));
setContentPane(deskView);

setVisible(true);

public static void main(String|] args) {
new SourceGUIMain();

}

private JMenuBar addMenuBar() {

mnuFile = new JMenu("File");
mtmExit = new JMenultem("Exit",'x");
mnuFile.add(mtmExit);
mnuFile.setMnemonic('F');
menuBar.add(mnuFile);
mnuProcess = new JMenu(''Process");
fileTransfer = new JMenultem("File Transfer",T");
pktTrans = new JMenultem("PacketTransmission",'P');
mnuProcess.add(fileTransfer);

mnuProcess.add(mnuProcess);



mnuProcess.add(pktTrans);
menuBar.add{mnuProcess);

mnuTools = new JMenu("Tools");

mtmRouting = new JMenultem("Route Config",'r');
mnuTools.add(mtmRouting);
mnuTools.setMnemonic('T");
menuBar.add(mnuTools);
mtmExit.addActionListener(this);
mtmRouting.addActionListener(this);
pktTrans.addActionListener(this);

fileTransfer.addActionListener(this);

return menuBar;

private void tolnitialize() ¢

try §
UlManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName();
}catch (Exception €) {
e.printStackTrace();

;

deskView = new JDesktopPane();



public void actionPerformed(ActionEvent €) {
if(e.getSource()==pktTrans) §
Packet Transmission pt=new PacketTransmission{);
deskView.add(pt);
try {
pt.setSelected(tme);
} catch (PropertyVetoException el) {

el .printStackTrace();

}

if(e.getSource( ==fileTransfer){

FileTransmission fi=new FileTransmission();
deskView.add(ft);
try
ft setSelected(true);
} catch (PropertyVetoException el) {

el.printStack Trace(): }

iy

}
INTRUSIONDETECTION.java

import java.io.DatalnputStream;



import java.io.File;
import java.io.FilelnputStream;
import java.io.FileOutputStream;
import java.io.lOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.net.UnknownHostException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Date;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
public class IntrusionDetection implements Runnable {
Connection con;
Statement st;
ResultSet 1s;

String getReclp="";

2



ServerSocket routerServer;
Socket ss;
DatalnputStream dis;
DataQutputStream dos;
Thread readThread;

ma.

String readingString="";
String fname="";
JFrame par=null;
public IntrusionDetection(JFrame parent){
par=parent;
IDSStatusPanel txtInforamtion.append(™n Intrusion Detection "),
IDSStatusPanel.txtInforamtion.append(™n Started..... ");
System.out.printIn("Router Started at the port "),
try {
routerServer=new ServerSocket(2001);
while(true){
routerSocket=routerServer.accept();
System.out.println("Router is Connected...");
dis=new DatalnputStream(routerSocket.getlnputStream()},
dos=new DataOutputStream(routerSocket.getOutputStream());

readThread=new Thread(this);

readThread.start();



¢ catch (IOException €) {
e.printStackTrace();
ix
public static void main(String[} args) {
//new IntrusionDetection();}
public void run{) {
try {
while(dis.available()>0){
readingString=dis.readUTF();
System.out.println("Reading Data:"+readingString);
String mode=readingString.substring(readingString lastindex Of("#")+1);
System.out.printIn("The Operate Mode:"+mode);
if{mode.equals("Packet")) {
System.out.printIn("Packet Transmission Message "+readingString);
String rMsg=readingString.substring(0,readingString.indexOf("#"));

String
rlp=readingString.substring(rMsg.length()+1 readingString.indexOf("@"));

String

rPort=readingString.substring(rMsg.length()+rlp.length()+1 ,readingString.lastInd
CXf("#"));

IDSStatusPanel.txtInforamtion.append(™\n Data Received:"+rMsg);

getReclp =""+routerSocket. getRemoteSocketAddress();

IDSStatusPanel.txtInforamtion.append(™n SenderInfo (IP,PORT) :"+getReclp);

IDSStatusPanel txtInforamtion.append(™\n Packet Length:"+rMsg.length());



IDSStatusPanel.txtInforamtion.append("\n Receiver Info (IP,PORT)
"+getMsg[ 1].split("@")[0]+","+ getMsg[1].split("@"){11);

