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ABSTRACT

Fast digital signal processing areas like audio signal processing, video or image
processing uses Multiplier-and- Accumulator (MAC) as their basic clement in order to
perform repeated multiplication and addition. The conventional MAC architecture uses
more shift and add operations at multiplier unit this in turn increases delay in the

arithmetic operations.

The main objective of the project is to design a new multiplier-and-accumulator
(MAC) architecture to perform high speed arithmetic operation. By combining
multiplication with accumulation and devising a hybrid type of Carry Save Adder (CSA),
the performance can be improved. This is done by merging the accumulator that has the
largest delay in MAC into CSA tree. The proposed CSA tree uses radix-4 Modified
Booth’s Algorithm (MBA) and has the modified array for the sign extension in order to
increase the bit density of the operands. The CSA propagates the carries to the least
significant bits of the Partial preducts and generates the least significant bits in advance to
decrcase the number of the input bits of the final adder. Also, the proposed MAC
accumulates the intermediate rcsults in the type of sum and carry bits, instead of the
output of the final adder, which made it possible to optimize the pipeline scheme to
improve the performance. Based on the theoretical and experimental estimation, results
such as the amount of hardware resources, delay. and pipelining scheme is analysed. The
proposed MAC shows the superior properties to the standard design in many ways and

performance twicc as much as the previous research in the similar clock frequency.

As a future work this pipelined MAC architecture is applicd to the digital filter
design such as FIR and IIR filter. The performance parameter like area, delay and area
delay product of the digital filter with the proposed MAC design is to be compared with

that ol standard design.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION TO MAC

With the recent rapid advances in multimedia and communication systems, real-time
signal processings like audio signal processing, video/image processing, or large-capacity
data processing are increasingly being demanded. The multiplier and multiplier-and-
accumulator (MAC) are the essential elements of the digital signal processing such as
filtering, convolution, and inner products. Most digital signal processing methods use
nonlinear functions such as Discrete Cosine Transform (DCT) or Discrete Wavelet
Transform (DWT). Because they are basically accomplished by repetitive application of
multiplication and addition, the speed of the multiplication and addition arithmetic’s
determines the execution speed and performance of the entire calculation. Because the
multiplier requires the longest delay among the basic operational blocks in digital system, the

critical path is determined by the multiphier.

In general, a multiplier uses Booth’s algorithm and array of full adders (FAs), or
Wallace tree instead of the array of FAs. This multiplier mainly consists of the three parts:
Booth encoder. a tree to compress the partial products such as Wallace tree, and final adder.
Because Wallace tree is to add the partial products from encoder as parallel as possible, its
operation time is proportional to O( log;N), where N is number of inputs. It uses the fact that
counting the number of I’s among the inputs reduces the number of outputs into logaN. In
real implementation, many (3:2) or (7:3) counters are used to reduce the number of outputs In
each pipeline step. The most effective way (0 incrcase the speed of a multiplier is to reduce
the number of the partial products because multiplication procecds a series of additions tor
the partial products. To reduce the number of calculation steps for the partial products, MBA
Algorithm has been applicd mostly where Wallace tree has taken the role of increasing the

speed to add the partial products.



an architecture in which accumulation has been combined with the carry save adder (CSA)
tree that compresses partial products. In the architecture, the critical path was reduced by
climinating the adder for accumulation and decreasing the number of input bits in the final
adder. It has a better performance because of the reduced critical path, but there is a need to

improve the output ratc due to the use of the final adder results for accumulation.

Here a new architecture for a high-speed MAC is proposed. In this MAC, the
computations of multiplication and accumulation are combined and a hybrid-type CSA
structure 1s proposed to reduce the critical path and improve the output rate. A modified array
structure for the sign bits is used to increase the density of the operands. A carry look-ahead
adder (CLA) is inserted in the CSA tree to reduce the number of bits in the final adder. In
addition, in order to increase the output rate by optimizing the pipeline efficiency,
intermediate calculation results are accumulated in the form of sum and carry instead of the

final adder outputs.

1.2 MOTIVATION OF THE WORK

Digital signal processing architectures consist of MAC unit as the key block. As the
output of the DSP architecture depends on the critical delay of a MAC unit, most of the work
1s concentrated on the design of efficient adder and multiplier. As multiplier consumes more
time unit, work is concentrated on the design of multiplier units for reducing the delay.
Conventional multiplier consumes more time and power due to generation of more number of
partial products. This leads to more number of adders thus increasing the hardware
complexity. So work is concentrated on the design of efficient multiplication algorithms
where there is a possibility for reducing the number of partial products. Radix-2 and Radix-4
based multiplication algorithms reduces the number of partial products in which a group of
multiplier bits are compared for partial product generation. Further by eliminating separate
accumulation and implementing CSA with MAC there is a possibility for reducing hardware

complexity and minimizing delay and power dissipation.

[



~ Performance of the MAC unit is improved by either using high speed multipliers or
by using improved fast adder architectures. Here multiplication unit combined with
accumulation and devising a hybrid type of carry save adder (CSA), for high speed

operation.

» Radix-4 modified booth’s algorithm is used in the carry save adder tree to reduce the

number of partial products.

v

The proposed MAC is designed using VHDL code and simulated using Modelsim.

Simulation results are used for performance comparison of the proposed multiplier.

A

Performance parameters taken for analysis are gate count, delay and power and these

parameters are compared with the existing MAC unit using 4-2 compressor circuit.

1.4 INTRODUCTION TO VHDL

VHDL 1s an acronym which stands for VHSIC Hardware Description Language.
VHSIC is yet another acronym which stands for Very High Speed Integrated Circuits. It is
being used for documentation, verification, and synthesis of large digital designs. VHDL is a
standard (VHDL-10G76) developed by IEEE. The different approaches in VHDL are

structural, data flow, and behavioral methods of hardware description.
1.4.1 STRUCTURAL DESCRIPTIONS
The structural descriptions are explained below with examples.

Building Blocks

Every portion of a VHDL design is constdered a block. A VHDL design may be
completely described in a single block, or it may be decomposed in several blocks. Each
block in VHDL is analogous to an off-the-shelf part and 1s called an entity. The entity
describes the interface to that block and a separate part assoctated with the cntity describes
how that block operates. The interface description is like a pin description in a data book.

specifying the mputs and outputs to the block.

L



entity laich is
port {s.5: in biy;
g,nq: out bit);
end latch;

The first line indicates a definition of a new entity, whose name is latch. The last line
marks the end of the definition. The lines in between, called the port clause, describe the
interface to the design. The port clause contains a list of interface declarations. Each interface

declaration defines one or more signals that are inputs or outputs to the design. Each interface

declaration contains a list of names, a mode, and a type.

The following is an example of an architecture declaration for the latch entity.
Architecture dataflow of latch is
signal qO : bit :='0;
signal nqO : bit :="1"
begin
qO<=r nor nq0;
ngO<=s nor q0;
ng<=nqQ;
q<=q0;

end dataflow;

The first line of the declaration indicates that this is the definition of a new
architecture called dataflow and il belongs to the entity named latch. So this architecture

describes the operation of the latch entity. The schematic for the latch might be

Ty

]

2 ing)

SBE Latch

Fig.1.1 Schematic SR Latch



the following architecture declaration:

Architecture structure of latch is
component nor_gate
port {a,b: in bit; ¢: out hit);
end component;
begin
nl: nor_gate
port map (r,ng,q);
n2: nor_gate
port map (s,q,nq);

end structure;

The lines between the first and the keyword begin are a component declaration. A list
of components and there connections in any language is sometimes called a netlist. The

structural description of a design in VHDL is one of many means of specifying netlists.

