

ZARI YARN CHARACTERIZATION

A PROJECT REPORT

Submitted by

SATHIYAMOORTHY.T

Register No: 0920201013

in partial fulfillment for the award of the degree

of

MASTER OF TECHNOLOGY

in

TEXTILE TECHNOLOGY

BONAFIDE CERTIFICATE

Certified that this project report "ZARI YARN CHARACTERIZATION" is the bonafide work of SATHIYAMOORTHY.T who carried out this project work under my supervision during the year 2010-2011.

SIGNATURE

Dr.K.THANGAMANI

PROFESSOR AND HEAD

Department of Textile Technology

Kumaraguru College of Technology

Coimbatore - 641 049

SIGNATURE

Mr.S.SUNDARESAN

SUPERVISOR

Assistant professor

Department of Textile Technology

Kumaraguru College of Technology

Coimbatore - 641 049

ACKNOWLEDGEMENT

I express my sincere gratitude to our beloved Co-Chairman, Dr. B.K. Krishnaraj Vanavarayar, Dr. J. Shanmugan, Director, Kumaraguru College of Technology and Dr. S. Ramachandran, Principal for their support and allowing to use the facilities of the institution.

I express my whole hearted thanks to *Dr. K.Thangamani*, Professor and Head, Department of Textile Technology, Kumaraguru College of Technology, for having been a source of encouragement and for instilling the vigor to do the project.

It gives me great pleasure to express my deep sense of gratitude for my supervisor, *Mr. S.Sundaresan*, Assistant Professor (SRG), Department of Textile Technology, Kumaraguru College of Technology, for his innovative guidance, expert suggestions and constant encouragement at every step for the study.

I thank all the teaching and non-teaching staff for their help during this project. Words fail to express my thanks to my beloved parents, and friends who are my sounding board and pillar of strength.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE NO. vii
NO.	ABSTRACT	viii
	LIST OF TABLES	x
	LIST OF FIGURES LIST OF ABBREVIATIONS	xii
	INTRODUCTION	1
1		2
	1. 1 OBJECTIVE OF THE PROJECT	3
2	LITERATURE REVIEW 2.1 ZARI	3
	2.2 ZARI YARN MANUFACTURING	4
	2.2.1 Preparation of Raw Material	5
	2.2.2 Wrap Spinning	5
	2.2.3 Prewinding	5
	2.2.4 Gold Coating	6
	2.2.5 Final Winding and Precision Winding	6
		6
	2.3 SILK	7

CHAPTER	TITLE	PAGE NO.
NO.	2.4 PLASMA TREATMENT	12
	2.4.1 Properties of Plasma	16
	2.4.2 Plasma Temperature	16
	2.4.3 Applications of Plasma Technology in Textiles	17
	2.4.4 Plasma Treatment of Textile Fibres	18
	2.4.5 Advantages of Plasma Technology	19
	2.5 OFFLINE ZARI TESTER	19
	2.5.1 Design of Offline Zari Tester	20
	2.5.2 Block Diagram of Offline Zari Tester	21
	2.5.3 Design of PCB	21
2	MATERIALS AND METHODS	22
3.	3.1 MATERIALS	22
	3.2.METHODOLOGY	23
	3.2.1 Degumming Methodology (Using Detergent)	23
	3.2.2 Testing Methodology	24

TITLE CHAPTER NO.	PAGE NO.
4.2 ZARI COMPONENT TEST RESULTS	34
4.2 ZARI COM 31-2 4.2 Linstron Test Results	34
4.2.1 Mod 4.2.1 Mod 4.3 SILK YARN AND ZARI COMPONENTS TEST RESULT	38
4.3 SILK TARRYTHE 4.4 OFFLINE ZARI TESTER – TEST RESULTS	39
4.4 OFFLINE ZART 1220 4.4.1 Instrument Test Results (Faults per Meter)	39
4.4.1 Instrument Test Results - Summary	39
4.4.2 HISHUMANA 4.5. STATISTICAL ANALYSIS	40
4.5. STATISTICAL ANALYSIS SUMMARY 4.6. STATISTICAL ANALYSIS SUMMARY	51
4.6. STATIO 1.3. 4.6.1 Average Tensile Strength (gf/tex) at 3 difference of the strength (gf/tex) at 3 difference of t	erent 51
gauge lengths	and
4.6.2 Average Tensile Strength (gf/tex) Before	51
After Plasma Treatment	51
4.6.3 Offline Zari Tester - Test Results	
5. CONCLUSION	52
J•	53

ABSTRACT

India has a rich cultural tradition. Zari (or Jari as traditionally called) is basically a metallic thread meant for weaving and embroidery. Many components like silk, metals like silver, gold coating are involved in the making of these zari, there is a need for establishment of certain data regarding zari production and properties of various components of zari.

This project work deals with the different components of zari, their tensile properties and an analysis on the effect of oxygen plasma treatment on the tensile behavior of raw silk, degummed silk, and various components of zari. Fine tuning the working of online zari testing instrument is also carried out in this project work.

