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ABSTRACT

Turbo code has an outstanding performance in industrial applications especially in
wireless and satellite communications. Turbo decoders has great area efficiency but highly

limited by the clock speed and the maximum number of iterations to be performed.

To facilitate iterative decoding, the Maximum A Posterior probability (MAP) algorithm
has been widely used in Turbo decoding for its outstanding performance. Due to the recursive
computations inherent with the MAP algorithm the conventional pipelining technique is not
applicable for raising the effective processing speed. This project presents high speed recursion
architectures for MAP-based Turbo decoders. Algorithmic transformation, approximation, and
architectural optimization are incorporated in the proposed designs to reduce the critical path.
Simulations show that neither of the proposed designs has observable decoding performance loss

compared to the true MAP algorithm when applied in Turbo decoding.

Key Words: High-speed design, Maximum A Posterior probability (MAP) decoder, Turbo
code, VLSI.
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW OF THE PROJECT

Error correction codes are an essential component in digital communication and data
storage systems, wherein, Turbo code is one of the most optimal error correction codes. One key
feature of Turbo code is the iterative process. However the iterative process leads to low
throughput and long deceding latency. To overcome this, in this project the Turbo decoder is
designed based on Maximum-A-Posterior probability (MAP) algorithm. This algorithm involves
recursive computation of state metrics which leads to the design of high speed integrated circuit

design.

In this project we will focus on Log-MAP based Turbo decoder design and will address
high speed recursion architectures for Log-MAP decoders. Here several recursion architectures
such as Radix-2, Radix-4, etc. are investigated. Algorithmic transformation, approximation, and
architectural optimization are incorporated in the proposed designs to reduce the critical path.
We then discuss the results of the experiments and highlight the shortcomings of the architecture

and propose enhancements,



1.2 TURBO DECODER

A typical Turbo encoder consists of two recursive systematic convolutional (RSC)
encoders and an interleaver between them. The source data are encoded by the first RSC encoder
in sequential order while its interleaved sequence is encoded by the second RSC encoder. The
original source bits and parity bits generated by two RSC encoders are sent out in a time-
multiplexed way. Turbo codes works with large block size. In order to facilitate iterative

decoding, the received data of a whole decoding block have to be stored in a memory.

A typical serial Turbo decoder architecture is shown in Figure 1.1. It has only one soft-
input soft-output (SISO) decoder. Here probability MAP algorithm is employed for the SISO
decoding.

31SO s LR
input | Lo
buffer er\
Interleave | ¥tk
memory |
i X
Address
Generator

Figure 1.1: A serial Turbo decoder architecture

The serial Turbo decoder has two memories: one is for received soft symbols called the
input buffer and the other is the interleaver memory to store extrinsic information. The SISO
decoder takes soft inputs from the input buffer and the a priori information from the interleaver
memory. It outputs the log likelihood ratio LLR (k) and the extrinsic information L. (k) for the
k" information bit in the decoding sequence. The extrinsic information is sent back as the new a
priori information for next decoding. The data are loaded according to the current decoding
sequence. The extrinsic information is loaded in sequential decoding phase while being loaded in

the interleaved order at the interleaved decoding phase.



A high-level description of this traditional SISO algorithm is presented in Fig.1.2.

int SISO(){

/* Backward recursion of beta */
initialize_beta_at_ end block;
for (ki = and _blook; ki > begin bloeck; ki--) {

batalkl - 1] = backward recursion(betafkl],input{kl}l);
}

/* Porward recursion of alpha and intrinsic Information */
initialize_alpha_at_begin_block;
for (k2 = begin block; k2 < end_ block; k2++)} {
output [x2] = generate_cut (alpha,betalk2],input{k2]):
alpha = forward_recursion{alpha,inputiki]);
}

output[end_block] = £ (alphalend_block],betafend block],input [end blockl}:

Figure 1.2: Traditional SISO algorithm



1.3 SOFTWARE USED

1. Xilinx: It is a complete ECAD (¢lectronic computer-aided design) application that

provides platform for designing , testing and debugging of integrated circuits.

2. Model sim: ModeiSim SE is a Windows-based simulation and debug environment
that provides scalable HDL simulation solutions for a broad range of

design sizes ( both ASIC and FPGA) and complexities.



CHAPTER 2
LOG - MAP ALGORITHM

2.1 MAP ALGORITHM OVERVIEW

The MAP algorithm was first derived in the probability domain. The output of the
algorithm is a sequence of decoded bits along with their reliabilities. This “soft” reliability
information is generally described by the a posteriori probability (APP) P (uly). The MAP
algorithm provides not only the estimated sequence, but also the probabilities for each bit
that has been decoded correctly. Assuming binary codes are to be used, the MAP algorithm
gives, for each decoded bit uy in step k, the probability that this bit was +1 or -1, given the
received distorted symbol sequence yY = (yo, y1,y2 s...» ¥n) . This is equivalent to finding
the likelihood ratio

M= (P{ux=+1| '} / (P{ux=-1| 3D (1)
where P{uy=1|yrN},,i= +1,-1is the a posteriori probability (APP) of uy.