1.4.2 Data Flow Descriptions

In the data flow approach, circuits arc described by indicating how the inputs and

outputs of built-in primitive components are connected together.

Example

Suppose we were to describe the following SR latch using VHDL as in the following

schematic.

iPeser] R

0 ing)

SE Latch

Fig.1.2 Data flow approach in SR Latch
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entity latch is

port (s,r : in bit;
¢.nq : out bit);
end latch;
architecture dataflow of latch is
begin
(<=T NOr 1ng;
Nng<=s Nor gq;

end dataflow;

The signal assignment operator in VHDL specifies a relationship between signals, not
a transfer of data as in programming languages. The architecture part describes the internal
operation of the design.The scheme used to model a VHDL design is called discrete event
time simulation. In this the values of signals are only updated when certain events occur and
events occur at discrete instances of time. The above mentioned SR latch works with this type

of simulation.

The Delay Model

This section refers to the delay model. The two models of delay are used in VHDL.
The first is called the inertial delay model. The inertial delay model is specified by adding an

after clause to the signal assignment statement. The second is calied transport delay model.

1.4.3 Behavioral Descriptions

The behavioral approach to modeling hardware components is different from the
other two methods in that it does not necessarily in any way reflect how the design is

implemented.

The Process Statement

it iy basically the black box approach to modeting. It accurately models what happens

on the inputs and outpuls of the black box, but what is inside the box (how il works) 1s

O



used to model complex components.

Behavioral descriptions are supported with the process staiement. The process
statement can appear in the body of an architecture declaration just as the signal assignment
statement does. The process statement can also contain signal assignments in order to specify

the outputs of the process,
Using Variables

A variable is used to hold data and also it behaves like you would expect in a software
programming language, which is much different than the behavior of a signal. Although
variables represent data like the signal, they do not have or cause events and are modified

differently. Variables are modified with the variable assignment.

Sequential Statements

There are several statements that may only be used in the body of a process. These
statements are called sequential statements because they are executed sequentially. The types

of statements used here are if, if else, for and loop.

Signals and Processes

This section is short, but contains important information about the use of signals in
the process statement. A signal assignment, if anything, merely schedules an event to occur
on a signal and does not have an immediate effect. When a process is resumed, it executes

from top to bottom and no events are processed until after the process is complete.

Program Output

In most programming languages there is a mechanism for printing text on the monitor
and getting nput from the user through the keyboard. It can able to give output certain
information during simulation. A standard library that comes with every VHDL language
system. In VHDL, commeon code can be put in a separate file to be used by many designs.
This common code is called a library. In order to usc the library that provides input and
output capabilitics you must add the statement use textio.zall; immediately before cvery

archttecture that uses input and output. The write statement can be used 1o append constan



real,

1.5 SOFTWARES USED

# ModelSim PE 5.4e
¥ Xilinx ISE 9.21

¥ MicroWind 3.1

1.6 ORGANIZATION OF THE REPORT

» Chapter 2 discusses about the overview of MAC.

v

Chapter 3 discusses about conventional MAC unit with 4:2 compressor.

v

Chapter 4 discusses the Proposed MAC architecture for high speed computation.
> Chapter 5 presents the simulation output and results.

» Chapter 6 gives the conclusion and future scope.



CHAPTER 2

OVERVIEW OF MAC

2.1 GENERAL HARDWARE ARCHITECTURE OF MAC

The general hardware architecture of the MAC is shown in Fig.2.1.The basic
hardware requirement of the MAC architecture is a multiplier and adder unit, It executes the

multiplication operation by multiplying the input multiplier and the multiplicand. This is

added to the previous multiplication result as the accumulation step.

X

| ]
R4

‘ Register

Fig.2.1 Hardware architecture of general MAC.
The multiplication—accumulation results can be expressed as
P=X*Y+2

Where X is a multiplicand, Y is a multiplier and Z is the previous accumulated result. A
register 1s used mn this structure to store the previously computed results of multiplication and
addition. The MAC unit is classified into two types, one is the Parallel MAC unit and the

other is a Merged MAC unit.



The general structure of a parallel MAC [3] for multiplying two numbers X and Y
adding the result to Z is shown in Fig. 2.2. The partial products in the figure can be generated
using any multiplication algorithm using bit-serial, serial-parallel, or full-paralle] techniques.
Partial-Product Generation can be achieved using several techniques such as the BWA, the
Booth algorithm (BA) or the MBA. For an n-bit multiplier, the number of summands is n for
BWA, for < n/2 BA, and n/2for MBA. In addition to the encoding step, the BA and MBA

algorithms also require generation of the two’s complement of the multiplier

f Multiplier (X) |
| Multiphecand (YY) i

—
|

Step 1 I

| |
i I
i |
{ |

Partial
Product
Generation

Step 2

Partial
Product
Addition

L ]

Step 3

Final
Adder

] Addend (Z) ;

Step 4 ] Accumulater

Fig. 2.2 The three major parts of a general parallel multiplier.

Partial-Product Addition is donc using carry-save techniques, Wallace trees, or
summand skip. When the number of partial products is reduced to sum and carry words, a
final adder is required to generate the multiplication result. The final adder produces a
double-precision result of 2n bits that must be added to the accumulator content, which is also
7n-bits wide, which is also 2n-bits wide. Typical microprocessors will complete the

multiplication operation and follow that with a double-precision accumulation operation. This



almost times the delay of a one-bit full adder. Recently, it was realized that the MAC
operation can be merged (0 make the MAC operation take as much delay as a regular

multiply operation.

2.3 MERGED MULTIPLIER-AND-ACCUMULATOR UNIT

In merged multiplier and accumulator [6], accumulation operation 1s merged within
the partial products reduction tree used for multiplication. The architecture shown in Fig.2.3
is based on Binary trees constructed using 4-2 compressor circuits. Increasing the speed of
operation is achieved by taking advantage of the available free input lines of the 4-2
compressors. The bits of the accumulated value are directly fed into the summation tree. This

results in merging the accumulation operation within the multiplication process.

A B
N—Fit N-bit
]

PP
Generation

v v -C.

Summation
Tree

h 4
2N-bit
Final Adder

v
2N+1 bit

Fig.2.3 Hardware architecture of merged MAC.

The main advantage of this architecture is that increases the overall speed of the MAC
operation and eliminates the need [or the final accumulator circuit. But some irregularities
due 10 (he shifting of the partial products occur as a result of the introduced zeros at various
places in the reduction tree. These introduced zeros represent either hardware inefficiency, if

they are actually added or irregularities in the tree if special compressor circuits arc built to



design.

2.4 BAUGH-WOOLEY ALGORITHM

An algorithm for direct 2's complement array multiplication has been proposed by
Baugh and Wooley [10] and this algorithm is used in the design of multiplier and
accumulator structures, The primary advantage of this algorithm is that the signs of all the
partial products are positive, and thus allowing the array to be entirely the same as

conventional standard array structures.

