PARAMETER ESTIMATION USING
NEURAL NETWORK

PROJECT REPORT 1998-99

Submitted by

j. OM PRAKASH
D. KARTHIKEYAN

R. RAMAR
P. SATHISH KUMAR

Under the Guidance of

M:s. N. KALAIARASI B5.£.

Submitted in partial fulfilment of the requirements
for the award of the Degree of

BACHELOR OF ENGINEERING IN
ELECTRICAL AND ELECTRONICS ENGINEERING

Branch of the Bharathiar University, Coimbatore

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE - 641 006

B '.f.-'; g ﬂ’ A

" Dedicated to our >
beloved Parents |

ACKNOWLEDGMENT

We express our heart felt gratitude to our guide Mrs. N. Kalaiarasi, B.E _
Lecturer in Electrical and Electronics Engineering Department he_lpmg us in aif -
possible ways, rig’ht‘ from procuring mat‘eriais to writing the project report = we
arlso record our deep gratitude for hér valuabie guidance and constructive
criticism given throughout the Project work.

Our heartiest thanks are due to our beldved professor
Dr. K.A. Palanisamy, B.E., M.Sc.(Engg}, Ph.D., IVIISTE; C. Eng (), FIE, Head
of thé Cepartment of Electrica! and Electronicé Engineering for his constant
encouragerﬁent‘

We sincere_ly thank our respected Principal Dr.. K.K. Padmanabhan,
B.Sc. (Engg.), M.Tech, Ph.D.., and th,e'management for their patronage and
facilities which -Were made available for our project.

We are also thankfui to all teaching and non- teaching.staffslof Electrical
and Electronics Engineering Department for their kind heip and encouragement
In making our project successful.

Last but not least, we extend our sincere thanks to all cur friends who |

have contributed their ideas and encouraged us for completing the project -

successfully, -

SYNOPSIS

Parameter esti-mation is defined as the determination of unknown
parameters in a mathematical que[of a physical system from a knowiedge of
input.and cutput data of the system. One of £he major problems In modern
control theory is the estimation of unknown structural parameters contained in a
mathematical model of a system using the measured inpﬁt and oufput data. This
has led to the parameter estimétion problem.

A dynamically system thai clan be represented in terms of an ordinary -
-diﬁerential equation will be called lumped parameter system. When it requires
the use of partial differential equation to describe its dynamically behavior, it will
be called districuted parameter system.

Artificial Neural network can achieve high compuiational rates by
employing a massiye number of simple processing elements. Neural Networks
with feed back connections provide a coniputing model capable of solving a rich
class of optimization problems‘ Here éhe techniquel adopted to est&mazé the
parameters of different systems is Hopfield neural network and perception

network.

In this project a Hopfield neural square estimator is constructed to
estimate the parameters. Here we use neural network as a new scheme to solve

the parameter estimation problems,

The main advantage of the scheme Is the tremendous speed which only
depends on the time constant of the netWork and is not related to the scale of the
p‘robiem.

The parameter estimation problem is also solved us'ng a perception ieasl
mean sguare estimator. A perception LMS estimator is simulated and tested.

The project deals with the problem of .parameter estimation In linear
&umpéd and distributed parameter systems, .using neural networks The
approach folllowed starts by eliminating all derivatives in the mathematical model
of the sysiem by successive integration-ie., it converts fhe differential equation
into integral éne. This succeséive Integration procedure intrcduces the unknown
initial and bou.ndary conditions eipljcjtly in the mathematical mode!l These -
.c:onditions are assumed in the form of truncated laguerre series whose

coefficients are to be determined.

The main advantage of the scheme is the tremendous speed whicr oniy
depends on the time constant of the netvx-/ork and is not related to the scale of the
plroblem.

The parameter estimation problem is also solved using a perception least
mean squere estimator. A perception LMS estimator is simulated and tested.

The project deals with the problem of parameter estimation in linear
lumpéd and distributed parameter systems, | using neural networks. The
approach forllowed starts by eliminating all derivatives in the mathematicat mode:
of the system by successive integration-i.e.. it converns fhe differential equation
into integral c.me. This succeséive integration procedure introduces the unknowr
initial and boﬁndary conditions e%pllc]tly in the mathematical model These -
‘condit‘sons are assumed in the form of truncated laguerre series whose

coefficients are to be determined.

CONTENTS

CHAPTER NO. PAGE NO.
CERTIFICATE
ACKNOWLEDGEMENT
SYNOPSIS
CONTENTS

1. INTRODUCTION 1

[

1.7 INTRODUCTION TO NEURAL NETWORK

1.2 HISTORY OF ARTIFICIAL NEURAL NETWORK 2

O

1.3 KNOWLEDGE BASED INFORMATION PROCESSING
1.4 NEURAL INFORMATION PROCESSING | 5
2. HOPPFIELD NETWORK - 10
2.t INTRODUCTION 10
2.2 THE NEURAL LEAST SQUARE ESTIMATER y
3. PERCEPTRON 17

3.1 INTRODUCTION 17

o

3.2 GENERAL PERCEPTRON ALGORFTHM

3.3 WIDROW - HOFF LMS ALGORITHM FOR TRAINING

THE PERCEPTRON . | : 8

INTRODUCTION TO LAGUERRE POLYNOMIAL 21

4.1 INTRODUCTION ' 2"
4.2 DEFINITION OF LEGUERRE POLYNOMIAL iy
LINEAR LUMPED SYSTEM 25

51 LEAST SQUARE ESTIMATION OF COEFFICIENTS OF
LAGUERRE POLYNOMIAL-SINGLE VARIABLE CASE 25

5.2 IDENTIFICATION OF LINEAR LUMPED SYSTEM

USING LAGUERRE POLYNOMIAL 26
521 PROBLEM FORMULATION | 26
522 MATHEMATICAL PRELIMINARIES 27
5.2 3 IDENTIFICATION PROCESS | 28
LINEAR DISTRIBUTED SYSTEM 31

6.1 LEAST SQUARE ESTIMATION OF CO-EFFICIENTS OF
LAGUERRE POLYNOMIAL-DOUBLE VARIABLE CASE 31

6.2 IDENTIFICATION OF LINEAR DISTRIBUTED SYSTEM

USING LAGUERRE POLYNOMIAL 33
6.2.1 PROBLEM FORMULATION ' 34
6.2.2 MATHEMATICAL PRELIMINARIES 37

6.2.3 IDENTIFICATION PROCESS 40

7. SOFTWARE
7.1 GENERAL PROCEDURE TO FIND PARAMETERS
OF A SYSTEM
72 ALGORITHN 7O ESTIMATE PARAMETERS OF |
LINEAR LUMPED SYSTEM
73 ALGORITHM TO ESTIMATE PARAMETERS OF
LINEAR DISTRIBUTED SYSTEM
7.4 PROGRAMS
8. CONCLUSION
REFERENCES

APPENDIX

40

I
L

PRy
(R

Chapter 1

CHAPTER -1

INTRODUCTION
Parameter estimation s deﬁned as the determination of unknown
prarameters in a méthematical model of'a physical system from a Know\ed'ge of
input-output data of the system, such that over a desired range o operating
conditions the model output are close, in some wel! defined sense |, to the oulpul

of the physical system, when both are subjected to the same inputs.

In thils project Hopfield least square estimator is constructed to estimate
the parameters. A Hopfield Neural network approach is .based on the modifiec
Hopfield enérgy function. Generally ,sbeaking, tnere are three numerical
lechnigues thét can be employe'd for feast square estimation. They are .
Vgeneralized matrix inversion, singular value decomp.osition and GR
decomposition. Although the performances and complexities of these technigues
are different, they are computationally intensive and difficult for real time
processing. Here we use neural network as a new scheme lo soive e
parameter estimation problems. The main advantage .of the s_c.heme s the -
tremendous speed which only depends oﬁ the time constants of the network anc
Is not related to the.scale of the problerﬁ,

The parameter estimation problem is also sclved using-a perceptron LS

estimator. A perception LMS estimator is simutated and tested.

The project deals with the problem of parameter estimation in lnear
lumped and linear distributed parameter systems Qsing neural networks. The
approach followed starts by eliminating ail derivatives in the mathermaticai model
of the system Dy successive integration i.e., it converts the differential equation
linto an integral one. This -successive integration procedure introduces the
unknown initial boundary conditions explicitly in the mathematical model. These
conditions are assumed in the form of truncated laguerre series will then viele an
estimate of the initial and boundary conditions. This way the oresent
identification problem reduces to that of determining the coefficients of ine
aforementioned truncated laguerre in fruncated laguerre series and arc
ntroduced into the integral equation whére upon equating coefficients of ike
laguerre polynbmials, a linear system of eguation in both the unkncwn model
parameters and unknown faguerre coefficients of the initial and boundary

conditions is derived.