LIST OF TABLES

TADIF	DESCRIPTION	PAGE NO.
TABLE NO.		22
3.1	Details of Materials	23
3.2	Degumming Recipe and Conditions	25
3.3	Plasma Treatment Methodology	27
4.1	Degumming Weight Loss (%)	28
4.2	Tensile Strength of Raw Silk - Before Plasma Treatment	29
4.3	Tensile Strength of Degummed Silk - Before Plasma Treatment	30
4.4	Tensile Strength of Raw Silk - After Plasma Treatment	31
4.5	Tensile Strength of Degummed Silk – After Plasma Treatment Average Tensile Strength of Raw Silk – Before and After Plasma	32
4.6	Average Tensile Strength of Raw Shk - Before and After Plass Average Tensile Strength of Degummed Silk - Before and After Plass	na 33
4.7		34
4.8	Treatment Tensile Strength of Red Silk – Before and After Plasma Treatment Tensile Strength of Silver Wrapped Red Silk – Before and After Plas	ma 35
4.	9 matement	36
4.	Tensile Strength of Zari – Before and After Plasma Treatment Average Tensile Strength of Zari Components – Before and After	37
4.	Average Tensile Strength of Zuri Co. 1 Plasma Treatment	38

TABLE	DESCRIPTION	PAGE NO.
NO. 4.17	Raw Silk (Mulberry/Tasar) - After Plasma Treatment - Inference	42
4.18	Degummed Silk (Mulberry/Tasar) – After Plasma Treatment - Inference	43
4.19	Raw Silk(Mulberry/Tasar) – Before and After Plasma Treatment –	44
4.20	Inference Degummed Silk(Mulberry/Tasar) – Before and After Plasma Treatment – Inference	45
4.21	Red Silk - Before and After Plasma Treatment - Inference	46
4.22	Silver Wrapped Red Silk – Before and After Plasma Treatment - Inference	47 48
4.23	Zari - Before and After Plasma Treatment - Inference	
4.24	Zari Components - After Plasma Treatment - Inference	49
4.25		50 51
4.26	Average Tensile Strength (gf/tex) at three Gauge lengths	
4.27		51
4.23	Offline Zari Tester - Test Results	

LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE NO.
NO.		3
2.1	Real Zari	4
2.2	Imitative Zari	4
2.3	Process Sequence for Zari Manufacturing	4
2.4	Wrap Spinning Machine	5
2.5	Mulberry Silk Cocoon	6
2.6	Silk 20 Micron Bright Longitudinal section	7
	Silk 20 Micron Bright Cross section	7
2.7		8
2.8	Chemical Structure of Silk	12
2.9	Laboratory Plasma Device (Atmospheric Plasma Unit)	
2.10	Offline Zari Tester	20
2.11	Design of Offline Zari Tester	20
	Block diagram of Offline Zari Tester	21
2.12		21
2.13	Design of PCB	22
3.1	Methodology – Flow Chart	23
2 2	Testing Methodology – Flow Chart	24

FIGURE NO.	DESCRIPTION	PAGE NO.
4.4	Tensile Strength of Raw Silk - After Plasma Treatment	30
4.5	Tensile Strength of Degummed Silk – After Plasma Treatment	
4.6	Average Tensile Strength of Raw Silk – Before and After Plasma Treatment	32
4.7	Average Tensile Strength of Degummed Silk – Before and After Plasma Treatment	33
4.8	Tensile Strength of Red Silk - Before and After Plasma Treatment	34
4.9	Tensile Strength of Silver Wrapped Red Silk – Before and After Plasma Treatment	35
4.10	Tensile Strength of Zari - Before and After Plasma Treatment	36
4.11	Tensile Strength of Zari Components – Before and After Plasma Treatment	37
4.12	Comparison of Average Tensile Strength	38
4.13	Tensile Strength (gf/tex) – Raw Silk (Mulberry/Tasar) – Before Plasma Treatment – Residual Plots	40
4.14	Tensile Strength (gf/tex) – Degummed Silk (Mulberry/Tasar) – Before Plasma Treatment – Residual Plots	41
4.15	Tensile Strength (gf/tex) – Raw Silk (Mulberry/Tasar) – After Plasma Treatment – Residual Plots	42
4.16	Tensile Strength (gf/tex) - Degummed Silk (Mulberry/Tasar) - After Plasma Treatment - Residual Plots	43
4.17	Tensile Strength (gf/tex) – Raw Silk (Mulberry/Tasar) – Before and After Plasma Treatment – Residual Plots	44
4.18	Tensile Strength (gf/tex) – Degummed Silk (Mulberry/Tasar) – Before and After Plasma Treatment – Residual Plots	45

LIST OF ABBREVIATIONS

1.	PP	Poly Propylene
----	----	----------------

- 2. PE Poly Ethylene
- 3. PET Poly Ethylene Terepthalate
- 4. gf/tex Gram Force per Tex
- 5. mm Millimeter

CHAPTER 1

INTRODUCTION

Zari is a type of thread made of fine gold or silver wire. Today, in most fabrics, zari is not made of silk, real gold and silver, but has cotton or polyester yarn at its core, wrapped by golden/silver metallic yarn. Real Zari made of pure gold & silver, Imitation zari made of silver electroplated (thinly) copper wire, and Metallic zari made of slitted polyester metallised film. Imitation Zari came into existence to cut the cost of precious metals.