The following are some of the highlights of the Baugh-Wooley algorithm
* Algorithm for two’s-complement multiplication.
* Adjusts partial products to maximize regularity of array multiplication.
¢ Moves partial products with negative signs to the last step; also adds negation of

partial products rather than subtracts.

Alolriplication

Fig.2.4 Bangh-Wooley Algorithm for Unsigned Multiplier



concept shown 1n Fig. Z.4. The algorithm spectties that all possible ANLD) terms are created
first, and then sent through an array of half-adders and full-adders with the carry-outs chained

to the next most significant bit at each level of addition.

For signed Multiplication (by utilizing the properties of the two’s complement
system) the Baugh-Wooley algorithm can implement signed multiplication in almost the

same way as the unsigned multiplication shown above

The Baugh- Wooley algorithmic is used to multiply 2's compliment numbers using a
regular iterative adder structure .For example, if we have two n-bit numbers, x and y, their

product can be defined as:

P =2"%x, 1y + Ziog Liog 2%y,
TR oy + I Pk Yj )

42" 4 23

Where x and y are in 2's complement format. This algorithm performs the
multiplication using only addition of positive bit products. This simplifies the hardware

needed to implement the algorithm.

Yo Y3 Y2 Y1 Yo
X7 X Xz X4 X3 Xz X4 Xg
1 Pro Peo Pso Peo Pao Pao Pro Pao

P71 Pet Pst Par Par P21 Pir Por

Prz Pe2 Ps2 Paz Paz P22 P2 Poz
P73 Pe3 Psa Pa3 Pss P23 P13 Poa
D7s Paz Psc Dz Pas Pzs Pra Poa
P7s Pss Pss Pas Pss Pos Pis Pos
Prs Pes Pss Pas Pss Pos Pis Pos
P77 Pe7 Pe7 Par Pa7 Par Pr7 Por

S15 8wy S:3 Sz S+ S1p Sg Sg S1 S5 S5 S: Sy S; Sy S

)
i
D
(&3]
(-
[#3]

Fig.2.5 1llustration of an 8-bit Baugh-Wooley multiplication.
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signed multiplications; Fig. 2.5 illustrates the algorithm for an 8-bit case. The creation of the

reorganized partial-product array of an N-bit wide multiplier comprises three steps:

1) The most significant bit (MSB) of the first N—1 partial-product rows and all bits of the
last partial-product row, except its MSB, are inverted.
i) A "17 is added to the N th column.

i1i} The MSB of the final result is inverted.

Implementing the BW multiplier based on the HPM tree is as straightforward as the
basic algorithm itself. The partial-product bits can be generated by using a 2-input AND gate
for each pair of operand bits. In the case a partial-product bit should be inverted, we employ a
2-input NAND gate instead. The insertion of "1 in column N is easily accommodated by
changing the half adder at top of row N to a full adder with one of the input signals connected
to '1°. Finally, the inversion of the MSB of the result is done by adding an inverter. The final
result of the implementation of the BW algorithm is depicted in Fig. 2.6. The Baugh-Wooley
algorithm (BWA) has been developed and they have been applied to various digital filtering

calculations. But the speed of the multiplier is low.

e

F ok 0y
g T b T e
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Fig.2.6. 8-bit Baugh-Wooley multiplier using an HPM reduction tree.
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A multiplier [4] can be divided into threc operational steps. The first step is Booth
encoding in which a partial product is generated from the multiplicand and the multiplier,
The second step 1s adder array or partial product compression to add all partial products and
convert them into the form of sum and carry. The last is the final addition in which the final
multiplication result is produced by adding the sum and the carry. If the process to
accurnulate the multiplied results is included, a MAC consists of four steps, as shown in Fig.

2.7, which shows the opcrational steps explicitly.

{ Booth ! n bits Muttiplicand {X) |
Stepl 1 Encoding E m bits Mulllpller (N
1
S PSRy reegregepreprrgesins apuspmgmmpgregraprpmam
; : # bits Parual Product (72,)
1 |
: 5 n bits Partial Product (2,)
H
E i #1 bits Partial Product (p3)
t i
' : 2 bits Partial Product
b Partial g ?2)
Step2 ' Product | :
' Summation | )
] 1 1
1 I
: : [ # bits Partial Product {p.,.,) ]
_____ fW*H-____}____-____________,,-___ﬂ_________“
}
Sren3 . Final ! | Sum (3) 1
1
..... e L T S L L T L e o T ===
o
Stepd E ‘\ccnlz{r;ulm . [ (nren) bits Multiplication Result (X)) ]
_____________ P ey
: ; [ {r+m) bits Accumulation Result () f
]

Fig.2.7 Basic arithmetic steps of mulitiplication and accumulation

Alter performing booth encoding for the o bits multiplicand and m bit multiplier, the
number of partial product generated is less than n/2 for booth algorithm and equal to n/2 in

the casc of moditied booth algorithm (MBA).



Multiplication means partial product generation and accumulation. Booth

algorithm used to reduce the number of partial products to be generated in order to achieve

high speed and minimum area. This algorithm gives a procedure for multiplying binary

integers in signed 2’s complement representation. The booth algorithm can be explained with

the following example:

Example, 2y x (- 4)ren
00100 1100 me

Step 1: Making the Booth table

b

i

6.

From the two numbers, pick the number with the smallest difference between a series
of Consecutive numbers, and make it a multiplier.

i.e., 0010 -- From 0 to 0 no change, 0 to | one change, | to O another change, and so
there are two changes on this one.

100 -- From 1 to | no change, 1 to 0 one change, O to 0 no change, so there is only

one change on this one.

Let X = 1100 (muluplier)
Let Y = 0010 (multiplicand)
Take the 2°s complement of Y and call it -Y

-Y =110
Load the X value in the table.
Load 0 for X-T value it should be the previous first least significant bit of X.

Load 0 in U and V rows which will have the product of X and Y at the end of

operation.

Make four rows lor each cycele: this is because we are multiplying four bits numbers.
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U

v

X

0000

0000

1100

Load the value
1% cvele

2% cyele

S8 .

37 Cycle

4™ Cycle

Fig.2.8 U V Method for Calculation of Product of x and y

Step 2: Booth Aigorithm

Booth algorithm requires examination of the multiplier bits, and shifting of the partial

product. Prior to the shifting, the multiplicand may be added to partial product, subtracted

from the partial product, or left unchanged according to the following rules:

Look at the first least significant bits of the multiplier “X”, and the previous least

significant bits of the multiplier *“X - 1.

i. 00 Shift only
I 1 Shift only.

01 Add Y to U, and shift
1 0 Subtract Y from U, and shift or add (-Y') to U and shift

-3

Take U & V together and shift arithmetic right shift which preserves the sign bit of

2’5 complement number. Thus a positive number remains positive, and a negative

nuimber remains negative.

ek

X wvalue.

Shift X circular right shift because this will prevent us from using two registers for the

The process of comparing X and X-1 positions and recode the position with

new number and carry the operation up to four cycles. We are doing four cycles since four

bits are there in the operands. After doing the operation for four cycles we will get values in

the columns u and v. The values of u and v together give the value of the multiplication

result. This way of representation is called UV method of multiplication in hooth

multiphication.