String getconfig=readingString.split("@")[1];
startForwarding(getMsg[0],getMsg[1],mode);

}

else

System.out.println("The Message is paya:"+readingString);

String rMsg=readingString.substring(0,readingString.indexOf("#"));

String
rIp=readingString.substring(rMsg.length()+1,readingString.indexOf("@"));

String getMsg[]=readingString.split("#");
fname=rMsg;

System.out.printIn("File Name :"+ fname);
String faddrss=dis.readUTF();

String remip=""+routerSocket.getInetAddress();

IDSStatusPanel.txtInforamtion.append("\nTheReceiving
Address:"+routerSocket.getlnetAddress());

IDSStatusPanel.txtInforamtion.append("\nTheReceiving
Port:"+routerSocket.getPort());

System.out.printin("Receiving Address :"+ faddrss);
InputStream is = routerSocket.getInputStream();
System.out.println("The Message:"+getMsg[0]);
System.out.println("The address:"+getMsg[1]);

System.out.println("The Mode:"+mode);



checkIntrusions(""+routerSocket.getInetAddress(),mode);
FileOutputStream inFile = new FileOutputStream(fname);
int ch = 0;
while ((ch = is.read(}) != 0} {
inFile.write(ch); }
inFile.close();}
Thread.sleep(1000);
b
} catch (Exception ¢€) {
e.printStackTrace(); }
}
public void startForwarding(String readData,String config,String mode) {
System.out.printin("Data is Forwarding...");
String chkPro[]=mode.split(",");
System.out.printin("Chk Pro :"+chkPro[0]);
if(chkPro[0].equals("FileTransfer")){
try{
String getMsg[]=readingString.split("#");
String ip=config.split("@"){ 0];
int port=Integer.parselnt(config.split("@")[11]);
System.out.println("The ip is:"+ip+" Port:"+port);

IDSStatusPanel.txtInforamtion.append(™\n Ongiant Packet:"+readData);



IDSStatusPanel.txtInforamtion.append("\nReceiverlnfo(IP,PORT):"+getMsg[1].s
plit("@™M[0]+","+ getMsg[1].split("@")1]);

boolean result=checkIntrusions{mode);
if(result==true){

JOptionPane.showMessageDialog(par,"some Intrusion Found...\nThis attacks are
tranfered into Honeypot ");

String hip=getHoneylp();

ss=new Socket(hip,7001);

dos=new DataOutputStream(ss.getOutputStream());
[DSStatusPanel.txtInforamtion.append(™n Packet is Honeyed:");
System.out.printIn("'In Intrusions");

System.out.println{"The Data:"+readData);

System.out.println("The Config:"+config);

System.out.println("The Mode:"+mode);

System.out.println("The Hac [P:"+getReclp.substring(1,getReclp.indexO1f(":")));
dos.writeUTF(readData+"#"+contig+"#"+mode+"*"+"192.168.1.31");
}

else {ss=new Socket(ip,port);

dos=new DataOutputStream(ss.getOutputStream());
dos.writeUTF(readData+","+mode);

} ycatch(Exception ex){

ex.printStackTrace();

;



;
if(chkPro{0].equals("Packet")){
try {

String ip=config.split("@")[0];
int port=Integer.parselnt(config.split("@")[11);
//ip Spoofing Checking...
System.out.println("Received Ip:"+ip);
boolean result=scanAddress(ip);

IDSStatusPanel.txtInforamtion.append("\n The Ip Scanning
Result:"+result);

if(result==true) {
IDSStatusPanel.txtInforamtion.append{"\n The Spoofed IP :"+ip);
JOptionPane showMessageDialog(par,"ip Spoofing Attack Found...");

JOptionPane.showMessageDialog(par,”some Intrusion Found...\nThis attacks are
tranfered into Honeypot "),

ss=new Socket(getHoneylp(),7001);

System.out.println("Remote Address " + ss.getRemoteSocketAddress());
dos=new DataOutputStream(ss.getOutputStream());
IDSStatusPanel.txtInforamtion.append(™\n Packet is Honeyed:");

dos.writeUTF (readData+"#"+config+"#"+mode+"*"+getReclp.substring(1,getRe
clp.indexOf(":")));