Zari has many components in it. Silk is the important core component in real zari. Silk is said to be the queen of textile fibres and the products made out of it are lustrous and have good handle two types of silks, namely, mulberry and tasar are produced in India. Silk is a protein fibre and unlike wool has a higher strength and low elongation. It is one of the least researched fibres and there is renewed interest in developing a number of niche products.

Although a considerable amount of work has been carried out on silk, it is saddening to note that the data regarding the zari and its properties is still at its infancy. The present study is an attempt to evaluate some important properties like tensile strength, elongation of zari and its components. As zari is composed of silk in the core, wrapped with flattened silver metal and electroplated with gold solution on the top, the tensile strength and elongation of the silk filament in the core plays an important role in determining the evenness of the wrap and thereby influencing the quality of the resultant zari.

In the previous researches conducted in zari, it has been inferred that many fault occur in the zari due to many reasons out of which the influence of the tensile strength and in the zari due to many reasons out of which the influence of the tensile strength and

1. 1 OBJECTIVE OF THE PROJECT

The present study aims at the following objectives;

- To generate data on the properties of zari and its components
- To test the zari yarn in various stages for strength, Elongation using Instron tester and prepare a statistical report for the existing process.
- To assess the effect of oxygen plasma treatment on the strength and elongation of raw silk, degummed silk, zari and its components namely red silk, silver wrapped red silk.
- To fine tune the fabricated instrument (offline zari tester) and check the level of compatibility.

CHAPTER 2

LITERATURE REVIEW

2.1 ZARI

Zari (or Jari as traditionally called) is basically a metallic thread meant for weaving and embroidery. It is manufactured by winding or wrapping (covering) a flattened metallic strip made from pure gold, silver or slitted metallised polyester film, on a core yarn, usually of pure silk, art silk, viscose, cotton, nylon, polyester, P.P., mono/multi filament, wire, etc.

Zari can broadly be divided into 3 types.

- 1. Real zari
- 2. Imitation Zari
- 3. Metallic zari

Real Zari made of pure gold & silver, Imitation zari made of silver electroplated (thinly) copper wire, and Metallic zari made of slitted polyester metallised film. In ancient times, when precious metals were cheaply and easily available, only Real Zari threads were produced. Due to industrial revolution and invention of electroplating process, Imitation Zari came into existence to cut the cost of precious metals.

As Copper is the most malleable and ductile metal after Gold and Silver, silver electroplated copper wire replaced pure silver. Various modern colours and chemicals are used to create/impart a golden hue instead of pure Gold. The precious metals & copper too became dearer due to huge demand in various modern industries. Thus, a cheap & durable alternative was invented with non-tarnishing properties. Metallic Zari came into vogue replacing traditional metals like Gold, Silver & Copper. This Zari is light in weight & more

Fig. 2.2 Imitative Zari

Babu Rao (2004)[2] says that the traditional Kancheepuram silk sari still maintains its appeal, and has a significant market share. Gold-coated silver thread (zari) is used in this sari. The quality, and hence the price of the sari, is dependent on the composition of the zari. Until now there has been no qualified method of assessing this.

2.2 ZARI YARN MANUFACTURING

2.2.1 Preparation of raw material

The Red Silk of 14-16 Denier yarn is used as a core material. The Silver wire of 16 Micron diameter is first made flattened cross-section by using a flattening machine by applying optimum pressure and it is wound on small spools called as "Reels". Each reel contains 1000 to 1500 meter of silver wire. The sliver is being melted in a hot chimney, at a specific degree.

2.2.2 Wrap Spinning

In this wrap spinning process, silk yarn is in the form of spool is fed into the hollow spindle; the silver thread in the reel is guided through the wrapping finger and is wrapped onto the surface of the silk yarn. Then the wrapped silk yarn is wound onto the delivery package

2.2.4 Gold coating

The prewound bobbins are now coated with gold solution by the process of electroplating.

2.2.5 Final winding & Precision winding

In the Precision winding process the final Zari yarn is wounded on flanged small wooden spools under constant tension and constant length. Each spool is of 64.8gms net weight and a package of 4 bobbins is called one mark. One mark costs more than 10,000 rupees.

2.3 SILK

Silk is said to be the queen of textile fibres and the products made out of it are lustrous and have good handle two types of silks, namely, mulberry and tasar are produced in India. Morton W.E. and Hearle J.W.S. (1993)[13] says that silk is a protein fibre and unlike wool has a higher strength and low elongation. Silk is a natural protein fiber, some forms of which can be woven into textiles. The best-known type of silk is obtained from cocoons made by the larvae of the mulberry silkworm Bombyx mori reared in captivity, known as Sericulture. The shimmering appearance of silk comes from the fibers' triangular prism-like structure which allows silk cloth to refract incoming light at different angles. Silks are produced by several other insects, but only the silk of moth caterpillars has been used for textile manufacture. There has been some research into other silks, which differ at the molecular level. Silks are mainly produced by the larvae of insects that complete metamorphosis.

