P-3423

BUS DETECTION DEVICE WITH KEYPAD

DESIGNED FOR THE BLIND

A PROJECT REPORT

Submitted by

DEEPIKA K. 0710105015

MANIVANNANT. 0710105032
RAMESH M. 0710105040
VINOTH KUMAR S. 0710105059

in partial fulfillment for the award of the degree
of
BACHELOR OF ENGINEERING

w
ELECTRICAL AND ELECTRONICS ENGINEERING

KUMARAGURU COLLEGE OF TECHNOLOGY,
COIMBATORE — 641049
ANNA UNIVERSITY OF TECHNOLOGY : COIMBATORE

APRIL- 2011

ABSTRACT

In this project a bus detection device is designed using the GP'S and GSM technologics 1o
locate the current position of the bus and also a special keypad is designed for the visually
disabled persons based on the Braille code.

The GPS receiver fixed in bus gives the current location of the bus. Using the GEM

hnology a mic oller is pre d that sends the current location of the bus in

SMS (Short Messaging Service) format. The location of the bus stand is known and constant.
Henge a program that works on a Visual Basic platform is developed that finds the difference
between the two different latitude-longitude positions and convert them to distance in
Kilometers, An average speed of 30kms/hr is fixed and with the known distance and speed,

the time is calculated and given in the form of voice output.

The keypad for the visually disabled is designed that works based on a program in the PIC
i Iler to impl the Braille code. The distance to be covered along with the

time the particular bus takes to reach the stand is given in the form of voice output.

ANNA UNIVERSITY OF TECHNOLOGY : COIMBATORE

APRIL- 2011

BONAFIDE CERTIFICATE

‘ertified that this project report “BUS DETECTION DEVICE WITH SPECIAL
{EYPAD DESIGNED FOR THE BLIND * is the bonafide work of

1. Deepika.K Register No.0710105015
2. Manivannan.T. Register No.0710105032
3. Ramesh.M. Register No.0710105040
4, Vinoth Kumar. S. Register No.0710105059

who carried out the project work under my supervision.
Signature of F-;e Head of lhfl;epmmml

Signature of the supervisor

Dr. Rani Thotungal Mrs.D.Rajalakshmi

EEE Asst .Professor

The candidates with University Register Nos.071 0105015, 0710105032, 071 0105040,

0710105059 was examined by us in the project viva-voce ¢ _e&’:]')_.

O g\ o

3
INTERNALEXAMIN EXTERNAL EXAE’IINER

ACKNOWLEDGEMENT

{is our bounden duty to thank contribution made in one form or the other by the individuals we

iereby acknowledge.

We express our heart-felt gratitude and thanks to the Dean / HoD of Electrical and Electronics
Engineering, Dr. Rani T gal for ging us and for being with us right from beginning of the
project and fine tuning us al every step.

We wish to place on record our deep sense of gratitude and profound thanks to our guide

Ms.D.Rajalakshmi, Assi. Profi Electrical and Electronics Engineering Department, for her

taakbl 4.

project.

encour and i support rendered throughout the

and

We are also thankful to all the revi for their

encouragement.

Last but not the least, we extend our sincere thanks to all the teaching and non-

teaching staff who have contributed their ideas and ged us for completing the project.

CONTENTS

Vitle
ionafide Certificate
sbstract

\cknowledgement

Zontents

_ist of Figures
List of Tables

List of symbols and abbreviations

CHAPTER 1: INTRODUCTION

1.1. Objective

1.2, Need of the project

1.2, Proposed system

1.4. Organisation of the report

CHAPTER 2: GPS AND GSM TECHNOLOGY
2.1, How GPS works
2.2.8ignals
2.3.Timing & correction
2.4.Mapping

2.5.Accuracy

5.3.2 Three Terminal Voltage Regulators
4 Relay
.5.PIC Microcontroller

5.5.1.PIC {16F877)

5.5.2.Core features

5.5.3.Peripheral features

5.5.4. Architecture of PIC 16F877
1,6.R5232 Communication

5.6.1.RS232

5.6.2.5cope of the standard

5.6.3.Circuit working description
3.7.Keypad

5.8.Experimental setup

20

21

2]

CHAPTER 6: PROCESS AT THE COMPUTER TERMINAL

5.1. VB program to calculate the distance & time
5.2.Explanation

5.2, Output screen

26

31

32

Page No.
i
i

vil
vii

viii

=]

"HAPTER 3:VISUAL BASIC
3.1.Visual Basic
3.2.Characteristics
3.3.Performance and other issues

3.4.Example code

“HAPTER 4: OVERVIEW OF THE PROJECT
1.1.Block diagram
1.2. Requirements of the system design

4.2.1Companents for bus detection device

4.2.2.Components for keypad

CHAPTER 5: HARDWARE DESCRIPTION

5.1.Circuit diagram for Bus Detection Device

5.2.Circuit diagram for Keypad
5.3.Power Supply

5.3.1 IC Voltage Regulators

“HAPTER 7: CONCLUSION AND SCOPE
"1.Conclusion

1.2.5cope for Future

REFERENCES

APPENDIX A PIC 16F877A CODING

APPENDIX B PIC 16F877A DATA SHEET

33

35

62

LIST OF FIGURES
Figure Title Page No.
4.1.1. Block Diagram 8
- B Circuit diagram for bus detection device 10
5.2.1. Circuit diagram for Keypad 11
53. Power supply circuit 12
532 Fixed positive voltage regulators 13
54. Relay circuit 4
5.54. Architecture of PIC 16F877 16
5.55 Pin diagram of PIC 16F877 17
CHAPTER 1
INTRODUCTION

L10OBJECTIVE

The main aim of the project is to create a bus detection device that can tell the user the

approximate time a bus takes to reach the bus stand from its current location in the form of
voice output using the GPS and GSM technology and VB p

i ing based on a formula.

The other objective of the project is to design a special keypad for the visually
disabled to enter the bus number based on the Braille code.

1.2.NEED OF THE PROJECT

There is no system or technology solution that is applied to calculate the time a bus
takes to reach the destination from its current position. People wait for a long time in the bus
stand in order to reach their destination without knowing as to at what time the correct bus
reaches the stand. There are visually disabled people who are dependent on others to enquire
about the buses. Hence a system is needed that can offer a solution to the above explained.
Thus a device that can calculate the time based on locations is required. Visually disabled
persons always want to be independent. As the Braille code is their most comfortable

language, we are required to develop a keypad that can provide a solution to them.

1.3.PROPOSED SYSTEM

“The GPS receiver fixed in bus gives the current location of the bus. With the known
location of the bus stand the distance close to real value is calculated. Software developed

for the Computer will give the time the bus reaches the stand. BRAILLE keypads are

LIST OF TABLES

Table Title Page No.
554 Specifications of PIC16FR77 17
3.6 Function tables 21

LIST OF SYMBOLS AND ABBREVIATIONS

No. Symbol/Abbreviation Description

1. GPS Global positioning system

3 GSM Global system for mobile communication
3 RS232 Voltage induced in inductor L1
4. PIC Prog hle interface i
5 D Diode

6. GND Ground

7. v Voltage

8. C Capacitor

9. R Resistor

10. e Direct Current

1. AC Alternating Current

made and interfaced to the system through microcontroller. The informations such as time

the bus reaches and distance to be covered are given as outpul through the speaker.

1.40RGANISATION OF THE REPORT
This report has been organized into seven chapters.

Chapter 1: Gives the objective and need of the project along with proposed system and the

way the various chapters are organized.

Chapter 2: Explains the technology details of GPS and GSM that does the wircless

transmission of data.

Chapter 3: Describes the concept of Visual Basic that does the real time calculation.

Chapter 4: Gives an overall view of the project design along with the requirements.

Chapter 5: Describes the hardware implementation of the project.

Chapter 6: Presents the Visual basic program that is used in the project.

Chapter 7: Concludes the project with the scope for future work.

CHAPTER 2
GPS AND GSM
2.1.HOW GPS WORKS

For those who are unfamiliar with the term, GPS stands for Global Positioning System, and is
a way of locating a receiver in three dimensional space anywhere on the Earth, and even in

orbit about it.

GPS is arguably one of the most important inventions of our time, and has so many different
applications that many technologies and ways of working are continually being improved in

order to make the most of it.

2.2.SIGNALS

In order for GPS to work, a network of satellites was placed into orbit around planct Earth,
each broadcasting a specific signal, much like a normal radio signal. This signal can be
received by a low cost, low technology aerial, even though the signal is very weak.

Rather than carrying an actual radio or television program. the signals that are broadcast by
the satellites carry data that is passed from the aerial, decoded and used by to the GPS

software.

The information is specific enough that the GPS software can identify the satellite, it’s
location in space, and caleulate the time that the signal took to travel from the satellite to the

GPS receiver.

Using different signals from different satellites, the GPS is able to calculate the
position of the receiver. The principle is very similar to that which is used in orienteering — if
you can identify three places on your map, take a bearing to where they are, and draw three

lines on the map. then you will find out where you are on the map.

2.5.ACCURACY

GSM tracking relies on Cell Identification, or Cell-ID — the means by which the phone
networks track individual phones form cell to cell. Positional accuracy relies on the number
of mobile masts in the area, so it can be accurate to 100 metres or as imprecise as within

10km or more.

