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ABSTRACT

This project outlines the classification of EEG signals obtained durtng hand
movement using Short time fourier transform algorithm to validate Mu-rhythm.
Electroencephalography (EEG) is widely used in clinical setlings to investigate
neuropathology. Since EEG signals contain a wealth of information about brain
functions, there are many approaches to analyzing EEG signals with spectral techniques.
Mu rhythm is usually encompassed in the alpha range (8-12Hz), it is strongly suppressed
during the performance of contralateral motor acts. Modulation of the w rhythm is
believed to reflect the electrical output of the synchronization of large portions of
pyramidal neurons of the motor cortex which control the hand and arm movement when
inactive.

The role of signal processing is crucial in the development of a real-time Brain
Computer Interface. Until recently, several improvements have been made in this area,
but none of them have been successful enough to use them in a real system. The goal of
creating more effective classification algorithms, have focused numerous investigations
in the search of new techniques of feature extraction. The main objective of this study is
the establishment of STFT algorithm which allows EEG signal classification between
given tasks. The extension is to interface to a prosthetic device to assist movements for

the physically challenged and paralysed.
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CHAPTER 1
INTRODUCTION

The EEG signals are used as a vector of communication
between men and machines. It represents one of the current challenges in
signal theory research. The principal element of such a communication
system, more known as “Brain Computer Interface”, is the interpretation
of the EEG signals related to the characteristic parameters of brain
electrical activity.

The role of signal processing is crucial in the development of a
real-time Brain Computer Interface. Until recently, several improvements
have been made in this area, but none of them have been successful
enough to use them in a real system. The goal of creating more effective
classification algorithms, have focused numerous investigations in the

search of new techniques of feature extraction.

1.1 PROJECT GOAL

The main objective of this study is the establishment of optimal
classification algorithms and methods which allows EEG signal
classification between given tasks. The extension is to interface to a
prosthetic device to assist movements for the physically challenged and

paralysed.



1.2 FLOW DIAGRAM

EEG SIGNAL
ACQUISITION

EEG SIGNAL
CLASSIFICATION

IMPLEMENTATION OF
STFT USING MATLAB

MU-RHYTHM
VALIDATION




1.3 ORGANIZATION OF THE REPORT
> Chapter 2 discusses about the electrical activity of brain
» Chapter 3 reports on EEG data acquisition during hand movement
» Chapter 4 gives about Implementation of Short term fourier transform
> Chapter $ discusses about validation of Mu-Rhythm hypothesis.
» Chapter 6 demonstrates the results that are simulated.

> Chapter 7 gives the conclusion of the project.



CHAPTER 2

ELECTRICAL ACTIVITY OF BRAIN (EEG)

Electroencephalography (EEG) is the recording of electrical activity
along the scalp. EEG measures voltage fluctuations resulting from ionic current
flows within the neurons of the brain. In clinical contexts, EEG refers to the
recording of the brain's spontaneous electrical activity over a short period of
time, usually 2040 minutes, as recorded from multiple electrodes placed on the

scalp.

EEG obtained from scalp electrodes is a sum of the large number of
neurons potentials. The interest is in studying the potentials in the sources inside
the brain and not only the potentials on the scalp, which globally describe the
brain activity. Direct measurements from the different centers in the brain
require placing electrodes inside the head, which means surgery. This is not
acceptable because of the risk for the subject. Another possibility is to calculate
the signals of interest from the EEG obtained on the scalp. These signals are
weighed sums of the neurons activity, the weights depending on the signal path
from the brain cell to the electrodes. Because the same potential is recorded
from more than one electrode, the signals from the electrodes are supposed to be
highly correlated. If the weights were known, the potentials in the sources could
be computed from a sufficient number of electrode signals. Independent
component analysis (ICA), sometimes referred to as blind signal separation or
blind source separation, is a mathematical tool that can help solving the

problem.



2.1 Wave patterns
2.1.1 Delta waves:

Delta is the frequency range up to 4 Hz. It tends to be the highest in amplitude
and the slowest waves. It is seen normally in adults in slow wave sleep. It is also

seen normally in babies.

2.1.2 Theta waves:

Theta is the frequency range from 4 Hz to 7 Hz. Theta is seen normally in
young children. It may be seen in drowsiness or arousal in older children and

adults; it can also be seen in meditation

2.1.3 Alpha waves:

Alpha is the frequency range from 8 Hz to 12 Hz. It emerges with closing of the

eyes and with relaxation, and attenuates with eye opening or mental exertion.