2.3.1 Microscopic view

Fig: 2.6 Silk 20 micron bright longitudinal section

Fig: 2.7 Silk 20 micron bright cross section

2.3.2 Chemical structure

According to Carty P. (1996)[3], silk polymer is a linear, fibroin polymer. Silk is composed of sixteen different amino acids. Three of these sixteen amino acids, namely

Fig: 2.8 Chemical structure of silk

2.3.3 Properties and characteristics of silk

Warner S (1995)[17] says that the silk filament is strong. This strength is due to its linear, beta-configuration polymers and very crystalline polymer system. These two factors permit many more hydrogen bonds to be formed in a much more regular manner. When wet, silk loses strength. This is due to water molecules hydrolysing a significant number of hydrogen bonds and in the process weakening the silk polymer.

Silk is considered to be more plastic than elastic because its very crystalline polymer system does not permit the amount of polymer movement which could occur in a more amorphous system. Hence, if the silk material is stretched excessively, the silk polymers, which are already in a stretched state (they have a beta-configuration) will slide past each other. The process of stretching ruptures a significant number of hydrogen bonds. When stretching ceases, the polymers do not return to their original position, but remain in their

This diagraphical the polymer system of silk which is seen as a distortion and

system allows fewer water molecules to enter than does the amorphous polymer system of wool. The other hygroscopic properties of silk are rather similar to those of wool.

Silk is more sensitive to heat than wool. This is considered to be partly due to the lack of any covalent cross links in the polymer system of silk, compared with the disulphide bonds which occur in the polymer system of wool. The existing peptide bonds, salt linkages and hydrogen bonds of the silk polymer system tend to break down once the temperature exceeds 100 degree C.

Silk is degraded more readily by acids than is wool. This is because, unlike the wool polymer system with its disulphide bonds, there are no covalent cross-links between silk polymers. Thus perspiration, which is acidic, will cause immediate breakdown of the polymer system of silk. This is usually noticed as a distinct weakning of the silk textile material.

Alkaline solutions cause the silk filament to swell. This is due to partial separation of the silk polymers by the molecules of alkali. Salt linkages, hydrogen bonds and van der Waals' forces hold the polymer system of silk together. Since these inter-polymer forces of attraction are all hydrolysed by the alkali, dissolution of the silk filament occurs readily in the alkaline solution. It is interesting to note that initially this dissolution means only a separation of the silk polymers from each other. However, prolonged exposure would result in peptide bond hydrolysis, resulting in a polymer degradation and complete destruction of the silk polymer, stated Gupta V.P. and Kothari V. K. (1997)[13].

The resistance of silk to the environment is not as good as that of wool. This lower resistance is due mainly to the lack of covalent crosslinks in the polymer system of silk.

2.3.4 Types of silk

Commercially, silk is classified into four types, obtained from different species of

Karnataka, Andhra Pradesh, West Bengal, Tamil Nadu and Jammu & Kashmir which together accounts for 92 % of country's total mulberry raw silk production.

2.3.4.2 Tasar

Tasar (Tussah) is copperish colour, coarse silk mainly used for furnishings and interiors. It is less lustrous than mulberry silk, but has its own feel and appeal. Tassar silk is generated by the silkworm, 'Antheraea mylitta' which mainly thrives on the food plants asan and arjun. The rearings are conducted in nature on the trees in the open.

Tasar silk, often referred to as wild silk, comes from the Antheraea moths. These moths live mostly on Terminalia species and Shorea robusta as well as other food plants found in South Asia. The sericulture process of tasar silk is the same as mulberry silk - the cocoons are first dried in the sun to kill the silkworm and then soaked in boiling water to soften the silk before it is reeled.

2.3.4.3 Eri

Also known as Endi or Errandi, Eri is a multivoltine silk spun from open-ended cocoons, unlike other varieties of silk. Eri silk is the product of the domesticated silkworm, 'Philosamia ricini' that feeds mainly on castor leaves. Eri culture is a household activity practiced mainly for protein rich pupae, a delicacy for the tribal. Recently, the eri cocoons are open-mouthed and are spun. The silk is used indigenously for preparation of chaddars (wraps) for own use by these tribal. In India, this culture is practiced mainly in the north-eastern states and Assam.

2.3.4.4 Muga

This golden yellow colour silk is prerogative of India and the pride of Assam state. It is obtained from semi-domesticated multivoltine silkworm, 'Antheraea assamensis'. These silkworms feed on the aromatic leaves of Som and Soalu plants and are reared on trees.

community manages to produce 100-200 kilograms of silk cocoons at a time. The cocoons are put into a heater so as to prevent moths from hatching and to ensure that the cocoons remain whole and damage free so that it can give out one single continuous filament of silk

A handful of cocoons are taken at a time and are immersed in hot water. The outer portion of the cocoons are removed and kept aside. This waste is utilized elsewhere as lower quality yarn.

The cocoons are then put into cold water. The silk strands gets extracted by hand from each cocoon and is passed through an eyelet on a machine that gets drawn onto a mechanized sectional warping drum that makes hanks of the silk. As the silk being extracted is wet, a coal fire is placed beneath the warping drum so as to dry the silk as it is being wound. It takes 8 cocoons to make a single filament of silk. The natural colour of the silk obtained is a light yellow or Badami as it would be referred to in local terms.