11 INTRODUCTION TO NEURAL NETWORK
1.1.1 HISTORY OF ARTIFICIAL NEURAL NETWORKS

The progreés of neurobiology' has allowed researchers o builc
mathematical modéls of neurons to sifmulate neural behavior. The idea dates
back to the early of 1940 's lwhen one of the first abstract models of a neuron
was introduced by Mc Culloch and Pitts | 1943). Hebb (19489 proposed a

learning law that explained how a network of neurons learned. Other researchers

-pursued this notion through the next two decades, such as minsky (1954) and
Rosenblatt {1958). Rosenblatt is credited with the perceptron learning algorithr .
at about the same time, Windrow and Hoff developed an important varnaton of
perceptron learning, known as the Widrow - Hoff rule

Later, Minsky and Pafert (1969) pointed out theoretical limitations of singie
- layer neural network models in their héndmark book perceptrons. Due to this
pessimistic projecti.on' research on arﬁficial neural 'networks lapsed nwo an
eclipse for nearly two decades. Despite the negative atmosphere, some
researchers still continued their research and produced mea.ningfuﬁ resulls. For
example, Anderson (1977) and Grossberg (1980} did impertant work on
psychological models. Kohonen(1977) developed associative memory models.

In th.e early 1980's, the neural network épproach was’ resurrecied.
Hopfield (1982) introduced the idea of energy mininnzatio.m in physics nto neural
networks. H.is influential péper enclosed this technciogy with renewed
momentum. Feidman and Ballard(i982) made the term “connectinist’ popuiar -
.Sometimes, connectionism is also referred to as subsymbolic processes, which
have become the study of cognitive and Al systems inspited by neurai nelworks.
Uniike symbolic Al, connectionism emphasizes the capacity of learning and
discoverirg representations. Insiglously, connectionism has become a common
ground traditional Al and neural network research.

in the middle 1980's. the boc;R parailel Distributed Processing by

Rumelhart and MeClelland (1986} generated great imracts on compuier

cognitive. and biclogical sciences. Notably . the backpropagation iearning
algorithm devel_oped by Rumelhart, Hinton, and Williams (1986) offers a powerfu
isoiution o training a multi Iay-er neural network and shattered the curse imposed
on perceptrons. A spectacular success of this approach iz demenstrated by the
NET talk system developed by Sejonwski and Rosenberg (1887). a system that
converts English text into highly intelligible speech. It is interesting to note,
nhowever, that the idea of backpropagation had been developed by Werbos
(1974} ard Parker (1982) independently.

Although tﬁe neural network approach rejects the nction of separating
knowledge from the inference mechanism. it does not reject the importance of
knowledge in many tasks that require intelligence It just uses a different way o
store and manipulate knowledge.

The symbolic apprcach which has long dominated the field of Al way
recently czhallenged by neural network approach. There have been speculations
about whether one approach should coexist and combine._ More evidence favors
the integration aJter'native in which the'lpw-[evel pattern recognition capabiuity
offered by the_neufal network approach and the high-level cognitive reasoning
vab]lity provided by the Symbblic apprecach compliment each other. The opuma
architecture of future intelligent systems may well involve their integration n one

way or another.

kinds of knowiedg,e' in building a knowlédge - based sysiem . déép KNowleage
and surtace knpwiedge_

Surface knowledge is the heuristic, experiential knowledge learned after
solving a large number of problems. 1t Is the knowledge that human experts
often rely on. it usually offers a quick, satisfactory solution, which s not
necessarily the best though. The main problem with surface knowledge is 11s in
adequacy in dealing with novel situations.

Deep knowledge refers 1o the ba;ic laws of nature and the fundamental '
structurai and behéyioral principies of the domain. Invocaticn of deep knowledge
for problem solving Is sometimes called reasoning from first principies. in
comparison with surface knowiedge. deep knowledge has a stronger formal
pasis. It allows a derivation of a solution even for a novel situatior, but the
process may be time-consuming. Cne way to make it more efficient for use o
compile it. However, compiied deep knowledge may not correspond 1o surtace
knowledge since they come from aifferent sourceé. in addition, there is no
guarantee that every piece of suriace knowledge can be proven b.ased an deep
knowledge. What is important in practice 1S how the two kinds of knowiedge can
be integraled so as to optimlzé the s.ystem performance.

in some knowledge - based systems. we make distinctions petween
metalevel and object-level knowledge. Object-level knowiedge is the knowledge
for solving the problem in the defined domain. Metaleve! knowledge s the

knowledge which controls the use of object-level knowledge. The employment of

metalevel knowledge i< intended 1o provide a betler control of chject-leve:
knowledge. However, metalevel knowledge is not the same as the contic
wnowledge housed in the inference engine As a matler of faét, metlalevii
knowledge is, also controlled by the inference engine. In a metalevel reasoning
System, metalevel knowledge Is in_vokéd first, which then selects appropriaie
object-level knowledge to méke inference.

The inference engine govemns the use of the knowledge stored in the
knowledge - base. While the design of the inference engAine is full of variety. we
'\dentify a general knowledge - pased algorithm as foliows

1 The inference engine selecls a piece of knowlecge from the -
knowledge - base.

2. The inference engine executes the selected knowledge either i
iransform the goal or to generate & new fact.

3. If the goal is solved, then exit and succeed. !f é ceriain sloppms
condition is met such as the case when the knowledge.available is exhausied
put the goal is not soled yet, then exit and fail. Otherwise go 1o siep 1.

41.1.3. NEURAL INFORMATION PROCESSING

Biclogical neurons transmit electrochemical signals bver naturai
pathways. Each ne.uron receives signails from other neurons through special
anctions calied synapses. Some inpuis tend to excite the neuron, others tenc w
inhibit it. When the cumuiativ‘e effect exceeds a threshold, the neuron fires and

sends a signal down to otner neurons. An artificial neuron models these simple

biclogical characteristics. Each artlificial neuron receives a set of inputs. Each -
linput is multiplied by a weight analogues to a synaplic strength. The sum of ail
weighted inputs determines the degree of firng called the activation level
Notatially, each input X is modulated by a weight W, and the total input s
expressed as

AW,
or in vecter form X W Where_ X =X ><Z Ky o, Xmi and W = [W, W -\;“‘J.j
The input signal is further processed by an activation function to produce the
output signal which, if not zero, is transmitted along. The actiQation function can
he a thresheid function or a smooth function like a sigmoid or a hyperbolic
tange.nt function. |

A neural network is represented by a set of nodes and arrows, whicn is a
fundamental concept in graph theory. A'Qode cores ponés to a neuron, and an
arrow corresponds to a connection along witn the diraction of signal flow
petween neurons.

The dynamic behavior of the neural network is descriced by either
differential equations or difference equations. The former representation
assumes continuous time and can be used to simulate the network on an anaiog
computer, whereas the latter uses discrete time and is usually taken to simuiate

the network on a digital computer.

Chapter 2

Hop'field Network

CHAPTERII

HOPFIELD NETWORK
2.1 INTRODUCTION ; |

Hopfield and tank have shown that several optimization problem can bo
solved rapidly by Hopfield networks which are recursi;/e networks of simpie
neuroh like analog processors. With Hopfield Hobﬂeld networks | the arguments
of an objed function is converged tc a vector of a hypercube, Therefore thérr
applications are restricted to decision aptimization probiem_ Here we will deal
with problemé in which the arguments of objective functions are real numbers.
Neural network. tnat solves least square estimation problem is derived with this .
‘network, the objective function can converge o any inner poi.nt of a hypercube,
giving a real valued solution with a tremendous speed. Because of the convex,
nature of the chosen energy function, the problem of convergence to a local
minimum does not arise. A space iterative search teghnique is intrcduced so as
to find the optimum soiution that can exist at any point within the Spvéce.

Hopfield Nelural network havé surprising powerful computational
properties. Hopfield. and Tank have_shoWn that these networks are able to solve
severed opltimization problerﬁs, such as travelling salesmen problem which s
NP-Complete Problem, A/D Conversion, Signal decision, and so on.

Basically a Hopfieid network perform a kind of cc;nstrained least square

(LS} or Quadratic programming operation employing a gradient procedure, such

that the optimization results is conveyed to a venéx of hypercube. The
optimization results are in binary form.