Shift onlv

v A% X -1
pO00 | 000Q | 1100—+ 0
’ ‘ a « I‘i.;i - "
bobo 00"07)\\01 10 [0
\""--_._._

///@

"]

o101 H
V2T

Repeat the same steps until the four cycles are completed.

L V X X-1
0000 | 0000 1100 | O
Q000 | 0000 0110710
0000 { 0000 001 | O

«——— Shift only

Fig.2.9 Intermediate Results of Multiplication in U and V Method

+=— Add-Y (0000 + 1110 = 1110)
<l Shift

=
T v X X-1
0000 | 0000 | 1100 |0

! 0000 [ooo0 o110 | O

{ 0000 {0000 | 0011——0C

; 1110 | o000 |[o0011 |o

1111 {0000 1001 |1

i

R = -

| 0000 | 0000 | 1100 |0

0000 [ 0000 [ 0110 | O

| 0000 [0000 0011 |0

| 1110 [ 0000 [ 0011 |0

; 1111 | 0000 ol 11

1111 | 1000 | 1100 |1

T e —— Shitt only

Fig.2.10 Final results of multiplication in U and V method
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which helps to decreasc the number of subsequent calculation stages. The original version of
the Booth algorithm had two drawbacks. They are: (i) The number of add or subftract
operations and the number of shift operations becomes variable and becomes inconvenient in
designing parallel multipliers. (i) The algorithm becomes inefficient when therc are isolated

I’s. These problems are overcome by using modified Booth encoding.

2.5.2 Modified Booth Algorithm

Modified Booth Recoding algorithm is one of the most popular techniques to
reduce the number of partial products to be added while multiplying two numbers.
Reduction in number of partial products depends upon how many bits are encoded. If
3-bit encoding (Radix-4) is used the npumber of partial products is reduced by half.
This is a great saving in terms of silicon area and also speed as number of stages to be

added is reduced to half compared to normal add and shift multiplication.

Block Re-coded digit | Operation on X

000 0 1).¢

001 +1 +1X

010 +1 +1X

Ot} +2 12X

100 -2 -2X
101 N -1X
o 1 11X

111 0 OX

Table 2.1 Booth Encoding

Booth algorithm which scan strings of three bits with the algorithm given below:
1) Extend the sign bit | position if necessary to ensure that nis even.
23 Append a 0 to the right of the LSB of the multiplier.
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XL 42X or 22X

The negative values of X are made by taking the 2’s complement. The multiplication
of X is done by shifting X by onc bit to the left. Thus, in any case, in designing a n-bit
parallel multipliers, only n/2 partial products are generated. Modified Booth algorithm is

briefly discussed and its implementation steps follow the discussion.

Let A and B 1s two n-bit two's complement binary numbers where A is multiplicand

and B is multiplier. Product P = A.B

An equivalent base 4 redundant sign digit representation of B is obtained as:

£
z

L
OZKi

B=J

i

Where K, is calculated by following equation
K; = -2bsis1 + bai + bainy

At each step 3 bits of Multiplier B, b2,+1, b2,, ba.l, are examined and corresponding
K is calculated. B is always appended on the right with zero (b.i=0), and n is always even (B

is sign extended if needed). The product A.B is then obtained by adding n/2 partial products.

e

i=]-1 ..
AB= E}_E_JG 27K A

hA0 2] Ay

Nino)

Fig.2.11 Radix-4 Modified Booth's Encoder Module
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using circuit diagram shown in Fig.2.12,

X2 Mcand!

P_F (Partial Procuct bit)

Fig.2.12 Partial Product Bit Generator

2.5.3 Partial Product Summation

For parallel multipliers [5], the addition is accomplished using carry-save techniques,
Wallace trees, or summand skip. However, these two techniques require irregular wiring and

extra hardware.

PEC  PP1 PP PR3 FP4  PFS
cea csa
sC coc £m1 ke
2 r
ﬁ_ ‘
513 cLo
b 4 r h
25a
22 ooz
h w
cea

— N4

Fig 2.13 Wallace Tree Method



multiplies two terms from the results of the partial product generated as shown in Fig 2.13. In
order to perform the multiplication of two numbers with the Wallace method, partial product
matrix is reduced to a two-row matrix by using a carry save adder and the remaining two

rows are summed using a fast carry-propagate adder to form the proeduct.

CSA performs the addition of m numbers in lesser duration compared to the simple
addition. It takes three numbers (a+b+c) to add together and outputs two numbers, sum and
carry (s+c¢).It is carried out in one time unit duration .In carry save adder, the carry(c) is
bought until the last step and the ordinary addition carried out in the very last step .The most
important application of a carry-save adder is to calculate the partial products in integer
multiplication. This allows for architectures, where a tree of carry save adders is used to
calculate the partial products very fast. One 'normal’ adder is then used to add the last set of
carry bits to the last partial products to give the final multiplication result. Usually, a very fast
carry-look ahead or carry-select adder is used for this last stage, in order to obtain the optimal

performance.

In Wallace tree architecture, all the bits of all of the partial products in each column
are added together by a set of counters in parallel without propagating any carries. Another
set of counters then reduces this new matrix and so on, until a two-row matrix is generated.
Here a 3:2 counter is used. Then, a fast adder is used at the end to produce the final result.
The advantage of Wallace tree is speed because the addition of partial products is now

OtlogN).

Multiplier (31:0) Product Bits (1:0)
16 Partial ,
Products
added in {_oua2:a0)
Wallace , 61x61
Multiplicand(31:0) tree aFlder Ifina] —>
section > (‘,arry Product Bits (63:0)
s ooul(h2 4L SCICC{
Adder

Fig.2.14 Block Diagram of 32-Bit Wallace Tree Multiplicr.
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from the block diagram partial products are added in Wallace tree block and at the end
generates two LSB final product bits and sum and carry array of 6} bits which are added in

final fast adder (CSA).

In a tull adder delay from onc input to one output can be different from the delay from
another input to this same output. .So when a full adder is used as 3:2 compressor in Wallace
tree, its input and outputs should not be treated equally. For example, if two 3:2 compressor
arc inter-connected in such a way that the longest path of these two compressor are inter-
connected, then the total delay is the sum of the longest delay of these two compressor. A
better way to inter-connect these two compressors is to connect the shortest delay path of one
32 compressor to the longest delay path of another 3:2 compressor. An algorithm to generate
Wallace tree adder section that takes above point into consideration can be found in and this
algorithm is used to implement the Wallace tree adder section to add all partial products and

minimize the delay.

Lof P98 Lot R 120

Py P25 Pyg Por 22 P23 P14 Pos Pa1 P
Level0 '
Leveit
T R Y TN T A A SN
ST 5

Fig.2.15 Wallace tree for 4 x 4 Multiplication.

Wallace Tree CSA structure [8] in Fig 2.15 has been used to sum the partial products
in reduced time. In this regard, when both algorithms are combined in one multiplier, there 1s

a significant reduction in computing multiplications. The Wallace tree has three steps:

1. Muliiply each bit of one of the arguments, by each bit of the other, yiclding i’ results.

Depending on position of the multiplied bits. the wires carry different weights.
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3. Group the wires in two numbers, and add them with a conventional adder.

The benefit of the Wallace tree is that there are only O(log ) reduction layers, and
cach layer has O(1) propagation delay. As making the partial products is O(1) and the final
addition 1s O(log n), the multiplication is only O(log ), adding partial products with regular

adders it would require O(log n)” time.