The lines will intersect, and, depending on the accuracy of the bearings, the triangle that they

form where they intersect will approximate your position, within a margin of eror.

GPS software performs a similar kind of exercise, using the known positions of the satellites

in space, and measuring the time that the signal has taken to travel from the satellite to Earth.

The result of the “trilateration” (the term used when distances are used instead of bearings) of
at least three satellites, assuming that the clocks are all synchronized enables the software to
calculate, within a margin of error, where the device is located in terms of its latitude (East-
West) and longitude (North-South) and distance from the center of the Earth.

2.3.TIMING & CORRECTION

Since the satellites cach contain atomic clocks which are extremely accurate, and certainly
aceurate with respect to cach other, we can assume that most of the problem lies with the
clock inside the GPS unit itself.

There are a few solutions. However the solution that was chosen uses a fourth satellite to

provide a cross check in the tri ion p Since tril

from three signals should
pinpoint the location exactly, adding a fourth will move that location; that is, it will not
intersect with the calculated location.

This indicates to the GPS software that there is a discrepancy, and so it performs an
additional calculation to find a value that it can use to adjust all the signals so that the four

lines intersect.

2.4.MAPPING

With GPS, the traditional route has been that the user pays for the hardware, connection and
applications separately. LBS tracking is structured differently; the user pays for the phone,

while the services are provided by the network operator or applications provider.

CHAPTER 3
VISUAL BASIC
3.1.WHAT IS VB?

Visual Basic (VB) is the third-generationevent-driven programming language and integrated
development environment (IDE) from Microsoft for its COM programming model. Visual

Basic is relatively easy to leam and use!'"*!

3.2.CHARACTERISTICS

vVisual Basic has the following traits which differ from C-derived languages:

. p ig t available in C | is not possibl
_|'lll

« Boolean constant True has numeric value

« Logical and bitwise operators are unified.

« Variable array base.

+ OPTION BASE was introduced by ANSI, with the standard for ANSI Minimal
BASIC in the late 1970s.

+ Relatively strong integration with the Windows operating system and the Component
Object Model. The native types for strings and arrays are the dedicated COM types,
BSTR and SAFEARRAY.

. Banker's rounding as the default behavior when converting real numbers to integers
with the Round function'®! 7 Round(2.5, 0) gives 2, ? Round(3.5, 0) gives 4.

« Integers are automatically promoted to reals in expressions involving the normal
division operator (/) so that division of one integer by another produces the intuitively
correct result. There is a specific integer divide operator (1) which does truncate.

« By default, if a variable has not been declared or if no type declaration character is

specified, the variable is of type Variant.

3.3.PERFORMANCE AND OTHER ISSUES

Earlier counterparts of Visual Basic (prior to version 5) compiled the code to P-Code only.

The P-Code is interpreted by the language runtime, also known as a virtual machine. The

benefits of P-Code include portability and smaller binary file sizes, but it usually slows down

the execution, since having a runtime adds an additional layer of interpretation. However,

small amounts of code and algorithms can be constructed to run faster than compiled native

code.

Visual Basic applications require Microsoft Visual Basic runtime MSVBVMxx.DLL, where

xx is the relevant version number, cither 50 or 60. MSVBVMG0.dll comes as standard with
Windows in all editions after Windows 98 while MSVBVMS0.dll comes with all editions
after Windows 95. A Windows 95 machine would however require inclusion with the
installer of whichever dll was needed by the program.

Visual Basic 5 and 6 can compile code to either native or P-Code.

3.4. EXAMPLE CODE

Here is an example of the language. The following code snippet displays 2 message box
saying "Hello, World!" as the window loads:

Private Sub Form_Load()
* Execute a simple message box that will say "Hello, World!"
MsgBox "Hello, World!"

End Sub

The input such as bus number is given through the keypad which is interfaced to a
somputer through a microcontroller. This controller is programmed to identity the Braille

code and for the serial communication.

The GPS recciver sends the location of the bus through the mobile as the
microcontroller is programmed to send the locations for every 15 seconds. The computer is
programmed to receive the locations and by locating them in the Google map, the distance
and time are calculated.

4.2.REQUIREMENTS FOR THE SYSTEM DESIGN

4.2.1.COMPONENTS FOR THE BUS DETECTION

The following are the components that are to be used in the design of bus detection device

i. GPS Receiver

ii. PIC Microcontroller
iii. Mobile
iv. MAX232

v. RS232 cable

4.2.2.COMPONENTS FOR THE KEYPAD

The following are the components that are to be used in the design of keypad for the visually
disabled

i. Keypad with 8 keys
ii. PIC Microcontrolier
iii. Mobile
iv, RS232 cable
v. PC with intemet connection and VB 6.0 software

vi. Speaker

CHAPTER 4

PROJECT DESIGN

4.1.OVERVIEW OF THE PROJECT

Figd.1.1.Block Diagram

Antenna

T_ GPs Micro

T R | E— .
Receiver Controller

Maobile

Geogle Map

GSM]

Mobile —

RS 232 |o=b

Computer

Micro
Controller

The block can he divided into two parts. One part is that which is placed on the bus
comprising of a GPS recciver and a mabile that are connected with the help ofa
microcontrolier, The other part is that which is placed in the bus terminal where the user can
get the information. The Braille keypad is connected to the computer using RS232 cable. The

user gets the information in terms of voice output.

CHAPTER 5

HARDWARE DESCRIPTION

5.1.CIRCUIT DIADRAM FOR BUS DETECTION DEVICE

Fig5.1.1.Circuit diagram for bus detection device

FIC ADCRO CONTROLLER

RESET CIRCUIT

R5132SERIALC OADMUNICATION
T
RELAY CIRCUTT-DEDT TOMOBILE

LOGIC LEVEL CONVERTER =

5.2.CIRCUIT DIAGRAM FOR KEYPAD

Fig.5.2.1.Circuit diagram for Keypad

FIC MICRO { ONTROLLER
v

BETREEREF

RESET CIRCTTT

R5232 SERIAL COMMUNICATION

5.3.POWER SUPPLY

The ac voltage, typically 220V rms, is connected to a transformer, which steps that ac voltage
down to the level of the desired dc output. A diode rectifier then provides a full-wave
rectified voltage that is initially filtered by a simple capacitor filter to produce a de voltage.

This resulting dc voltage usually has some ripple or ac voltage variation,

Figure shows the basic connection of a three-terminal voltage regulator 1€ to a load.
The fixed voltage regulator has an unregulated de input voltage, Vi, applied to one input
terminal, a regulated output de voltage, Vo, from a second terminal, with the third terminal
connected to ground. For a selected regulator. IC device specifications list a voltage range
over which the input voltage can vary to maintain a regulated output voltage over a range of
load current, The specifications also list the amount of output voltage change resulting from a

change in load current (load regulation) or in input voltage (line regulation).

sfarmer
GND
Fig 5.3.2 fixed positive voltage regulators
The series 78 regul provide fixed regulated voltag from 5 to 24 V. Figure
shows how one such IC, a 7812, is ted to provide voltage regul with output from
this unit of +12V de. An unregulated input voltage Vi is filtered by capacitor Cl and
connected to the IC's IN terminal. The 1C's OUT inal provides a regulated + 12V which

is filtered by capacitor C2 (mostly for any high-frequency noise). The third 1C terminal is
connected to ground (GND). While the input voltage may vary over some permissible voltage
range, and the output load may vary over some acceptable range, the output voltage remains

consiant within specified voltage variation limits.

Fig 5.3 power supply circuit

1+ 5V POWER SUPPLY

g 1
v i
LI
112V AND -1 2¥ POWER SUPRLY
l ECTER g -
L IgE = W
Im R
= 5 = —‘—r‘.“q’ x
ARIRATT |_| T
= A1z F

A regulator circuit removes the ripples and also remains the same de value even if the
input de voltage varies, or the load connected to the output de voltage changes. This voltage

regulation is usually obtained using one of the popular voltage regulator IC units.
5.3.1.1C VOLTAGE REGULATORS

A power supply can be built using a transformer connected to the ac supply line to
step the ac voltage to a desired amplitude, then rectifying that ac voltage, filtering with a
capacitor and RC filter, if desired, and finally regulating the de voltage using an IC regulator.
The regulators can be selected for operation with load currents from hundreds of milli

amperes to tens of amperes, corresponding to power ratings from milliwatts to tens of watts.

5.3.2. THREE-TERMINAL VOLTAGE REGULATORS

54.RELAY

A relay is an electrically operated switch. Current flowing through the coil of the
relay creates a magnetic field which attracts a lever and changes the switch contacts. The coil
current can be on or off so relays have two switch positions and they are double throw

(changeover) switches.

Relays allow one circuit to switch a second circuit which can be completely separate
from the first. For example a low voltage battery circuit can use a relay to switch a 230V AC
mains circuit, There is no electrical connection inside the relay between the two circuils; the

link is magnetic and mechanical.

Fig.5.4.Relay circuit

RELAY

BTI4T

RELAY

e

The coil of a relay passes a relatively large current, typically 30mA for a 12V relay,
but it can be as much as 100mA for relays designed to operate from lower voltages. Most 1Cs

(chips) cannot provide this current and a transistor is usually used to amplify the small 1C

SR L e |

popular 555 timer IC is 200mA so these devices can supply relay coils directly without

amplification,
5.5.PIC MICROCONTROLLER

The microcontroller that has been used for this project is from PIC senes. PIC
microcontroller is the first RISC based microcontroller fabricated in CMOS (complimentary

metal oxide semiconductor) that uses scparate bus for instruction and data allowing

us access of program and data memory.The main advantage of CMOS and RISC
combination is low power consumption resulting in a very small chip size with a small pin
count. The main advantage of CMOS is that il has immunity to noise than other fabrication

technigues.