Computation of P{uy | y¥}, is done by determining the probability to reach a certain

encoder state m after having received & symbols y*™' = (yo, yi.y2 »ooos ¥i1 )
ax(m) =P{m |y;7*} (2)

and the probability to get from encoder state m' to the final state in step N with symbols

y}‘yﬂ :
Bre1(m’) =P{yg,, |m’} (3)

The probability of the transition m to m' using the source symbol ux , under knowledge

of the received symbol yi , is called yi:

Yr(m, m', m) =P (m, m', ux | yi) 4



The probabilities ax{m) and Pi+i(m’) are computed recursively over vk (m, m', uy)

which are a function of the received symbols and the channel model as below:
oi(m’) = Yanm Yi(m, m', u) ag.(m) ()

Bia(m) =Yanm Br(m’) yi (m, m', uy) (6)

Knowing these values for each transition m to m’, the probability of having sent the
symbol ugin step k is the sum of all paths using the symbol uy, in step k. With @( uy ) being the

set of all transitions with symbol uy ,we can write

P{ug | Y} = Tm o oty T, M, Ug) aie(m) Bt (m”) (7)

Thus, from the above equations we can conclude that to evaluate the likelihood
value of a decoded bit we require many additions and multiplications. The decoding
complexity of the MAP algorithm has been reduced by operating it in the log domain. This
technique was first used for the ISI channel. Taking the logarithm of ax(m), Bk+1(m’), yk(m, m',

uy) and Ay values from the MAP algorithm we have:

Ax(m) = In ox(m) &
Bi+i(m’) = In Brar(m’) (%)
Di(m, m’, w) = In yi(m, m', vy (10)
Li(w) = In (11)

Using the above equations, we rewrite (5) & (6) as follows:

Forward recursion : The recursion is initialized by forcing the starting state to state 0 and

setting Ag(0) =0 and Agim) =-w0 ., m#0.
Am’) = InYaym exp ( De(m, m', u) + Aga(m) ) (12)

Backward recursion : The recursion is initialized by forcing the ending state to state 0 and

setting Bn(0) =0 and By(m) =-c0 , m #0.



Bii(m) = In 3 umexp ( Bi(in™) + Dy (m, m', uy} ) (13)
Di(m, m’, ug) = In [((1/ ¥276%) exp [- (1/ 26) (¥~ Ym )°]) P(w)] (14)

where vum . Y are the received signal and estimated signal over a Gaussian channel
respectively, P(uy) is the a-priori probability of bit ux and o’ is the noise variance. Soft-
Output Calculation. The soft output, which is called the LLR, for each symbol at time k is

calculated as
Le(u) = In{ [ Tmeom =+ (eXp [Axi(m) + By(m’) + Dy (m, m', ui)] )]
/ [ Zm tom uk=-1 ( cxXp [Ak-l(m) + Bk(m.) + Dk (ma m', Uk)] )] } (1 5)

The log-MAP decoder is divided into four major blocks. These are the branch metric
calculator (BMC), the forward state metric calculator (FSMC), reverse state metric calculator
(RSMC) and the log-likelihood ratio calculator (LLRC). To increase the speed of the decoder
a parallel implementation is adopted in this project, that is all the SM's are calculated

simultaneously. The block diagram of the architecture is shown in Fig.2.1.

Brsoch Metric  P—P]  Heverse Sume Reverse Suee
Memory » Manc Unx ; H Matric Memory
Vet
] Bronch Mowric Unit [P  Forwdsume | Forward Sude F_l—k
' Mewic Una "' " Mevic Memery
- > v

Figure 2.1 Block diagram of MAP decoder

The forward state metric unit uses the branch metrics obtained directly from the BMU
to calculate the forward state metrics, and the backward state metric unit uses the reversed

branch metrics from the branch metric storage to calculate the reverse state metrics.
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The MAP algorithm, as described, requires the entire message to be stored before
decoding can start. If the blocks of data are large, or the received stream continuous, this
restriction can be too stringent; “on-the-fly” decoding using a sliding-window technique has to
be used. Similar to the Viterbi algorithm, we can start the backward recursion from the “all-zero
vector” B? (i.e., all the components of BY are equal to zero) with data { yi}, k from n down to
n- L. L iterations of the backward recursion allows us to reach a very good approximation of g +
B..1 (where g is a positive additive factor). This additive coefficient does not affect the value of
the LLR. In the following, we will consider that after L cycles of backward recursion, the
resulting statemetric vector is the correct one. This property can be used in a hardware realization
to start the effective decoding of the bits before the end of the message. The parameter L is
called the convergence length. For on-the-fly decoding of non-systematic convolutional codes,
five to ten times the constraint length was found to lead only to marginal signal-to-noise ratio
(SNR) losses. For turbo decoders, due to the iterative structure of the computation, an increased
value.of might be required to avoid an error floor. In practice, the final value of has to be

determined via system simulation and analysis of the particular decoding system at hand.

2.2 LOG-MAP ALGORITHM OVERVIEW

To facilitate iterative decoding, Turbo decoders require soft-input soft-output decoding
algonithms, among whic_:h the probability MAP algorithm is widely adopted. The MAP algorithm
is commonly implemented in log domain, thus called Log-MAP. The Log-MAP algonthm
involves recursive computation of forward state metrics (o metrics) and backward state metrics
(B metrics). The log-likelihood-ratio is computed based on the two types of state metrics and
associated branch metrics (v metrics). Due to different recursion directions in computing o and
metrics, a straightforward implementation of Log-MAP algorithm will not only consume large
memory but also introduce large decoding latency. The sliding window approach is proposed in
which pre-backward recursion operation is introduced. Here the pre-backward recursion unit is

denoted as B0 and real backward recursion unit as B1.



2.3 LOG - MAP TURBO DECODER

The structure of a typical sliding-window-based Log-MAP decoding is shown in Figure
2.1. Here the soft-output unit is used to compute LLR and extrinsic information, the interleaver
memory is used to store the extrinsic information for next decoding. Both the branch metric unit
(BMU ) and soft output unit (SOU) can be pipelined for high speed applications. Due to
recursive computation, three state metrics computation units form the high-speed bottleneck. The
reason is that the conventional pipelining technique is not applicable for raising the effective
processing speed unless one MAP decoder is used to process more than one Turbo code blocks
or sub-blocks. Here an offset-add-compare-select (OACS) architecture is proposed to replace the
traditional add-compare-select-offset (ACSO) architecture. In addition, the look-up table(LUT)

is simplified with only 1-bit output, and the computation of absolute value is avoided through

introduction of the reverse difference of two competing path (or state) metrics.
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Figure 2.2 A Log-MAP Turbo decoder structure




In this project we have improved the processing speed by making the following approximations

in the Log-MAP algorithm.
max"(max"(A,B), max (C,D)) = max (max(A,B), max(C,D)) (1)
where
max'(A, B) = max (A, B) + log (1+e 1478l (2)