2.1.4 Mu-Rhythm:

Mu ranges 8-13 Hz, and partly overlaps with other frequencies. It reflects the
synchronous firing of motor neurons in rest state. Mu suppression is thought to
reflect motor mirror neuron systems, because when an action is observed, the

pattern extinguishes.

2.1.5 Beta waves:

Beta is the frequency range from 12 Hz to about 30 Hz. It is seen usually on

both sides in symmetrical distribution and is most evident frontally.
2.1.6 Gamma waves:

Gamma is the frequency range approximately 30—100 Hz. Gamma rhythms are
thought to represent binding of different populations of neurons together into a
network for the purpose of carrying out a certain cognitive or motor function.

5



CHAPTER 3

EEG DATA ACQUISITION

3.1 EEG DATA ACQUISITION:

EEG signals was taken at SRMC hospital for normal person using Neuroscan
EEG machine. In our study, we took raw EEG data values for two persons at

resting state and in moving state.

3.2 Electrode Placement:

EEG signals are measured at the scalp by affixing an array of electrodes
positioned according to the 10-20 international system and with reference to
digitally linked ears (DLE). DLE referenced voltages are obtained by using the
average of voltages at both ear lobes as reference. The ear lobes are selected
because they constitute an almost quiet reference. As a matter of fact, they

present small influences due to temporal activity.

3.3 10/20 SYSTEM OF ELECTRODE PLACEMENT:

3.3.1 Overview:

From an electrical engineers perspective, EEG signals originate from the
summation of a large number of events where small voltage pulses are
generated by electrochemical activity. Each pulse can be seen as an electrical
dipole having a vector direction. The electrical energy of the pulse travels
through the conductive tissue and fluids of the brain, through the skull, scalp,
and to our electrodes. The head can be modeled as a "volume conductor”, with
essentially equal conductance throughout. Electrical signals travel at the speed
of light in a volume conductor. There are other neurological pathways that

transmit information in an electrochemical chain can be considered for future



work. From an EEG perspective, we can only measure that activity which

results in significant electrical energy being released into the volume conductor.

3.1.2 Ground Electrode

With modern instrumentation, the ground electrode plays no significant part in
the measurement. It is only necessary to provide "electronic housekeeping" for
the amplifiers. Therefore it can be placed anywhere on the body. A conductive

rubber wrist strap electrode for convenience.

3.1.3 Test Procedure

The following test was performed to measure the effects of electrode placement
on signals originating in various parts of the brain.A fish bowel approximately
the size of a human skull was outfitted with silver chloride electrodes epoxied to
the sides of the bowel. Placements were at simulated left ear, right ear, and Cz.
Additional electrodes simulated a narrow bipolar placement such as Cz-C4, and
a wider placement such as C3-C4. The bowel was filled with a saline solution
approximating that of biological fluids.An electronic signal source of
approximately 10 Hz was connected to a "dip stick" consisting of a plastic rod
with two silver chloride buttons on either side. This allowed simulating a dipole
type signal with a know location and vector direction in the fluid. The electrode
labels correspond to their position with respect to the brain zones, i.e. Fronto-
polar(Fp), Frontal (F), Central (C), Temporal (T), Parietal (P} and Occipital (O).
Odd indexes are located in the left hemisphere and even ones in the right

hemisphere

3.1.4 Bipolar, Close Spaced

This type of placement emphasizes the area of the head immediately under the

electrodes. It 1s most sensitive to dipoles oriented inline between the electrodes.



3.1.5 Bipolar, Wide Spaced

The two main differences in this placement is the deeper penetration into the

head, and the tendency to emphasis the areas immediately under the electrodes.

3.1.6 Right Ear to Cz

This placement is really the same as bipolar wide spaced, except that the ear is
one of the electrodes. By moving the Cz electrode a short distance would
probably not progduce a significantly different result.

3.1.7 Linked Ears to Cz

Tends to spread pickup to the whole head. Again we get some emphasis of the
areas just under electrodes. This small difference probably explains why we are
able to do scanning with this configuration. With statistical analysis the small
differences can be made significant. Of course, anything else that produces

small differences would also affect the measurements.