5.5.1.PIC (16F877)

Various microcontrollers offer different kinds of
memories, EEPROM, EPROM, FLASH etc. are some of the memories of which FLASH is
the most recently developed. Technology that is used in picl6F877 is flash technology, so
that data is retained even when the power is switched off. Easy Programming and Erasing
are other features of PIC 16F877.

5.5.2.CORE FEATURES
« High-performance RISC CPU
= Only 35 single word instructions to learn
= All single cycle instructions except for program branches which are two cycle

* Operating speed: DC - 20 MHz clock input

« Commercial and Industrial temperature ranges
+ Low-power consumption:
= 2mA typical @ 5V, 4 MHz
20mA typical @ 3V, 32 kHz

< 1maA typical standby current

5.5.3.PERIPHERAL FEATURES
« Timer0: 8-bit timer/counter with 8-bit prescaler
+ Timerl: 16-hit timer/counter with prescaler, can be incremented during sleep
via external crystal/clock
+ Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
« Two Capture, Compare, PWM modules
Capture is 16-bit, max resolution is 12.5 ns,
Compare is 16-bit, max resolution is 200 ns,
PWM max. resolution is 10-bit
+ 10-bit multi-channel Analog-to-Digital converter
» Synchronous Serial Port (SSP) with SPI. (Master Mode) and 12C. (Master/Slave)
+ Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with
9- bit address detection.
« Brown-out detection circuitry for Brown-out Reset (BOR)

The complete architecture of

5.54.ARCHITECTURE OF PIC 16F877
PIC 16F877 is shown in the fig 2.1. Table 2.1 gives details about the specifications of PIC

< emomn T A e tha camnlete nin diagram of the IC PIC 16F877.

DC - 200 ns instruction cycle
+ Upto 8K x 14 words of Flash Program Memory,
Up to 368 x 8 bytes of Data Memory (RAM)
Up to 256 x 8 bytes of EEPROM data memory
« Pin out compatible to the PIC16C73/74/76/77
» [nterrupt capability (up to 14 internal/external
« Eight level deep hardware stack

« Direct, indi and relative addressing modes

« Power-on Reset (POR)
« Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)

+ Watchdog Timer (WDT) with its own on-chip RC Oscillator for reliable operation

= Progr ble code-p
« Power saving SLEEP mode

« Selectable oscillator options

« Low-power, high-speed CMOS EPROM/EEPROM technology
« Fully static design

« In-Circuit Serial Programming (LCSP) via two pins

« Only single 5V source needed for programming capability

« [n-Circuit Debugging via two pins

« Processor read/write access to program memory

« Wide operating voltage range: 2.5V to S5V

« High Sink/Source Current: 25 mh

fig 5.5.4 architecture of pic

16{877

Fraoraw Louret

Proge gy

Bus
I_ InsTuEhon rag

EOREl-2
X TEnEr

Instructon Saedaty
Dacode & [| StartupTimes
Conral gy
Reset
Timing Wakend
E&D Ganeraion = '_";"W
QSCHCLEN s r
OSC2CLKCLT Repat

Paedlal Save W!I
el

| "l AT

Nate 1 Migaeroder 975 acs from the STATUS reziser

o] PEVANTCE

R

REQINT
bLH

RE2
REIPGM
FRE+

RES
RESFGL
RETFGD
RCUTIOSCY
RCUTI0SES
RCXCCPT
RCYSCKIST
RCAS0ISD:
RCUSCO
REATHICK
RETRACT

RCTPSPTR

REGVANSRI

PETANANY

table 5.5.4 specifications

DATA DATA EEPROM
DEVICE | PROGRAM FLASH
MEMORY

== |
PIC 16F877 8K 368 Bytes 256Bytes |

FIG 5.5.5 PIN DIAGRAM OF PIC I6F877

U 40 [] e—» RETPGD
39 [] -—= REGPGL
43 [] -—w RES

TELEyPeTHY —= [0
RAGANO —a[] 2
RATAN] =[] 3
RAZ/ANZVREF- wget=] 4 7 [] -—e RE4
RAZANIVREF+ <a—mte [5 35 [] =—e RESPGM
RATOCK -w—e[] & 35 [] =—= RBZ
RAS/ANSSS =—=[17 54 [] -—» EB1
REORI/ANS «—-[] 8 33 [a—a REOINT
RE 1TWR/ANG ~—-[] o 32 [+— Voo

REZTEANT —[] 10 t 31 [] -— s
voo—e 1 2 0[] ROTPSPT
Vs —a [} 12 @ 28 []=—s ROEPSPS
OSC1CLKIN —=] 13 5 3 [] -—w ROEPSPS
CSCHCLKOUT e—[] 14 T 7 (] w—s RO4PSPS
R"UT1OS\.1.TICKI -] 15 25 [] —e RCTRXDT

The standard does not define bit rates for Ithough the lard says it is
intended for bit rates lower than 20,000 bits per second. Many modem devices can exceed
this speed (38,400 and 57,600 biv's being common. and 115,200 and 230,400 biv's making

occasional appearances) while still using RS-232 compatible signal levels.

Details of character format and transmission bit rate arc controlled by the serial port
hardware, often a single integrated circuit called a UART that converts data from parallel to
serial form. A typical serial port includes specialized dnver and receiver integrated circuits to

convert between internal logic levels and RS-232 compatible signal levels.

5.6.2.CIRCUIT WORKING DESCRIPTION

In this circuit the MAX 232 IC used as level logic converter. The MAX232 is a dual
driver/receiver that includes a capacive voltage generator to supply EIA 232 voltage levels
from a single 5v supply. Each receiver converts EIA-232 to 5v TTL/CMOS levels. Each
driver converts TLL/CMOS input levels into EIA-232 levels.

Function Tables

EACH DRIVER

INPUT | QUTPUT
TIN TOUT

L [

- L

Homhigh v, L =lon
leved

EACH RECEIVER

INPUT | QUTPUT
RiN ROUT

L E

-

A e, L ke
ksl

logic diagram (positive logic)

1" 4
TN TICUT

10 T
TIN — —| >0— 2007
12 3
RI0IT ——0@— — RN
R200T —'-——041—

8
R2IN

5.6.R$232 COMMUNICATION

Fig.5.6.1.MAX 232 cireuit

moE =i
A — by

=N

il

=15

TerC

In telecommunications, RS-232 is a standard for serial binary data interconnection
between a DTE (Data terminal equipment) and a DCE (Data Circuit-terminating Equipment).

It is commonly used in computer serial ports.
5.6.1.SCOPE OF THE STANDARD
The Electronic Industries Alliance (EIA) standard RS-232-C [3] as of 1969 defines:

= Electrical signal ct istics such as voltage levels, signaling rate, timing and slew-

rate of signals, voltage withstand level, short-circuit behavior, maximum stray
capacitance and cable length
» Interface mechanical characteristics, pluggable connectors and pin identification
» Functions of each circuit in the interface connector
» Standard subsets of interface circuits for selected telecom applications
“The standard does not define such elements as character encoding (for example, ASCIL
Baudot or EBCDIC), or the framing of characters in the data stream (bits per character.
start/stop bits, parity). The standard does not define protocols for error detection or

algorithms for data compression.

In this circuit the microcontroller transmitter pin is connected in the MAX232 T2IN
pin which converts input 5v TTL/ICMOS level to RS232 level. Then T20UT pin is connected

1o reviver pin of 9 pin D type serial connector which is directly connected to PC.

In PC the transmitting data is given to R2IN of MAX232 through transmitting pin of 9
pin D type connector which converts the RS232 level to 5v TTL/CMOS level. The R20UT
pin is connccted to receiver pin of the microcontroller. Likewise the data is transmitted and

received between the microcontroller and PC or other device vice versa,

5.7.KEYPAD

A numeric keypad, or numpad for short, is the small, palm-sized, seventeen key
section of a computer keyboard, usually on the very far right. The numeric keypad features
digits 0 to 9, addition (+), subtraction (-), multiplication (*) and division (/) symbols, a
decimal point () and Num Lock and Enter keys. Laptop keyboards often do not have a

hald L

numpad, but may provide pad input by inga

key (typically lapelled "Fn")
and operating keys on the standard keyboard.

Particularly large laptops (typically those witha 17 inch screen or larger) may have
space for a real numpad, and many companies sell separate numpads which connect to the
host laptop by a USB connection.

Numeric keypads usually operate in two modes: when Num Lock is off, keys 8, 6, 2,
4 act like an arrow keys and 7, 9, 3, 1 act like Home, PgUp, PgDn and End; when Num Lock
is on, digits keys produce corresponding digits. These, however, differ from the numeric keys
at the top of the keyboard in that, when combined with the Alt key on a PC, they are used to
enter characters which may not be otherwise available: for example, Ali-0169 produces the
copyright symbol. These are referred to as Alt codes.

On Apple Comp Macintosh comg which lack a Num Lock key, the numeric

keypad always produces only numbers. The num lock key is replaced by the clear key.