By applying this approximation the processing speed is improved approximately 40% and

however, the hardware will be nearly doubled compared to the traditional ACSO architecture.
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CHAPTER 3

HIGH SPEED RECURSION ARCHITECTURES
3.1 INTRODUCTION

In MAP-based Turbo decoder structure the branch metrics unit (BMU) takes inputs form
the receiver buffer and the interleaver memory. The outputs of BMU are directly sent to the pre-
backward recursion unit (B0 unit). The previously stored branch metrics for consecutive shiding
windows are input to the forward recursion unit (o unit) and the effective backward recursion
unit (B1 unit), respectively. The soft output unit (SOU) that is used to compute the log likelihood
ratio (LLR) and the extrinsic information (Lcy) takes inputs from the previously stored o metrics,
the currently computed B metrics and the previously stored branch metrics (y). The SOU starts to
generate soft outputs after the branch metrics have been computed for the first two sliding
windows. Tt can be observed that the high-speed bottleneck of a Log-MAP decoder lies in the
three recursive computation units since both BMU and SOU can be simple pipelined for high

speed applications.
3.2 RECURSIVE ARCHITECTURES OVERVIEW

It is known from Log-MAP algorithm that all the three recursion units have similar

architectures. So we will design one of the three units (say o unit).
3.2.1 Traditional Architecture Arch-O:

The traditional design for computation is illustrated in Figure 3.1, where the ABS block
is used to compute the absolute value of the input and the LUT block is used to implement a
nonlinear function log(1+ ¢ *)), where x> 0.For simplicity, only one branch (i.e., one state) is
drawn. The over flow approach is assumed for normalization of state metrics as used in

conventional Viterbi decoders.

11



It can be seen that the computation of the recursive loop consists of three muitibit

additions, the computation of absolute value and a random logic to implement the LUT.

2L E——

rie—s T L

— abs M LUT—I

— pes 3 + ..DL--f-—-t-

Falg] r A
i [ Jeignoie 07

Figure 3.1 Traditional architecture Arch-O

As there is only one delay element in each recursive loop, the traditional retiming

technique cannot be used to reduce the critical path.

3.2.2 Radix-4 architecture Arch-L.:

In this architecture the Lucent Bell Labs proposed the following approximation for

computation of ug[k+2] is implemented

aolk+2] = max*(max(ao[k] + yo[k], a1[k] + v3[k]} + yo[k+1],
max (0[] +y2[k], as[k] +yi[k]) + vs[k+1]). (3)

The architecture to implement this approximation is shown in figure 3.2. However this
approximation will have a 0.04-db performance loss compared to the original Log-MAP
algorithm. Here the critical path consists of four multibit adder delays, one generalised LUT
delay, and one 2:1 MUX delay. The LUTI1 block includes absolute value computation and a
normal LUT operation, the MAX block includes one subtractor and one 2:1 MAX.

12
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Figure 3.2 Radix-4 architecture Arch - L

3.2.3 Advanced Radix-2 architecture Arch - A:

Here we introduce a difference metric for each competing pair of states metrics so that
we can perform the front-end addition and the subtraction operations simultaneously in order to
reduce the computation delay of the loop. Second, we employ a generalized LUT (see GLUT in
Fig. 3.3) that can efficiently avoid the computation of absolute value instead of introducing
another subtraction operation. Third, we move the final addition to the input side as with the
OACS architecture and then utilize one stage carry-save structure to convert a three-number

addition to a two-number addition. Finally, we make an intelligent approximation in order to

further reduce the critical path.

The following equations are assumed for the considered recursive computation shown in

Fig. 3.3

13
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Figure 3.3 Advanced Radix-2 architecture Arch-A

ag[k+1] = max * (aolk] + yolk], ai[k] + v3[k])

aa[k+1] = max * (aofk] + v3(K], ar[k] + yo[K])

Where max* function is defined in (2).

aolk] = apalk] + coplk]

ai[k] = ajalk] + aislk]

azfk] = azalk] + a2p[k]

14

In addition, we split each state metric into two terms as follows

(4)

(5)



Similarly, the corresponding difference metric 1s also split into the following two terms:

So1[k] = Sp1a[k] + So1a{k]
do1alk] = ooalk] - ajalk]
do1e[k] = aoslk] - aisfk] (6)

In this way, the original add-and-compare operation is converted as an addition of three

numbers, 1.e.,

(@o+vo)-(ar +y3)=(y0 - ¥3) + d01a T duis (7

Where (yo - v3) is computed by branch metric unit (BMU). In addition, the difference
between the two outputs from two GLUTs, i.e., 8p s in the figure 3.3 can be neglected. Since this
small approximation does not cause any performance loss in Turbo decoding with either AWGN
channels or Raleigh fading channels. If one competing path metrics (e.g., p0 = ag + vo ) 1is
significantly larger than the other one ( e.g., pl = o) + v3), the GLUT output will not change the
decision anyway due to their small magnitudes. On the other hand, if the two competing path
metrics are so close that adding or removing a small value output from one GLUT may change

the decision ( e.g., from p0 > p1 to pl > p0), picking any one should not make big difference.