3.4 EEG DATA ACQUIRED

SUBJECT 1: EEG DATA VALUES AT RESTING STATE
Table 3.4.1 EEG data values at resting state of subject 1

TimePoints=5500 Channels=6 BeginSweep[ms]=0.00
Samplinglnterval[ms]=2.000 Bins/uV=1.000 Time=12:07:04

F4-A2 C4-A2 P4-A2 F3-Al C3-Al P3-Al
-7776  -8.05 -9.77 0.50 -0.25 0.91
-7.15 693 -8.71 0.59 -0.28 0.94
-6.00 -558 -748 049 -0.40 0.4
-4.26 -3.75 -5.69 029 -0.55 0.67
-2.79 =223 -353 0.09 -0.67 0.6
-2.08 -1.02 -0.82 -0.14 -0.81 0.52
-3.20 -1.51 075 -0.58 -1.14 0.28
-5.82 422 -071 -1.19 -1.70 -0.21
-8.01 -6.88 -2.94 -1.69 -2.13 -0.63
-8.778 -8.09 -3.74 -197 -227 -0.75
-7.61 -7.55 -2.88 -2.19 226 -0.64
-3.52 =593 -1.29 -221 -2.05 -0.27
-3.66 -445 -0.19 -2.19 -1.87 0.04
-246 -3.23 043 -2.18 -1.76 0.27
-1.62 -1.84 072 -2.22 -1.67 045
-1.31 -0.72 0.54 -220 -1.53 0.64
-1.54 -0.22  0.09 -224 -1.46 0.69
-0.82 137 033 -220 -1.31 0.85
-0.58 371 1.16 -2.00 -098 1.24
-1.65 410 1.18 -1.74 -0.64 1.59
2770 281 0.22 -1.36 -0.26 191
-3.51 149 -095 -0.89 0.13 2.18
-433 014 -2.14 -0.55 043 231
-5.38 -1.62 -3.59 -032 0.59 229
-3.95 -346 -5.12 0.13 094 247
-545 -492 -633 087 1.57 288
-5.12 -648 -741 158 216 3.12
-5.56 -834 -8.60 196 237 297
-6.08 -9.95 -9.62 212 237 263
734 946 6.08 -221 -1.70 -3.88




SUBJECT 1:EEG DATA VALUES AT HAND MOVING STATE

Table 3.4.2 EEG data values at moving state of subject 1

TimePoints=5500 Channels=6 BeginSweep[ms]=0.00
SamplingInterval[ms]=2.000 Bins/uV=1.000 Time=12:07:14

F4-A2 C4-A2 P4-A2 F3-Al C3-Al P3-Al
-8.51 -9.27 -334 -324 344 -216
=771 <1776 -2.53 411 -421 -2.78
-7.11 -5.88 -1.36 -525 -526 -3.73
-5.15 -2.84 -0.04 -6.02 -596 -439
443 -156 -0.17 -6.54 -6.42 -4.93
-4.96 -2.60 -1.82 -7.09 -6.96 -5.68
-4.28 -2.37 -239 -743 -729 -6.25
-2.52 077 -1.61 -7.38 -7.21 -640
-0.62 054 -0.85 -7.31 -7.10 -6.54
1.05  1.01 -0.69 -7.19 -7.00 -6.68
200 148 -0.14 -685 -6.74 -6.62
337 324 179 -6.24 -621 -6.26
6.27 732 503 -5.51 -548 -5.64
6.50 9.16 6.05 -4.80 -4.87 -5.06
6.20 841 533 -4.16 -4.36 -4.57
638 7.88 535 -375 -4.06 -4.25
847 936 739 -3.05 -3.44 -3.53
873 930 8.14 -229 -281 -2.83
6.59 765 728 -2.06 -2.68 -2.60
4.09 485 494 -206 -2.74 -2.55
1.58 135 250 -2.07 -2.83 -2.49
0.50 -0.81 195 -1.86 -2.71 -2.27
0.60 -1.46 294 -134 -2.19 -1.67
0.70 -236 289 -0.70 -1.54 -0.91]
-0.48 447 078 -0.39 -1.23 -0.51
-0.70 -4.66 -0.09 0.01 -0.78 -0.02
0.05 -3.47 -0.02 0.14 -0.57 0.1
032 -247 -051 033 -036 0.63
0.62 -0.11 037 063 001 1.13
062 187 1.60 0.66 020 1.42
-1.36 049 0.08 036 0.03 128
-4.52 299 -336 -0.15 -0.41 0.78
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SUBJECT 2: EEG DATA VALUES AT RESTING STATE