In signal and image processing one cof the most important computation is
LS estimation. Such as linear prediction, pararﬁeter estimation and
deconvolutioﬁ. The estimated Coefﬁcients.of an LS problem are usually required
to take on real -value rather than binéry.

in this project we used the continucus work mode of ..Hopﬂéld network |
which offers the advantage of fast ccnvergence and simplicity of system
configuration. The energy function is chosen as one half of the error squares of
the problem. By introducing a space iterative seargh technique the estimated
coefficient are shown to lie at anywhere within the space technique',’resuiting ina -
greatly extended dylnamic range. Since t.he convergence time of neural network
dloesn’t depend on fhe numbper of neurohs in the network, this is very suitable for
solving large scale problems whenever high speed, such as real time
processing, is cne of the requirements.
2.2 The Neural LS Estimator

| the LS problem is to find a vector V mini>mizing the Euclidean length of

Av-b where AER ™" and bER™ are known , VER " in other word, itis.required ‘to
find V such that ,H AV - bll is minimized. The energy fun-::lion for the neural

network ts defined as

Eiv) =1/2 lIAV-bl

=12 Y ViAi=b) (Y ViAi-b)
=1 i=1
where Vi is the i' element of V, Ai is the i column of matrix A. The n
elements of vector V are associated with the states of neurons in.the network. .
When tre energy. function reaches 'minimum the state of the neurons
cbrresponds to.the 'LS solutibn.
Here we used the cont.inuous work mode of the neural networks. Equation
(1} is used as the energy functicn and from this energy fuhction a network is
constructed. Whose stable point correspaending o the m‘inimum of the function
E(V)..The Hopfield network is inherentty gradient.de.scent. Therefore the network
is derived from the gradient descent point of Y leue; that is
duidt =-a E (V) _ 2.2y
Vy=g(Uy 1= W,2:3.,4.....n | (2.3)
w‘here U, isthe summation of all the inputs to the " neuron in the .
.network .V, is the state { output } of i"" neuron g, is the ﬁonlineér activation
function of the ™ neuron which is an output bounded function. Thus V is
restricted in a bounded region which is usually a hypercube in an ﬁ—dimenslonai
space from {2.1) and (2.2), we get the network as
du/dt=-(ATA)V+ A C(24)

or more specifically,

dui /dt = .

T

TiVi+l =12, n (2.5)

=1

where Tij I1s the synaptic weight from i neuron to " neuron

I Is the external input to the " neurcn and by they are given by

n
Tij=-A'A] =- Laa (2.6)

1 =-Ab =- Y a.b, (2.7)

The connection matrix Tij is symmetric.

The chance of the energy function E as the network evolves with the time

is given by

de / dt v OBy vk gt

n
Ay ‘(—dUn ;) dvk /dt

-

n
v gk' (UKk) (dvk /d1) : (2.8)

k=

I

Thus the sufficient condition for dE/dt - is

g, = 0 (29
T i=02.n

The second derivative of the energy function as given by

ATE (W)= A ‘ .10} -

is a non-negative definite matrix - thus E{v) is a convex function o
any convex subset of N- dimensional Euclidean spacé.
23 SPACE ITERATIVE SEARCH FOR OPTIMUM STATE
If we consider using hy./perboiic tangent as the activation function for the
neurons such that g, (u) =b tank'(}_w) (2.171)
| Where b and 7. are the amplitude and steepness of the function
respectively. A subset of R" is defined and is given Dy
D" ={VER":-b<v<b, i=123 nl
if the network is initialized at an interior point of D" | the state space flow 1s
always within D" If E(v) has its minimum in D', then the networks describea in
the previous‘secti.orn is readily appiicabié. Otherwise, network will finally seitle
down at a point very close the boumdar.y of D", which may not pe the optlimum |
solution. This problem can be resolved as follows.
Suppose that the desired solution V lies near d vpolnt ¢ and within D7
(VER ™-Db =, C b 1=123..n}wecan shift the origin of the state space 0
C such that
V. =V -c | (2.12)
Where V., and v are respectively’, the veclor in new and c.:»id coordinate
system. Substituting the shifted vector into (1) yields

= (v.) = 121l Ave - beli® (2.13)

where bc = b-Ac comparing (2.13) with {2.1) and using (2.6) (2.7) . & 13
found that the network configuration ana synaptic weight remains the sarme. The

only change is external input values to the network as given by

m
| .

n
—:_‘ahzwbr;k: \~ akl(bk'; a

=

The state of the network will converge to v, when the function E reaches

its minimum. Then the final solution for Ls protiem is

V=V +C

-
C

unfortunately, in most cases . we do not have a prior knowledge of the
location of tre LS solution i.e., we do not know as where the coordinate system

ought to be shifted. For such general cases, we Use€ a space iterative searcn

technigue to find the LS solution in space R

The basic procedure is that the system starts search at a pdmt m D ano
settle down at C, If C, is not ﬁear the boundary of D" then it can be considered
as the minimum of E and we have échieved the solution. if C. is very close (¢
‘the boundary of D", the minimum E may even be outside D" In this case we
shift the origin of the state space to C; by changing extended inputs o the
network according to (14) and state the search again. This time let the network
converge at point C, in the new coordinate system. if C, is not at or very ciose
to the boundary of D™ C, + C, is the solution. if it is not sa . shift the coordinate

system to pomnt Czland continue to search again. Suppose that after "' the shift of

the coordinate system, the network setties down at point

C. .. which is inside D"

Then the final LS solution s

(2.15)

1oy

CHAPTER lli

PERCEPTRON

3.1 INTRODUGTION

The _perceptron‘ first introduced in the late 1850's by Frank Rosenblall
at Cornell University, is & twoiayer féedforward network of threshold logic units.

The perceptron was among the first and the simplest learning Machines
that are trainable. The mode of training 1s supervlsory; hecause the steos 10
algorithm involves the comparison of actual outputs with desired outputs
associated with the set of training patierns. Supervisory training applies as well
to Least Mean Square (LMS) algorithm. The LMS algerithm was developed ‘or
adaptive systems ‘research geared towards civerse applications, including noise
cancellation and adaptive equalization. Accompanying the structural simpfhicity 07
‘perceptron is a powerful convergence thearen.

In general, a perceptron is not a single TLU, because it is also has & layer
ot iixed processing units. Perceptron denotes the class of two-layer feed forward
networks.

a) Whose first-layer units have fixed functions é.md with fixed connectons

weights from the nputs and

b) Whose connecting weights linking this first layer to the second layer of ine

outputs are learnable together with the thresholds of the units in that outputlaver

Fig 3.1 gives a two tayer perceptron network with 4 neurors i the
input layer and three neurons in the output layer.

GENERAL PERCEPTRON LEARNING ALGORITHM

h Select random weights between input and output layer as W,

1) Specify a random input vector e. Let the selected vector be briefly
described as

e={e, er,....... 'em) where g, =1 or 0.

i) Change the weights through

W‘I [ATSIN W‘.l il + A W .
with A w, = uw - ey
Here ¢, =a -f(g Wyey) =a -f(net J) is the. difference between the end

output and the actual output at the place.of I, and « > 0is a small number.
(iv) Continue with step (if)
Here e the input and a; the output
the algorithm ends, when the network produces the correct final vector for

all input vectors.

22 WIDROW-HOFF LMS ALGORITHM FOR TRAINING THE PERCEPTROMN

The widrow - Hoff or LMS algorithm uses a linear rule for training a _
perceptron. Widrow called a trainable TLU, allowing both aneiog and real value

inputs, an Adalinel tet d (k) be the desired real - valued output for the

augumented pattern y (k) , and suppose t-hat the corresponding welgnt veclor 1-
w (k). The error at K" iteration is
e, = dk) ~wik)-y Kk

The LMS algorthm 1s a gradient descent.algerithm reguiring the:
squared error function.
e’ = (d () Wk y (k))T = k) - w kg y (k)
to be minimized at the k " iteration. Y (k) and w {k} are random vectér‘ so thate,”
Is not the emsembké mean squared erlr@r‘ E (ek:) , where E () denctes the
expectation operator.

The drfference‘ between LMS algorithm and the. perceptron
algorithm is that the error minimized by the LMS algorithm is a conrtinuous
quantity. Both can be applied to the same Neural network architecture. Here .-

Is the squared error from one pattern.

Then a~k=de, | ow =-2¢e_ vy

Where s kis an apprdximation_of the true gradients , of the ensemole
mean sguarsd error. I we restrict the parameter vector w (K} 0 be.

'deterministic, it 1s routine to verify that

N, =oE(e,) swik) = 2(Qwlk)-P)

Where Q=E (y (k) vy T (k) yisthe N x N auto correlation matrix

of all the N training pattern { y (k) . -4} Yand P =E (d(k} y (k))is a vector o

cross correlation’'s. Applying the gracient decent rute we find that using

vields w(k+1) =W (k) +2 ue, vk

HHOMLIN NOHLdIOHTd YTAVT OML TVHINTD 1°¢ Bij

P REN

s
Vd
) -
\l/ S
L__ o
\C "

sinding -

S
o=

’ \ z/ — ™
NG Y|
A/

A

1aker inding : . Jakel induy

sinduj

CHAPTER IV

4.1 INTRODUCTION TO LAGUERRE POLYNOMIAL
411 INTRODUCTIQN

Orthogoenal functions are used in the field of signal representation anc
approximation, system identiﬁcation.etc.To do the above tasks, it is necessary 0
represent a time function, by the superposition of members of a set of simple
functions. Only orthogonal sets of functions can bg made to synthesize
completely any time function 1o a required degree of accuracy.

Further, the characteristics of an orthogonal set are such that ine
determinatic;n of a particular member of the set combined in a given'time function
can be made using quite simple ma.thematical operatibns. A set of functions
whether orthcgonal anad orthoﬁormal or not said to be complete or closed: if 10
function exist which is orthogonal té every other function, of lthe set unless the
‘integral of the square of the function is itse.If Zero.