}
Else{

ss=new Socket(ip,port);



dos=new DataOutputStream(ss.getOutputStream());
IDSStatusPanel.txtInforamtion.append("\n Origianl Packet:"+readData);

dos.writeUTF(readData+","+mode);

;

catch (UnknownHostException €) {
e.printStackTrace();
} catch (IOException €) {
e.printStackTrace();
b3
public void fileTransfer(String file} {
try {
QOutputStream os = ss.getOutputStream();
File f = new File(file);
System.out.printin("File Name is:"+f);

FilelnputStream in = new FilelnputStream(t);

int 1= 10;

System.out.println("\nSending File ...");

while ((1 = in.read()) !=-1) {
os.write(1);

os.flush();



n.close();

{ catch (Exception e) {
System.out.println("\nFileException” + ¢);
3
catch(Exception €){
e.printStackTrace()} }
public boolean scanAddress(String getlp){
boolean spoof=false;
int count=0;
setDbConnection();

try{
String str="";
st=con.createStatement();
String qry="select * from HCF";
rs=st.executeQuery(qry);
while(rs.next()){
str=rs.getString(1)+","+rs.getString(2)+","+rs.getString(3);
String ipList[]=str.split(",");
String str23=getReclp.substring(l,getReclp.indexOf(":"));
System.out.println{"getIP:"+str23);

catch(Exception ex){



tif{count>0){
spoof=true;}
else
spoof=false;}
return spoof;}
public boolean checkIntrusions(String mode){
boolean res=false;
try {
String datamode[ ][=mode.sphit(",");
1f(datamode.length>1){
res=checkDosAttack(datamode[1]);
iy
catch (Exception e} {e.printStackTrace();}
return res;}
public boolean checkDosAttack(String attc){
boolean res=false;
if(attc.equalslgnoreCase("dos")){
JOptionPane.showMessageDialog(par,"DOS Attack Has been Found...");
res=true;
}
if(attc.equalslgnoreCase("nim")) {

JOptionPane.showMessageDialog(par,"Nimda Attack Has been Found...");

e . e e . — =



{1f(attc.equalsIgnoreCase("exe™)){
JOptionPane.showMessageDialog(par,"Exe Attack Has been Found...");
res=true;}
return res;
new SimpleRead();
}
public String getldsIp(){
String strl="";
try{
setDbConnection();
st=con.createStatement();
String query="select * from IpSettings":
rs=st.executeQuery(query);
while(rs.next(}) {
stri=rs.getString("IDSip"};} }
catch(Exception e){
e.printStackTrace(); }return stri;}

HonevPot.java

import java.io.DatalnputStream;
import java.io.DataQutputStream;
import java.io.File;

import java.io.lOException;

L o~ ~



import java.net.Socket;
import java.net.UnknownHostException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
public class HoneyPot implements Runnable {
ServerSocket honeySocket;
Socket ss;
DatalnputStream dis;
DataQutputStream dos;
File f=new File("Script.hon"};
Thread t;
Connection con;
Statement st;
ResultSet rs;
JFrame par;
int findAttacks=0;
int allow Attacks=0;
int blockAttack=0;
public HoneyPot(JFrame frame)

par=frame;



honeySocket=new ServerSocket(7001);
HoneyStatusPanel.ixtInforamtion.append("\nHoney Pot Program is Started...");
while(true){
| ss=honeySocket.accept();
dis=new DatalnputStream(ss.getInputStream());
System.out.println("Varifing Script Files....");
t=new Thread(this);
t.start();
§
catch (IOException €) {
e.printStackTrace();} }
public void run() {
try {
String readingString=dis.readUTF();
System.out.println("File Data:"+readingString);
JOptionPane.showMessageDialog(par,"HoneypotScanningthe Attack...");
String chkIp=readingString.substring(readingString.lastlndexOf("*")+1);
String rMsg=readingString.substring(0,readingString.indexOf("#"));

String
rIp=readingString.substring(rMsg.length()+ 1 ,readingString.indexOf("@"));

String
rPort=readingString.substring(readingString.indexOf("'@" }+1,readingString.inde
xOf("@"y+5);