Upper Bounds for MAX: All the following upper bounds are derived from the definition
of MAX'

MAX'(x,y) >=MAX(x.y) (8)

For practical implementation, one can notice that, due to the finite precision of the hardware
implementation, the function In (1+ e~*¥) gives a zero result as soon as is large enough. For
example, if the values are coded in fixed precision with three binary places (a quantum of 0.125),
then , [x-y| > 2.5 which gives In (1+ e ¥} < 0.079, thus it will be rounded to 0. In that case,
the computation of the offset of the MAX  operator can be performed with two pieces of
information: a Boolean (for zero) that indicates if [x-y} is above or equal to the first power of two
greater than 2.5, i.e., four. If z is true, then the offset is equal to 0. If not, its exact value is

computed with the five least significant bits of |x-y|. The maximum number is In(2), which will

15



be quantized to 0.75, i.e., the width of the LUT is three bits for our example. An LUT is the most
straight-forward way to perform this operation. In the general case, there is a positive value 8

such that

MAX (x.y) = MAX(xy) ifx-y]>2° 9)
We also have

MAX (x,y) <= MAX(x.y) +In(2)  ifx=y. (10)

The correction function and its approximation is shown in the following figure 3.4

07

0.8

o
o Do
o o

i{x)=log(1 +exp{-x})

o
ha

Figure 3.4 Correction function and its approximation

At the input side, a small circuitry shown in Fig. 3.4 is employed to convert an addition
of three numbers to an addition of two numbers, where FA and HA represents full-adder and
half-adder, respectively, XOR stands for exclusive OR gate, dO and dl correspond to the 2-bit
output of GLUT. The state metrics and branch metrics are represented with 9 and 6 bits,
respectively, in this example. The sign extension is only applied to the branch metrics. It should
be noted that an extra addition operation (see dashed adder boxes) might be required to integrate

each state metric before storing it into the memory.

16



The GLUT structure is shown in Fig. 3.5, where the computation of absolute value is
eliminated by including the sign bit into two logic blocks, i.c., L2 and ELUT, where the Ls2
function block is used to detect if the absolute value of the input is less than 2.0, and the ELUT
block is a small LUT with 3-bit inputs and 2-bit outputs.

o8] Y[B] Y [_2‘_ 1” 1 ul ]t rﬂu 0140
: ! i l b
IXOR| | HA [ HA

Vel arare

Figure 3.5 Carry- save structure

It can be derived that Z =S’ (b7, ..., +b1 +b) + S (b7,...., b1bO0).

B
S | b7 ¢ & 0 b3 | b2 E bt | bo
x e o o / \ /
; - ' | AR L 2
, Ls2 ELUT
: $ ; , c1 |cO
; Y
vl v T
Figure 3.6 Structure of GLUT
The LUT approximation is described as follows
If x| <2; f(x) = 3/8; else f{x) =0 (1)

17



where x and f(x) stand for the input and the output of the LUT, respectively. In this
approach, we only need to check if the absolute value of the input is less than 2, which can be
performed by the Ls2 block in Fig. 3.5. A drawback of this method is that its performance would

be significantly degraded if only two bits are kept for the fractional part of the state metrics.

In our design, both the inputs and outputs of the LUT are quantized in four levels. The
details are shown in Table 1. The inputs to ELUT are treated as a 3-bit signed binary number.
The outputs of ELUT are ANDed with the output of Ls2 block. This means, if the absolute value
of the input is greater than 2.0, the output from the GLUT is 0. Otherwise, the output from ELUT
will be the final output. The ELUT can be implemented with combinational logic for high-speed

applications. The computation latency is smaller than the latency of Ls2 block.

x| 100 [050 [1.0 [150
fx) |34 | 2/4 s | a

Table 3.1. Proposed LUT approximation

Therefore, the overall latency of the GLUT is almost the same as the previously
discussed simplified method whose total delay consists of one 2:1 multiplexer gate delay and the

computation delay of logic block Ls2.

After all the previous optimization, the critical path of the recursive architecture is
reduced to two multibit additions, one 2:1 MUX operation, and 1-bit addition operation, which

saves nearly two multibit adder delay compared to the traditional ACSO architecture.

3.2.4 Improved Radix-4 architecture Arch-B:

Here we will discuss the improved Radix-4 architecture. The computation of ag[k+2] is
given as follows
aolk+2] = max * (max(ao[k+1] + yolk+1], oulk+1] + y3[k+1])
= max * (max * (ao[k] + yo[k], au[k] + ys[k]} + vo[k+1]),
max * (c2[k] + ya[k], as[k] + vilk]) + ys(k+1]). (12)
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where a;[k+1} = max * (max(az[k] +v2[k], asik] + vilk])

The approximation is applied to the above equation as follows
ao[k+2] = max (max * (ao[k} + vo[k], cu[K] +y3[K]) + vo[k + 1,
max * (o2 k] + vafk], aa[k] + valkD) + ys[k + 1]) (13)
Turbo decoder employing this new approximation should have the same decoding
performance as using (9). While directly implementing (10) does not bring any advantage to the
critical path, we intend to take advantages of the techniques that we used in developing Arch-A.

The improved Radix-4 architecture Arch-B is shown in Fig. 3.6.

S

-

okl
K] :&: -+

T e n bt

”f’l.!'il-’l' + :}
Fuld ] 2dh 41} »
ikl rolk 1) » = D
—
05 41K] ]
(-Egj;“[k-! s 2]
s g [£] AR L

tp ] 1 +

AL k1]

D

ikl Akl »

Figure 3.7 Improved Radix-4 architecture Arch-B

Here, we split each state metric into two terms and we adopt the same GLUT structure as
we did before. In addition, a similar approximation is incorporated as with Arch-A. In this case,
the outputs from GLUT are not involved in the final stage comparison operation. It can be
observed that the critical path of the new architecture is close to a three multibit adder delay. To
compensate for all the approximation introduced, the extrinsic information generated by the

MAP decoder based on this new Radix-4 architecture should be scaled by a factor around 0.75.
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3.2.5 Radix-8 architecture Arch-C:

Here the algorithm approximation of improved Radix-4 architecture ie., Arch —B is

followed to form Radix-8 architecture Arch — C and the computation of ag[k+3] is given follows.