Table 3.4.3 EEG data values at resting state of subject 2

TimePoints=5500 Channels=6 BeginSweep[ms]=0.00
Samplinginterval[ms]=2.000 Bins/uV=1.000 Time=12:04:11

F4-A2 C4-A2 P4-A2 F3-Al C3-Al P3-Al
-8.17 -587 -4.84 -1.61 -0.69 -3.44
-8.21 577 -5.02 -1.84 -092 -3.11
-8.31 -580 -526 -225 -148 -3.45
-8.26 -5.74 -530 -2.74 -2.12 -3.98
-8.02 -541 -517 -292 -3.18 -4.74
-746 491 -486 -2.11 -395 -548
-6.45 -439 -442 -0.87 -4.11 -587
=541 392 410 -0.05 -3.74 -5.74
-4.51 -331 -3.64 141 -245 -529
-3.56  -2.57 -2.85 234 -145 -5.23
-2.29 -1.59 -1.82 244 -0.81 -5.01
-0.91 -045 -0.89 291 0.09 -4.21
032 0.63 006 412 1.64 -2.86
1.37 1.69 1.12 533 347 -142
246 3.03 231 531 460 -035
336 429 338 5.06 497 0.85
417 507 412 442 491 257
482 573 477 3.14 498 453
338 643 549 341 6.28 6.46
575 6.95 627 467 8.66 9.22
595 705 6.62 375 8.51 1021
6.14 7.04 6.66 2.68 801 1047
6.00 694 670 297 824 10.77
553 6359 6.69 344 821 10.64
492 620 6.56 3.58 7.82 10.28
427 582 633 419 781 10.14
3.62 525 6.05 387 7.15 9.08
3.00 4.6% 573 265 569 6.78
232 431 544 102 379 428
1.64 3.92 524 -029 151 202
1.42  3.62 519 -1.14 -0.28 044
142 358 509 -1.39 -0.56 0.12
1.09 349 493 -127 -0.11 050
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SUBJECT 2: EEG DATA VALUES AT HAND MOVING STATE

Table 3.4.4 EEG data values at moving state of subject 2

TimePoints=5500 Channels=6 BeginSweep[ms]}=0.00
SamplingInterval[ms]=2.000 Bins/uV=1.000 Time=12:04:21

F4-A2 C4-A2 P4-A2 F3-Al C3-Al P3-Al
-0.14 073 -1.65 939 477 082
099 136 -1.18 11.52 6.94 3.41
212 1.82 -0.78 1205 7.94 481
275 191 -1.00 1077 722 4.12
286 1.69 -153 976 6.77 3.34
298 1.51 -190 1051 747 3.53
295 1.23 -245 1105 7.88 3.74
233 0.81 -322 984 692 288
222 040 -373 897 6.53 228
1.97 0.03 -409 809 670 2.06
1.55 -0.29 -444 658 7.10 223
099 -0.68 -4.69 423 554 139
049 -1.16 -478 1.66 269 -0.16
0.06 -1.28 -4.61 -1.05 051 -049
-0.34 -1.22 421 -322 086 -0.24
-0.71 -1.25 -3.74 -484 -1.83 -0.21
-0.65 -091 -296 -539 -2.06 032
-0.74 -049 -2.18 -432 -146 1.06
-1.11 -0.35 -1.50 -3.69 -1.02 1.58
-1.24  -0.18 -0.66 -2.59 -036 2.53
-0.97 042 043 -131 026 3.38
-0.70 098 153 -1.62 -0.64 261
-0.46 136 2.66 -230 -1.84 1.05
-0.49 146 3.27 -3.45 -321 -0.82
044 165 383 -3.73 -382 -1.83
-0.54 1.66 435 -3.05 -3.92 -1.94
-0.70  1.62 477 -2.13 -375 -1.14
-1.21 151 495 -042 -284 097
201 100 475 037 -3.01 2.19
-2.67 034 439 034 -334 249
-3.03 -0.06 4.06 0.56 -2.54 3.06
-3.55 -054 3.64 064 -2.11 299

12




* Total of 5000 data points obtained for 10 s EEG recordings.
* Each Notepad file contains data for 6 channels-C3, C4, F3,F4,P3 P4.

* Import of data for 1 channel is done at a time.

