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Low Density Parity Check (LDPC) codes are promising error correcting codes.
The LDPC H matrix is a sparse matrix. So the memory requirement for this code is very
less. This will make the decoding of the LDPC codes very etficient and simple compared
to the other crror correcting methods. The decoding can be casily done with the help of
the tanner araph and message passing algorithm. In this project. the two different
decoding methods ot LDPC codes are studied. The two methods are hard decision
decoding and the soft decision decoding. These two decoding mcthod are analyzed and
simulation results are taken from model sim soft ware. For hard decision decoding 6 bit
code word is given to the decoder and the performance is analyzed. For hard decision
decoding 32 bit code word performance is also analyzed. For soft decision 6 bit code
performance is analyzed. LDPC codes give good error corrcetion performance
approaching Shannon's limit. Applications of this error correcting codes are in Digital
Video Broadcasting (DVB-2), Gigabit Ethémet, and Wireless broadband communication

ctfe.
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CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

Communication systems transmit data from source to destination through a channel or
medium such as air, wire Jine and optical fiber. Reliability of the received data depends on the
channel and external noises that could interface or distort the signal representing the data. Noise
introduces errors in the received data. Error detection and correction is achieved by adding
redundant symbols to the original data. Forward Error Carrection Code (FEC) is used for error
correction easily without data need to be retransmitted. Retransmission will result in delay, cost
and wastes system throughput. Several error correction codes have been developed to improve
the reliability of the data transfer. Forward Error Correction Codes {FEC) includes Viterbi,
convolution codes, Bose Chaudhuri Hocquenghen (BCH) codes, Reed Solomon (RS) codes, turbo

codes and low density parity check codes (LDPC).

Low Density Parity Check (LDPC) codes are a class of linear block codes, shows good
error correcting performance approaching Shannon’s limit. Good error correcting performance
enables efficient and reliable communication. They were first introduced by Gallager in his
Ph.D. thesis in 1960. But due to the computational complexity in implementing encoder and
decoder for such codes and the introduction of Reed-Solomon codes, they were mostly ignored
until about ten years ago. They remained largely neglected for over 35 years. In the mean time
the field of forward error correction was dominated by highly structured algebraic block and
convolutional codes. Despite the enormous practical success of these codes, their performance
fell well short of the theoretically achievable limits set down by Shannon in his seminal 1948
paper. The relative quicscence of the coding field was utterly transformed by the introduction of
turbo codes, proposed by Berrou, Glavieux and Thitimajshima, wherein all the key ingredients of
successful error correction codes were replaced: turbo codes involve very little algebra, employ
iterative, distributed algorithms, focus on average (rather than worst-case) performance, and rely

on soft (or probabilistic) information extracted from the channel.



New generalizations of Gallager's LDPC codes by a number of researchers including
Luby, Mitzenmacher, Shokroilahi. Spielman, Richardson and Urbanke, produced new irregular
LDPC codes which offer certain practical advantages and an arguably cleaner setup for
theoretical results. Today, design techniques for LDPC codes exist which enable the construction
of codes which approach the Shannon’s capacity to within hundredths of a decibel. The main

rescarch intercsts are low complexity encoding and efficient decoding schemes.

The future wireless standards nced different scalable properties fike multiple code rates,
multiple code lengths, fixed code lengths, different throughputs depending on the applications.
LDPC codes can be designed to meet the above requirements. In addition to the strong
theoretical interest in LDPC codes, such codes have already been adopted in satellite-based
digital video broadcasting and long-haul optical communication standards, are highly likely to be
adopted in the IEEE wireless local area network standard, and are under consideration for the
long-term evolution of third generation mobile telepheny. The idea behind these codes dates
back to the sixties, but recently such coding schemes has been given a fresh analysis and it has
been shown that they can approach the information theoretical limits at unprecedented low
complexity. The name Low Density comes from the characteristic of their parity-check matrix
which contains only a few 1's in comparison to the number of §’s. Their main advantage is that
they provide a performance which is very close to the capacity for a lot of different channels and
linear time algorithms for decoding. Furthermore they are suited for implementations that make
heavy use of parallelism. They use parallel decoding and the simple computation operations are

the main advantage of the LDPC codes.

1.2 PROJECT GOAL

The project aim is to implement the LDPC decoder in FPGA. In this project, hard
decision decoding and the Soft decision decoding algorithms are analyzed in detail. Both
algorithms are simulated using model sim soft ware. Hard decision decoding algorithm for 6 bit

codeword and 32 bit code word are implemented in FPGA



1.3 SOFTWARES USED

+~ ModelSim PE 5.4¢
~ Xilinx ISE 9.21
» Matlab R2008b

1.4 ORGANIZATION OF THE REPORT

#~ Chapter 2 discusses about the LDPC codes.