Qs k] £
@ gik]

cuoelk+3]

. D e
a2y 4ik] ] -| k+3
I - + s sl k+3]

A vl zils » T 1 - D
W B ey sl [l " ‘—t"‘—’
9 x 0 [}

= k] . +
e g k] I

Figure 3.8 Radix-8 architecture Arch-C

aplk+3] = max{max[max*{ aofk]+ Yoolk+ 11+ yoo[k+2]+ Yoo[k+3], o[k} vio[k+11+ yoo[k+21+
Yoolk+3]), max*( aa[K]+ yzr[k+ 11+ yr0.[k+21+ yoolk+31, etsfk]+ ya1[k+ 11+ vio[k+21+ voo[k+3D],

max[max*( ea[k]+ yaolk+ 11+ y2i[k+2]+ violk+31, as[k]+ vsalkt 11+ yar[k+2]+ yiofk+31), max*(
e[kt Ves[k+17+ 31 [k+ 21+ vrolk+3], cfk]+ yoslk+ 13+ ya[k+2]+ viofk+3D)] ) (15)
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3.2.5 Radix-16 architecture Arch-D:

Here the algorithm approximation of improved Radix-4 architecture ie., Arch—B is

followed to form Radix-16 architecture Arch — D and is shown in figure 3.9
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Figure 3.9 Radix-16 architecture Arch-D

The equation for calculating the ag[k+4] is similar to that of Arch-C except that we have

four branch metric with respective delay components handled at a time.
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CHAPTER 4

SIMULATION RESULTS

4.1 SIMULATED RESULTS OF ARCH-O

The simulated results of Arch-O are shown in the figure 4.1
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Figure 4.1 Simulated results of Arch-O
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4.2 SIMULATED RESULTS OF ARCH-L

The simulated results of Arch-L are shown in the figure 4.2
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Figure 4.2 Simulated results of Arch-L
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4.3 SIMULATED RESULTS OF ARCH-A

The simulated results of Arch-A are shown in the figure 4.3
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27



4.4 SIMULATED RESULTS OF ARCH-B

The simulated results of Arch-B are shown in the figure 4.4
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Figure 4.4 Simulated results of Arch-B
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4.5 SIMULATED RESULTS OF ARCH-C

The simulated results of Arch-C are shown in the figure 4.5
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Figure 4.5 Simulated results of Arch-C
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4.6 SIMULATED RESULTS OF ARCH-D

The simulated results of Arch-D are shown in the figure 4.6
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Figure 4.6 Simulated results of Arch-D
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this work, we have designed the high speed recursion architecture Arch-C and Arch -D
and obtained the simulated results of the same. Our future work will focus on designing other

architectures with higher radices and compare their performances in terms of speed and area.
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Spartan-llE FPGA Family:
Introduction and Ordering
Information

Product Specification

Introduction
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seven-member family offers densities ranging trom 50,000
to 600,000 system gates, as shown in Table 1. System per-
tormance is supported beyond 200 MHz.

Features include block RAM (1o 288K bitg), distributed RAM
{to 221,184 bits), 19 selectable /O standards, and four
DLLs (Delay-Locked Loops). Fast. predictable interconnect
maans that successive design terations continue to meet
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- IEEE 1149.1 compatible boundary scan logic
+  Versatile YO and packaging
- Pb-tree package options
- Low-cost packages available in alf gensities
- Family tootprint compatibility in common packages
- 18 high-performance interface standards
LVTTL, LVCMOS, MSTL, SSTL, AGP. CTT, GTL
LVDS and LVPECL. differential 170
- Up 1o 205 differential YO pairs that can be input,
outpul, or bidirectional
- Hot swap VO (CompactPCI friendly)
= Core logic powered at 1.8Y and 1/Os powered at 1.5V,
2.86V. or 3.3v
*  Fully supported by powerful Xitinx® ISE® development
system
- Fully automatic mapping, placement. and routing
- Integrated with design entry and verification tools
- Extensive IP library including DSP functions and
soft processors

Table 1: Spartan-UE FPGA Family Members

Typical ¥ - ¢ ‘Maximum | Maximum : )

Logic System Gate Range Array | Total | Awailable : Differential Distributed | Block RAM
Device Cells {Logic and RAM) {RxC) | cLBs | User o) : O Pairs RAMBits @  Bits
XC2550E 1.728 23,000 - 50,000 i6x24 : 182 a3 24578 32K
TXC28100E 2 F06 A7 000 160,600 20'x 30 2oz 86 BEanh T 4ok
XC28150E ~ 3.888 52,000 - 150.000 24% 36 864 265 ‘ 134 55,296 48K
TXC2s200E 5,292 71,008 - 200,000 28%az 1176 289 120 75.264 56K
| XC2S300E  6.612 93.000 - 300,000 32x48 1536 329 120 98.304 64K
XC2S400E  10.800 © 145,000 - 400,000 40%B0  2.400 410 172 153,600 160K
XC2S600E 15552 | 210,000 - 600,000 48x72 3456 514 205 221184 288K

Notes:

1. User O counts inciude the four globat cigck/user input pins. See details in Table 2.- page 5
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General Overview

The Spartan-lIE famity of FPGAs have a regular, flexible,
programmable architecture of Configurable Logic Blocks
(CLBs), surrounded by a perimeter of programmable
input/Cutput Blocks (10Bs). There are four Delay-Locked
Loops (DLLs), one at each corner of the die. Two columns
of block RAM lie on opposite sides of the die, between the
CLBs and the I0OB columns. The XC2S4Q0E has four col-
umns and the XC2S600E has six columns of block RAM.
These functional elements are interconnected by a powertul
hierarchy of versatile routing channels (see Figure 1).

Spartan-lIlE FPGAs are customized by loading configura-
tion data into internal static memory cells. Unlimited repro-
gramming cycles are possible with this approach. Stored
values in these cells determine logic functions and intercon-
nections implemented in the FPGA. Configuration data can
be read from an external serial PROM (master serial mode),
or written into the FPGA in slave setial, slave paraliel, or
Boundary Scan modes. Xilinx offers muitiple types of
low-cost configuration solutions including the Platform
Flash in-system programmable configuration PROMSs.

Spartan-{E FPGAs are typically used in high-volume appli-
cations where the versatility of a fast programmable sokstion
adds benefits. Spartan-IiE FPGAs are ideal for shortening
product development cycles while offering a cost-effective
solution for high volume production.