Doubling is the mechanical process of winding of single filament filature yarn onto bobbins. A maximum of 40 bobbins can be wound at a time. Here, 30 bobbins are wound at a time or less depending on the quantity of yarn required.

On the same machine, two/three/four of the single filament raw silk yarns are drawn together and are wound onto bobbins in order to make the yarn ready for plying. To wind four of the single filament yarns onto a bobbin takes 45 minutes whereas, winding of two of the single yarns together would require 11\2 hours. The more the number of yarns to be wound together, the faster will it get wound onto a bobbin and vice-versa. After winding, each bobbin holds a minimum of 35-40 grams of silk. The machines have wheels on one end that control the speed of rotation of the hanks and bobbins and hence one can manually decide on the speed of winding beforehand.

The stable dual years on the hobbins are plied together on a machine in a manner such

is what causes the yarn to form a twist. 30-40 twists per inch are formed depending on a set diameter on the machine that can be changed.

2.4 PLASMA TREATMENT

Peter J. Hauser (2005)[15] states that plasma, often referred to as the fourth state of matter, is an ionized gas consisting of highly energetic electrons and positive ions. Plasmas are generated by high electric fields and can interact with solids to provide unique surface properties. Plasma treatments have been used to induce both surface modifications and bulk property enhancements of textile materials, resulting in improvements to textile products ranging from conventional fabrics to advanced composites. These treatments have been shown to enhance dyeing rates of polymers, to improve colorfastness and wash resistance of fabrics, to increase adhesion of coatings, and to modify the wettability of fibers and fabrics. Research has shown that improvements in toughness, tenacity, and shrink resistance can be achieved by subjecting various thermoplastic fibers to a plasma atmosphere. Recently, plasma treatments have produced increased moisture absorption in fibers, altered degradation rates of biomedical materials (such as sutures), and deposition of low friction coatings.

Plasma treatment may be performed either at low pressures (vacuum) or at atmospheric pressures. Although vacuum plasma processes and are well understood and are used extensively in the semiconductor industry, the fact that vacuum conditions are necessary makes low pressure plasma impractical to use in industries requiring high rates of throughput, e.g., the textile industry. Atmospheric plasma treatment, on the other hand, is well suited for continuous processing, but the technology is relatively new, and not completely understoodPlasma is like any other gas like oxygen, nitrogen etc. in many respects. However plasma has many more interesting and complex properties. In an ordinary gas the molecules or the atoms are electrically neutral i.e. they carry no net electric charge either positive (+) or negative (-). A neutral atom has equal number of negatively charged electrons and positively charged protons.

Electrons are very light and they move around the centre of the atom in different orbits somewhat similar to the planets in our solar system. Protons are about 2000 times heavier than electrons and they are concentrated at the centre of the nucleus. In plasma there are always some atoms where one of the electrons is removed. Such atoms thus carry one electron less and hence have one net positive charge. These atoms are said to be ionized. If such ions and electrons are present in a gas in substantial numbers the gas is said to be ionised and is called plasma. It is believed that more than 90% of the universe is in plasma state. Gas plasma treatments of materials alter their surface character without affecting their bulk properties. The depth of the surface treatment is only a few nanometres. The surface of the material is roughened and surface chemical properties may also be changed. So, for textiles, gas plasma treatment offers an alternative method of surface treatment to the coating technologies conventionally applied. The idea of treating materials with gas plasma is by no means new (gas plasmas were introduced in the 1960s!), but it is only recently that it has become possible to treat textiles in this way on a commercial scale.

The effectiveness of a plasma treatment is governed by a variety of factors: the composition of the gas, the type of textile, the pressure within the plasma chamber, the frequency and power of the electrical supply, and the temperature and duration of the treatment. The treatment process is hence highly complex; even so, several effects can be readily highlighted despite these complexities.

In general, three main effects can be identified, depending on the type of gas plasmatreatment applied. Etching or cleaning, associated with changes in surface texture and wetting properties, and related to changes in surface roughness.

Surface chemical modification, whereby particular chemical groups are introduced to the textile surface. The nature of the group depends very much on the composition of the gas plasma. These groups may confer improved wetting, abrasion resistance, biocompatibility and adhesion. Alternatively, they may increase inertness at the surface. Plasma polymerisation or plasma controlled vapour deposition, which enables the deposition of very thin films of polymers onto textile surfaces. These thin polymeric coatings possess highly crosslinked structures that, although difficult to characterise, can nevertheless confer valuable technological properties.

Thus, oxygen plasma treatments enable polypropylene fibres to be wetted by water) and to be easier to glue or bond. Moreover, the biocompatibility of the fibres is, consequently, improved, given that most body fluids are aqueous-based. Cotton fabrics can be rendered water repellent by plasma treatment with a fluorocarbon. This type of treatment could be useful for outdoor wear and for hospital theatre clothing. It can be noted too that the internal structure of the fibres remains hydrophilic, and so can still allow wicking. Such a fabric could therefore also be useful for sportswear, for example.

Two types of plasma treatment system are available: treatment at low pressure and

this technology has to be a batch operation; it doesn't, as the book explains! It is possible to build continuous systems using low pressure plasma technology.