2.5.4 Final Adder and Accumulation

When the number of partial products is reduced to sum and carry words, a final adder
is required to generate the multiplication result. The number of bits of the final adder is the
sum of the number of bits of the multiplier and multiplicand. Thus, the data path width is
usually doubled and the delay of this stage is most severe. Normally 4-bit CLAs can be used
to reduce the delay and area requirements. This adder is a practical design with reduced delay
at the price of more complex hardware. The carry look ahead design can be obtained by a
transformation of the ripple carry design into a design in which the carry logic over fixed
groups of bits of the adder 1s reduced to two-level logic. The main idea behind carry look-
ahead addition is an attempt to generate all incoming carries in parallel and avoid waiting
until the correct carry propagates from the stage (FA) of the adder where it has been

generated. CLA adder is based on the fact that a carry signal will be generated in two cases:

(1) When both bits Aa and Bi are |, or

(2} When one of the two bits is | and the carry-in (carry of the previous stage) is 1.

ST
i } - S
FE ™
]

NGy % —
! i P e \

Fig.2.16 Carry Look Ahead Adder Circuit



column: namely A, & B, and the carry bit coming from the previous column (C,)
In this circuit, the 2 internal signals P. and G. are given by:

Pi = Ai ar B',
G = A B

The output sum and carry can be defined as:

Si = Pi Xar Ci
Cu=G+P G
G, is known as the carry Generate signal since a carry (C,, ) 1s generated whenever G,

=I, regardless of the input carry (C)). P, is known as the carry propagate signal since

whenever P, =1, the input carry is propagated to the output carry, i.e., C.,.=C

2.6 MATHEMATICAL MODEL OF MAC

The n-bit 2's complement binary number can be expressed as

N-=2

N -1 i !
X =-2 XN—I-}-ZZXs X, € 0,1

=0

If the multiplicand X is expressed in base-4 type redundant sign digit form in order to apply
the Booth's algorithm,

N2
X = ) d,4,

;=i

di = -2Xqi41 + Xaj X211

The multiplication result can be expressed as



P=XxXY+Z =Mfdl.2"Y+2fz,-2*'

i=0 i=0

In this d; denotes the recoded bits of the multiplier it is computed using the booth
algorithm and the recoded value is multiplied with the multiplicand X to generate partial
products and they are given as a input to CSA based Wallace tree structure. Each of the two
terms on the final equation P is calculated independently and the final result is produced by
adding the two results. The MAC architecture implemented by this equation is called the

standard design.

If N-bit data are multiplied, the number of the generated partial products is
proportional to N. In order to add them serially, the execution time is also proportional to N.
The multiplier architecture, which is the fastest, uses radix-2 Booth encoding that generates
partial products and a Wallace tree based on CSA as the adder array fo add the partial
products. If radix-2 Booth encoding is used, the number of partial products which are the
inputs to the Wallace tree. is reduced to half, resulting in the decrease in CSA tree step. In
addition. the signed multiplication based on 2’s complement numbers is also possible. Due to

these reasons, most current used multipliers adopt this Booth encoding.
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CHAPTER 3

MAC UNIT WITH 4-2 COMPRESSOR CIRCUIT

3.1 OVERVIEW OF MERGED MAC

In MAC architecture, speed is mainly increased by partial products reduction network
and accumulator. But these operations require addition of large operands that involve long
paths for carry propagation. Using tree architectures represent an attractive solution to speed
up the partial products reduction process. The speed can be increased by applying a merging
technique; here the Accumulation operation is merged within the partial products reduction

tree used for multiplication.

The architecture is based on Binary trees constructed using 4-2 compressor Circuits.
Increasing the speed of operation is achieved by taking advantage of the available free input
lines of the 4-2 compressors, which result from the parallelogram shape of the generated
partial products, and using the bits of the accumulated value to fill in these gaps. This results

in merging the accumulation operation within the multiplication process.

Using 4-2 compressors as the basic cell to construct the addition tree in parallel
multipliers 2: | Compression ratio can be achieved. The 4-2 compressor circuits are fully
utilizing the summation tree by feeding the accumulated data bits into the unused inputs of
the 4-2 compressors so that the accumulation operation will be merged within the
multiplication circuit, which will save the cost of an additiona! accumulator. This directly
results in increasing the overall speed of the MAC operation. Power consurnption and circuit

arca are also reduced.

3.2 CONSTRUCTION OF MERGED MAC UNIT

A basic MAC unit can be divided into two main blocks; the Multiplier and the
Accumulator. The multiplier can also be divided into the partial products generation and
reduction blocks. The partial product addition block can be further divided into a summation

tree and a final adder. The summation network represents the core of the MAC unit. This
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construction leads to four basic blocks to DE implemented. In iNC MErgel AL UL as »IRBV
in Fig. 3.1 the addition network reduces the number of partial products into two operands
representing a sum and a carry. The final adder is then used to generate the multiplication
result out of these two operands. The last block is the accumulator, which is required to
perform a double precision addition operation between the multiplication result and the
accumulated operand. This block requires a very large adder due to the large operands size.
This stage represents a bottleneck in the multiplication process in terms of speed since it

involves horizontal carry propagation.

A B
N—rit N~Ibit

PP
(Generation

v v _.C

- 2N-bit
Summation
Tree

h 4
2N-bit
Final Adder

v
2N+1 bit

Fig. 3.1 Merged MAC Unit

3.3 CONSTRUCTION OF 4-2 COMPRESSOR CIRCUIT

13 12z 1l 10

L 1]

FA

c] ——1 Cin

FA

|

C | S

Fig. 3.2 Construction of 4-2 compressor circuit using 2 full adder cells



process by introducing parallelism. The tree structure, which was first introduced using 3-2
compressors suffers from irregular interconnections and is difficult to layout. It also results in
high power consumption as a result of the capacitances introduced by large interconnects. A
more regular structure is proposed based upon binary trees constructed using 4-2
compressors. Fig. 3.2 shows the construction of a 4-2 compressor circuit using two full adder

cclis.

3.4 DISTRIBUTION OF DATA BITS WITHIN THE 4-2 COMPRESSOR

The free inputs of the 4-2 compressors are taken to realize the accumulation operation
by feeding the bits of the accumulated operand into the summation tree instead of putting
zeroes. Some minor enhancements are required for the existing hardware to accommodate the
incoming bits. Fig. 3.3 shows the new distribution of data among the tree. The bits of the
accumulated value are inserted within the tree as early as possible in those empty locations at

the corresponding columns so that those 4-2 compressors are fully utilized.
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Final Adder ®

Fig. 3.3 Distribution of data bits

The bils ZO. ZI, 22, 7Z3. 24, 75. /6. 7Z7. 78, 79. 710, Z11.712, Z13, Z14 arc inscrted

in the first stage, the bits Z3. 74, ZH, Z15 are inserted in then second stage, The bit Z7,
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from 4 to 5 at the input of the compressors available at this column. 10 solve tnls propiemdl, 4

5-2 compressor is used to handle this exira bit.

The construction of the 5-2 compressor is shown in Figure 3.4. It is noticed that the

delay of the 5-2 compressor is equivalent to that of two cascaded full adders.