Spartan-liE FPGAs achieve high-performance, low-cost
operation through advanced architecture and semiconduc-
tor technalogy. Spartan-tiE devices provide system clock
rates beyond 200 MHz. in addition: to the conventional ben-
efits of high-volume programmable logic solutions, Spar-
1an-lIlE FPGAs alsa offer on-chip synchroncus single-port
and dual-port RAM (block and distributed form). DLL clock
drivers, programmable set and reset on all flip-flops, fast
carry logic, and many other features.

Spartan-iiE Family Compared to Spartan-il
Family
+  Higher densily and more /O
*  Higher performance
+  Unique pinouts in cost-effective packages
+ Differential signaling
- LVDS. Bus LVDS, LVPECL
* Veowy = 1.8V
- Lower power
- 5V tolerance with externai resistor
- 3V tolerance directly
«  PCI LVTTL, and LYCMOS2 input buffers powered by
Vg instead of Voo

«  Lnique larger bilsireamn

s R 1
= D E
= Loy, ORL I € =
== ¢ L Lo ¢ =8
s D000 000000 =8
00000 0000, 6
= Lo O ¢ e
RN Ny =
s50 ) OOl =s
1101111

Figure 1: Basic Spartan-WE Family FPGA Block Diagram
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Functional Description

Product Specification

Architectural Description

Spartan-llE FPGA Array

The Spartan®IE user-programmabie gate array, shown in

Figure 3, is composed of five major configurable elements:

¢ 10Bs provide the interface between the package pins
and the internal logic

« CLBs provide the funclional elements for constructing
most logic

+ Dedicated block RAM memories of 4096 bits each

« Clock DLLs for clock-distribution delay compensation
and clock domain control

«  Versatile multi-level interconnect structure
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As can be seen in Figure 3. the CLBs form the central logic
structure with easy access to ali support and routing si-uc-
tures. The I08s are located around all the fogic and mem-
ary elements for easy and guick routing of signals on and ot
the chip.

Values stored in static memory cells control all the config-
urable logic elements and interconnect resources. These
values load into the memory cells on power-up, and can
reload if necessary 1o change the function of the device.

Each of these elemenis will be discussed in detail in the fol-
lowing sections.
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Figure 3. Basic Spartan-llE Family FPGA Biock Diagram
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Figure 4: Spartan-HE Input/Output Block (I0B)

Table 3: Standards Supported by /O (Typical Values)

N/A

NA

Input Quiput ! Board
Reference Input  Source  Termination
Voltage Vollage Voltage: Voltage
KO $tandard Vrer)  Veca)  (Veeod © (V)
TITL @24ma)  NA 33 33 . NA
LVCMOS2 NA | 25 25 N/A
LVCMOS 18 NA 18 18 NA
PCI (3V, i NA 33 33 AT
| 33 MH2/66 MHz)
e T
. R A
NaTTTHE 075
HSTL Class I N/A 15 15
HSTL Class ¥~ 09 A 15 15
'SSTL3 Ciass | N33 s
ang H
.§STLZ Class | 1.25 N/A 2.5 1.25
ancl
g - e T g s
e e T g
LVDS. Bus LVDS N/A N/A 2.5 NIA
LYPEGL 33 N/A

input/Output Block

The Spartan-lIE FPGA I0B, as seen in Figure 4, features
inputs and outputs that support a wide variety of KO signal-
ing standards. These high-speed inputs and outputs are
capable of supporting various state of the art memory and
bus intertaces. The default standard is LVTTL. Table 3 lists
several of the standards which are supporied along with the
required reference {Vggg), output (Voeo) and board termi-
nation (Vyy) voltages needed to meet the standard. For
more details on the /O standards and termination applica-
tion exarnples, see XAPP179, "Using SelectlO Interfaces in
Spartan-ll and Spartan-ilE FPGAs."

The three IOB registers function either as edge-triggerad
D-type flip-flops or as level-sensitive latches. Each 0B has
a clock signal (CLK) shared by the three registers and inde-
pendent Clock Enable (CE) signals for each register.

In addition to the CLK and CE controt signals. the three reg-
isters share a Set'Reset (8R). For each register, this signal
can be ingependently contigured as a synchronous Set. a
synchronous Reset, an asynchronous Preset, or an asyn-
chronous Clear.

A feature not shown in the block diagram. but controlied by
the software, is polarity control. The input and output buffers
and all of the I0B control signats have independent polarity
contrals.
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Spartan-NE FPGA Family: Functional Description

Optional pult-up and pull-down resistors and an opticnal
weak-keeper circuit are attached to each user 1O pad. Prior
to configuration ali outputs not invelved in configuration are
forced into their high-impedance state. The puli-down resis-
tors and the weak-keeper circuits are inactive, but inputs
may optionally be pulled up. The activation of puil-up resis-
tees prior to configuration is controlled on a global basis by
the configuration mode pins. If the pull-up resistors are not
activated, all the pins will float. Consequently, external
pull-up or pull-down resistors must be pravided on pins
required to be at a well-defined logic tevel prior to configura-
tion.

Al pads are protected against damage from ekectrostalic
discharge {ESD)} and from over-voltage transients. After
configuration, clamping diodes are connected 10 Veeo for
LVTTL, PCY, HSTL, SSTL. CTT. and AGP standards.

Al Spartan-IlE FPGA {0Bs support IEEE 1149.1-compati-
ble boundary scan testing.

Input Path

A buffer in the 10B input path routes the input signal directly
to internal logic and through an optional input fiip-flop.

An optional detay element at the D-input of this flip-flop elim-
inales pad-to-pad hold time. The delay is matched to the
internal clock-distribution delay of the FPGA, and when
used, assures that the pad-to-pad hold lime is zero.

Each input bufier can be configured to conform to any ot the
fow-voltage signaling standards supported. In scme of
these standards the input bufter utilizes a user-supplied
threshold voltage, Vg The need to supply Vger imposes
constraints on which standards can used in close proximity
1o each other. See /O Banking.