13



CHAPTER 4

IMPLEMENTATION OF SHORT TERM FOURIER
TRANSFORM

4.1. Analysis of EEG signals

In order to detect frequency composition of the EEG signals and identify the
abnormalities, spectral analysis of the signals is performed. In this way,
frequency band activities in EEG signals are determined and the low-frequency
content of band which is the most important part of signal according to
epileptic seizure is visualized. To be able to achieve this aim, EEG signals are
analyzed by the STFT .For the application of these analysis methods, EEG
signals in time domain are sampled at an appropriate frequency. Sampled
signals are grouped as frames that contain evident sample numbers. The signals
were processed and reconstructed by a system. For this purpose a developer

program using Matlab software which is an application development program.

4.2. Short-time Fourier transform

Spectral analysis of the EEG signals is performed using the short-time Fourier
transform (STFT), In which the signal is divided into small sequential or
overlapping data frames and fast Fourier transform (FFT) applied to each one.
The output of successive STFTs can provide a time—frequency representation of
the signal. To accomplish this, the signal is truncated into short data frames by
multiplying it by a window so that the modified signal is zero outside the data
frame. In order to analyze the whole signal, the window is translated in time and
then reapplied to the signal. Fourier analysis decomposes a signal into its
frequency components and determines their relative strengths. This transform is

applied to stationary signals, that is, signals whose properties do not evolve in

14



time., When the signal is non-stationary we can introduce a local frequency
parameter so that local Fourier transform looks at the signal through a window
over which the signal is approximately stationary. Therefore, we applied the
STFT to the EEG signals under study. When the window (t) is a Gaussian
function, the STFT is called a Gabor transform. The basic functions of this
transform are generated by modulation and transformation of the window
function(t),where modulation and translation parameters, respectively. The
fixed time window is the limitation of STFT as it causes a fixed time—frequency
resolution.

Time Frequency distribution was constructed from short-term Fourier
transform (STFT).The spectrogram is the squared magnitude of the windowed
short-time Fourier transform. It considers the squared modulus of the STFT to
obtain a spectral energy density of the locally windowed signal.Short-Time
Fourier Transform (STFT), maps a signal into a two-dimensional function of
time and frequency. The STFT represents a sort of compromise between the
time- and frequency-based views of a signal. It provides some information
about both when and at what frequencies a signal event occurs. However, you
can only obtain this information with limited precision, and that precision is
determined by the size of the window. While the STFT compromise between
time and frequency information can be useful, the drawback is that once you
choose a particular size for the time window, that window is the same for all
frequencies. Many signals require a more flexible approach , where we can vary

the window size to determine more accurately either time or frequency.
x(wh*(u~t) -> Equation (1)

h(t) is a short time analysis window located around ¢ = 0 and J = 0.Thus, we
can interpret the spectrogram as a measure of the energy of the signal contained
in the time-frequency domain centered on the point (t, f).

15



CHAPTER 5

VALIDATION OF MU-RHYTHM

Mu rhythm (p rhythm) is kind of brain wave rhythm measured using
Elgctroencephalography that has a maximal amplitude of somatosensory
cortices at rest. It reflects the synchronous firing of motor neurons in rest state.
Mu suppression is thought to reflect motor mirror neuron systems, because
when an action is observed, the pattern extinguishes, possibly because of the
normal neuronal system and the mirror neuron system "go out of sync", and
interfere with each other. It is also called arciform rhythm because of the shape
of the waveforms. Usually encompassed in the alpha range (8-12Hz), it is
strongly suppressed during the performance of contralateral motor acts.
Modulation of the p rhythm is believed to reflect the electrical output of the
synchronization of large portions of pyramidal neurons of the motor cortex

which control the hand and arm movement when inactive.

In 1950 Gastaut and his coworkers reported desynchronization of these
rhythms not only during active movements of their subjects, but also while the
subjects observed actions executed by someone else. These results were later
confirmed by additional research groups, including a study using subdural
electrode grids in epileptic patients. The latter study showed mu suppression
while the patients observed moving body parts in somatic areas of the cortex
that corresponded to the body part moved by the actor. Current research
concerning the mu rhythm is concerned with the development of this rhythm in
infancy, it is possible links to the human mirror neuron system, and the

implications of the sensorimotor origins of this rhythm.

16



CHAPTER 6

RESULTS AND DISCUSSION

The Matlab software was used to compute the STFT algorithm to perform the
time-frequency analysis for the EEG signals, during resting state and hand
movement of two persons, The results computed are shown below.