14 13 I2 1 10

L

FA HA
Cl i——1 _ CIN
C2

Fig. 3.4 Construction of the 5-2 Compressor.

3.5 DRAWBACKS OF MAC UNIT WITH 4-2 COMPRESSOR
CIRCUIT

The major disadvantage that occurs due to the parallelogram shape of the
generated partial products 1s that some of the 4-2 compressor circuits are not fully

utilized since they cannot able to get complete 4 inputs which results in hardware

inefficiency.



cnAarlirna

PROPOSED PARALLEL MAC ARCHITECTURE

4.1 DERIVATION OF MAC ARITHMETIC

The cxpression for the new arithmetic will be derived from equations of the standard

design. From this result, a new VLSI architecture for MAC can be designed.

4.1.1 BASIC CONCEPT

If an operation to multiply two N-bit numbers and accumu]ate into a2 2N-bit number is
considered, the critical path is determined by the 2N-bit accurnulation operation. If a pipeline
scheme is applied for each step in the standard design of Fig. 2.7, the delay of the last
accumulator must be reduced in order to improve the performance of the MAC. The overall
performance of the standard MAC is improved by eliminating the accumulator itself by
combining it with the CSA function. If the accumulator has been eliminated, the critical path

is then determined by the final adder in the multiplier.

The basic method to improve the performance of the final adder is to decrease the
number of input bits. In order to reduce this number of input bits, the multiple partial
products are compressed into a summand a carry by CSA. The number of bits of sums and
carrics to be transferred to the final adder is reduced by adding the lower bits of sums and
carries in advance within the range in which the overall performance will not be degraded. A
2-bit CLA is used to add the lower bits in the CSA. In addition, to increase the output rate
when pipelining is applied, the sums and carry from the CSA are accumulated instead of the
outputs from the final adder in the manner that the sum and carry from the CSA in the
previous cycle are inputted to CSA. Due to this feedback of both sum and carry, the number
of inputs (0 CSA increases, compared to the standard design. In order 10 efficiently solve the

inerease in the amount of data, CSA architecture is modified to treat the sign bit.
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The above mentioned concept is applied to standard design equation o express the
new MAC arithmetic. Then, the multiplication would be transferred to a hardware
architecture that complies with the proposed concept, in which the feedback value for

accumuliation will be modified and expanded for the new MAC.

First, if the multiplication is decomposed and rearranged, it becomes

X XY =d,2Y+d 2°Y +d,2'Y + .. +d,, 2"Y

If the above equation is divided into the first partial product, sum of the middle partial

products, and the final partial product, it can be re-expressed as

Ni2=-2
X XY =d,2Y + >, d2"Y +d,, 2"Y

i=0

If Z 1s first divided into upper and lower bits and rearranged, then the above equation
becomes

N =1 2N -1

z = Z z,2' + Z 7.2
i= N

i=0
The second term can be separated further into the carry term and sum term as
IN - NI N=2

20=> 7,227 = > (e + 522"

i=N =0 i=0

]

Thus, the above cquation is finally separated into three terms as

2=5 2243 22" +Y 52020

i=0 i=0 i=0

Now the new MAC arithmetic can be cxpressed as
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The above equation can be re-expressed as

N-1 N2 N=2 N-2
P:[d(,2Y+ZZ,. 2*'}-{ > d{.22"Y+Zq2’2‘”)+(dm_l 27PY 4+ s, 2"2”]
i=0 i=0 =0 i=0
The first parenthesis on the right is the operation to accumulate the first partial
product with the added result of the sum and the carry. The second parenthesis is the one to
accurmulate the middle partial products with the sum of the CSA that was fed back. Finally,
the third parenthesis expresses the operation to accumulate the last partial product with the
carry of the CSA.

4.2 PIPELINED MAC ARCHITECTURE

The modified MAC is organized into three steps. When compared with Fig. 2.2, it 1s
easy to identify the difference that the accumulation has been merged into the process of
adding the partial products. Another big difference from Fig. 2.7 is that the final addition
process in step3 is not always run even though it does not appear explicitly in Fig. 4.1. Since
accumulation is carried out using the result from step? instead of that from step3, step3 does

not have to be run until the point at which the result for the final accumulation 1s needed.

The hardware architecture of the MAC to satisfy the process in Fig.4.1 is shown in
Fig.4.2. The n-bit MAC inputs, X and Y. are converted into an (n+1)-bit partial product by
passing through the Booth encoder. In the CSA and accumulator, accumulation is carried out
along with the addition of the partial products. As a result, n-bit S, C and Z (the result from
adding the lower bits of the sum and carry) are generated. These three values arc fed back and
used for the next accumulation. If the final result for the MAC is needed, P|2n-1: n] is
generated by adding S and C in the final adder and combined with P|n-1: n| that was alrcady

generated.
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" oath E n bits Multiplicand (X)
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Fig.4.1 Modified Arithmetic operation of multiplication and accumulation.

f
fm
hn
L
P
=
b R
X—f+ 3 . 2 7 » P{n-1:0]
R4 % " -~
= ' Fis
s3] : o 5
£ - 3
o 1 > -
Y~ 8§ 21 1€ < H-~ Pl2n-1:n)
¢ 1 ot B2} ot BRI B
; - D S i

Fig.4.2 Hardware architecture of the modified MAC.



The architecture of the hybrid-type CSA that complies with the operation of the
proposed MAC is shown in Fig.3.3, which performs 8x8-bit operation. S; is to simplify the
sign expansion and N; is to compensate 1’s complement number into 2’s complement
number. S{i] and C[i| correspond to the i-th bit of the feedback sum and carry. Z[i] is the i-th
bit of the sum of the lower bits for each partial product that were added in advance and Z't}

is the previous result.
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Fig.4.3. Architecture of the Modified CSA tree.

n addition. Pj[1} corresponds (o the i-th bit of the j-th partial product. Since the
multiplier 1s for & bits, totally four partial products PO[7: O] ~ P3[7: 0| are generated from the
Booth encoder. This CSA requires at least four rows of FAs for the four partial products.
Thus. totaily five FA rows are necessary since onc more level of rows are needed for

accurnulation. For an i x n-bit MAC operation, the level of CSA is (1/2). The white square in

o
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with five inputs is a 2-bit CLA with a carry input.

The critical path in this CSA is determined by the 2-bit CLA. It is also possible to use
FAs to implement the CSA without CLA. However, if the lower bits of the previously
generated partial product are not processed in advance by the CLAs, the number of bits for
the final adder will increase. When the entire Multiplier or MAC is considered, it degrades

the performance if CLA is not used.

CSA, CCA and Carry Look-Ahead Adder (CLLAs) can be used to implement the final
fast addition. CLA is widely used and can be easily implemented in dynamic domino CMOS
logic with the limitation of full-custom design. For standard static CMOS circuit, CCA and
CSA are preferred and can easily be implemented using a standard cell library. In contrast to
the CSA, CCA needs to use XOR logic to produce the final results. This translates in more
delay as compared to a same bit-width CSA. The CSA needs to store both the conditional
sum and carry together. As a result, more multiplexers are used than for a CCA. To combine
the benefits of both adders, a mixed CSA-CCA architecture was implemented to compute a

final fast addition.