-y
L ol
-
*

| |'_—|'i

Numeric keypads usually operate in two modes: when Num Lock is off, keys 8, 6,2,
4 act like an arrow keys and 7, 9, 3, 1 act like Home, PgUp, PgDn and End; when Num Lock
is on, digits keys produce corresponding digits. These, however, differ from the numeric keys
at the top of the keyboard in that, when combined with the Alt key on a PC, they are used to
enter characters which may not be otherwise available: for example, Alt-0169 produces the

copyright symbol. These are referred to as Alt codes.

5.8.2.KEYPAD FOR BLIND

5.8.EXPERIMENTAL SETUP

5.8.1.BUS DETECTION DEVICE

CHAPTER 6
PROCESS INVOLVED AT THE COMPUTER TERMINAL

6.1. VB PROGRAM TO CALCULATE THE DISTANCE & TIME
Dim varl, n, i As String
Dim gh, F, k1, temp As Integer
Dim a, b, ¢ As Integer
Dim queryAddress As String
Dim voice As SpVoice
Const pi = 3.14152653589793
Private Sub Commandl_Click()
On Error Resume Next
With MSComm
CommPort = Val(Text4. Text)
.Handshaking = comNone
RThreshold = 1
SThreshold = 8
Settings = "9600,n,8,1"
PortOpen = True
Mobile_lnit
Timer2.Enabled = True
Timer3.Enabled = True
End With

End Sub

Private Sub Command2_Click()
Private Sub MSComm|_OnComm()
End
Dim databuf As String
End Sub
Dim lat As String

Dim lon As String
Private Sub Command3_Click()
Select Case comEvReceive
Form2.Show
Case comEvReceive
End Sub
databuf = MSComm1.Input

Private Sub Command5_Click()
Text. Text = Text3, Text + databuf

On Error Resume Next
With MSComm2
If Len(Text3. Text) = 90 Then
.CommPort = Val(Text7.Text)
FUN
Handshaking = comNone
End If
RThreshold =1
SThreshold =8
End Select
Settings = "9600,n,8,1"
End Sub

PortOpen = True
Private Sub Mobile_Init()
End With
MSComml.Output = "AT" & vhCrLf
End Sub
Sleep 500

MSComm1.Output = "AT+CMGF=1" & vbCrLf
Private Sub Form_Load()
Sleep 500
Set voice = New SpVoice
End Sub
voice.Rate = 0

voice Speak "BUS DETECTION TECHNIC FOR BLIND", 5VSFlagsAsync
Private Sub MSComm2_OnComm()
End Sub
Dim databuf As String

Select Case comEvReceive
‘queryAddress = “hitp://maps.google.com/maps?q="
Case comEvReceive
"lat = Textl.Text

‘queryAddress = queryAddress & lat
databuf = MSComm2.Input
“lon = Text2.Text
Texut8. Text = databuf’
‘queryAddress = queryAddress & lon
voice. Speak Mid(databuf, 1, 1), SVSFlagsAsync
"WebBrowser] Navigate queryAddress

End Select
Text3.Text=""
End Sub
End If
Next k1
Private Sub Timer2 Timer()
Text3. Text=""
MSComm].Qutput = "AT+HCMGR=1" & vbCrLf
End Sub

Sleep 1000

MSComm!.Output = "AT+CMGD=1" & vbCrLf
Function distance(lat], lon1, lat2, lon2)

‘Sleep 1000
Dim theta, dist
End Sub
theta = lonl - lon2
Private Sub FUN()
dist = Sin(deg2rad(lat1)) * Sin(deg2rad(lai2)) + Cos(deg2rad(lat1)) * Cos(deg2rad(lai2)) *
Forkl =1 To 100 Cos(degZrad(theta))
dist = acos(dist)
If Mid(Text3. Text, k1, 1) ="*" Then dist = rad2deg(dist)
distance = dist * 60 * 1.1515 * 1.609344
Text! 1. Text = Mid(Text3. Text, k1 +1,2) +"." + Mid(Text3.Text, k1 +3,2) + End Function

Mid(Text3.Text, ki +7,3)

Text]2, Text = Mid(Text3. Text, k1 + 12,2) + "." + Mid{Text3. Text, k1 + 14,2) +
Mid{Text3. Text. ki +17,3) Function deg2rad(deg)

deg2rad = CDbl{deg * pi / 180)
Text]. Text = Mid(Text3.Text, ki + 1, 2)+ "> + Mid(Text3.Text, k1 +3,7) # "N" = End Function

Function acos(rad)

LAl i B e R EREE R (PR -
o AL

acos = pi /2 - Atn(rad / Sqr(1 - rad * rad))
Elself rad = -1 Then

acos = pi

End If

End Function

Function rad2deg(rad)
rad2deg = CDbl(rad * 180 / pi)

End Function

Private Sub Timer3_Timer()
If (Len(Text9. Text) > 6 And Len(Text10.Text) = 6) Then
Textl4. Text = (distance(Text1 1. Text, Text12. Text, Text® Text, Text10.Text))
Textl5.Text = Val(Text14. Text) / 30
voice.Speak "distance”, SVSFlagsAsync
voice.Speak Mid(Text14.Text, 1, 4), SVSFlagsAsync
voice.Speak Mid{Text15.Text, 1, 4), SVSFlagsAsync
voice. Speak "MINUTES", SVSFlagsAsync
End If
End Sub
6.3.EXPLANATION
The VB coding does the following

* Itidentifies the Braille input.

o Itidentifies the location of the corresponding bus and locates them on the Google
map.

« With the known location of the bus stand the distance is calculated using the formula.

* Then the distance divided by speed gives the time.

CHAPTER 7

CONCLUSION AND SCOPE

7.1.CONCLUSION

In this project a bus detection device that can calculate the approximate time a bus
takes to reach the destination from its current location has been designed based on the GPS

and GSM technology. The other objective of designing a special keypad for the visually
disabled has also been accomplished and for their aid the arival time of the bus is given in

the form of voice output.

7.2.FUTURE SCOPE

Visually disabled person should be guided in order to give the input. Thus a system
that can guide those persons to not only be able to reach the system but also board the bus
d Jently can be designed. The arrival time is however affected by the traffic in the city.

L

Hence formulae for those limitation removal can be included in future design.

Keypad designed for the the visually disabled can also be used in the ATM centres if

further improvised in the future.

« The results are given in the form of voice output.

6.2.0UTPUT SCREEN

BUS DETECTION TECHNIC FOR BLIND

VALUE

CHARACTER |

mmum,?:ﬁ-m,., e ey e— | —
COM PORT: COM PORT:
BAUD RATE: BAUD RATE:
oar_| _‘l_l __J
ST -u:lm‘mu ey

GDBGLE MaP 1

The communication port numbers to which the keypad and the mobile are connected
should be given as input. Thus the distance and time are displayed and when the user clicks

the GOOGLE MAFP button the cxact current location of the bus is displayed.

REFRENCES

1. Patrick E. Lanigan, Aaron M. Paulos, Andrew W. Williams, Priyam Narasimhan,
“Trinetra: Assistive Technologies for the Blind”,Carnegic Mellon University
Pittsburgh, PA 15213, May 1, 2006.

2. Bus detection device for the blind using RFID applicationNoor, M.Z.H. Ismail, 1.
Saaid, M.F. Fac of Electr. Eng,, Univ. Teknol. MARA, Shah Alam

3. MyBus: helping bus riders make informed decisionsMaclean, S.D.; Dailey, D.J.;
Washington Univ., Seattle, WA, USA

4. www.omniglot.com
5. www.wikipedia.com

6. www.vbtutor.net

APPENDIX A

PIC 16F877 CODING
Code for Braille :
#include<at89x51.h>
#include"smel_lcd8.h"
#include"AT_serial h"

sbit keyl=P170;
shit key2=P1"1;
shit key3=P1"2;
shit key4=P1"3;
sbit key5=P1"4;
shit key6=P1"5;
sbit ent=P1"7;

void display(unsigned char);

unsigned char a=0,b=0,c=0,d=0,e=0,f=0,5um;

void main()
i
Led8_Init();
Serial_Init(9600);
Led8_Display(0x80,"Bus Detection ",16);
Led8_Display(0xC0,"System For Blind". 16);
Delay(40000);Delay(40000):Delay(40000);
Delay(40000); Delay(40000);Delay(40000):
Led$ _Command(0x01);
Led8_Display(0x80,"Charactor:",10),
while(1)
t

ifitkeyl)a=1;

Serial_Out('b");
break;
case 3:

Leds Write(0xBA.'C'):
Serial_Out('c');
break;
i
case 11:
{
Led8 Write{0x8A.'d'),
Serial_Ou('d");
break;
H
case 9:
{
Led8_Write(0xBA,'e):
Serial_Out('e');
break;
}
case 7:
{
Leds_Write(0x8A,'T):
Serial_Out('f);
break;
H
case 15:
f
Led8_Write(InBA ')
Serial_Ou('g);

break;

ifi1key2)b=2;
llelse b=ty
if{lkey3)e=4;
Helse e=0;

it key4)d=8;
Ifelse d=0);
iflkeyS)e=16;
Ilelse e=0;
if(tkey6)f=32;
Helse £=0;

if{lent)