» Chapter 3 deals with the encoding and decoding of LDPC codes
» Chapter 4 gives the introduction to VHDL language

~ Chapter 5 presents the simulation results

~ Chapter 6 gives the conclusion and future scope



CHAPTER 2

LOW DENSITY PARITY CHECK CODES

2.1 PARITY CHECK CODES

In communication systems the noise are added when the messages are passed over the
channel. So different error correcting methods are introduced. Parity check miethod of error
correction is one of the simplest methods. In parity check methad we will only consider binary
messages and so the transmitted messages consist of strings of 0's and 1's. The essential idea of
forward error control coding is to augment these message bits with deliberately introduced
redundancy in the form of extra check bits to produce a codeword for the message. These check
bits arc added in such a way that code words are sufficiently distinct from one another that the
transmitted message can be correctly inferred at the receiver. even when some bits in the

cadeword are corrupted during transmission over the channel.

The simplest possible coding scheme is the single parity check code {SPC). The SPC
involves the addition of a single extra bit to the binary message. the value of which depends on
the bits in the message. In an even parity code, the additional bit added to each message ensures
an even number of Is in every codeword. More formally, for the 7-bit ASCII plus even parity

code we define a codeword ¢ to have the following structure:
c=[cl c2c3¢cdc5chcT c8) (2.1)
Where each ci is cither 0 or 1, and every codeword satisfies the constraint
Al BL2HSDAPS BB THER=0 {(2.2)

Equation {2.2) is called a parity-check equation, in which the symbol @ represents

modulo-2 addition.

While the inversion of a single bit due to channel noise can easily be detected with a
single parity check code, this code is not sufficiently powerful to indicate which bit, or indeed

bits, were inverted. Moreover, since any even number of bit inversions produces a string



satisfying the constraint (2.2), patterns of even numbers of errors go undetected by this simple
code. Detecting more than a single bit error calls for incrcased redundancy in the form of
additional parity bits and more sophisticated codes contain multiple parity-check equations and

each codeword must satisty every one of them.
2.2 LDPC CODES

Low Density Parity Check (LDPC) codes are error checking and correcting codes, which
show good error correcting performance approaching Shannon's limit. The matrix "H' is called a
parity-check matrix. In LDPC codes the H matrix is sparse. The number of ones in the matrix is
lesser compared to the number of zeroes. Each row of H corresponds to a parity-check equation
and each column of H corresponds to a bit in the codeword. Thus for a binary code with m

parity-check constraints and Iength n codeword the parity-check matrix is an m x n binary matrix

2.3 REPRESENTATION OF LDPC CODES

Basically there are two different possibilities to represent LDPC codes. Like all linear
block codes they can be described in two ways
e Matrix representation,

+ (Graphical representation.

2.3.1 Matrix Representation

The parity check constrain can be represented in the form of matrix with 1's and (’s. The
matrix given in eqn (2.3) is a parity check matrix with dimension n x m for a {6, 2) code. We can
now define two numbers describing these matrixes. W, (row weight) represent the number of 1’s
in each row and W, (column weight) represent number of ones in each column. For a matrix to

be called low-density the two conditions W, << n and W, << m must be satisfied.

2.3)
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‘the matrix H is called a parity-check matrix. Each row of H corresponds to a parity-
check equation and each column of H corresponds to a bit in the codeword. Thus for a binary
code with 'm’ parity-check constraints and length 'n” codeword’s the parity-check matrix is an
m x n binary matrix. The matrix is called sparse since the number of ones in the matrix is less
compared to the numhber of zeroes. In matrix form a string y = |l ... enl is.a valid codeward

for the code with parity-check matrix H if and only if it sausfies the matrix equation Hy' = 0.

Matrix G is called the generator matrix of the code. The message bits are conventionally
labeled by u = [ul, u2. ... ,uk]. where the vector "u’ holds the 'k’ message bits. Thus the
* codeword c corresponding to the binary message u = [utu2u3] can be found using the matrix
equation ¢ = uG. For a binary code with 'k’ message bits and length ‘n’ code words the generator
matrix, G, is a kxn binary matrix. The ratio k/n is called the rate of the code. A code with k
message bits contains 2* code words. These code words are a subset of the total possible 2"

binary vectors of length n.