Plasma treatment at atmospheric pressure is perhaps less well advanced so far, giving less uniform results. The technology is, however, advancing, not least because of its appeal for continuous processing. As the book explains, there are a number of different forms: corona treatment, dielectric barrier discharge and glow discharge. Whilst corona treatments are the most widely used overall, dielectric barrier discharges and atmospheric pressure glow discharges are arguably better suited to the constraints of treating textile fabrics, notably relatively low temperatures to prevent fabric melting or degradation.

There is still considerable debate about the relative merits and costs of installing and using low pressure and atmospheric pressure systems. Many textile fabricators are concerned, for example, at the cost of operating a process at reduced pressure, yet in the book evidence is provided that the total cost is no higher than ϵ 0.05 per square metre (less than 4p). Moreover, protagonists for low pressure treatments contend that far less gas is needed, an argument which becomes particularly cogent for expensive gases such as fluorocarbons. However, atmospheric pressure treatments, even though still less developed, will surely be preferred eventually in applications where they can match cost and performance.

Gas plasma technology originally started in the microelectronics industries, but eventually extended to metals, plastics, biomaterials, and ceramics and other inorganic materials. These industries have come to recognise that gas plasma treatments offer some real commercial advantages, and these advantages apply just as much to the textile industry. Not only does gas plasma act on the surface of a textile whilst leaving its bulk properties unchanged, there is also no need for water or an organic solvent as a medium, as is required in many conventional coating processes. Gas plasma treatment can therefore be considered a

surface of a polyolefin textile is pretreated with the plasma of a noble gas, such as argon. The effect is to crosslink the polymer chains at the textile surface. In addition, the introduction of suitable chemical groups to the textile surface allows polymers to be readily grafted onto the textile. These added polymers can both stabilise the textile surface and, depending on the nature of the grafted polymer, confer other desired properties.

2.4.1 Properties of Plasma

Plasma has many interesting and useful properties. These arise due to the presence of ions, electrons, neutral atoms in higher energy states as well as neutral atoms in the ground state which form a majority in most of the man made plasma. Plasmas can be manipulated by electric and magnetic fields. As in a gas, the particles in plasma are always colliding with each other. In the process electrons and ions may recombine to form a neutral atom in an excited state or a ground state, a neutral atom may get ionised. Excited atoms loose energy and go to ground state by emitting light. This is how light is generated in fluorescent lamps (tube lights), neon tubes, sodium lamps, mercury vapour lamps, CFL's, electric arcs etc. This property makes plasma attractive to look at with various colours. Sun and stars also generate light by the same process.

2.4.2 Plasma temperature

Like an ordinary gas, plasma would also have some temperature. But in a plasma there can be more than one temperature! For example the electrons generally have an higher temperature than the ions. The ions themselves could be at a higher temperature than the neutral atoms. In other words, each species i.e. electrons, ions and neutral behave like three different gases with different temperatures. Colliding plasma particles may exchange energy. The energy lost by one would be gained by the other. Such collisions help in equalising the temperatures of the different species. This happens when plasma densities are very high and

2.4.3 Applications of Plasma Technology in Textiles

Amelia Sparavigna[1] says that, the research in the field of plasma applications for textile treatments is very wide and we will discuss some recent developments. Plasma treatment enhance mechanical properties by softening of cotton and other cellulose-based polymers, with a treatment by oxygen plasma. Reduced felting of wool with treatment by oxygen plasma. Top resistance in wool, cotton, silk fabrics with the following treatment: dipping in DMSO and subsequently N2-plasma. Antistatic finish can be given to rayon, with chloromethyl dimethylsilane in plasma.

Improvement of surface wetting in synthetic polymers (PA, PE, PP, PET PTFE) with treatment in O2-, air-, NH3-plasma. Hydrophilic treatment serves also as dirt-repellent and antistatic finish. Hydrophobic finishing of cotton, cotton/PET, with treatment with siloxan- or perfluorocarbon- plasma.

Oleophobic finish for cotton/polyester, by means of grafting of perfluoroacrylat. Improvement of capillarity in wool and cotton, with treatment in oxygen plasma. Improved dyeing polyester with SiCl4- plasma and for polyamide with Ar-plasma.

Metal-coated organic polymers are used for a variety of applications. If the metallised polymer is expected to fulfil its function, it is essential that metal strongly adheres to the polymer substrate. This can be obtained with a plasma pre-treatment of the polymer. Composites and Laminates.

Good adhesion between layers in laminates depends upon the surface characteristics of fibres in layers and the interactions taking place at the interface. A prerequisite condition of good adhesion remains the surface energy of fibres, which can be modified with plasma treatments.

Modicine Fabric favouring overgrowth

2.4.4 Plasma Treatment of Textile fibres:

According to Hartwig Hocker[5], Low-temperature plasma technology both glow discharge under reduced pressure as well as barrier discharge under normal pressure are well established in different industrial applications. Since recently, however, the plasma technology is being introduced in textile industry as well. Fields of application are desizing, functionalizing, and design of surface properties of textile fibers.