{
sum=a+bterd+etf;
a=b=c=d=e=f{=0;
display(sum);
)
}
!
void display(unsigned char num)
{
switch{num)
{
case 1:
i
Led8 Write(Ox8A ')
Serial_Out('a');
break;

|
v

case 5
i

1ade Wieiralle @A Th'v

case | 3:

Led8 Write(0x8A W),
Serial_Out('h');
break;
i
case 6:

i
i

Led8_ Write(0x8A,);
Serial_Out('i'):
break;
)
case 14:
i
Led8 Write(0xBA, ')
Serial_Out('}');
break;
)
case 17:
{
Leds_ Write(0x8A. k')
Serial_Out('k')
break;
}
case 21:
1
Led8 Write(0x8A,1);
Serial_Out('l');
break:

case 19

T A0 WelrafNe@ A 't

case 27:

case 25:

case 23:

case 31:

case 29:

case 59:

case 57:

case 56:

case 4:

case 20:

Serial_Out('m');
break;

i
V

LedS_ Write{Ox8A,'n');
Serial_Out('n');

break;

H

{

LedS Write(0x8A,0');
Serial_ Out{'a’);

break;

H

i
Led8_Write{0x8A,p');
Serial_Out('p’);

break;

[
i

Led8_Write{0xBA,'q'):

Serial_Oui('q’):
break;
'

i
i

Leds_ Write(OxBA.'T').
Serial Out('r')
break;

Serial_Out('x');

Led8_Write{0x8A,'y'):
Serial_Out('y");

break;

i

{

Led® Write(Ox8A,'2');
Serial_Oui('z);

break;

H

{
Leds_Write(0x8A,'a");
Serial_Out('0');

break;

i

i
Led8_Write(0x8A,'a');
Serial_Out{’1");

break:

H

{
Leds_Write(0x8A,'2');
Serial_Out('2");

break;

case 22:

case 30:

case 49:

case 53:

case 46:

case 51:

case 12:

case 44:

case 36:

case 28:

case 60:

case 52:

i
LedS_Write(0x8A.'S');
Serial_Out(’s');

break;

H

i

Led8 Write(Ox8A,);
Serial_Out('t');

break;

t

{
Led8_Write(0x8A,'u);
Serial _Out{'u');

break;

}

{

Led8_ Write(DXBAV);
Serial_Out('v');

break;

}

i
Led8_Write(0x8A.'W');
Serial_Out('w’);

break;

T S PR

Il
1

Leds Write(0x8A,'a');
Serial_Out{'3");

break:

i

i
Led8_Write(0x8A,'a’);
Serial_Out('4");

break;

}

{

LedS Write(0xBA.'2');
Serial_Out('5);

break;

}

{

Led8_ Write(0x8A, 2);
Serial_Oul('6');

break;

H

i

Led8 Write(0x3Aa');
Serial_Out('T');

break:

T AR Wheitafle 2 A o'y

Serial Out('8'):

break;
|
case 24:
{
Led8 Write(0x8A,'a"):
Serial_Out('9");
break;
¥
}
}
Code for ADC :
void Ade_Init()
{
ADMUX=(1<<REFS0); I/ For Aref=AVec;

ADCSRA=(] <€ADEN)|(1¢<;ADP52][(14<ADPSI)I(I <<ADPS0); //Rrescalar
=128
}

uint16_t Adc_ChalO(uint8_t ch)
{
ifch==0)
{
J/Select ADC Channel ch must be 0-7
ch=0b00000000;
ADMUX=ch;

J/Start Single conversion
ADCSRA|=(1<<ADSC)

S,

//Select ADC Channel ch must be 0-7
ch=0b0000001 0;
ADMUX=ch;

/iStart Single conversion
ADCSRA|=(1<<ADSC);

{/Wait for conversion to complete
while{!}(ADCSRA & (1<<ADIF)));

//Clear ADIF by writing one to it

//Note you may be wondering why we have write one to clear it
//This is standard way of clearing bits in io as said in datasheets.
/The code writes ‘1" but it result in setting bit to '0" 1!!

ADCSRA=(1<<ADIF);

else iffch==3)

{

//Select ADC Channel ch must be 0-7
ch=0b00000011;
ADMUX=ch;

//Start Single conversion
ADCSRA[=(1<<ADSC);

/Wait for conversion to complete
while{!(ADCSRA & (1=<ADIF)))

(e A PVE har weeitinog ane to it

div

factor

while(!(ADCSRA & (1<<ADIF))).

/IClear ADIF by writing one to it

/MNote you may be wondering why we have write one to clear it
/This is standard way of clearing bits in io as said in datasheets.
/IThe code writes '1' but it result in setting bit to '0° 1!

ADCSRA=(1<<ADIF);

else ifich==0)

{

/Select ADC Channel ch must be 0-7
ch=0b0000001;
ADMUX=ch;

//Start Single conversion
ADCSRA[=(1<<ADSC),

/Wait for conversion to complete

while((ADCSRA & (1<<ADIF)));

[{Clear ADIF by writing one to it

/MNote you may be wondering why we have write one to clear it
/This is standard way of clearing bits in io as said in datasheets.
/The code writes '1" but it result in setting bit to '0" 11!

ADCSRAJ=(1<<ADIF);

else if{ch==2)
L

/fNote you may be wondering why we have write one to clear it
IThis is standard way of clearing bits in io as said in datashects.

//The code writes '1* but it result in setting bit to 0" 1!

ADCSRA|=(1=<ADIF);

clse ifich==4)

{

//Select ADC Channel ch must be 0-7
ch=0b00000100;
ADMUX=ch:

//Start Single conversion
ADCSRA[=(1<<ADSC);

J//Wait for conversion to complete
while(l{ADCSRA & (1<<ADIF))),

{{Clear ADIF by writing one to it

//Note you may be wondering why we have write one to clear it
//This is standard way of clearing bits in io as said in datasheets.
/The code writes 'l" but it result in setting bit to '0" !

ADCSRA|=(1<<ADIF);

else iflch==35)

e A P Plaanal ohosssot e 2T

ch=0b00000101;
ADMUX=ch;

//Start Single conversion
ADCSRA=(1<<ADSC)

{/Wait for conversion to complete
while(!{(ADCSRA & (1<<ADIF)):

/iClear ADIF by writing one to it

/Mote you may be wondering why we have write one to elear it
/(This is standard way of clearing bits in io as said in datashects.
/fThe code writes 'l" but it result in setting bit to o

ADCSRAI=(1<<ADIF);

else iffch==6)

{

//Select ADC Channel ch must be 0-7
ch=0b00000110;
ADMUX=ch;

//Start Single conversion
ADCSRAI=(1<<ADSC);

//Wait for conversion to complete
while{!/(ADCSRA & (1<<A DIF):

J/Clear ADIF by writing one to it

Aoies seibens svea howe wirite nne to clear it

idefine SDA_L PORTC &= ~0x02
tdefine SCL_H PORTC |= 0x01
#define SCL_L PORTC &= ~Ox01

void Eeprom Write(unsigned char,unsigned char);
Eeprom_Read(unsigned char).

void Eeprom_rd_wr_sub(};

vioid Eeprom_Init();

void Ecprom_Start();

void Eeprom_Tx();

void Eeprom_Rx():

void Eeprom_Stop();

void Eeprom_Ack();

d int

_add_wr,eeprom_add_rd;
unsigned int d_ecprom,datain_eeprom.in _eeprom,temp_eeprom.dat_eeprom;

P

unsigned int flag_eeprom.c;

void Eeprom_Init()

{
eeprom_add_wr=0xa0;
eeprom_add_rd=0xal;

void Eeprom_Write(d char zig,

!

dat_eeprom=zig:
temp_eeprom=zag;
Ecprom_rd_wr_sub(};

above:

d char zag)// program to write to EEPROM

J/This is standard way of clearing bits in io as said in datasheets.

/fThe code writes 'I* but it result in setting bit to '0° 1!

ADCSRA|=(1<<ADIF);

else ifich==T)

{

//Select ADC Channel ch must be 0-7
ch=0b00000111;
ADMUX=ch;

//Start Single conversion
ADCSRAI=(1<<ADSC);

1/Wait for conversion to complete
while(((ADCSRA & (1<<ADIF)))

{iClear ADIF by writing one to it

/MNote you may be wondering why we have write one to clear it
//This is standard way of clearing bits in io as said in datasheets.
I/The code writes '1' but it result in setting bit to ‘0" !!!

ADCSRA[=(1<<ADIF);

retum{ADC);

1
|

Code for EEPROM :

LA_EoL oM U DADTE b= Avl?