We summarize below some of the important properties of orthogonal
functions which are relevant to Laguerre Polynontal.

i) A complete set of erthonormal functions (1) over the‘interval thes
netween a and b, can be used to express 4 time function x (1), which 18 square

integrable in 1 lies between a and b.

Where C, = | x (1) f (1) dt (4.2)
i) The approximation of the signat by a finite numper of orthonormal
function in the minimum mean sguare error sense leads t'o the same ccefficients

as given by equation 4.2.

i) The notion of orthogonality and orthonormality can be extended by '
introducing ea'weighting function w (t). Tﬁis offers the possibility of empnasizing
the Contributiohs of the mean sguare error in a predetermined way.

4 1.2 DEFINITION OF LAGUERRE POLYNOMIAL

The laguerre polynomial is defined as

di
() =exp ()— {texp (O} | (4.3)
. dt'
Thus,
IS O(t) =1
7o (1 =14t
'('| +1) 7. {,)y =2l - (4.4)

The above polynomials are orthonormal in t lies between 0 and » with «

weighting function exp (-t)

. I\

[exp (-0, ()7, dt={1if! :j‘Oifl;j} (4.5)

0

Any function x (I} which is square integrable in t lying between 0 and ~

may be represented approximately by a finite Laguerre series.

)
]

x(ty = X Cu 7o (1) :‘_f- Hae (4.6)

Where C and 7. (1) are Laguerre coefficient vector and laguerre vect!
respectively.
T C=Cy G C ot ' ' (4.7)
Where T stands for {ransposition
) = e (0, 7 O e (U - (4.8) .
The laguerre coefficients
P4

Cof exp(-tyx(M)i (Dl (4.9)
g

are obtained by the minimization of integral square error.

o

- exp-hx®- acl dt (4.10)
0
When we multiply both sides of equation 4.6 by exp (-t) we ge:

N-1

oxp (1) x ()= L cyexp e (@ 11)

1=9

Where { exp {-1) /| (1) } is the set of orthonormal function-int n the
interval 0 and ». called laguerre function. Here we may use the property (i) and

the muitiplication of x (1) by exp (-t) gives more weightage to the initial transient

signal then to the steady state signal. At the same time coefficient C are same

as that for laguerre series. Hence we can stil make use of the operational
properties of Laguerre polynomials.

Differentiating 4.3 leads to a differential form '

— do == - A L= 2 (4.12)

dt dt

Integration of the equation 4.12 we get

t
Froydt =207 (413
0
" In the matrix form equation 4.13 can be written as
B -
1-1 0 ... 00 ‘.}.,O(t)
F '1 O O ‘ / |(t)
Do @ydt = 0] e ‘
0 TP ‘
0¢ 0..1-1 | 7o ()
0.0 O .01 i;M(t)'
t '
J7 ydt = Py () L (4.14)

Where 7. (1) has been truncated in the integration of % n (t) and the
subscript in the parentheses denotes the order of the matrix. Py 'is called the

Laguerre operational matrix, which is upper bidiagonal.

CHAPTER YV

LINEAR LUMPED SYSTEM

51 LEAST SQUARE ESTIMATION OF COEFFICIENTS OF LAGUERRE
POLYNOMIAL - [SINGLE VARIABLE CASE]

For the s;rnulahon of laguerre coefficients on a computer we present a -

recursive algerithm below for evaluating the coefficient of laguerre polynomial

From the equation 4.11, we get

M-

exp (-k At) x {(k At) = Voe, exp -k ab (KA 51

were k=123, .
At = sampling interval

by discretizing equation 5.1 we get,
X =A Cy 5.2

Where

X+ [exp (v by X (AY) - exp (-2 /\t) x (2 At) . exp (- K At) x (kA t)]T

5.3
C, ={CyCp o ¢l 5.4
1
gat)yexp (A Lat)yexp (At e (A yexp (ot

‘}.O(Zﬁt)exp (20) 2, (2at)exp (-2ah o w (2A1) exp (27 1]

&
1l

L}_O(kgt)exp(K\t) (kA t)exp (kath ok M(mt)exp(k\t)‘

5‘:)

Thus the prbblem of finding the coefficient of Laguerre polynomials have
been converted to the problem of finding the vector C,

C, =A, " X, 5.6

Where A .is the generalized inverse of A,

We make use of Greville's algorithm to find the generalized inverse of the
matrix. which help to find the value of coefficients of laguerre polynomials at
each data point. | _

5.2 IDENTIFICATION OF LINEAR LUMPED SYSTEM USING’ LAGUERRE
POLYNOMIAL

In this chapter, we cbnsider the problem of identifying & linear time
invariant lumped parameter system using laguerre polynomials.

in this method the differential equation model is first converted to an
integral equation model. By expanding the input - output signals and the initia:
boundary conditions in Laguerre polynomial, ultimately a linear system o
algebraic equation is derived.

The eduatibns are solvéd usin'g t_hé Neural network to get an estimate of
the parameteré.

‘52 1 PROBLEM FORMULATION :

Consider a linear time invariant lumped parameter system described by

the following differential equation.

a,d’ly (/dt +a dy (t)/dt +ayy () = U 57

6

Where 2 , a. & a are unknown constant parameter.

Given a record of output Yy (t) and input U), the problem is to estimate

the parameters a; . 4 - and a g
5.2.2 MATHEMATICAL PRELIMINARIES :-

A function y (1) where 1t lies between O and ¥ | which 1s sguare

integrable can be expanded in a Laguerre senes.

Y ()= yo ~oll) * Yy ()Y e (T

Where 7., (1), 1 =0, _1,2‘ are the laguerre polynomial and ygy: ... aretne '

coefficient of laguerre polynomiais given by.

v, = Texp (<) y (1) 7 (0t
' 0

[y
48]

An approximation of y (1) n terms of the first N terms of the laguetre

poiyn_omiai will be

ra

gy =Y oy aOFye il 510
=0

Where

YN = [.Yo Yo e Y N

ry = g (U 70 {1 e ()]

The vector function 7.y (t) has the property

- times r - times

Where P, " is an N x N constant matrix which has the general form as

given below |
rCO -FC«.(*1)\] [’C[\W
0 rCy (1 rCy
P, =
O 0
0 O rCy
L. B
Where r G, = [r(-1)(r2) . (mi#1)] 7 11=01 . N1

Applying the above property to the truncated series of y (t) we get,

t t
[] vy g mdtdt =Y Py (1) 5.12
0 0

r-times r-times

5.2.3. THE IDENTIFICATION PROCESS:
Integrating equation 5.7 twice with respect to t we can remove all
derivatives. The advantage is that the above conversion incorporate the -

boundary and initial conditions in an easy manner. Also, the result possesses the

gsmoothing property nherent inall iategrais n contrast to differential o

derivatives. We have, iherefore, by not considering the initial conditions.

i to to
a,yy+a, ymd+ agjfydewzﬂi Uty dtdt 512
0 0 0 00

Now the input and cutput signals can be expanded into Laguerre series.

u) = Uy et | 514

y (= Yo a8 - 515
Substituting the equations 511. 514, 515in 5,13, we have
[ay PMT Youn *ta@s Y Pn ¥ PmT Yo P 7ol =

[P’ U Prlen(l

[
[@)]

Egquating the corresponding coefficient of the Laguérre polynomials
Ly =000, N-1, we have
ay PMT Yous T34 Y Py + 3 PMT Yo Pu= Pu U P 517

Equation 5.17 can be written as

A0 =n 518
Where ' -
[) '\
(PuT Y (an Pad (P Yo Pt |
B T | e |

4

Where (DM1 Y i O wne P P Yo Pou)ooetc indicates

column of the corresponding matrix. Matrix A and h can be evaluated row Uy

TOW.

By giving value of A and h in the Neural network we can calculate

accurately.

CHAPTER VI

LINEAR DISTRIBUTED SYSTEM-

6.1 LEAST SQUARE ESTIMATION OF COEFFICIENT OF LAGUERRE
POLYNOMIAL -[DOUBLE VARIABLE CASE | |

Laguerre polynomials 7., (1) forms an orthonormai‘ basis over t which lies
between O aﬁd . Also vy (x) are Lage@rre polynomials in variable X . wnhicr
lies between O and ». An orthonofmal basis over 1« O, #), X ¢ [G,) =
.therefore formed by the double laguerre polynomials { 7. (1) _-‘\;: (X}

Now consider the two variabie function y (x.1} . xt = [0, =) Then y(x.4) s

expandabie in double Laguerre series.

deyy kb =S Xy, 0w | 5.1

Where y ,are coefficients of -the double Laguerre polynomial expansion giver
by

[exp (Dexp () y (x s (M v (x)dx dt B2
0 O

An approximation of y (x,t) wilt then be

(x) Y MN oy (1 . .
= }‘~r.\| Yy W (X _ 6.3

Where,
yw (X)) = W o (X3 g (X .. W g 0]]

g () = e () ARG

6.4

Multiplying equation 6.1 on both sides by {exp (x) exp (1) }
and then discretizing we have

exp(-k AX) exp (-1 at) y (kA L AL =

=

-

N-1
T Y exp(-kax) exp (HAt) y, 7 (A1 it KAX) 8.5
= i=0 .