2.3.2 Graphical Representation

Tanner introduced an effective graphical representation for LDPC codes. This way of
representing the codes is called the Tanner graph. Tanner graph methods are very easy in

implementing the message passing between the nodes and the LDPC decoding

Check Nodes

Bit Nodes

Figure 2.1: Tanner graph representation of parity check matrix



Tanner graphs are bipartite graphs. That means that the nodes of the graph are separated
into two distinctive sets and edges are only connecting nodes of two different types. The two
types of nodes in a Tanner graph are called variable nodes {v-nodes} and check nodes (C-nodes).
Figure 2.1 is an example for such a Tanner graph and represents the same code as the matrix in
{2.3). The creation of such a graph is straight forward. It consists of m check nodes (the number
of parity bits) and n variable nodes {the number of bits in a codeword). Check node fi is

connected to variable node ¢; if the element hjjof His a 1.

The graph representation is analogous to a matrix representation by looking at the
adjacency matrix of the graph, let H be a binary m x n matrix in which the entry (i; j) is 1 if and

+th

only if the i check node is connected to the j™ message node in the graph. Then the LDPC code
defined by the graph is the set of vectors ¢ = (cl.... cn) such that H*c" = 0. The matrix H is
called a parity check matrix for the code. Conversely, any binary m x n matrix gives rise to a
bipartite graph betwcen ‘'n’ message and ‘'m’ check nodes, and the code defined as the null space
of H is precisely the code associated to this graph. Therefore, any linear code has a
representation as a code associated to a bipartite graph (note that this graph is not uniquely
defined by the code}. However, not every binary linear code has a representation by a sparse
bipartite graph if it does, then the code is called a low-density parity-check (LDPC) code. The
sparsity of the graph structure is key property that allows for the algorithmic efficiency of LDPC

codes

2.4 REGULAR AND IRREGULAR LDPC CODES

An LDPC code is called regular if W, is constant for every column and Wr = W, * (n/m)
is constant for every row. The example mairix from equation (2.3) is regular with W, = 2 and W;
= 3. It's also possible to see the regularity of this code while looking at the graphical
representation. There is the same number of incoming edges for every v-node and also for all the
c-nodes. I the numbers of 1's in each row or column aren’t constant, then the code is called an
irregular LDPC code. The parity check matrix of LDPC codes is either regular or irregular. But

the irregular LDPC parity check matrix gives better performance.



2.9 CONSTRUCTION OF LDPC CODES

Several different algorithms exist to construct suitable LDPC codes. Gallager introduced
one. Furthermore MacKay proposed one to semi-randomly generate sparse parity check matrix.
This is quite interesting since it indicates that constructing good performing LDPC codes is not a
problem. In fact, completely randomly chosen codes are good with a high probability. The
problem that will arise is that the encoding complexity of such codes is usually rather high.

LDPC codes can be constructed in two ways they are

« Random construction

* MacKay Constructions

« Bit filling Algorithm

* Progressive Edge-Growth Algorithm
» Structured construction

* Combinatorial Designs

= Finite Geometry Designs

* Algebraic Mcthods

These are the methods to construct the LDPC codes. In random construction, the H
natrix is generated randomly. Therefore the number of ones in the row and the colunn need not
e same. But in the structured construction the numbers of ones are arranged in a structured way.

rregular constructed LDPC codes will give better performance than the regular constructed
_DPC codes



CHAPTER 3

ENCODING AND DECODING OF LDPC CODES

1 ENCODING PROCESS

The LDPC encoder transforms cach input message biock “u” into a distinet N-tuple {N-Dbit
quence) code word "¢’ The codeword length N, where N > K, is then referred to as the block-
ngth. And, there are 2* distinct code words corresponding to the 2X message blocks. This set of
e 2K code words is termed as a C(N,K) linear block code. The word linear signiftes that the
odulo-2 sum of any two or more code words in the code C(N.K) is another valid codeword.
he number of non-zero symbols of a codeword ‘¢’ is called the weight, while the number of bit-
ositions in which two code words differ is termed as the distance. The minimum distance of a
near code is denoted by dy. and determined by the weight of that codeword in the code

(N,K), which has the minimum weight.

The unique and distinctive nature of the code words implies that there is a one-to-one
happing between a K-bit information sequence ‘u’ and the corresponding N-bit codeword ‘¢’

escribed by the set of rules of the encoder.

A generator matrix ‘G’ is determined by performing Gauss-Jordan elimination on "H' to

btain it in the form:
H'=[A 1, ] 3.1)

Nhere ‘A" is a (N-K) x K binary matrix and Inx is the size N-K identity matrix. The generator

natrix is then:

C=MJN_K] (3.2)

Since LDPC codes are linear, a codeword is generated by multiplying the input vector

with the generator matrix,

c=uG (3.3)



Where ‘¢’ is the code word and ‘u’ is the input vector bits. >ince ' matrix 1S not sparse,

1e matrix multiplication at the encoder will have complexity in the order of n” operasions.