Eeprom_Tx()

if (c==1)goto above;
o=0;
Eeprom_Stop();

Eeprom_Read(unsigned char zig)
{
dat_eeprom=zig;
Eeprom_rd_wr_sub();
Eeprom_Start();

d_eeprom=eeprom_add_rd;
Eeprom_Tx();

ific==1)goto be;
Eeprom_Rx();
Eeprom_Ack();

c=0;

Eeprom_Stop();
return{datain_eeprom);

void Eeprom_Start()
i

SDA_H:
SCL_H:
SDA_L;
SCL_L:

void Eeprom_Stop()

SDA _L:
SCL_H:
SDA_H:

void Eeprom_Tx()// program to send the device address, read/write address,data to be written

i
signed char i_eeprom,

for(i_eeprom=7.i_ eeprom>=(;i_eeprom--)// should necessarily be initialised as signed

char.

c=(d‘__eepmm>>i_ccprom)&0xol;
//sda_ecprom=c¢;
[{PINC&0x02)=c:
if(c)SDA_H;
else SDA_L;
SCL_Hy// clock is essential inorder to write or read
SCL_L:// clk should be alternated
}
SDA_H;
SCL_H;
c=PINC&0x02;
SCL_L;

void Eeprom_Rx()/ program read the data from the EEPROM

Eeprom_Tx();
iffe==1)goto herel:

againi:

d_eeprom=dat_eeprom:// the address from which data is to be read/written is to be
passed

Eeprom_Tx():

ifle==1)goto againl;

void Eeprom_cardcheck()// to check whether the card has been entered

i
unsigned char ¢_eeprom;

Eeprom_Stari();

for (e_ceprom=0;¢_ecprom=5i¢_eeprom= +)
{
d_eeprom=0xa0;// to send the device address
Eeprom_Tx();
if{c==1)flag_eeprom=0;
else

I
1

flag_ceprom=1;
goto breac;

i
breac:;

Code for serial communication :

SDA_H:
DDRC=0XFD;
for (1_eeprom=0:1_eeprom==T7;|_ceprom++)

SCL_H;
in_eeprom=in_eeprom<<l;
in_eeprom/=PINC&0x02;
SCL Ly

}

in_eeprom=in_eeprom=>1;
datain_eeprom=in_eeprom;
in_eeprom=0;

DDRC=0xFF;

PORTC=0;

void Eeprom_Ack()// this is to intimate the EEPROM that the read operation is over
i

SDA _H;

SCL H;

SCL L,

void Eeprom_rd_wr_sub()// this routine will be used by both the read & write operations to
send the device address & the address at which the corresponding action is to be taken

Eeprom_Start();

herel:

4 s mnaneaes add wel! devies address is nassed

void Seriald_Init{unsigned int);

void Seriall_Initfunsigned int);

void Seriald_Out{unsigned char);

void Seriall_Out{unsigned char);,

void Serial0_Conout(const unsigned char * unsigned char);

void Seriall_Conout(const unsigned char * unsigned char);

void Serial0_Init(unsigned int BAUD)
{
/* Set baud rate */
UBRROH = (unsigned char) (((F_CPU/(BAUD*1 6UL))-1)==8) ;
UBRROL = {unsigned char) (F_CPU/(BAUD*16UL))-1:
JIUBRROH = (unsigned char)
(UﬁRT_BAUD_CALC(UART_BAUD_RATE.F OSC)>>8) :
//UBRROL = (unsigned char) UART_BAUD_CALC(UART_BAUD_RATE,F_OSC);
/ITX, RX enable and RX Complete interrupt enable
UCSROB = (1<<RXEN0)|(1<<TXENO0)|(1<<RXCIE0):
/* Set frame format: 8data, 2stop bit */
JUCSROC = (1<<URSEL0)|(1<<USBS0)|(3<<UCSZ00).
UCSROC = (3 << UCSZ00);

}
void Seriall_Init(unsigned int BAUD)
{
UBRR1H = (unsigned char) (((F_CPU/{(BAUD*16UL))-1)>=8}
UBRRIL = (unsigned char) (F_CPU/ABAUD*16UL)}-1;
UCSRIB = (1<<RXEN1)|(1<<TXEN1)[(1<<RXCIEI);
UCSRIC = (3 << UCSZ10),

void Seriald_Out{unsigned char data0)

Lo s eenas 0o IRREMY v Wit for emnty transmit buffer

void Led$_Display(unsigned char com,const unsigned char *word,unsigned int n)

{

UDRO = data0; //Start transmition

i
void Seriall_Out{unsigned char datal)
i
while ({UCSRIA & (1<<UDRE1))); //Wait for empty transmit buffer
UDRI = datal; //Start transmition
}
void Serial0_C (igned char *dat,unsigned char n)
{
unsigned char ser_j;
for(ser_j=Osser_j<njser_ji+)
{
Serial0_Out(dat[ser_j]);
}
H
void Seriall C igned char *dat,unsigned char n)
{
unsigned char ser_j;
for(ser_j=0:ser_j<m;ser_j++)
{
Seriall_Out(dat[ser_j]);
H
}
Code for LCD

#define First_Line 0x80
#define Second _Line Oxc0
#define Curser_On OxOf
#define Curser Off (x0c
#define Clear_Display 0x01
#define Data_Port PO

Led$_Command(com);

Data_Port=Ir. I Data
Led en=Led rs=1;

Led_rw=0;

Delay(125);

Led_en=0;

Delay(125);

unsigned char Led i;

for(Led_i=0;Led_i<n;Led_i++)

{
Led8_Write{com+Led_i,word[Led i])

void Led8_Decimal2(unsigned char com,unsigned char val)

{

unsigned int Led_hr,Led_tLed_ o)

Led_hr=val%100;
Led_t=Led_hr/10;
Led_o=Led hr¥l0;

Leds Write(com, Led_t+0x30);
Led8 Write(com+1,Led_o+0x30),

shit Led_rs = P27,
sbit Led_rw = P276;
shit Led_en = P275;

void Led§ Init():
void Led®_Command(unsigned char);
void Lcd8_Write(unsigned char,unsigned char);

void Led8_Display(unsigned char,const unsigned char® d int);

void Led8_Decimal2{unsigned char,unsigned char);

void Led8_Decimal3{unsigned char,unsigned char);

void Led8_Decimal4(unsigned char,unsigned int);

void Delay(unsigned int);

void Led8_Init()

{
Led®_Command(0x38); i/t select function set
LedS_Command(0x06); /fentry mode set
Led8_Command(0x0c); /idisplay on
Led$_Command(0x01); /lclear display

1

void Led8_Command{unsigned char com)
{

Data_Port=com,

Led_en=1;

Led_rs=Led_rw=0;

Delay(125);

Led en=0;

Delay(125);

void Led8_Write(unsigned char com,unsigned char Ir)

void Led8 Decimal3(unsigned char com unsigned char val)

unsigned int Led_h,Led_hr,Led t.Led o

Led_h=val/100;
Led_hr=val%100;
Led_t=Led_hr/10;
Led_o=Led _hr%10;

Led8_Write(com,Led_h+0x30);
Led8 Write(com+1,Led t+0x 30);
Led8_Write(com+2,Led_o+0x30);

void Led®_Decimal4(unsigned char com,unsi d int val)

{

unsigned int Led_th,Led_thr,Led_h,Led hr,Led tLed o

val = val%10000;
Led_th=val/1000;
Led_thr=val%1000;
Led_h=Led_thr/100;
Led_hr=Led_thr%100;
Led_t=Led_hr/10;
Led_o=Led_hr¥al0;

Led8_Write(com,Led_th+0x30);

Lecd8_Write(com+1,Led_h+0x30),
Led8_Write(com+2,Led_t+0x30);
Led8_Write{com+3,Led_o+0x30);

oA Pralacdimebonad int dalt

while(del--);

H
SR A T-MEGA| 64--TWO SERITALSHHIINIIIT

#define F_CPU 8000000UL

void Serial0_lnit(unsigned int);

void Seriall _Init{unsigned int);

void Serial0_Out(unsigned char);

void Seriall_Out{unsigned char),

void Serial0_C: igned char *,unsigned char);
void Seriall_Conout(const unsigned char * unsigned char);

void Serial0_Init(unsigned int BAUD)
{
/* Set baud rate */
UBRROH = (unsigned char) ({(F_ CPU.I’(BAUD'].(:UL)]-I)‘A"A'S) v
UBRROL = (unsigned char) (F_ CPU:‘(BAUD‘MUL})—I
//{UBRROH = (unsigned char)
(UART_BAUD_{ CALC(UART_BAUD_RATEF ' 0SC)>>8);
J/JUBRROL = (unsigned char) UART | BAUD_CALC(UART | BAUD RATEF_OSCh
JITX, RX enable and RX Complete interrupt enable
UCSROB = (‘I<<RXENEI}',{I'CfT“){ENO}l(l‘C(RXCIEO]:
/# Set frame format: 8data, 2stop bit */
JUCSROC = (l<4‘~|JRSELOHIl“~<USBSO)l{3¢<UCSZ.OO);
UCSROC = (3 << UCSZ00),

)
void Seriall_Init(unsigned int BAUD)
{
UBRRIH = (unslgllcd char) ({(F_ CPUABAUD*16ULY)-1)>>8) ;