=0

Normally at any instant of time we can measure tﬁe value of y(x.t) at alt me
possible points, and then measurement fqr another instaﬁt of time'. Equation 6.5
can be rewritten as |
Y = AU | 6:6
Where
Y, =[exo (-4x) exp (-AL) Yy (AX, AL ... 8XP (-k AX) exp (-Ab),
“y (kax, At) exp (-Ax) exp (-2A1) Y (Ax, 2a0)
exp (-kax) exp (-2A1) y (KX, 2AL exp {-Kax)

exp (- At) y (kax, 1a1)] T 87

rr
L

[nlVEYexp -\ oy (X EXPE-AX) o exp (-\xb o (N exD (Ch) \

Ve A

An=| 2o (vtyexp (- B (kg expi-k v exp -k, colvtYexp vt b e ik

| o
oo UV exn v expl-lsty v (ksx) s ootV E e i L ke

O S S S R

6.9
Using ihe recurrence relation for /. ‘{jt) as given in the equation
(1 +1);,..v‘ (1) = (1420007 -1 ()
and also for w (x) it 1s possible to generate A, rﬁatrlx row hy o
corresponding to each measurement of y (XU Thus we can use Grevile «

algorithm for the two variable also to find the least - square estimate of ti

6.1 [IDENTIFICATION OF LINEAR DISTRIBUTED SYSTEM USING

LAGUERRE .POLYNOMIAL

In this chapter, we consider the problem of identiication of a linear time

invariant distribuled parameter system using Laguerre poelynomials. 'n

‘e
H

method, the parial differential equation model is first converted to an ntegrs

equation model. By expanding the input - output equatJ.._om,-f;a'rw_d:ﬁ"'f'fﬁ_ii},eaF an

Y

N
: Tl

boundary conditions in Laguerre polynonvals, ultimately, a linea -

algebraic equation is derived.

The equations are solved using the Neural network to get an estimatio;
of the parameter.

6.1.1 PROBLEM FORMULATION -

Consider a linear time - jnvariant distributed parameter distributed

parameler system described by the following partial differential equatior.
a oy (x G/t +a Sy (xt)/ox tasy (k) = U (x, t) oo

Where a..a, and a, are unknown constant parameters.

Given a record of output y {x.t) and Input u (x.1) the problem is 1o estimnte

the parameters a., a,. and a,,.

6.1.2 MATHEMATICAL PRELIMINARIES :-

A function y (t), where t lies between 0 and + . which is square integrable

can be expanded in a Laguerre series

)ty s)+ Voo (o

, 5.1
0 :

Where 7, (1),i=0.1.2, ... are the Laguerre palynomials and y
are the coefficient of Laguerre polynomials given by

s
y o, = l exp -ty y (t)/, (1) dt 0.2
0 '

an approximation of y(f) in terms of the first N

polynomiais will be

Yu=lve vy YN‘1J

i = (O 2 (U 7 (1]

tot t

Pl exp (Oy s (hdt o dt=P,
00 U

r-times r- times

terms of the Laguern:

613

b 614

wherz P is an NX N constant matrix which has the general form as

IC” - I’C-‘ { ‘11“ rcr‘._i

C rC. (1" rCy
P’\:F — .

0 O

0 OrC

Where r C, = [rir-1)(r-2) (ri+1)] ¢ il

Appiving the above property to the truncated series of y {t) we get.

ot t

Pl oYL aahdt o dt =Y, Pl 616
0 0
r-times r-times

Consider a two variable function y (x.t) which.is square integrabie i the

interval x, t « [0, »). Then the function y (x.t) can be expanded in a double
Laguerre series. '

i .
y{x.1) = _ \—, Yo 74 (8 g () 617

where vy, are the coefficients of the double Laguerre expansion, given oy
FA S) '

yo =1 1 exp () exp (-x) y(x.t) 7, (1w (x) dx dt 6.18

00

An approximaticn to y (x.t) will be

‘ Mt N
y(xt)= 2 2y () (x)
P20 i ‘ ‘
_ T :
= Py ()Y g 7 (1)
= "—MT (Hy an s (X £.19
Where
PY(}O Yo TN W—i
Youn Yo Y AR
.. ;
Yo Yo Yol n *J

S0 we have

X x| t

oo b T T, () Y e v (1) dt L dldx L dix
0 0.0 0 '

p times g umes G times p times

7

= ‘ifmT(x) (P)'ll Y qu /o ()
= N} (t) (PN T)w Y ?\-1[\5: Pili:. M {Xl 620

6.1.3 THE IDENTIFICATION PROCESS

Integrating equation 6.10 once with respect to x and t we can remove all
derivatives. The advantage is that the above conversion incorporates the initia
and boundary (:ond-itions in an easy rﬁarmen Also, the resull possesses the
Smoothening property inherent in. all integral in contrast to ditferentia: o

dervatives. We have theretore

X t Xt
a, | yxtdx+a, | yxt) dita. | | yixtdt dx
0 0 00
X t X ot
- & i y (x.0) dx - a, | vy (0.1) = ol Uixtr dt dx 621
v 0 0 G

To determine the unknown function y (o,t) and v {x.0) . we start by approximaiing
by a finite Laguerre sernes. '

11 . .

[Tt

y (O8]

607

I
g
>
m
+
.~
=

and

=X By (0 By 5.23

where E is an M xN matrix having the ijth element unity and the remamm:

elements zero. Clearly, once C,,, C., ..C, . &B.. B, ... B, are determined

then y (0.1) and y (x,0) are approximately construcled from the equations &2

and 6.23.

Now the input and output can be expanded into double Laguerre series

uix,)= ‘\'MT () Uy 7w (1) :
6.24

T .
y (= o (XY a4 (t) '

Substituting the equations 6.22, 6.23 and .24 in eguation 6.21. we have

H - - '
v (xd o [ap Py by e Taa Y P tapPy’ YanPe-a: 28, PuE..
marl LB Pl st = i () [P Uun Pl it £.28

Equating the corresponding coefficients of the Laguerre polynomial product.
{ /M uxyy =07 N-T =014, . M-1, we have

i N N :
a Py Yo ta, Yuy PootabPy YouPota 2B PoEL
.) T

va X CE Py = Pl U Py 6.26

=0

Where _E_S,_:--a'; B; and C, = -8y C

‘Equation 6.26 can be written as

AD=h 65.27
Where
(Pmr AR (Y un Prh (PrfT Yo P (P Ea)
B S
(P Ty 1M (Yo Pron (PmT Yom P (B B
........................... (pr1 E1)1 (.E‘;1 PM)T (E FJ
........................... (P By (E., Py)s (E. P

(P U Py
h=
............................. 6 24
T
(P“’l U RN P N) M
0 =la.a,a,B/B....B,C.C. .G .1 ¢ 30

Where (P, Y). (Y uw Pud{ Py Y Ly P o) elc indicates ih

coiumn of the corresponding matrix. Matrix A and h can be evaiuated row oy

row.

By giving value of A and h in the Neural network we can calculate U

accurately.

Chapter 7

/ Software

CHAPTER Vil

SOFTWARE

7-.1 GENERAL'PROCEDURE TO FIND bARAMETERS OF A SYSTEM

STEP 1 : Be ready with input, output and system equation.

STEP 2 Convert the input equation into truncated Laguerre series.

STEP 3 Convert the output equation into truncated Laguerre series.

STEP 4 @ Convert the system eqguation into truncéted Laguerre seres with hel;
of truncated Laguerre series of input and oﬁtput eqguation

STEP 5 Estimate the parameters of the system with helb of truncated Laguerre
series of input, outht and system equations by using Percepltron,
Least mean square Algdrithm_

.7.2 STEP BY STEP PROCEDURE TO ESTIMATE PARAMETERS OF LINEAR

LUMPED SYSTEM

STEP 1 : Be ready with input, output and system equations of linear lumped
system.

STEP 7 Estimate-coeﬁicients of truncated Laguerre series for input and output
eguation using Least square estimation procedure for single variable
case (refer Appendix 1 far mt-)re details)

STEP 3 EGstimate the inputs to two layer perceptron network using Algonthm

gtven in Appendix 2

PROGRAMS -

(1. Program for the Least Square estimalion of coefficients of Laguerre
Polynomials - double variable case for Input and output equation
(i), Program to find inputs to two layer Perceptron network.

(lii). Program to estimate parameters of Linear Distributed system wi‘h
Perceptron LMS Algorithm.

(lv). Display the outputs.