String



HoneyStatusPanel.txtInforamtion.append(™\n The Message:"+rMsg);
HoneyStatusPanel.txtInforamtion.append(™\n The IP:"+rlp);
HoneyStatusPanel.txtInforamtion.append(™n The Port:"+rPort);
HoneyStatusPanel.txtInforamtion.append("™n The Checking IP:"+chklp};
java.util.Date dte=new java.util.Date();

SimpleDateFormat dformat=new SimpleDateFormat("dd/MM/yyyy :");
setDbConnection();

try{

st=con.createStatement();

String query="";

System.out.println{Type.length);

if{ Type.length>1)

query="insert into AttackDetails values("'+ dte +","+ rMsg +" "+ rlp +",""+
rPOrt +IN’HF+ Ty.pe[o] +1l!,11l+ Type[l] _|_H!)H;}

else{query="insert into AttackDetails values("'+ dte +"."+ rMsg +"."'+ chklp
+|"]||P+ rPOI't +"T)H|+ Type[o] +|H7ISpOOF)H;

}

st.executeUpdate(query);
findAttacks++;

boolean bool=checkScript(chklp);
if(bool==true) {

allowAttacks++;

readingString=readingString.substring(0,readingString.lastIndex Of("*"));



|

else{
blockAttack++;
JOptionPane.showMessageDialog(par,"Honey Blocking This Transmission...");
i
catch(Exception ex){
ex.printStackTrace();
}
HoneyStatusPanel.txtInforamtion.append(™\nTotal Attacks Found:"+find Attacks);
HoneyStatusPanel.txtInforamtion.append(™\n Allowed Attacks:"+allowAttacks);
HoneyStatusPanel.txtInforamtion.append("\n Blocked Attacks:"+blockAttack);
Thread.sleep(1000);
} catch (Exception e} |
e.printStackTrace();} }
public void startForwarding(String readData) {
System.out.println(" 1s Forwarding...");

try {

ss=new Socket(getNextlp(),3030);

dos=new DataOutputStream(ss.getOutputStream());

dos.writeUTF(readData);

} catch (UnknownHostException €) {

e.printStackTrace();

[P



e.printStackTrace();

;
public void setDbConnection() {
try?
String driver="sun.jdbc.odbc.JdbcOdbcDriver";
String path="spoofing.mdb";

Stringconnection="Jdbc:Odbc:Driver={MicrosoftAccessDriver
(*.mdb)};DBQ="+path;Class.forName(driver);

con=DriverManager.getConnection{connection);

;

catch(Exception €){

e.printStack Trace(); }

+public boolean checkScript(String ipString){
boolean res=false;
setDbConnection();
try{

st=con.createStatement();

String query="select * from ScriptDetails where ip=""+ ipString +"";
rs=st.executeQuery(query);
while(rs.next()){

String str=rs.getString(4);
if(str.equals{"YES")){

res=true;}



res=false;}}}
catch(Exception ex){
ex.printStackTrace();

;

return res;
}
public String getNextIp() {
String strl="";
try{
setDbConnection();
st=con.createStatement();
String query="select * from HCF";
rs=st.executeQuery(query);
while(rs.next()){
strl=rs.getString(2);
g
catch(Exception ¢)
e.printStackTrace();

}

return strl;} }



8.2 SCREEN SHOTS

SENDER

1. File Transmission

2.Packet Transmission




INTRUSION DETECTION SYSTEM (IDS)