& W am DR ALTE AT

APPENDIX B

16F877A PIC MICROCONTROLLER
PIN OUT DESCRIPTION

e DiP | PLCC | OFF |VOIP| Buffer
FPin Name Pin# | Pind | Pin# |Type Type Description
[CSCICLKIN 13] | 1| STCNOSH |Gecilator crystal nputiexemal cock $0Urce ot
OSCZCLKOUT 4 15 3 0 - (Dscilator orystal cutput Connecss 1o erysial or resanakd
erystal escillator rode. in KRG mede, OSC2 pin cliputs
(CLADUT which has 1/ the frequency of D5C7, and
denotas the instruction cyce rate
WICTRVerTHY 1 2 18 | P ST Master cear iresat) input of proga=m g woltage rput o
Figh voitage test mode eonitrel This pr is an aciiva low
reset to the device
PORTA 15 2 s-cirectznal 20 part =]
RAAND 2 3 19 o] TIL RAD tan a'so ke anaog gl
[RALANT 3 4 20] T Ra1 can as0 be anaog gl
RAIANZNmES- 4 £ n Le] T RA2 con alss 5e analog rpLi2 o regatee aralog rel-
arunce vo'tage
RAVANI YRz 3 & 2 | m RAZ can ais0 be andiog inputd o- sositive analog refer-
ence voiage
RALTOCK] [T 23 | w0 ST R& can also be the clock mput 1o the Timerl Lmer
counter. Dutput s cpen dean type.
RAGTSSANL T 3 24 ta) TIL RAS can also be analog inputs o e skave select for
the symchronous senial porl.
PORTE 15 a o-drectional V0 port. PORTS can e software
programmed for nternal weak pul-up an all rpus.
RBQINT kx] 8 | TTUSTM REC can 350 ke the extera niermupt pr
RB1 34 ar g Us) T
R32 kY 33 10 o] L
REIPSM 36 33 n 0 T REZ can 250 e the ow voiage woa~mrg e
RB4 7 4 i G TIL Irsarmupe or: thange pr
RES 38 42 15 i TTL Iemupt on change o
RE&PGC 3 43 5 | | TLsT Iemups on thange po 2r le-Srean Debaaes pn
Seral prograrm g dlack
RETPGD 42 4 W o | TrLsTn Irsemups on change b of Ies
Seral progeamm 7 data,

UCSRIB = (1<<RXEN1)(1<<TXENDj(1<<RXCIEI})
UCSRIC = (3 << UCSZI0Y),

void Seriald_Out{unsigned char data0)

i
while ({UCSROA & (1<<UDRED))); //Wait for empty transmit bulfer
UDRO = data); /Start transmition

}
void Seriall_Out{unsigned char datal)
{
while ({UCSRI1A & (1<<UDREL))); //Wait for empty transmit buffer
UDRI = datal; //Start transmition
}
void Serial0_C t{const unsigned char *dat,unsigned char n)
{
unsigned char ser_j;
for(ser_j=(;ser_j<n;ser_j++)
i
Serial0_Out(dat[ser_j]):
H
H
void Seriall_Conout(const unsigned char *dat,unsigned char n)
{

unsigned char ser_j;
for(ser_j=0;ser_j<niser_j++)

Seriall_Out(dat[ser j]):
i
1
\
i
- | TP | PLCC | OFP |FOP | Bulfer ; o
Fig Hemy. Pine | Pk l Ping |Type| Type serip
- | FORTGC 3 abrdrecen 120 port]

SCHTICECTICA] 2 1% 2 =] AT RCE car olyo ge the ~arl osclister oot <r 2
“ran) cleck rpot

RCUT IS " 18 35 &7 RC1 ¢an also e che Timerl oecliplo’ pwt o
Captred mput Commassd « 2,

L (] x| o a1 RO G Vs ke e Saptur sl

PUvhl T catput

RLVSIKECL 18 0 n (5] 3T REC3 can 2is0 be tw srerondss 308 cotk naul
cutptt Yo Laoth 5P ana 2 maddes

RCASDISDA b = 42 | v B RC: can 230 be tha S Data In (5P moda: o
data 110 41°C moda)

RCES0D 2 % 23 | 1o sT RCS con 250 be the 5P Data Tt
V51 rrada),

RECBTHCK 5 27 a | 3T RCE carn: also be the USART dsynchrorous Transma ar
Symehronous Clack

RCTRXDT % 9 1| e 5T RCT canalsa be this USART Asynchronous Recsise or|
Fynchionous.

T a bi-direciona: L0 pert or paralel sl pon
when intefaging 10 3 MLIORrICESS0T DUS

ROOPSPO 19 21 B (G STATL®

RD1PSPI ol 2 3 | wo | sTATL™

(RD2PSP2 n n 40 | wo | sTATMLA

|ROWVPSPY g 22 21 W STATLR

RO4PSPL 37, ki z > | ST

ROGPSPS 8 £l 3 vo | STITL

RDSPEPE 23 a2 4 Bo ETTTLR

ROTPEET kg k- 5 =] STATLA

FORTE 1 a b-dinectanal D0 port

RELTIHANS a a 2 | vo | sTTTLe RED =an alas be reac contred f2r the paralie’ s.ove port
of analog I“m

RE 1/TTUANG a 10 26 W | STTTL RE| can aino be vrise conirol for the parallel 3w port,
of analog inputs

RE2TDANT 1] 1 27 | vo | sTATL™ RE2 tan aiso be se'ect contro for the paraliel dawe
part, or analog inputT.

Vss TEIT) 138 | 6238 | F = m.ﬁ e

Voo TTa2| 1435 | a8 | P — Fosdive

NT — | LIE|IZTE - puuz-mt NGE BT naly conne: M TFese pine anaddd |

&0 nuM be el

Legend: 1 = input O = output 'O = input/output P = power
= Not used TTL = TTL input ST = Schmitt Trigger input
Note :
| This buffer is a Schmitt Trigger input when configured as an external interrupt.

3. This buffer is a Schmitt Trigger input when used in serial programming mode.

3. This bufter is a Schmitt Trigger input when configured as general purpose VO and a TTL

input when used in the Paralicl Slave Port mode (for interfacing to a microprocessor bus).

4, This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a

CMOS input oerwise.
1/0 PORTS

Some pins for these /O ports are multiplexed with an alternate function for the peripheral
features on the device. In general, when a peripheral is enabled, that pin may not be used as a

general purpose 1/0 pin.

Additional Information on VO ports may be found in the 1C micro™ Mid-Range

Reference Manual,
PORTA AND TRISA REGISTER

PORTA is a 6-bit wide bi-directional port. The corresponding data direction register
is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input, i.¢.,
put the corresponding output driver in a Hi-impedance mode. Clearing a TRISA bit (=0) will
make the corresponding PORTA pin an output, i.e., put the contents of the output latch on the

selected pin.

PORTB AND TRISB REGISTER

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register
is TRISB. Sctting a TRISB bit (=1) will make the corresponding PORTE pin an input, i.e.,
put the corresponding output driver in a hi-impedance mode. Clearing a TRISB bit (=0) will
make the corresponding PORTB pin an output, i.e., put the contents of the output latch on the
selected pin. Three pins of PORTB are multiplexed with the Low Voltage Programming
function; RB3/PGM, RB6/PGC and RB7/PGD. The alternate functions of these pins are
described in the Special Features Section. Each of the PORTB pins has a weak intermnal pull-
up. A single control bit can tum on all the pull-ups.

PORTC AND TRISC REGISTER

PORTC is an 8-bit wide bi-directional port. The corresponding data direction register
is TRISC. Setting a TRISC bit (=1) will make the corresponding PORTC pin an input. i.¢..
put the corresponding output driver in a hi-impedance modePORTD AND TRISD

Each bank extends up to TFh (1238 bytes). The lower locations of cach bank are
reserved for the Special Function Registers. Above the Special Function Registers are
General Purpose Registers, implemented as static RAM. All implemented banks contain
special function registers. Some frequently used special function registers from one bank

may be mirrored in another bank for code reduction and quicker access.
EEPROM

EEPROM (electrically erasable, programmable read only memory) technology
supplies Nonvolatile storage of variables to a PIC-controlled device or instrument. Thal is
variables stored in an EEPROM will remain there even after power has been turned off and
then on again. Some instruments use an EEPROM to store calibration data during
manufacture. In this way, each instrument is actually custom built, with customization that
can be easily automated. Other instruments use and EEPROM to allow a user to store
several sets of setup information. For an instrument requiring a complicated setup

procedure, this permits a user to retrieve the setup required for any one of several very
different measurements. Still other devices use an EEPROM in a way that is transparent
To a user, providing backup of setup parameters and thereby bridging over power outages

The data EEPROM and flash program memory are readable and writable during
normal operation over the entire VDD range. A bulk erase operation may not be issued from
user code (which includes removing code protection. The data memory is not directly
mapped in the register file space. Instead it is indirectly addressed through the special
function registers (SFR).

There are six SFRS used to read and write the program and data EEPROM memory.
These registers arc:

EECON1

EECON2

EEDATA

EEDATH

This section is not applicable to the 28-pin devices. PORTD is an §-bit port with
Schmitt Trigger input buffers. Each pin is individually configurable as an input or vutput.
PORTD can be configured as an 8-bit wide microprocessor Port (parallel slave port) by
setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

PORTE AND TRISE REGISTER

PORTE has three pins REO/RD/ANS, REI/WR/ANG and RE2/CS/ANT. which are

individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.
MEMORY ORGANISATION

There are three memory blocks in each of the PICIGFST7 MUC’s. The program

memory and Data Memory have separate buses so that concurrent access can occur.
PROGRAM MEMORY ORGANISATION

The PIC16f877 devices have a 13-bit program counter capable of addressing SK. *14
words of FLASH program memory. Accessing a location above the physically implemented

address will cause a wraparound.
The RESET vector is at 0000h and the interrupt vector is at 0004h.
DATA MEMORY ORGANISTION

The data memory is partitioned into multiple banks which contain the General
Purpose Registers and the special functions Registers. Bits RP1 (STATUS<6) and RPO
(STATUS<5>) are the bank selected bits.