STEP 4 : Estimate the parameters of the linear lumped system with tse of
perceptron LMS Algorithm, (Refer A_ppendix 5)
PROGRAMS -
(h Program for least square estimation of coefficients of Laguerre
.polyno'mials for single variable case for input and outplui eqguations
{1 Program to find iz.wputs to two layer Perceptron network.
(lii) Program to estimate pérameters of linear lumped system with
Perceptron LMS Algorithm.
(lv) Display the outputs.
7.3 STEP BY STEP PROCEDURE TO ESTIMATE PARAMETERS OF LINEAR
DISTRIBUTED SYSTEM
STEP1 : Be ready with input, output.and system equations of Linear
'Distributead system.
STEP 2 Estimate coefficients of truncated Laguerre Series for mput an
output equations using Least Square Estimation procedure for
double variable case.(Refer Appendix 3)
STEP G Estimate the inputs to two layer Perpeptron nelwoerk with the help
| of Algorithm in Appendix 2.
STEP 4. Estimate the parameters of the Linear Distributed system with use:

of Perceptron LMS Algorithm. { Refer Appendix 4)

/*** PROGRAM FOR TWO LAYER PERCEPTRON NETWORK sxx/
/* THIS 1S A PROGRAM TC SOLVE SIMULTANEOUS EQUATIONS */

ginclude<stdio.h>
ginclude<stdlib.h>
#include<math.h>
#include<conio.h>
, #include<dos.h>
* #include<alloc.h>
#include<time.h>

define LEARN 0.5
define N 1

/**% FUNCTIONS TO NORMALIZE xS

. void norm{ float **coef,float *cons,int n)

{

void
)
{

int register c¢i,c2;
fioat max=0.0;

for(ci=0;ct<n;cl++)

E . for(c2=0;c2<n;c2++)
{ if (coeflct1l[cz] >max)
max=coef[c11lc2];
S EENE ST ! .

for(c2=0;¢c2<n;c2++)
{ if(conslc2]>max)

{ max=consicz];

}
for{ci=0;ci<n;cl++)
{ for(c2=0;c2<n;c2++)

i coeflc1lc2l=coefci]c2]/max;
for(c2=0;c2<n;c2++)
i consfc2]=cons[c2l/max;

/**+FUNCTION TO FIND ERROR***/

int register ¢1,c2;
scum_err = 0;
for({c1=0;ci<n;cl++)
{

erric1]=0.0;

find_op{float *scl,float *xcoef,float *cons,int n,f]oqt *rerr, float

*cum_err

}

for{cli=0;ct<n;cl++}

{
for(c2=0;c2<n;c2++)
{
err[ci]+=ceef[ct1)ic2]*sol[c2];
}
}
for{ci=0;ci<n;c1++)
{
errfctl=cons{cil]-err[c1]:
*cum_err+=0.5*errfc1]*errfci];
}

/***FUNCTION TO CHANGE WEIGHT**%/

void wtchange{float *cum err,int n, float *sol,float

{

*xcoef,float *err)

int register ct1,c2;
for{c1=0;ci<n;c1++)

{
for(c2=0;c¢c2<n;c2++}
{
solfc2]+=LEARN*exp{-1*(*cum err))*err{cll*coeflc1][c2]:
]
}

/¥**FUNCTION TO GIVE INITIAL RANDOM INPUT**x/

void serand(float *sol, int n)

{
int register c¢i:
for(ct=0;cl<n;ci++)
{
sol[ct]l=random(N+1):

}

}
Jx¥*x MAIN PROGRAM *%%/

maind)

/*t* INTIALIZING *%#/

float**coef,*cons;

float *sol,*err,cum_err=0,al10]1{10],b[10%,p{10]1[10];
int n,c1,¢2,4i,j,k,col,row;

long int count=0;

clrscr();

textbackground{(2):

textcolor(4);

printf("ENTER THE NO.OF VARIABLES-"}:

scanf("%d",&n);

printf("Enter the numberof rows in the A matrix “}:
scanf("%d”, &row):

printf("Enter the number of cloumns in the A matrix"};
scanf("%d",&col):

if(row==col)

{

else

coef=(float **)calloc(n,sizeof(float *)):
cons=(float *)calloc{n,sizeof (flecat));
err=(float*)calloc(n,sizeof(float)):
for{ci=0;ci<n;cl1++)

{

coefl[ec1]=(float*)calioc(n,sizeof(float)};

printf ("ENTER THE A MATRIX \n"}:
for(ci=0;ci1<n;ci++)

{
for{(c2=0;c2<n;c2++)
{
scanf{"%f" , &coef[cil[c2]));
]

}

print f("\nENTER THE B MATRIX\n"};
for(c2=0;c2<n;c2++)

{

}

scanf("%f",8cons[c2]);

printf{"Enter the A matrix "):
for(i=0:i<row;i++)

{
for(j=0;j<col; j++)
{
scanf("%f" ,&ali1[j]);
}

printf("Enter the b matrix “);
for{i=0;i<row;i1++)
{

scanf("%f",ablil);

coef=(float**)calloc(n,sizeof{float*));
cons=(float*)calloc(n,sizecof(float));
err=(float*)calloc(n,sizeof(float));
for(ci1=0;cl1<n;c1++)

{ coefl[c1]=(float*)callocin,sizeof(float));
1or(i=0:i<co]:i++)
{ for(j=0;i<col;j++)
; coeflilljl=0.0;

ior(i=0;1<co];i++)
¢ for(j=0;j<col;j++)

{ for(k=0;k<row;k++)

Z coeflij[i)=coeflilljl+alkilil*alkl[il;
}

printf("the coef matrix is”);
for(i=0;i<col;i++)

{

}

for(i=0;j<col;j++)
printf("%f", coef(il[j]):
}
}
for(i=0;i<col;i++)
cens[il=0.0:
for(1=0;i<col;i++)

{

for(j-_-o;j<row;j++)
cons[i]=con5[i]+a[j][i]'b{j]:
}
}
printf(“the cons matrix");
for(i:O;i<coT;i++)

{

Printf{"%f", cons[i]);
}

serand(sol,n}:
noerm{coef,cons,n);

{

findmop(so1,coef.cons.n,err,&cumﬁerr);
wtchange(&cum_err,n,sol,coef,err);
printf(" ERROR- %f\n", cum_err):
for(ci=0;c1<n;c1++)

printf(" %f",s01fc1]);
}

count=count+1:
whi]e(cum_err>0.0000001);

for(c1=0;c1<n;c1++)

printf("\n\tso1[%d]:%f",c1,sol[c1]);
}

printf("\nThe number of iterations:")
printf("xld",count);

return 0:

/*x* MAIN PROGRAM ENDS HERE *+*/

/* PROGRAM TO FIND PARAMETERS OF THE LINEAR LUMPED SYSTEM
USING MATRIX INVERSION METHGD */

#include<stdio.h>
/*** MAIN PROGRAM STARTS HERE »#*2/

main()
/* INTIALIZATION =/

float XK[100],CK[100],x[100],AK[100][100],AKI[100]{100],a[100],d[100],mu
1[100],c[ﬂ00],check[100}.w[100],b[100],s[100][100]:

int order,i,j,k,novar,itno=1,

1,m,c2:

float u=0.0,y=0.0,z=0.0,W=0.0;

float YMN{1D],PMT[10][10],PN[10][10],PMTYMN[10],UMN[10],PMTUMN[1

O]l
HE10],AC10]010];
int PM=1,M,N;
clrscr();
/* PROGRAM TO CHANGE GIVEN SYSTEM EQUATION TO TRUNCATED LAGUERRE SERIES
*/

Printf{"Enter number of row & coloumnsof laguere truncatedin”}:
printf(“coefficient of input & outputin”};

scanf("%d %d",aM,aN):

for(i=0;i<N;i++)

for{j=0;j<N;j++)
{

QOO0
[

)

printf("This is for equation of type\n”);
printf("a2'd"2y(t)/dt+a1*dy(t)/dt+a0*y(t)=u(t)\n")'

+

pPrintf{"Enter the laguere coeficient of input u(t) as UMN\R™) ;
TOr(i=0;i<N: i++)

scanf("%f" GUMN[i]):

printf("Enter the laguere coeficient of output v{t) as YMNANR"] ;
for{i=0;i<N;i++)

scanf("%f",&YMN[i]);
H

for(i=0;i<N;:;i++)

for(ji=0;i<N;j++)

{
if{i==j)
N[il[i)l=1.0;
if((j+1)<N)
PNEi1[j+1]1=-1.0;
}
}
}
}
for{i=0;i<N;i++)
{
for{j=0;i<N;j++)
{
PMT[i10i}=PNLiIL3];
}
}
for(i=0;i<N;i++)
{
for{j=0:3<N;i++)
{
if{j==)
{
ALiJ[i11=PMsYMNEi];
}
}
}

for{i=0;i<N;i++)
{
for(i1=0;i<N;j++)