L U o ¥ NN RN EVD L

SIMULATION RESULTS

The tools used to obtain the simulated output for pipelined MAC architecture are as
follows. They are
1) Modelsim 6.4
2) Microwind

The simulated waveforms are obtained by assigning the input values at various
levels of extraction and the corresponding outputs are obtained from the assigned inputs. The
outputs obtained are complementary with respect to the corresponding complementary inputs.

The simulated waveforms of the proposed work are shown here.

5.1 PARTIAL PRODUCT GENERATION
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Fig.3.1 Simulation output of Booth Encoder



maodiiicd o00tn encoding, aonc by using Modelsim soltware.

5.2 HYBRID CSA ARCHITECTURE

Fig. 5.2 shows the design of hybrid carry save adder architecture, done by using

Microwind software.
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Fig.5.2 Design of CSA tree Architecture
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Fig.5.3 Simulation output of Hybrid CSA tree Architecture

5.3 SIMULATED OUTPUT OF PROPOSED MAC

Fig. 5.4 shows the simulated output of proposed architecture of MAC, done by \

using ModelSim software.
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Fig. 5.4 Simulation output of proposed MAC unit
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COMPRESSOR CIRCUIT

Design summary:

Selected Device: Xilinx FPGA- 25300eft256-6

Number of Slices: 142 outof 3072 4%
Number of Slice Flip Flops: 96 outof 6144 %
Number of 4 input LUTs: 246 outof 6144 4%
Number of bonded 10Bs: 33 outof 182 18%
Number of GCLKs: I outof 4 25%

‘Total equivalent gate count for design = 2,505

Timing Summary:

Speed Grade: -6
Minimum input arrival time before clock: 10.014ns

Maximum output required time after clock: 6.514ns

5.5 SYNTHESIS REPORT FOR MAC WITH HYBRID CSA
ARCHITECTURE

Design summary:

Selected Device: Xilinx FPGA- 25300eft256-6

Number of Slices: 105 outof 3072 3%
Number of Slice Flip Flops: 16 outof 6144 0%
Number of 4 input LUTs: [7 outof 6144 2%
Number of bonded IOBs: 33 outof 182 (8%
Number of GCLKs: I outof 4 25%
Total equivalent gate count for design = 1,304

Timing Summary:

Speed Gradce: -6
Minimum input airival time hefore clock: 8.026ns

Maximum output required time after clock: 4.204ns
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The power calculation of conventional MAC with 4-2 compressor and modified MAC

with Hybrid CSA Architecture are shown below,

T Total esgjower comsanmption: L ; ; 67

Vecint 250V: " T 6
Veeo2d 250V; 0 ; 0

Logic: 7 18
Qutputs:
Veeo2d ‘

Signals: n 4

Table 5.1 Power Calculation of MAC with 4-2 compressor.

 Tolestmatedpower conswmpon: e

N Vecold 3._30\-":

Vool
s | e

Quiescent Veco33 3.30V: B y :

Table 5.2 Power Calculation of modified MAC with Hybrid CSA Architecture.
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Performance parameters are used to compare the MAC Unit with 4-2 compressor and
with Hybrid CSA Architecture. The table 5.3 shows the difference between MAC Unit with

4-2 compressor and with Hybrid CSA Architecture in terms of gate count, speed and power.

MAC Unit with | MAC Unit with
Parameters 4-2 compressor Hybrid CSA
circuit Architecture
Gate count 2,505 1,304
Delay(ns) 4.26 1.912
Power{mw) 67 49

Table 3.3 Performance Analysis of MAC Unit with 4-2 Compressor Circuit
and MAC Unit with Hybrid CSA Architecture.

5.7.1 Gate Count Analysis

3,000
2,500 . B MAC Unit with
2,000 : i;fcz?tmpressor
1,500 O MAC Unit with
1,000 Hybrid CSA

503 Architecture

MAC Unit MAC Unit

with 4-2 with Hybrid
compressor CSA

circuit Architecture

Fig.5.5 Gate Count Analysis of MAC Unit
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Wil Hybnd LoA Architecture. 1ne gate count of the proposed MAC unit with Hybrid CSA
Architecture decreases by 47.94%.

5.7.2 Delay Analysis

El MAC Unit with

& 4-2 compressor
-F; circuit

= O MAC Unit with
© Hybrid CSA

Architecture

MAC Unit MAC Unit

with 4-2 with Hybrid
compressor CSA

circuit Architecture

Fig.5.6 Delay Analysis of MAC Unit
Fig.5.6 shows the delay of MAC Unit with 4-2 compressor and with Hybnd CSA

Architecture. The delay is reduced by 52.23% hence the speed of the proposed MAC unit

increases.

4.7.3 Power Analysis

80
10 OO0 MAC Unit with 4-
g 60 - 2 compressor
E_. ig i circuit
qg" 30 O MAC Unit with
S 20 Hybrid CSA
10 Architecture
0 1
MAC Unit with MAC Unit with
4-2 Hybrid CSA
compressor  Architecture
circuit

Fig.5.7 Delay Analysis of MAC Unit
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and with Hybrid CSA Architecture The power dissipation of MAC umt with hybrid
CSA architecture decreases by 31.8%. Hence this pipeline architecture MAC
architecturc using hybrid CSA tree can be applicable in digital signal processing

applications that require low power, low area and high speed.
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CONCLUSION AND FUTURE SCOPE

6.1 CONCLUSION

The new MAC architecture to execute the multiplication-accumulation operation,
which is the key operation, for digital signal processing and multimedia information
processing is proposed. By removing the independent accumulation process that has the
largest delay and merging it to the compression process of the partial products, the overall
MAC performance was improved almost twice as much as in the existing system. The
modified CSA architecture increases the output rate by optimizing the pipeline efficiency,
intermediate calculation results are accumulated in the form of sum and carry instead of the
final adder outputs, this in turn reduces the number of inputs to final adder and thereby
minimizes the delay. Consequently, the proposed architecture can be used effectively in the

area requiring high throughput such as a real-time digital signal processing.

6.2 FUTURE SCOPE

In Future, the Pipelined MAC architecture may be used in the efficient design of
digital signal processing circuits such as FIR and IIR filter by constructing the parallel MAC

architccture using the design tool such as Microwind.
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The Spartan™-lIE 1.8V Field-Programmable Gate Array
family gives users high performance. abundamt logic
resources, and a rich feature set, all at an exceptionally low
price. The five-member family offers densities ranging from
50,000 to 300,000 system gates, as shown in Table 1. Sys-
tem performance is supported beyond 200 MHz.

Spartan-ilE devices deliver more gates, /Os, and features
per dollar than other FPGAs by combining advanced pro-
tess technology with a streamlined architecture based on
the proven Virtex™-E platform. Features include block RAM
{to 84K bits), distributed RAM (to 98,304 bits), 19 selectable
O standards, and four DLLs {Delay-Locked Loops), Fast,
predictable interconnect means that successive design iter-
ations continue fo meet timing reguirements.

The Spartan-llE family is 2 superior alternative to
mask-programmed ASICs. The FPGA avoids the initial cost,
lengthy development e¢yeles, and inherent risk of
conventional ASICs. Alse, FPGA programmability permits
design upgrades in the field with no hardware replacement
necessary (impossible with ASICs).