.2 DECODING OF LDPC CODES

The class of decoding algorithms used to decode LDPC codes is collectively termed
1essage-passing algorithms (MPA) since their operation can be explained by the passing of
nessages along the edges of a Tanner graph. Each Tanner graph node works in isolation, only
aving access to the information contained in the messages on the edges connected to it. The
nessage-passing algorithms are also known as iterative decoding algorithms as the messages
ass back and forward between the bit and check nodes iteratively until a result is achicved (or
he process halted). Different message-passing algorithms are named for the type of messages
yassed or for the type of operation performed at the nodes. In some algorithms, such as bit-
lipping decoding, the messages are binary and in others, such as belief propagation decoding.
he messages are probabilities which represent a level of belief about the value of the code word
LS.

It is often convenient to represent probability values as log likelihood ratios, and when
his is done belief propagation decoding is often called sum-product decoding since the use of
log likelihood ratios allows the calculations at the bit and check nodes to be computed using sum
and product operations. The decoding algorithms are normally classified in to two they are hard
decision algerithm and Soft decision algorithms. Soft decision algorithm which is based on the
concept of belief propagation gives better decoding performance and therefore is a preferred
method. The decoding can be done iteratively since the parity check matrix is sparse the LDPC

codes have less complexity compared with Turbo codes

3.3 MESSAGE PASSING ALGORITHM

The messages passed along the Tanner graph edges are straightforward: a bit node sends
the same outgoing message M to each of its connected check nodes. This message, labeled Mi.
for the i-th bit node. declares the value of the bit ‘1" or ‘0’. The check nodes send back different

messages to each of their connected bit nodes. This message, labeled E;; for the message {rom

10



he j-th check node to the i-th bit nade, declares the value of the i-bit 1" or ‘0’ as determined by
he j-th check node. If the bit node of an erased bit receives an incoming message which is "1" or
" the bit node changes its value to the value of the incoming message. This pracess is uniil

ome maximum number of decoder iterations has passed and the decoder gives up.

The advantages of LDPC decoding algorithms are that they will use tanner graph and
terative decoding methods. They consist of two sets of nodes check nodes and bit nedes. They
»oth are in different levels, Connected cach other. Vithin one level there is no connection so the

parallel processing can be done easily. This will speed up the decoding process

11 0 1 0 0]
O 1 1 0 1 O
H =
1 06 0 ¢ 1 1
00 1 1 0 1
X1
X1 +x2+x4=0
X2
X2 +x3 +x5 =0
X3
X1+x5+x6 =0
X4
¥5 X3 +x4 +x6 =0
X6

Figure 3.1: Representation of parity check constrain of LDPC codes



The notation Bj is used to represent the set of bits in the j"" parity-check equation of the

code. So for the parity check constrain shown in figure 3.1 we have
By={1. 2 4} B, ={2.3. 5} Bs=1{1.5.6} Bs=1{3.4.6}.

Similarly, we use the notation A to represent the parity-check equations which check on

-th

the i bit of the code. So for the parity check constrain shown in figure 3.1 we have

A]={13} 5\32{1.2} f'\;;={2, 4}
As={1.4} As;={2,3} As=1{3.4}.

Algorithm outlines message-passing decoding on the BEC. Input is the received values
from the detector, y = |y1, ..., yn] which can be "1, "0, and output is M = [MI1, . . ., Mn| which
can also take the values "17, 0.

The datas are sometime send over the erasure channel. The MPA algorithm will help to
find the erased bit. Thus the message passing algorithm (MAP) helps to find out the reassured
bits at the decoder. This message passing algorithm can be used in erasure channel where the
received bits can be '0°,"1" or x the unknown bit. The specialty of the channel is that it will
receive either a receive either a true bit or bit x. It will not produce an error bit. The unknown bit
x can be found out by the message passing algorithm by passing of messages between bit nodes

and check nodes

3.4 HARD DECISION DECODING

The bit-flipping algorithm is a hard-decision message-passing algorithm for LDPC codes.
A binary (hard) decision about each received bit is made by the detector and this is passed to the
decoder. For the bit-flipping algorithm the messages passed along the Tanner graph edges are
also binary. A bit node sends a message declaring if it is a one or a zero, and each check node
sends a message to each connected bit node, declaring what value the bit is based on the

information available to the check node. The check node determines that its parity-check

12



quation is satisfied if the modulo-2 sum of the incoming bit values is zero. If the majority o1 the
ressages received by a bit node are different from its received value the bit node changes (flips)
s current value. This process is repeated until all of the parity-check equations are satisfied, or
ntil some maximum number of decoder iterations has passed and the decoder gives up.