{
ATi1[1)4=YMN[31*PNL31]Li];
}
}
for(i=0;i<N;i++t)
{
for{j=0;i<HN;j++}
{
PMTYMNEiJ+=PMT[+1[j1%YMNEjT:
H
}
for(i=0;i<N;i1++)
{
for(j=0:j<N;j++)
{
ALIT[2]+=PMTYMN[i1*PNETIL];
}

for{i=0;i<N;i++)
{
for(3=0;3<N;j++)

PMTUMNLi1+=PMTLiJ[jI*UMN[jT:

for{(i=0;i<N;i++)

for(j=0;i<N;j++}
{

ML 1+=PMTUMNE 3 J*PNT§ T4 1
}

}

printf{"\n\t\t\t\t***The A matrix is***\n\n");
for(i=0;i<N:i++)

{
for{j=0;j<N;j++)
{
printf{ " \t\t%f",A[i][i1);
1
printf("\n");
}

printf{"\n\n\t\t\t***xThe H matrix is***\n\n");
for(i=0;i<N;i++)
{

printT(NENENENtEFAN" H[i]1);

}
getch{);
itno =N;

novar = N;
for(i=0;i<itno;i++)

{

for(j=0;j<novar; j++)

: AKTi1031 = ALi1EiD;
}
for(i=0;i<novar;i++)

A
XKLi1=H{i];

/* TO FIND INVERSE OF A MATRIX USING GREVIELLE'S ALGORITHM

for{(j=0;j<itno:j++)

alil=aAax[jllo];
z=z+(al[jl*alil);

*/

for(j=0;j<itno;j++)

AKI[OILi1=((1/z)*aljl):

0;j<itno;j++)

aljl=AK[jI[i]:

for{z=0;z<i;z++)

d{z1=0.0:
for(1=0;1<itno;1++)
{

dlz]l=(d{z]1+(AKITz]1[1] * afi1])};:
)

{
}
for{i=t1;i<novar;i++)
{

for(j=

}

{

}

for{(1=0;1<itno:1++)

{

}

for(j=

c2=0

for(j=

}

for(j=

{

switch (c2)
{

mulf1]1=0.0;
for{m=0;m<i :m++)

{

mul{I]=mul[1]1+(AK[1][m] * d[m]):
H

0;ji<itno; j++)

clil=alijl-mul[j}:

O:j<itno; j++)

check{j]=0.0;

O:j<citno;j++)
1flc[il<=0.09 && c[jl>=0.00)
{ clil=floor(cljl);
;f(c[j]>=-0.09 &8 ¢[i1<0.00)

clil=ceiliclyl);

}
if(clilt= 0.0 }
{
c2=1;
break;

case 0:

¥y=0.0;
for{z=0;z<i;z++)
{
) y+=(d[z21*d[z]});
y=y+1;
for{1=0;1<itno;1++)
{
w[1]=0.0;
for{j=0;ji<i;j++)
{
W=0.0;
W = (d[ji*AKI[j
i11);] Y
wlil]l+= Ww:
1
}
for(j=0;i<itno;j++)
{
] blil=01/y)i*wlil;
break:;
}
case 1:
{
u=0.0;
for(j=0;j<itno;j++)
usu+(clil*=clil):
}
for(j=0;j<itno;j++)
: blil=(1/u)*clil;
break;
}

}
for(j=0;j<i;j++)

for(1=0;1<itno;:1++)

{
s[jll1)=0.0;
?Ij][1]=Slj][1]+(d[j]*b[1]);
}
for(m=0;m<i;m++)
{

for{i=0;j<itno;j++)

} AKE[m][j)1=AKI[m]{j)-s[m](i];

for(1=0;1<itno;1++)

AKI[i][1}=b(1];

/* TO PRINT PARAMETERS OF THE SYSTEM */

printf("\n\n\t\t\t***The SOL Matrix is*=+*\n\n\n");:
for(i=0:i<novar;i++)

{
CK[il =0.0;
for{j=0;j<itno;j++)
{

CKIV]+=AKI[i1[j1*xK[3];
}

for(j=0:j<novar;j++)

printf("Nt\tNt\Nt%f\n" ,CKL[il);

}
getch();
return 0;

/* MAIN PROGRAM ENDS HERE */

Enter number of row & coloumnsof laguere truncated
coefficient of input & output

1 3

This is for equation of type
a2*d"2y(t)/dt+al*dy(t)/dt+a0ey(t)=u(t)

Enter the laguere coeficient of

input u(t) as UMN
12
-10
2
Enter the laguere coeficient of output y(t) as YMN
2
-4
2

***The A matrix ig%=*x

2.000000 2.000000
-4.000000 -6.000000
2.000000 6.000000

**¥The H matrix iss=s

12.000000
-34.000000
34.000000

***The SOL Matrix is=*»

2.000064
2,99990%
1.000035

2.000000
~-8.000G00
12.000000

/* PROGRAM TO ESTIMATE PARAMETERS OF LIN
EAR DISTRIBUTED SYSTEM

USING MATRIX INVERSION METHOD x/

#include<stdio.h>
#include<math.h>

/* MAIN PROGRAM STARTS HERE */

main()
/* INTIALIZATION*®/

fleat XK[100], CK[100],x{1001], AK[1o0l[100], AKIL100][100]. a[100],d[100]7],
1{100], cl1c0], check[100] w[100] b[100] s[100][100]

int order,i,j,k, novar,itno=1,

1,m,c2;

f1oat u=0.0,y=0.0,2=0.0,W=06.0"

float YMN[10][10] PMT[10][10] PN[101[10],PMTYMN[10][10], UMNII1GT[10],PMTU
MNPN{1G]1[1C], UMNPN[10][10]

H[1D] A[10][10] PMTYMNPN[10][10],PM{TO]I10],YMNPN[10}[10}:
int M,N:
cirscr();

/* PROGRAM TO CHANGE GIVEN SYSTEM EQUATION TO TRUNCATED LAGUERRE SERIES«

printf("Enter number of row & coloumnsof laguere truncatedi\n™);
printf{"coefficient of input & outputi\n"):
scanf("%d xd",aM,aN);
Tor(i=0;i<M;i++)
{
for(i=0;j<N;j++)
{

YMNLi][
PMT[1[;
PN[i1(3
PMTYMNI i
UMNLi]
PMTUMNP
UMNPN i
PMTYMNP
PMLill[j

}
]
]
]
[
(i
t
YMNPREGI[3

J =
J =
1=0.
11035
J =
N[i
103
NEi
1=0
103

}

printf(“"This is for equation of typei\n'):

printf{ az*dy(x, 1)/dt+at*dy(x, T)/dt+a0*y(x,t)=u(x,t)\n"):

printf("Enter the laguere coeficient of input u(t) as UMNAR") ;
for(i=0;i<M;i++)

{
for(j=0;i<N;j++)
{
scanf("%f" ,aUMNLi1[j]1);
}

printf{"Enter the laguere coeficient of output y(t) as YMN\N");

for(i=0;i<M;i++}
[for(j=0;j<N;j++)

; scanf("%f" BYMN[iJ1[}]):
lor(i:O:i<M:i++)

for(ji=0;j<M;j++)

{
if{i==j)
{
PN[ili{j]=1.0;
if({j+1)<M)
{
PN[il[j+1]=-1.0;
}
1
}
for{i=0;i<N;i++)
{
Ior(i=0;j<N;j++)
if({i==j}
{
PMIi]lji=1.0;
iF((j+1)<N)
{
} PM[il[i+1]1=-1.0;
}
} PMY[i1{3]1=PM[j3(i];
1

for(i=0;i<M;i++)

{
for(j=0;j<N;i++)
{

for{k=0;keMiks+)
{

\ PMTYMNLi 3P i]+= PMT{i][k]l* YMN[Kk][i];

for(i=0;i<M:i++)
{ for(j=0;j<N;j++)
if{{(i+j)< N && (i==0))
[ALi+5]JI01=PMTYMNLj]I[i];

iF{(i+j)<=N && i==1}
{

Ali+i+1]1[0]= PMTYMN{i1[i];

}
}
}
for(i=0;i<M;i++)
{
for(j=0;i<N;j++)
{
for(k=0;k<M;k++)
{
} YMNPN[iJ[j]+=YMN[i1[kI*PNIKk]I[j];
}
1

for{i=0;i<M;i++)
for(j=0;ji<N;j++)
{ if((i+j)<N && i==0)
{ ALi+31[11=YMNPN[j1T3];
Ef((1+j)<=N && i==1)

ALi+j+1][1]= YMNPN[j]{i];

}
}
}
for(i=0;1<M;i++)
{
for(j=0;j<N;j++)
{
for{k=0;k<M;:k++)
{
} PMTYMNPN[i][j]+:PMT[i]{k]*YMNPN[k]{j];
}
}

for(i=0;i<M:i++)

' for(j=0;j<N:j++)
{ ifO(i+j)<N && i==0)
i ALi+31021=PMTYMNPNT§1(i];
iT((i+j)<=N && i==1)
; Ali+j+11[2]= PMTYMNPN[jI[i]:
: }

for{(i=0;i<M;i++)

{

for(j=0;j<N;j++)

for(k=0;keM;k++)