Plasma technology is suitable to modify the chemical structure as well as the topography of the surface of the material. Examples of natural as well as man-made fibers prove the enormous potential of plasma treatment of textile materials. It has proven to be successful in shrink-resist treatment of wool with a simultaneously positive effect on the dyeing and printing. Not only is the chemical structure of the surface modified using different plasma gases but also the topography of the surface. A highly hydrophobic surface with a particular surface topography in contact with water is extremely dust- and dirt-repellent and hence should be also repellent to bacteria and fungi. Man-made fibers to be used under chemical stress are modified with diffusion-barrier layers on their surfaces without modifying the bulk properties; hence, the stability of those fibers is significantly improved.

The morphology of wool is very complex both at the fibre level and at its surface. Woolen and other animal hair garments are easily prone to moth attacks. Researches are undertaken to evaluate multifunctional dyes and plasma treatments so as to enhance insect control on these clothes. Wool scales that are present at the fibre surface create shrinkage, felting and barrier of diffusion. Generally, this is treated by either chemical degradation of scale or by deposition of polymers on the scale.

Authors [11][12][16], are stating that 'Plasma is a unique state of matter having several species like electrons, ions, radicals, ultra violet radiation etc. Any material exposed

According to Hartwig Hocker[5], plasma treatments on woolen fabrics give shrink resistance abilities to the fabric. Plasma treatment on wool is expected to produce felt-free wool without using chemicals that are hazardous to the environment. This in contrast to the earlier chemical treatments does not produce waste matters possessing organic halogen compounds.

Plasma treatment on cotton fibres enables it to gain wrinkle free and stain resistant abilities. Non-thermal treatment of cotton in gases containing oxygen leads to an increase of specific surface area of cotton. Plasma treated cotton fabrics show strong hydrophobic effects, leading to the formation of smooth surfaces with an increased contact angle with respect to water. Water droplets on such fabrics are able to remove the dirt from the surface of the cotton fabric. This is referred to as the 'Lotus effect'.

Inbakumar S and Anu kaliani A (2010)[10], state that the study of the morphology, aggregation structure and properties of Silk and Wool treated by low temperature glow discharge air plasma showed that slight flutes appeared on the surface of silk and wool fibers and that its surface structure changed after plasma treatment. Crystalline structure of the silk fabric also decreased after the plasma treatment. The weight of the fiber decreased after plasma treatment because of etching.

2.4.5 Advantages of the plasma technology

Applicable to most of textile materials for surface treatment. Optimization of surface properties of textile materials without any alternation of the inherent properties of the textile materials. Plasma technology is dry textile treatment processing without any expenses on effluent treatment. Plasma technology is a green process without generation of chemicals, solvents or harmful substances.

The consumption of chemicals is very low due to the physical process. Plasma

waste at different stages of process can be controlled and the manufacturer can increase the realization of final product.

Fig: 2.10 Offline Zari Tester

The instrument can be used to count the faults in the zari yarn at three different feed speeds namely 3,6 & 9 rpm. The offline zari tester works based on light reflectance principle.

2.5.1 Design of Offline Zari Tester

2.5.2 Block Diagram of Offline Zari Tester

Fig: 2.12 Block Diagram of Offline Zari Tester

2.5.3 Design of PCB

CHAPTER 3

MATERIALS AND METHODS

3.1 MATERIALS

Materials used and the details are given in the table below:

S.No	Materials	Details
1	Silk	
	a) Raw Mulberry	57 Denier
	b) Raw Tasar	57 Denier
2	Zari Components	
	a) Red Silk	32 Denier
	b) Silver Wrapped Red silk	110 Denier
	c) Gold coated Zari	105 Denier

Table. 3.1. Details of Materials

3.2 METHODOLOGY

Fig. 3.1 Methodology-Flowchart

3.2.1 DEGUMMING METHODOLOGY (USING DETERGENT)

S.No	Item	Quantity
1	Recipe:	
	a) Commercial Detergent	4 gm./lit.

3.2.2 TESTING METHODOLOGY

3.2.3 PLASMA TREATMENT METHODOLOGY

S.No	Particulars	Details
1	Type of Machine	Plasma systems
2	Model	HPVT-PS
3	Gas to be used	Oxygen
4	Distance between plates	3 cm
5	Plasma voltage	400 Volts
6	Plasma Treatment Time	3 Minutes

Table. 3.3 Summary of Average Tensile Strength

Fig. 3.4 Plasma Treatment Instrument

CHAPTER 4

RESULTS AND DISCUSSION

The test results of the studies are tabulated below. Test results of the samples both before and after plasma treatment is tabulated. Laboratory testing has been conducted in the latest Instron Tester to find out the values of tensile strength and elongation.

All the testing have been conducted at standard atmospheric conditions i.e, at 65% relative humidity with dry temperature 74°F and wet temperature of 66°F.

4.1 SILK YARN TEST RESULTS

4.1.1 Degumming Weight Loss

Degumme		
S.No	TYPE OF SILK	DEGUMMING WEIGHT LOSS (%)
1	Mulberry	23
2	Tasar	31
		(0/)

Table. 4.1 Degumming weight loss (%)

31

35 30 30 23

Degumming weight loss percentage of tasar silk is observed to be slightly higher than mulberry silk yarn which varies depending on the sericin content in raw silk yarns.