The bit-tlipping decoder can be immediately terminated whenever a valid code word has
een found by checking if all of the parity-check equations are satisfied. This is wrue of all
nessage-passing decoding of LDPC codes and has two important benefits; firstly additional
terations arc avoided once a solution has been found. and secondly a failure to converge to a
ode word is always detected. The bit-flipping algorithm is based on the principle that a code
vord bit involved in a large number of incorrect check equations is likely to be incorrect itself.
[he sparseness of H helps spread out the bits into checks so that parity-check equations are
inlikely to contain the same set of code word bits. The bit-flipping algorithm applies the hard

lecision on the teceived vector, y = [y1, ..., yn], and outputis M = [M1, ..., Mnl}.

Fhe steps of the message passing algorithm is given below
Step 1: Initialization
Step 2: Check-node update
Step 3: Variable-node update

Step 4: Decision

Step 1: initiatization

This is the first phase of MPA. In this phase in tanner graph the bit nodes are assigned the
value of the received code word, this can or cannot be true. Then the bit nodes will send the
information in to the corresponding check nodes to which they are connected .at the check node
exor operations are performed. If all the result of the exor operation is zero then what ever code
word we got is the actual code word or else there is an error in the code word which have to be

corrected. So messages are passed between the bit nodes and the check nodes

13
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Figure 3.2: Initialization of the bit node

nthe case of received bits [1 0101 1} the value of the check bits are
By=1 B, =0 B; =1 Bs=0
Since all the bits in this case is not zero this is not satisfying the paritycheckequations and this is

10t the actual code word
step 2: Check-node update

This is the next step in decoding. The check nodes will send the values they hold to all
he bit nodes to which they have connected. E;; is the value passed from the j® check node to the
™ bit node. Since one check node is connected to three bit nodes .it will take the incoming value
from any two of the bit node and exor in and passed to the third one .this can be summarised in

terms of alt Ej's

E;; =0 E31 =0
Eszp=0 E12=0
Eyp=1 E43=1
Ey=1 E44 =0
Ex;=1 E35=0
Ez =0 E46 =1

14



Figure 3.3: Check node message updates

Step 3: Variable-node update

The variable node values are up dated by looking the message from the check nodes .this
will lJook maximum polling algorithm. That means each bit node will get messages from the two
check nodes .That is two bits it can be of four different combinations they are {0,0} {0,1} {1,0}
{1.1}.thus if the update from the check nodes are {1,0} or {0,1} whatever we received at the
receiver is taken as the correct. But when the received information from the check node are {1,
1} by maximum polling algorithm we will take the correct bit as "1’ whatever we received.
Similarly in the case of {0,0} we will take the error free received bit as ‘0" for whatever we

received

Bit update

/5‘_'-__/, 3
¢ o a ¢

v

Figure 3.4: Variable-node update
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Step 4: Decision

In this step the decisions will take. This is that hy the new updated value of the received
~ode word will be sending to check nodes again for the checking of correction .here we got that
1l the B values are zero so we represent it by the 1ic mark. Thus the error correction of the code

s done

N Y 4 v
[.J 9 F\l
\ ’\
l yd \ \\

/- \ \Qx.

/'.:“

Figure 3.5: Decision making

Bit-flipping decoding of the received string y = [1 01 0 1 1]. Each sub-figure indicates
the decision made at each step of the decoding algorithm based on the messages from the
previous step. A cross represents that the parity check is not satisfied while a tick indicates that it
is satisfied. For the messages, a dashed arrow corresponds to the messages “bit = 0" while a solid
arrow corresponds to “bit = 17.Thus by repeated message passing between the check nodes and
the bit nodes we can finally able to tell the received code word is correct or not. If there is any
ercor in the code word then the algorithm will correct the errors. Since there is no connection
with in the bit nodes and the check nodes and only connection between them the iterative
decoding is easy in this case

In the previous case the hard decision algorithm is done with 4 x0 parity check matrix.
The code word length is 6 bits. Hard decision decoding is extended up to 32 bit code word; the
corresponding parity check matrix dimension is 16 x 32. In the case of LDPC codes as the
dimension of the H, the parity check matrix increases, the performance shown by the code is

better
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.5 SOFT DECISION DECODING

It is convenient to represent probability values as log likelihood ratios, and when this is
one belief propagation decoding is often called sum-product decoding since the use of log
kelihood ratios allows the calculations at the bit and check nades to be computed using sum and
roduct operations. Soft decision algorithm which is based on the concept of belief propagation

ives better decoding performance and therefore is a preferred method.