SUBJECT 1: AT ELECTRODE POSITION C3
EEG AT RESTING STATE: EEG AT MOVING STATE:

30

. \ 50 . L - ) . ;
4000 5000 6000 0 1000 2000 3000 4000 5000 6001

Figure 6.1 Data samples of EEG at resting and moving state in C3

Frequency (Hz}

o
100 200 300 400 500 600 700

oe 200 300 400 500 600 700
Time

Time

Figure 6.2 Spectrogram at resting and moving state in ¢3

» So from the above figure, we can conclude that in resting state the
frequency is very low and in the moving state Mu-rhythm(8-13Hz)
suppression takes place. This EEG data values are taken from electrode
position C3 for subject 1(i.e. Sample of 1™ person).
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SUBJECT 2: AT ELECTRODE POSITION C3

EEG at resting state: EEG at moving state:

30

20

07

-20 |-

30 : :

u 100 200 3000 4000 500 6000 o 1000 -2600 3600_ 00 00 6o
Figure 6.3 Data samples of EEG at resting and moving state in ¢3

Spectrogram at resting state Spectrogram at moving state

)

-
L=}

Frequency (Hz)
Frequency (Hz)

100 200 300 400 500 600 700

Figure 6.4 Spectrogram at resting and moving state in ¢3

» So from the above figure, we can conclude that in resting state the
frequency is very low and in the moving state Mu-rhythm(8-13Hz)
suppression takes place. This EEG data values are taken from electrode
position C3 for subject 2(i.e. Sample of 2™ person).

18



SUBJECT 1: AT ELECTRODE C4

EEG at resting state EEG at moving state
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Figure 6.5 Data samples of EEG at resting and moving state in c4

Spectrogram at resting state Spectrogram at moving state

ey
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(=]
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Figure 6.6 Spectrogram of resting and moving state in c4

> So from the above figure, we can conclude that in resting state the
frequency is very low and in the moving state Mu-rhythm(8-13Hz)
suppression takes place. This EEG data values are taken from electrode
position C4 for subject 1(i.e. Sample of 1* person)
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Figure 6.7 Data samples of EEG at resting and moving state in C4
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Figure 6.8 Spectrogram of resting and moving state in C4

> So from the above figure, we can conclude that in resting state the
frequency is very low and in the moving state Mu-rhythm(8-
13Hz)suppression takes place. This EEG data values are taken from
electrode position C4 for subject 2(i.e. Sample of 2™ person).
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CONCLUSION

The aim of the study is to classify the EEG signals obtained during the
hand movement at resting state and moving state. The Mu-Rhythm ranges 8—
13 Hz., and partly overlaps with other frequencies. It reflects the synchronous
firing of motor neurons in rest state. Mu suppression is thought to reflect motor
mirror neuron systems, because when an action is observed, the pattern
extinguishes, possibly because of the normal neuronal system and the mirror
neuron system "go out of sync”, and interfere with each other.

The experiment was carried out to obtain the TF distribution (TFD)
constructed from short-term Fourier transform (STFT), which used function
Spectrogram in Matlab toolbox.It is evident from the experimental results that
the spectrogram obtained during the resting state at electrode c3,c4 does not
show much variation in the energy distribution, but during the moving state the
pattern extinguishes possibly from 12Hz-6Hz.

The transition of energy distribution between the two states signifies

that the Mu-Rhythm has been suppressed when the hand movement was

imagined.
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CHAPTER 7

CONCLUSION

The objective of this study was centered in the search of a time-frequency
method, which allows us to classify the EEG signals and further study the
possibility of extension to all the different tasks. In order to quantify their
spectral content as a function of time, STFT algorithm was implemented to
obtain Time-frequency representation (TFR) methods which are well suited as

tools for the study of spontaneous and induced changes in oscillatory states was
evident,

FUTURE SCOPE

Feature extraction and classification of EEG signals is core issues on
EEG-based brain computer interface (BCI). Typically, such classification has
been performed using signals from a set of selected EEG sensors. Because EEG
sensor signals are mixtures of effective signals and noise, which has low signal-
to-noise ratio, motor imagery EEG signals can be difficult to classification.

This study can be extended in future for the classification and analysis of
EEG signals for feature extraction using different algorithms and Real time

interfacing with prosthetic devices.
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