There are optional pult-up and pull-down resistors at each
input for use after configuration.

Output Path

The output path includes & 3-state output bufter that drives
the oulput signal onto the pad. The output signal can be
routed 1o the buffer directly from the internal logic or through
an optional 10B output flip-flop.

The 3-state control of the output can also be routed directly
from the internal logic or through a flip-flip that provides syn-
chronous enable and disable.

Each output driver can be individually programmed for a
wide range of low-voltage signaiing standards. Each output
buffer can source up to 24 mA and sink up to 48 mA. Drive
strength and slew rate controls minimize bus transtents. The
default putput driver is LVTTL with 12 mA drive strength and
slow slew rate.

In most signaling standards, the cutput high voltage
depends on an externally supplied Ve voltage. The need
to supply Voo imposes constraints on which standards

can be used in close proximity to each other. See 10 Bank-
ing.

An optional weak-keeper circuit is connecled to each out-
put. When selected. the circuit monitors the voltage on the
pad and weakly drives the pin High or Low io match the
input signal. If the pin is connected 1o a multiple-source sig-
ral. the weak keeper holds the signal in its last state f al
drivers are disabled. Maintaining a valig legic level in this
way helps eliminate bus chatter.

Because the weak-keeper circuil uses the ICB input bilier
to monitor the input level, an appropriate Ypep vollage must
be provided if the signaling standard requires cne. The pro-
vision of this voltage must comply with the VO barking
rsles.

YO Banking

Some of the VO standards described above require Voo
and/or Vage voltages. These voltages are externally sup-
plied and connected to device pins that serve groups of
|OBs, called banks. Consegquently, restrictions exist about
which IF0 standards can be combined within a given bank.

Eight /O banks result from separating each edge of the
FPGA into two banks (see Figure 3). The pinout tables
show the bank aftiliation of each IO (see Pinout Tables.
page 53). Each bank has multiple Voo pins which must be
connected to the same voltage. Voltage requirements are
determined by the output standards in use.

Bank @ v v Bank !
~ ™
g GCLK3  GOLK2 z

Spartan-llE
Device

w0 o
£ £
g GCLK1 GCLKO K

Bank 5 A ¢ Bank 4

Figure 5. Spartan-liE /O Banks

tn the TQ144 and PQ208 packages. the eight banks have
Veen cannected together. Thus, only cne Veeo level is
allowed in these packages. although ditferent Ve values
are allowed in each of the eight banks.

Within a bank, standards may be mixed only if they use the
same Vg Compatible standards are shown in Table 4.
GTL and GTL+ appear under all voltages because lheir
open-drain outputs do not depend on Voo Note that Veco
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is required for most output standards and for LVTTL.
LVCMOS, and PGl inputs.

Table 4. Compatible Standards

Veeo Compatible Standards
33V PCI, LVTTL, SSTL3 | SSTL3 1L, CTT. AGP,
LVPECL, GTL, GTL+
25V - SSTLz |, SSTL2 I, LVCMOSZ, LVDS, Bus
| LVDS, GTL, GTL+
1.8Y  LVCMOS18, GTL, GTL+

1SV HSTLI HSTL IIL HSTLIV, GTL. GTL+

Some input standards require a user-supplied threshold
voltage, Vper In this case, certain user-HQ pins are auto-
matically configured as inpuls for the Vgee voitage. About
one in six of the VO pins in the bank assume this role.

Vaer pins within 2 bank are interconnected internally and
consequently only one Vppe vollage can be used within
each bank. Al Vggp pins in the bank, however, must be con-
nected to the external voltage scurce for correct operation.

In a bank, inputs requiring Vgee can be mixed with those
that do not but only one Vs voltage may be used within a
bank, The Vego and Vier pins for each bank appear in the
device pinout tables.

Within a given package, the number ot Ve and Vigeo pins
can vary depsnding on the size of device. In larger devices,
maore 170 pins convert to Ver pins. Since these are always
a supersel of the Viper pins used for smaller devices, it is
possible to design a PCB that permits migration to a larger
device. Alt Vgee pins for the largest device anticipated must
be connected 1o the Vggp voltage, and net used for 170

Table 5: /O Banking

FT256, FG4S6,
: Package TQ144, PQ208 FG676
‘VecoBanks | Interconnected as 1 8 independent
| Vger Banks gindependent © 8independent

See Xilinx® Application Note XAPP179 for more information
on /O resources.

Hot Swag, Hot Insertion, Hot Socketing Support

The I/O pins support hot swap — also called hot ingertion
and hot socketing — and are considered CompactPCl
Friendly according to the PGl Bus v2.2 Specification. Con-
sequently, an unpowered Spartan-lE FPGA can be
plugged directly inlo a powered system or badkplane with-
out affecting or damaging the syslem or the FPGA. The hot
swap functionality is  built into  every XC2S5150E,
XC28400E. and XC2SB00E device. Al other Spartan-ll&
devices built after Product Change Notice PCN2002-03 alse
inciude hot swap functionality.

To supparl hot swap, Spartan-lIE devices include the follow-
ing 1/O features.

+  Signals can be applied to Spartan-HE FPGA IO pins
before powering the FPGA’s Veoint 07 Voo Supply
inputs.

+  Spartan-lE FPGA VO pins are high-impedance (i.e..
threa-stated) before and throughout the power-up and
configuration processes when employing a
configuration mode that does not ¢nable the
preconfiguralion weak pull-up resistors {see Table 11,
page 22).

» There is no current path from the /O pin back to the
Voot oF Vooo voltage supplies.

+  Spartan-llE FPGAs are immune to Jatch-up during hot
swap.

Once connected 10 the system, each pin adds a small
amount of capacitance (Cyy,). Likewise, each HO consumes
a small amount of DC current, equivalent to the input leak-
age specification (I, }. There also may be a small amount of
temporary AC current (lugpo) when the pin input vollage
exceeds Veeg plus 0.4V, which lasts less than 10 ns.