The sum-product algorithm is a soft decision message-passing algorithm. It is similar to
he bit-flipping algorithm. But with the messages representing each decision {check met, or bit
alue equal to 1) now probabilities. The sum-product algorithm is a soft decision algorithm
vhich accepts the probability of each reccived bit as input. The input bit probabilities are called
he a priori probabilities for the received bits because they were known in advance before
unning the LDPC decoder. The bit probabilities returned by the decoder are called the posterior
srobabilities. In the case of sum-product decoding these probabilities are expressed as log-

ikelihood ratios.

For a binary variable x it is easy to find p(x=1) given p(x=0), since p(x=1) = 1-p(x=0)
ind so we only need to store one probability value for x. Log likelihood ratios are used to

epresent the metrics for a binary variable by a single value

plx=() = L=/ plx=0) _ e
1+ plx=1)/ plx=0) 1+’ -
And
p(x=0); p(x=1) o
- = _
plx=1) 1+ p(x=0)/ plx=1) 1+ a5
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The benefit of the logarithmic representation of probabilities is that when probabiliies
sed to be muitiplied log-likelihood ratios need only be added, reducing implementation
ymplexity .The sum-product algorithm iteratively computes an approximation of the MAP
Jlue for each code bit. Input is the log likelihood ratios for the a priori message probabilities.

he a priori probabilities for the Binary Symmetric channel (BSC) ave:
ri=log p/ (1= ifvi=1 Or
ri= log{l - p\)f.-"f[p) if y;=0 (3.6}

In sum-product decoding the extrinsic message from check node j to bit node i, Ej;, is the

LR of the probability that bit i causes parity-check j to be satisfied.

Itlye B i janh(M].1/2)
J

E. . =lo
Ji T 8 T e B e ftanh(My.1/2)
J (3.7)
he intrinsic message from check node j to bit node i, Mj;. is given by,
M, = 2 E
TRV (3.8)

[he total LLR of the bit stream is

Li= Z J'eA,.EJ'.f tr (3.9)

The total LLR can be either positive or negative number. The hard decision is taken.
When toral LLR is positive the decision is ‘0" else "1". The code word is z. Then syndrome
calculation is done by s=zH'. When s is zero then 7 is a valid codeword, and the decoding stops,

returning z as the decoded word. For an AWGN channel the a priori LLRs are given by
o =4}’;(E.s/Nu) (310]

The extrinsic LLR and the total LLR calculation are done to find the codeword .
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Various steps of Sum Product Decoding algorithm is given below

yeedure DECGDE(r)

ri=1:ndo
forj=1:mdo
M;i =1

end for

id for

peat

rj=1:mdo
fori & Bj do

1+ H peB i tanh( M]% ]

E;I = log A
( fj

%)

=

1-- H i 5,.-: tanh

end for
nd for
ori=1:ndo
Li=> ;. awEji+m

L <0
zZ. =
“Tlo.2)y0

end for

fori=1:ndo



forj € A;do
M= Y I =ALJH B+
end for
end for
I=T+1
end if
until Finished

end procedure

Check Nodes

Eji(b) / \ Mii(b)

Bit Nodes

Figure 3.6: Intrinsic and Extrinsic information transfer between bit nodes and the check

nodes

The figure 3.6 shows the intrinsic and extrinsic information transfer between bit nodes

and the check nodes. Finally the total LLR is calculated and the decision is made.
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CHAPTER 4

INTRODUCTION TO VHDL

VHDL is an acronym which stands for VHSIC Hardware Description Language. VHSIC
s vet another acronvin which stands for Verv High Speed Integrated Cireuits, Tt is being used for
ocumentation, verification, and svathesis of large digital designs. VHDL s a standard {VHDI .-
1076) developed by TEEE. The differene approaches in VHDL are structural, daa flow, and

whavioral methods of hardware description.
1.1 STRUCTURAL DESCRIPTIONS

The structural descriptions are explained below with examples.