Features

- Second generation ASIC replacement technology
- Densities as high as §.912 logic cells with up to
300.000 system gates
- Streamlined features based on Virtex-£
architecture
- Unlimited in-system reprogrammability
- Very low cost

+  System level features
- SelectRAM+™ hierarchical memory:
18 bits/LUT distributed RAM
Configurable 4K-bit true dual-port Block RAM
Fast interfaces to extarnal RAM
- Fuily 3.3V PCl compliant to 64 bits at 66 MHz and
CardBus compliant
- Low-power segmented routing architecture
- Full readback ability for verification/chservability
- Dedicated carry logic for high-speed arithmetic
- Efficient multiplier support
- Cascade chain for wide-input functions
- Abundant registers/latches with enable, set, reset
- Four dedicated DLLs for advanced clock ¢ontrol
- Four primary low-skew global clock distribution nets
- |EEE 1149.1 cotmpatible boundary scan logic
+  Versatile /0 and packaging
- Low cost packages available in all densities
- Famity footprint compatibility in common packages
- 19 high-performance interface standards, including
DS and LYPECL
- Upto 120 differential O pairs that can be input,
output. or bidirectionat
Zero hold time simplifies system timing
. Fu[ly supported by powerful Xilinx ISE development
system
- Fully automatic mapping, placement, and routing
- Integrated with design entry and verification tools

Table 1. Sparlan -lE FPGA Family Members
T Typ:cal - cLB Maximum | Maximum
Logic | System Gate Range | Array  Total | Available | Differential | Distributed | Block
Device Cells {Logic and RAM) RxC) CLBs User 1o 1O Pairs RAM Bits | RAM Bits
U XC2S50E | 1.728 | 23.000-50.000 Bx24 384 | 182 | 84 | 24578 32K
TXC2S100E | 2.700 | 37.000- 100000 | 20%30 800 202 86 38400 | 40K
| XC2S150E | 3.888 | 52.000-150000 | 24x36 864 | 263 114 55.296 | 48K
XC2S200E | 5292 | 71000-200000 | 28x42 1176 289 120 75264 | 56K
XC2S300E | 6.912 | ©3.000-30000C | 32x48 1536 329 120 98304 . 64K
OG0 RING (N AT reeried S5 K ek, Leqisloted IRdemirks, PAE and @scRImens are as ISl 20 hIpsiway ina, eomilegal ham

AL LICMAc RS kd PGSl ra0emarks ars I properie F e respedine Caners. b speonicabons arg subject o change winout nol ce

DEA77-1 (w1 01 Newenther 15, 20M
Preliminary Product Specification

WX itinx. com i
1-300-255-77
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General Overview

The SpartardlE family of FPGAs have a regular, flexible,
programmable architecture of Configurable Logic Blocks
(CLBs), surrounded by a perimeter of programmable
Input/Output Blocks (I0Bs). There are four Delay-Locked
Loops (DLLs), one at each corner of the die. Two columns
of block RAM lie on opposite sides of the die, betwaen the
CLBs and the IOB columns. These functional elements are
interconnected by a powerful hierarchy of versatile routing
channels (see Figure 1).

Spartan-llE FPGAs are customized by leading configura-
tion data into internal static memory cells. Unfimited repro-
gramming cycles are possible with this approach. Stored
values in these cells determine logic functions and intercon-
nections implemented in the FPGA. Configuration data can
be read from an external serial PROM (master serial mode),
or written into the FPGA in stave serial, slave parallel. or
Boundary Scan modes. The Xilinx XC17S00A PROM family
is recommended for serfal configuration of Spartan-lIE
FPGAs. The XC18V00 reprogrammable PROM family is
recommended for parallel or serial configuration.

Spartan-lIE FPGAs are typically used in high-volume appli-
cations where the versatility of a fast programmable solution
adds benefits, Spartan-llE FPGAs are ideal for shortening
product development cycles while offering a cost-effective
solution for high volume production.

Spartan-llE FPGAs achieve high-performance, low-cost
operation through advanced architecture and semiconduc-
tor technology. Spartan-lIE devices provide system clock
rates beyond 200 MHz. Spartan-lE FPGAs offer the most
cost-effective solution while maintaining leading edge per-
formance. In addition to the conventional benefits of
high-volume programmable logic sclutions, Spartan-llE
FPGAs also offer on-chip synchronous single-pert and
dual-port RAM (block and distributed form}, DLL clock driv-
ers, programmable set and reset on all fiip-flops, fast carry
logic, and many other features.

Spartan-ilE Family Compared to Spartan-il
Family
+  Higher density and more /O
+  Higher performance
«  Unique pinouts in cost-effective packages
»  Differential signaling
- /DS, Bus LVDS, LVPECL
* Veenr= 1.8V
- Lower power
- 5V folerance with 10082 external resistor
- 3V tolerance directly
«  PCI WVTTL, and LYCMOSZ2 input buffers powered by
Ve instead of Veer

+  Unique [arger bitstream
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Spartan-llE 1.8V FPGA Famity: Introduction and Ordering Information

Spartan-lIE Product Availability

Table 2 shows the package and speed grades available for
Spartan-lIE family devices. Table 3 shows the maximum

user #0s availlable an the device and the number of user

1i0s available for each device/package combination.

Table 2: Spartan-llE Package and Speed Grade Availabili

| Pins 144 ; 208 256 456
T e Plastic TQFP | Plastic PQFP | Fine Pitch BGA | Fine Pitch BGA
Device Code TG144 PQ208 FT256 FG456
XC2S50E | 6 1 c) c. -
| 7 (C) (C) () .
XC2S100E % C. c.) . ci
-7 ) <) {<) {C)
XC25150€ 5 - (. 1) (. 1) (€.
.7 - (C) iC}) (C
XC25200E 5 - .l C.1 C
-7 - (C} (C) ()
| XC25300E 6 R C ! X
-7 - <) {C) <)
Notes:

1. €= Commercial. T, = 0= to +85°C: 1= Industrial, T, = ~40°C to +100°C
2. Parentheses indicate product not yet released. Contact sales for avaifability.

Table 3: Spartan-lIE User YO Chart

Available User /O According to Package Type
; Maximum
i Device User [/O TQ144 PQ2G8 FT256 FG456
XC2850E 182 102 146 182 -
XC28100E 202 102 146 182 202
: XC28150E 263 - 146 182 263
i XC28200E 289 . - 145 182 289 :
| xczsavoE ' 320 | - 148 182 320

230771 iv1.0: November 15, 2001
Preliminary Product Specification

WX It .com
1-300-253-7778
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Ordering Information

Example: XC2S50E -6

PQ 208 C r
Device Typeg ———— T Temperature Range
! Number of Pins

Speed Grade
Package Type
Device Ordering Options
Device [ Spesd Grade l Package Type ! NLmb;rof Pins Temperature Range (T,)
XC2850E -6 | Standard Performance ] TQ144 | 144-pin Plastic Thin QFP C = Commercial 0°Cio +85°C
XC28100E | | -7 | Higher Performance | PQ208 [ 208-pin Plastic QFP | = industrial -40°C to +100°C
AC25150E FT256 |256-ball Fine Pitch BGA
XC28200E FG456 1456-ball Fine Plich BGA
;| XC2S300E
Revision History

|[ Version No, Date Description
i 1.0 11/45/01 | Initial Xilinx release.
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