HONEY POT




DESTINATION

ROUTER




NIMDA ATTACK

| - COAWINDOWS\system 32%cmd.exe - java HimdaAttack

DENIAL OF SERVIVCE (DOS) ATTACK

CCAWINDOWSsystem 32hemd.exe - java DosAttack




RECORDS

LOG FILES

’ sat 1an 16 05:41:28 £\JavaPrograms\Hone 192.168.1.21 1031 °

il Stzeda
7 Toggle Fikee 1| Fix Form Windiows =

Das

FitaTransfer
= ner Sat Jan 1606:41:2% E:\lavaPrograms\Honer 192.168.1.2 1031 FileTransfer  Dos
) Sat Apr (3 19:27:3 macha hacking 192.168.1.211031 - Packet Spoof
3 psetwngs iS4t Apr 03 19:79:1+ Dai sent 192.168.1.211031 Packet Spoof
E sowpthetsits Sat Apr 03 19:33:21 hai 192.1681.211031 Packet spoaf
SarApr03 19:32:52 doubt 192.168.1.211031 Packet Spoof
iSat Apr 03 21:41:11 sdfsdfsd 192.168.1.31 1031  Packet™192 16 Spoof
Sat Apr03 2L:41:3; sdfsdfsd 192.168.1.311031 Packet*192.16¢ Spoof
i Sat Apr03 Z1:41:48 sdfsdfsd 192.168.1,311031 Packet*192.16¢ Spoof
St Apr 03 21:42:2¢ sdfsdfsd 192.168.1.311031 Packet™192.16f Spoof
i 192.168.1.31 1031 Packet®192.16¢ Spoof
!5at Ape 03 215341 E:\JavaPrograms\Hone: 192.168.1.211031 FileTransfer Dos
:5at Apr 03 22:33:31 E-\javaPrograms\Hones 192.168.1 .21 1031 FileTransfer nim
1S3t Apr 03 22:39:5; welcome 192.168.1.31 1031 Packet*192.16¢ Spoof
_Sat Apr03 22:33:5¢ welcome 192.168.1.211031 -Packet™192.16¢ Spoof
1S3t Apr 03 ZZ4L:0¢ E:\JavaPrograms\Honer 192.168.1.21 1031 FileTransfer  mm
 Sat Ape 03 23:00:2< E:\lavaPrograms\Honey 192.168.1.211031 FileTransfer  nim
Sat Apr 03 23:02:4% E\JavaPrograms\Honer 192.168.1.211031 FileTransfer  nim
iSun Ape 04 10:4%:1 test2.txt 192.168.1.211031 FileTransfer nim*192.168.1.
i Sun Apr 04 10:5211 fest3. ot 192.168.1.211031 FileTransfer  nim*192.168.1.
Sun Apr 04 10:55:4 test2.txt 192.164.1211031 FileTransfer  nim*192.168.1
Sun Apr 04 10:56:2 test2. ba 192.168.1.21. 1031 FileTransfer  nim*192.168.1.
3 i5un Apro410:58:3 test2.txt 192.168,1,21 1031 FileTransfer nim*192.163.L
(1 _|Sun Apr0410:59:1 test3.txt 192.168.1.211031 FileTransfer nim*152.168.1.
15un Apr 04 16:33:2 test2.ixt 192168711081 FileTransfer  exe*192.168.1
|Sun Apr04 16:33:3 test2.txt 192 168.1.211031 ° fileTransfer exe®192.168.1.
j mmﬁ f’i;s;‘a":".f‘p'“‘l e e et

T I T TR I A

A e

T ke




REFERENCES



9.REFERENCES

[1] Babak Khosravifar, Jamal Bentahar ,” An Experience Improving Intrusion
Detection Systems False Alarm Ratio by Using Honey pot” . IEEE 22nd
International Conference on Advanced Information Networking and

Applications,2008.

[2] Yun Wang, Xiaodong Wang, Bin Xie, Demin Wang and Dharma P. Agrawal,
“Intrusion Detection in Homogeneous and Heterogeneous Wireless Sensor

Networks”, IEEE transactions on mobile computing, June 2008.

[3] Karthik Sadasivam, Banuprasad Samudrala, T. Andrew Yang,” Design Of
Network Security Projects Using Honeypots”, CCSC: South Central Conference,

2005 Consortium for Computing Sciences in Colleges.

[4] Babak Khosravifar, Maziar Gomrokchi, Jamal Bentahar ;. A Multi-Agent-
based Approach to Improve Intrusion Detection Systems False Alarm Ratio by
Using Honeypot”, IEEE International Conference on Advanced Information

Networking and Applications Workshops, 2009.

[5] Wang Zhenqi, Wang Xinyu,” NetFlow Based Intrusion Detection System”,
IEEE International Conference on MultiMedia and Information Technology
2008.

[6] Liberios Vokorokos,Alzbeta Kleinova, Ondrej Latka,” Network Security on

the Intrusion Detection System Level”, IEEE Conference on Networks, 2006.

[7] Bin Dong, Xiu-Ling Liu,” An Improved Intrusion Detection System Based

On Agent”,IEEE Proceedings of the Sixth International Conference on Machine