1.1.1 Building Blocks

An entity declaration, or entity, combined with architecture or body constitutes a VHDL
model. VHDL calls the entity-architecture pair a design entity. By describing alternative
architectures for an entity, we can configure a VHDL modcl for a specific level of investigation.
The entity contains the interface description common to the alternative architectures. It
communicates with other entities and the environment through ports and generics. Generic
information particularizes an entity by specifying environment constants such as register size or

delay value. For example,

entity A is

port (x, y: in real; z: out real);

generic {delay: time);
end A

The architecture contains declarative and statcment sections. Declarations form the
region before the reserved word begin and can declare local elements such as signals and

components. Statements appear after begin and can contain concurrent statements. For instance,

architecture B of A is

component M
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signal a.b.c real := 0.0:
begin
"concurrent statenents”

end B;

The variety of concurrent statement types gives VHDL the descriptive power o create
and combine models at the structural, dataflow, and behavioral levels into one simulation model.
The structural type of description makes use of component instantiation statements to invoke
models described elsewhere. After declaring components, we use them in the component
instantiation statement, assigning ports to local signals or other ports and giving values to
generics. Invert: M port map (j => a ; k => ¢); We can then bind the components to other design
entities through configuration specifications in VHDL's architecture declarative section or
through separate configuration declarations. The dataflow style makes wide use of a number of
types of concurrent signal assignment statements, which associate a target signal with an
expression and a delay. The list of signals appearing in the expression is the sensitivity list; the
expression must be evaluated for any change on any of these signals. The target signals obtain
new values after the delay specified in the signal assignment statement. If no delay is specified.

the signal assignment occurs during the next simulation cycle:
¢ <= a + b after delay;

VHDL also includes conditional and selected signal assignment statements. It uses block
statements to group signal assignment statements and makes them synchronous with a guarded
condition. Block statements can also contain ports and generics to provide more modularity in
the descriptions. We commonly use concurrent process statements when we wish to describe
hardware at the behavioral level of abstraction. The process statement consists of deciarations
and procedural types of statements that make up the sequential program. Wait and assert
statements add to the descriptive power of the process statements for modeling concurrent

actions:
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process

begin

variable i : rcal ;= 1.0:
wall on a;

i=b*3.0:

¢ <= iafter delay;

end process:

Other concurrent statements include the concurrent asscrtion statement, concurrent
procedure call, and generate statement. Packages are design units that permit types and objects to

he shared.
4.2 DATA FLOW DESCRIPTIONS

in the data flow approach, circuits are described by indicating how the inputs and outputs of built-

in primitive components are connected together.

4.2.1 An Example For Data Flow Approach

Suppose we were to describe the following SR lateh using VHDL as in the following schematic.

R R
(Ser 5—-i>°_ 8 inm)

SE Latch

Figure 4.1: Data flow approach in SR Latch

entity Jatch is
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port {s.r : in bit:
.nq : out bit):
end latch;
architecture dataflow of latch is
begin
q{'—“-‘vl' nor nq:
Ng<=$ nor q;

citd daraflow:;

The signal assignment operator in VHDL specifies a relationship between signals, not a transfer
of data as in programming languages. The architecture part describes the internal operation of the
design.The scheme used to model a VHDL design is called discrete event time simulation. In this the
values of signals are only updated when certain events occur and events occur at discrete instances of

time. The above mentioned SR latch works with this type of simulation.

4.2.2 The Delay Model

This section refers to the delay model. The two models of delay are uscd in VHDL. The
first is called the inertial delay model. The inertial delay model is specified by adding an after

clause to the signal assignment statement. The second is called transport delay model.

4.3 BEHAVIOURAL DESCRIPTIONS

The behavioural approach to modelling hardware components is different from the other two

methods in that it does not necessarily in any way reflect how the design is implemented.
4.3.1 The Process Statement

It is basically the black box approach to modeling. It accurately models what happens on the
inputs and outputs of the black box, but what is inside the box (how it works} is irrelevant. The behavioral

description is usually used in two ways in VHDL. First, it can be used to model complex components.

Behavioral descriptions are supported with the process statement. The process statement

can appear in the body of an architecture declaration just as the signal assignment statement
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does. The process statement can also contain signal assignments in order to specify the outputs of

the process.
4.3.2 Using Variables

A variabie is used 10 hold data and also it behaves like vou would expect in a software
programnming language, which is much different than the behavior of a signal. Although
variables represent data like the signal. they do not have or cause events and are modified

differently. Variables are modified with the variable assignment

4.3.3 Sequential Statements

There are several statements that may only be used in the body of a process. These
statements are called sequential statements because they are executed sequentially. The types of

statements used here are if, if else, for and loop.

4.3.4 Signals And Processes

This scction is short. but contains important information about the use of signals in the
process statement. A signal assignment, if anything, merely schedules an event to occur on a
signal and does not have an immediate effect. When a process is resumed, it executes from top to

bottom and no events are processed until after the process is complete.