{ UMNPNLi1[j1+=UMN[i][KkI*PN{KIEj];
} : |
for(i=0;i<M;i++)
{ for(ji=0;j<N;j++)
for(k=0;k<M;:k++)
{ PMTUMNPNLi][j]+=PMT[i][k)*UMNPN[Kk][i;
} : |
for(i=0;i<M;i++)
{ for(j=0;j<nN;j++)
if((i+j)<N && i==0)
{ H{ i+ J=PMTUMNPNL i3 [i];
if((i+j)<=N && i==1)
t HLi+j+1]= PMTUMNPNLjJ[i];
} : |

printf("\n\t\tThe A matrix is\n\n");
for(i=0;i<(M+N);i++)
{

for(j=0;j<(M+N-1);:3j++)
{
printf("\t%f" A[i}[j]):

}
printf("\n"});
}

printf("\n\t\t\t*** The H matrix is xxe\n\n");
for(i=0;i<(M+N);i++)
{

Praint f{"NENENENEREAN" ,H[i]);

}

getch();
itno =M+N;
novar = N+M-1:
for(i=0;i<itno;i++)
{

for(j=0:j<novar;j++)

: AKLi10i] = ALi[4];

for(i=0;i<itno;i++)

XK[i]=H[i];

/* TO FIND INVERSE OF MATRIX USING GREVIELLE'S ALGORITHM */

for{j=0;j<itno:j++?}

}

aljl=AK[jI[0];
z=z+(aljl*aljl);

for(j=0;:j<itno;:j++}

{
}

AKI[O1Lil=((1/2z)*ali]);

for{i=1;i<novar;i++)

{

for(j=0:j<itno;j++)

}

alil=AK[il[il;

for{z=0;z<i;z++)}

{

dl{zl}=0.0;
for{1=0;1<itno;1++)
{

: dlz]l=(d{z]+(AKI[Z]1[1] * al[11));

for{1=0:1<itno:1++)}

{

}

muli1]=0.0;
for(m=0:m<qi ;m++)
{

mut [V =mud [11+(A{1]{m] * dlm]):
1

for(j=0;i<itno;j++)

c2=0;

clil=alil-mulljl;

for{j=0;j<itho;j++)

}

check[j]=0.0;

for(j=0;j<itno;j++)

if(c[il<=0.09 && ¢[j1>=0.00)
{

}
switch (c2)
{

case 0:

{

[11);

case 1:

}

clil=floor(cli]);
if(c[3i]>=-0.09 && c{j]1<0.00)
{

c[jl=ceil(cljl);
}

if(eljl!l= 0.0)
{

c2=1;
break:

y=0.,0;

for{z=0;2<i;z++)

yt=(dlz}i*d[z]);

}
y=y+1;
for(1=0;1<itho;1++)
{
w(1]1=0.0;
for{j=0;j<i;j++}
{
W=0.0;
W = (d[jl*AKI{j]
will+= w;
}
}
for(j=0;j<itno;j++)
{
) bli)=(1/y)*wlil;
break;
u=0,0;

for(j=0;i<itno;j++)

u=u+(cijl*clil);

}
for{j=0;j<itno;j++)

blil=(1/ui*c{jl;
} .

break;

for{j=0;:j<i;j++)

for(1=0;1<itno;1++)

s[il[1]=0.0;

sCill1]=s(j301]1+(dlj1*b[1]);
} }
for(m=0;m<i;m++)

for{i=0;:j<itno;j++)

AKI[mI{jI=AKI[mITj]l-s[ml[j];

} ;
}
for(1=0;1<itno; 1++)
{
AKI[i]0il=b[1];
}

}

/* TO PRINT PARAMETERS OF THE SYSTEM =/

printf{"\n\n\t\t\t***The SOL Matrix is®xx\n\n\n")
for(i=0;i<novar:i++)

i

{
CK[i] =0.0;
for(i=0;j<itno;j++)
CKLi1+=AKI[i1[i)*xK[j];
1

for(j=0;j<novar:j++)

printf("\t\t\t\t%f\n",CK[j]);
}

gatch();
return 0;

/* MAIN PROGRAM ENDS HERE */

CHAPTER VIII

CONCLUSION

Software in C language has.been developed to estimate the parameters
in Linear and Distributed systems using Neural network. A Lease sqguar:
estimator is simulated using Hopfield and Perceptfon networks for the
estimation.

The advantage of using Neural network method over the matrix irversion
method for parame_zter estimation is that as the ccmplexity of the systemn,
ncreases, estimating the parameters becomes difficult and time consuming.
whereas in Neural network method the ti.me consumption is less i.e . itis ‘aster i

convergence. Speed depends on the time constant of the retwork and 1s net

related to the scale of the problem.

REFERENCES ‘

E.V. KRISHNAMURTHY AND S. K. SEN. * NUMERICAL ALGORITHM -
COMP_UTATION IN SCIENCE AND ENGINEERING, EAST-- WEST
PRESS PRIVATE LIMITED. NEW DELHI. 1986.

Dr. V. RANGANATHAN, " STUDIES IN PARAMETER ESTIMATION
USING LAGUERRE POLYNOMIAL APPROACH - Ph.D. THESIS
DELHI, 1985

- CHALLA RAMA DEVI, * PARAMETER ESTIMATION USING NEURAL
NETWORKS", COIMBATORE,1998.

ALISON CARLING" INTRODUCING NEURAL NETWORKS", GALGOTIA
PUBLICATIONS PRIVATE LIMITED. NEW DELHI, 1996.

VALLURU RAO AND HAYAGRIVA RAQ.” C++ NEURAL NETWORKS

AND FUZZY LOGIC", BPB PUBLICATIONS. NEW DELHI. 1996

IX

V]

. Compute d,using d, = A, a,

LN

. Compute C using C,=a,-A,_, d,

@2

. I C, = 0 then goto 6 else goto 7.

(o))

_Compute b, using b, =1/(C, ' CyC,'

-~

. Compute b, using b,

1701+, d)d ALl

@]

. Compute Ak using

Ak = A, - d, b,
by

STEP 5: Find'Ck matrix at each iteration using C k = Ak ' Xk

STEP 6 © Continue above process from step 2 till we get same values for Ck at

consecutive iteraticn.

APPENDICES

APPENDIX -1
ALGORITHM TC ESTIMATE COEFFICIENTS OF TRUNCATED LAGUERRE
SERIES FOR INPUT AND QUTPUT EQUATIONS Usit™ 1 EAST SQUARE
ESTIMATION PROCEDURE FOR SINGLE VARIABLE CASE.

STEP 1: " Initialize AK matrix and XK matrix to null values and ITNO as
STEP 2: Find XK matrix at each iteration using formula as

>< ,< [oxp - AN X (M) exp (<20 x (2\) . expi-k \) X (k\t)]j

STEP 3 Find AK matrix at each iteration using the formula
g Nvt)yexp (-at Nt yexp (vt (At exp (-\ 1)

rog(2A) exp (-2t) o ZNt)exp (20t (2t yexp (-2\)

7 g (kA t yexp (-kat) rookNtyexp Gkt kvt rexp ikt

> TERP 4 - AK inverse is found using Greville's Algornthim as beluw

1. Initialise AK™' Matrix as AK' = 1/(a, a.) 5. and AK & CK matrix to .
And mitialise other variables accordingly.

2. Enter AK matrix AK =[a, a, ... a ... a

Where a, is k "' column of given matrix AK

APPENDIX -2

ALGORITHM TO ESTIMATE INPUTS TO TWO LAYER PERCEPTRON

NETWORK.

STEP 1 Initialize the variables required accordingly.

STEP 2 Find Py, matrix using

!
% rC, —FC1 { 1)[1 i I
|
L0 rC, 1 re.

pr‘l - j ‘
S0 0
i |
i \
i |
R !
} 0 O rCo |
|

Where r C, =[r{r-1)(r-2) . (ri A =001 0 N-T
STEP 3 : Get values for YMN and UMN and find PMT matrix by using
transpose of P, matrix.

STEP 4 Find A matrix using

and h matrix using ,

APPENDIX -4
A'LGORI'THIVI FOR 2 LAYER PERCEPTRON NETWOéK
STEP 1 Initialise the variables required in the program appropriately |
STEP 2 - Initialize the éolution matrix {(output matrix)
STEP 3 : Get the input matrix values.
STEP 4 : Get the output matrix values.
- STEP 5 Find the output matrix by using formula
Output matrix = input matrix - weight matrix
STEP 6 : Find the error matrix by using formula
Error matfix = new Qﬁtput matrix - old output matrix.
STEP 7 : Find the cumulative error Yy using the formula
total cumulative error = 0.5 ~ error at each ouiput neuron
STEP 8 : Find the new weight matrix using the formula
new weight matrix = leaming factor - old weight matrix -
error matrix.
STEP 9 Il total cumulative error is equal to 0 then goto step 10 eise
‘corltinue frpm step 5. |

STEP 10 : Print the solution matrix.