A weak-keeper circuit within each user-l/O pin is enabled
during ihe last frame of configuration data and has no
noticeable effect on robust system signals driven by an
active driver or a strong pullup or pull-down resistor.
Undriven or fioating system signals may be affected. The
specific effect depends on how the /O pin is configured.
User-/O pins configured as oulputs or enabled oulputs
have a weak pull-up resistor 20 Ve during the last config-
uration trame. User-1/Q pins configured as inputs or bidirec-
tional ¥Os have weak puli-down resistors. The weak-keeper
circuit turns off when the DONE pin gees High, provided
that it is not used in the configured application.
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Spartan-llE FPGA Family: Functional Description

Configurable Logic Block

The basic building block of the Spartan-IIE FPGA CLB is the
logic cell {L.C). An LC includes a 4-input function generator,
carry logic, and storage element. The output from the tunc-
tion generator in each LC drives the CLB output or the
0 input of the Hip-flop. Each Spartan-lIE FPGA CLB con-
tains four L.Cs, organized in two similar slices: a single slice
is shown in Figure 6.

In addition 1o the four basic LCs, the Spartan-liE FPGA CLB
contains logic that combines function generators (o provide
functions of five or six inputs.

Look-Up Tables

Spartan-11E FPGA function generators are implemented as
4-input look-up tables (LUTs). In addition 10 operating as a
function generator, each LUT can provide a 16 x 1-bil syn-
chronous RAM. Furthermore, the two LUTs within a slice
can be combined o create a 16 x 2-bit or 32 x 1-bit syn-
chronous RAM, or a 16 x 1-bit dual-port synchronous RAM,

The Spartan-llE FPGA LUT can aiso provide a 16-bit shit
register that is ideal for capturing high-speed or burst-mode
data. This mode can aiso be used to store data in applica-
tions such as Digital Signal Processing.

Storage Efements

Storage élements in the Sparian-lE FPGA slice can be
configured either as edge-triggered D-tvpe iip-flops or as
levet-sensitive latches. The D inputs can be driven elther by
function generators within the stice or directly from slice
inputs, bypassing the tunction genarators.

In addition to Clock and Clock Enable signals, each slice
has synchronous set and reset signals (SR and BY). SR
forces a storage element into the initialization stale speci-
fied for it in the configuration. BY forces it into the oppasite
state. Alternatively, these signals may be configured to
operate asynchronously.

Ail control signals are independently invertible. and are
shared by the two flip-flops within the slice
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Figure 8: Spartan-llE CLB Slice (two igentical slices in each CLB)
Additional Logic Similarly, the F6 multiplexer combines the outputs of all four

The F5 muttiplexer in each slice combines the function gen-
erator outputs {Figure 7). This combination provides either
a function generater that can implement any 5-input func-
tion, a 4:1 multiplexer, or selected functions of up to nine
inputs.

tunction generators in the CLB by selecting one of the two
Fa-multiplexer outputs, This permits the implementation of
any 8-input function, an B:1 multiplexer, or selected func-
tigns of up to 19 inputs.
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DGO7-2 s s

Figure 7: F5 and F6 Multiplexers

Each CLB has four direct feedthrough paths, one per LC.
These paths provide extra data input lines or additional local
routing that does not consume logic resources.,

Arithmetic Logic

Dedicated carry legic provides capability for high-speed
arithmetic functions. The Spartan-llE FPGA CLB supports
two separate carry chains. one per slice. The height of the
carry chains is two bils per CLB3,

The arithmetic logic includes an XOR gate that allows a
1-bit full adder to be implemented within an LC. In addition,
a dedicated AND gate improves the efficiency of multiplier
implementations,

The dedicated carry path can also be used lo cascade func-
tion generators for implementing wide jogic functions.

BUFTs

Each Spartan-HE FPGA CLB contains two 3-state drivers
(BUFTSs) that can drive on-chip busses. The IOBs on the left
and right sides can also drive the on-chip busses. See Ded-
icated Routing, page 17. Each Spartan-iE FPGA BUFT
bhas an independent 3-state control pin and an independent
input pin. The 3-state control pin is an active-Low enable
(T). When ali BUFTs on a net are disabled, the net is High.
There is no need to instantiate a pull-up unless desired for
simulation purposes. Simultaneously driving BUFTs onto
the same net will not cause contention. If driven both High
and Low. the net will be Low,

Block RAM

Spartan-llE FPGAs incorporate several large block RAM
memories. These complement the distributed RAM
Look-Up Tables (LUTs) that provide shallow memory struc-
tures implemented in CLBs.

Block RAM memory blocks are organized in coiumns. Most
Spartan-llE devices contain two such columns, one aleng
each vertical edge. The XC2S400E has four block RAM coi-
umns and the XC28600E has six biock AAM columns.
These columns extend the full height of the chip. Each
memory block is four CLBs high, and consequently, a
Spartan-lE device 16 CLBs high will contain fout memory
blacks per column, and a 1otal of eight blocks.

Table 6: Spartan-HE Block RAM Amounts

Spartan-IE Total Block RAM
Device # of Blocks Bits
XC2S50E 8 ' azK
XC2S100E 10 40K
osime 1
XC2s2008 14 ' 56K
XC2S300E 16 R T
| XC28400E o 180K
| XC2SB00E 72 ' 283K

Each block RAM cell, as illustrated in Figure 8, is a fully syn-
chronous dual-ported 4096-bit RAM with independent con-
trol signals for each port. The data widths of the two ports
can be configured independently, providing buill-in
bus-width conversion.

RAMBY S4 S#

WEA
ENA
ASTA
> CLKA
ADDI#:0}
DIA[#:0}

-1 C

WEB
ENG
RSTB

(> CLKB
ADDRB 4.0
D180

DOA[#:0] frmrm

DOBi2.0) —o

i

OS5 it

Figure 8. Dual-Port Block RAM
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