4.3.5 Program Qutput

In most programming languages there is a mechanism for printing text on the monitor
and getting input from the user through the keyboard. It can able to give output certain
information during simulation. A standard library that comes with every VHDL language
system. In VHDL. common code can be put in a separate file to be used by many designs. This
common code is called a library. In order to use the library that provides input and output
capabilities you must add the statement use textio.all: immediately before every architecture that
uses input and output. The write statement can be used to append constant values and the value

of variables and signals of the types bit, bit vector, time, integer, and real.



CHAPTER 5

SIMULATION RESULTS

The message bits are encoded and transmitted over the noisy channcl. And at the input of
the receiver, the received hits are decoded checked whether they are corrupted or not. The parity

check matrix used here is

I 1.0 1 0 0]
0 1 1 0 1 0O
H=
1 0 0 0 1 1
00 1 1 0 1
Stmulation result for received code word [1 01 ( I 1] is shown in figure 5.1, The result

shows that this received code word is not correct .1t shows that the check node update is initially

[1010]. And the algorithm will correct the result as [00101 1], which is the actual code word

e e —————— e

= I S——
T nm oy

N T

Figure 5.1: Simulated output for the code word [101 01 1]
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Simulation result for received code word [0 0 1 0 1 1] is shown in figure 5.2.The result
shows that the check node update here is {0 0 0 0] so the received code word is correct and it is

the actual code word, Here also we arc using the same parity check matrix in the above case

1 1 0 1 O 0}
- 0 1 t 0 1 oj
1 0 0 0 1 1]
00 1 0 1

ST ORI X AT TSP S IR
116100 _
71010
1eEoTL
01

Figure 5.2: Simulated output for code word [0010 1 1]
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Simulation result of 32 bit code word length hard decision decoding is shown .The parity

check matrix used here is of dimension 16 x 32 is shown below

[ 10011101010101101000000000000000
O0111001011011100100000000000000
PI010110001000000010000000G000G00
D11101000101000100010006000000000
0100101101001011000010000G000C0C00
10110101011000000000010000000000
1100101001100000000000100G000000
0111100101101110G6000000100000000
0110060011010110010000000010000000
010000011000101000000000010006000
000000G00101110110000000000100000
10111010010001000000000000010000
011111001001010:0000000000001000
¢10:100000001006100000000000001040
00011:101001001100006060600000G0000010
00011010011101110000000000000001,

Figure 5.3: Simulated output for 32 bit code word length hard decision decoding
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Simulation result of 6 bit soft decision decoding is shown below. The parity check matrix
of this is given by

t 1 0 1 0 0
0 1 1 0 1 0
1=
't 0 0 0 1 ]
6 01 1 0 1]

. ‘L]‘ “Wave _ — i

Figure 5.4: Simulated output for soft decision decoding
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Synthesis report of hard decision algorithm is shown below. The first table shows the
hard decision algorithm of 6 bit code length and the second table represents the hard decision
algorithm of 32 bit code length. Various resources and their utilization is shown in table 5.1 and

5.2.

TABLE 5.1: SYNTHFESIS REPORT OF 6 BIT CODE LENGTH HARD DECISION ALCORITHAL

o Resources I Urilization
Number of slices 27/960= 2% '
Number of slices flip flops 22/1960=1%
Number of 4 input LUTs 46/1920=2%
Number of bonded IOBs 37/66=56%
Number of GCLKs ' 1/24=4%

TABLE 5.2: SYNTHESIS REPORT OF 32 BIT CODE LENGTH HARD DECISION ALGORITHM

Resources Utilization
Number of slices 768/1197=64%
Number of 4 input LUTs 1536/2100=73%

Number of bonded I0OBs 63/64=98%
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CHAPTER 6

CONCLUSION

Low density-parity check codes are efficient crror correcting codes. These codes can be
decoded in iterative way. The iterative decoding approach is already used in turbo codes but the
structure of LDPC codes give even better results. In this project, the two different decoding
methods of LDPC codes are studied. The two methods are hard decision decoding and the soft

decision decoding. These two decoding method are analyzed and simulation results are taken

from model sim soft ware. For hard decision decoding both 6 bit code word, of which the parity
check dimension 4 x 6 and 32 bit code word .of which parity check matrix dimension 16 x 32 are
simulated. Usually in case of communication noises are added in between the transmitter and the
receiver. So at the receiver the decoding task is very tuff. So at that time priory probability of the
received code word is taken as input to the decoder for getting better performance. So we are
using soft decision decoding algorithm. In this project 6 bit code word is given to soft decision

decoder and performance is analyzed.
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Spa-tan-3 FPGA Family: Introduction and Qrdering Information
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