[RPIRPO 1 Banks 1

l'00 l 0 —|

01 1
W--—L .

T _1 |

e I

EEADR
EEADRH

EEDATA holds the 8-bit data for read/write and EEADRR holds the address of the EEPROM
location being accessed. The 8-bit EEADR register can access up to 256 locations of data
EEPROM.

TIMERS

There are three timers used Timer 0, Timerl and Timer2
Timer 0

8-bit timer/counter

Software programmable prescaler

Internal or external clock select

Readable writable

Interrupt on overflow

Edge selects for external clock

Timer 1

Timer | can be used as timer or counter

It is 16-bit register

Software programmable prescaler

Interrupt on overflow

Readable and writable

The timer-1 module is a 16-hit timer/counter consisting two 8-bit register (TMR1H) and

TMR L), which are readable and writable. The TMR register pair (TMRIH:TMRIL)

increments from 0000h 10 FFFFH and rolls over to 0000k, The tmr] interrupt, if cnabled, is

generated on overflow, which is latched in interrupt flag bit tmrl[F. This interrupt can be

bled/disabled by setting/clearing tmrl interrupt enable bit tmrl 1E.
Timer-2

Timer2 is an 8-bit timer with a prescaler and a postscaler. [T can be used as the PWM

Time-base for the PWM mode of the CCP module(s). The TMR2 register is readable and

writable, and is cleared on any device resel.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 OR 1:16, selected by control
bits.

The timer2 module has an 8-bit period register PR2. Timer2 increments from 00h
until it match PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and

writable register. The PR2 register is initialized 1o FFh upon reset.

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling

inclusive) to generate a tmr2 interrupt

Timer 2 can be shut off by clearing control bit tmr2on to minimize power c pti
The prescaler and postscaler counters are cleared when any of the following occurs:
A write to the tmr2 register

A write to the t2con register

An any-device reset

Tmr2 is not cleared when t2con is written

ANALOG TO DIGITAL CONVERTER (ADC)

There are two types of analog to digital converter is present in this IC. We use 10-bit
ADC. The ADC module can have up to eight analog inputs for a device. The analog input
charges a sample and hold capacitor. The output of sample and hold capacitor is the input
into the converter. The converter then generates a digital result of this analog level via

enreessive anoroximation. The A/D conversion of the analog input signal results in a

INTERRUFTS

The PICIGF87X FAMILY HAS UPTO 14 SOURCES OF INTERRUPT. The interrupt
control register (INTCON) records individual interrupt requests in flag bits. 1T also has
individual interrupt requests in flag bits. |T also has individual and global interrupt enables

bits.

Additionally if the device has peripheral interrupts, then it will have registers to

enable the peripheral interrupts and registers to hold the interrupt flag bits
PIE1
PIE2
PIR1
PIR2

The following bl shows which devicss have whichintempts.
Civice o6 [7F |ReiF | PSPIF | ADIF | REIF| THIF | SSPIF | CCPIF THRZIE | TMRIIF | EEIF | BELIF| CCR2IF

TR B e & R e ™|

PICToraTTiaTa | Yos | s | Tes | s | Yes | Yes | Yes | s Vas | Yes | Vs || Ve | Yes

ADDRESSING MODES:
DIRECT ADDRESSING:

In direct addressing, the operand specified by an 8-bit address field in the instruction.
Only internal data RAM and SFR’s can be directly addressed.

INDIRECT ADDRESSING:

In Indirect addressing, the instruction specifies a register that contains the address of

the operand. Both intemal and external RAM can indirectly address.

The address register for 8-bit addresses can be either the Stack Pointer or R0 or R1 of
the sclected register Bank. The address register for 16-bit addresses can be only the 16-bit

data pointer register, DPTR.

INDEXED ADDRESSING

corresponding 10-bit digital number. The A/D module has high and low voltage reference

input that is software selectable to some combination of VDD, VS8, and RAZ or RAS.
The A/D module has four registers. These registers are

A/D result high register (ADRESH)

A/D RESULT LOW REGISTER (ADRESL)

A/D CONTROL REGISTER 0 (ADCON0)

A/D CONTROL REGISTER 1 (ADCONI)

Program memory can only be d vin indexed addressing this addressing mode is

intended for reading look-up tables in program memory.
REGISTER INSTRUCTION

The register banks, which contains registers RO through R7, can be accessed by
instructions whose opcodes carry a 3-bit register specification. Instructions that access the
registers this way make efficient use of code, since this mode eliminates an address byte.
When the instruction is executed, one of four banks is selected at execution time by the row
bank select bits in PSW.

IMMEDIATE CONSTANTS
The value of a constant can follow the opeode in program memory For example.

MOV A, #100 loads the Accumulator with the decimal number 100, The same number could
be specified in hex digit as 64h.

OSCILLATOR AND CLOCK CIRCUIT

XTAL! and XTAL2 are the input and output respectively of an inverting amplifier
which is intended for use as a crystal oscillator in the pioerce confi ion, in the
range of 1.2 Mhz to 12 Mhz. XTAL2 also the input to the internal clock generator.

4 3 |

To drive the chip with an internal oscillator, one would ground XTALI and XTAL2.
Since the input to the clock generator is divide by two filip flop there are no requirements on
the duty cycle of the external oscillator signal. However, minimum high and low times must
be observed.

The clock generator divides the oscillator frequency by 2 and provides a tow phase
clock signal to the chip. The phase | signal is active during the first half to each clock period
and the phase 2 signals are active during the second half of each clock period.

CPU TIMING

A machine eycle consists of 6 states. Each stare is divided into a phase / half, during
which the phase 1 clock is active and phase 2 half. Arithmetic and Logical operations take

place during phase! and internal register - to register transter take place during phase 2

OPCODE FIELD DESCRIPTIONSF877A INSTRUCTION
SET
Hnemanic. Descripion 14-Bit Cpoode Staus | lotes
(Operands. sb Affected
BYTEORIENTED FILE REGISTER OPERATICHS |
ADIWF f,d |Add & enaf o oLl aeee feEE |C2CT at
ANDWF fd |AND Yot o oML Affs fege|Z o
CLRF 1 Chaart 90 oo0L Lffe EfEf |2 =
CLRW .| Cle W 000 e wmem |l
COMF 1,d | Compiement! o 1001 afff fEEE)Z
DECF f.d | Cecrement! o 0001 Afff £EgE |2
DECFSZ f.d |Cecremam?! Skprl 12 |e0 1010 dEfE £EEE
f,d | nerement! T | el dfef Effe|Z
INCFSZ f,d | ‘nerement! S-ipED 12 |00 111 dfEf £EE
10RWF f,d | meuste R wiht © |en ol afgg fEEE|Z
MOVF f.d |Mmef o0 1000 dees fpef)Z
MOVHF f Movevint 00 0000 LELF £EEE
HOP - | o Opernon 0 0000 Mo 0009
RLF 1.4 | Aotz L=2fvwough Samy o L0L deef fefe|C
RRF f.d | Rotate Rgh mrough Carry e VL 4
SUBWF fid | Susracti Fom ! ® 0010 defe £eEf|COCZ
SWAPF 1,4 | Sumpnibbesi o 10 defef ffdf
XORWF fd | Sacleive hi | oulo et eeee I 12
BITCRIENTED FILE REGISTER OPERATICN
BCF fib [3tCear” 01 Odkb BEEE fEEE 12
BSF 1,b | 315et | 01 Olbb bEEE fEEE
BTFSC f,b | 3aTestf Sup# Clear 142) 01 lokb BEEE EELE
BTFSS fb | StTestt Skipif Set 13| 81 1lbb bEEE EEEE
LITERAL AND CONTROL OPERATIONS
ADDLW k| Addierd and T | 11 Iz ke kx| CECZ
ANDLW k| AND Rerelwih o 1 11 1001 loddk Meek| I
CALL k Cal subrosice 2 10 Ok kkke KRk
CLAWDT - | Cleariiatchdog Timer © | op o000 olo m9d| TOFD
GOTO k| Gowaddess 2 10 Dkkk ki REER
I0RLW k| incuse OR fera win ¥ 1 11 1000 kdde kkkk| I
MOVLW & | tAeelterel ol 1 10 Ofce badde MERE
RETFE - | 3anrm fromimesro 2| b 0000 9000 1L
RETUN k[Rewm it rerz iny 20111 Ober ek KRR
|RETURN - Renre fom Sutecnnd 2 000G 030 1000
SLEEP . G2 Tl starcey ook N [T TR Y S L Y
SUBLW k| SucTaetiiten nanl 11 Ut kkke k| CDCZ
XORLW k| Sxctusee OR sl w1 3 I11000 M kRER| 2
Hote 1; Sher an b0 ragiter s modifed ae 2 “nctior ' o2 49, WAE DT, 1 frevalse vead W be 1 wel e oresat or

1he sng Therss w5, Sor 13
el
g gt ster e &

ppoLIEZ 20

tihe caza Mek is ¥ for
e date) 22 wier badk wina
sutez on ihe THRD ragistenraed amene 20

PO s Taciad OF 3 CIrTS N

3 3+ corfpursd 35 N3 sdmen o by o &

X

de It resesinere oo teeradifesegres

e 8 PETLCI Y TESL 025 Ta0 CyEiss, The feind 502 5