4.1.2 Instron test results

		Tensile Strength (gf/tex)		Variation	
		Raw Mulberry	Raw Tasar	(%)	
Gauge Length	200 mm	26.57	36.84	28	1
	250 mm	28.31	36.66	23	1
	300 mm	37.89	27.45	-38	<u></u>
	Average	30.92	33.65	8	1

Table. 4.2 Tensile Strength of Raw Silk – Before Plasma Treatment

		Tensile Strength (gf/tex)		Variation	
	-	Degummed Mulberry	Degummed Tasar	(%)	
Gauge Length	200 mm	16.61	29.78	44	<u></u>
	250 mm	17.59	29.52	40	<u></u>
	300 mm	18.35	25.80	29	<u></u>
	Average	17.52	28.37	38	

Table. 4.3 Tensile Strength of Degummed Silk – Before Plasma Treatment

		Tensile Strength (gf/tex)		Variation (%)	
		Raw Mulberry Raw Tasar			
Gauge Length	200 mm	20.95	29.15	28	1
	250 mm	20.16	25.70	22	1
	300 mm	22.87	25.67	11	1
	Average	21.33	26.84	21	1

Table. 4.4 Tensile Strength of Raw Silk - After Plasma Treatment

		Tensile Strength (gf/tex)		Variation	
	-	Degummed Mulberry	Degummed Tasar	(%)	
	200 mm	13.41	25.62	48	
Gauge Length		15.68	26.39	41	1
	250 mm		24.11	36	1
	300 mm 15.35	-	42	1	
	Average	14.81	25.37		<u> </u>

Table. 4.5 Tensile Strength of Degummed Silk – After Plasma Treatment

Type of Silk	Average Tensile	Variation		
	Before Treatment	After Treatment	(%)	
Raw Mulberry	30.92	21.33	-45	
Raw Tussar	33.65	26.84	-25	<u></u>

Table. 4.6 Average Tensile Strength of Raw Silk – Before & After Plasma Treatment

Fig. 4.6 Average Tensile Strength of Raw Silk – Before & After Plasma Treatment

It is noticed that, after plasma treatment with oxygen gas, the average tensile strength

	Average Tensile	Variation		
Type of Silk	Before Treatment	After Treatment	(%)	<u>-</u> -
Degummed Mulberry	17.52	14.81	-18	
Degummed Tasar		25.37	-12	<u></u>

Table. 4.7 Average Tensile Strength of Degummed Silk – Before & After Plasma
Treatment

4.2 ZARI COMPONENTS TEST RESULTS

4.2.1 Instron Test Results

		Tensile Strength (gf/tex)		Variation	
		Before Treatment	After Treatment	(%)	
Gauge Length 25	200 mm	36.10	27.56	-31	<u></u>
	250 mm	40.02	37.47	-7	<u></u>
	300 mm	36.14	34.51	-5	<u></u>
	Average	37.42	33.18	-13	1

Table. 4.8 Tensile Strength of Red Silk – Before & After Plasma Treatment

		Tensile Strength (gf/tex)		Variation	
	-	Before Treatment	After Treatment	(%)	
Gauge Length	200 mm	12.05	8.55	-41	<u></u>
	250 mm	10.67	8.66	-23	↓
	300 mm	10.83	7.89	-37	<u></u>
	Average	11.18	8.37	-34	↓

Table. 4.9 Tensile Strength of Silver Wrapped Red Silk – Before & After Plasma
Treatment

		Tensile Strength (gf/tex)		Variation	
		Before Treatment	After Treatment	(%)	
Gauge Length	200 mm	10.37	8.37	-24	<u> </u>
	250 mm	9.84	8.40	-17	
	300 mm	10.67	8.40	-27	↓
	Average	10.29	8.39	-23	1

Table. 4.10 Tensile Strength of Zari – Before & After Plasma Treatment

	Average Tensile Strength (gf/tex)		 Variation	
•	Before Treatment	After Treatment	(%)	
Red Silk	37.42	33.18	-13	\downarrow
Silver Wrapped Red Silk	11.18	8.37	-34	1
Zari	10.29	8.39	-23	

Table. 4.11 Average Tensile Strength of Zari Components – Before & After Plasma

Treatment

4.3 SILK YARN AND ZARI COMPONENTS TEST RESULTS SUMMARY

	GAUGE LENGTH 200 mm		GAUGE LEN	GTH 250 mm	GAUGE LENGTH 300 mm	
	BEFORE PLASMA TREATMENT	AFTER PLASMA TREATMENT	BEFORE PLASMA TREATMENT	AFTER PLASMA TREATMENT	BEFORE PLASMA TREATMENT	AFTER PLASMA TREATMENT
Raw Mulberry	26.57	20.95	28.31	20.16	37.89	22.87
Degummed Mulberry	16.61	13.41	17.59	15.68	1835	15.35
Raw Tasar	36.84	29.15	36.66	25.70	27.45	25.67
Degummed Tasar	29.78	25.62	29.52	26.39	25.80	24.11
Red Silk	36.10	27.56	40.02	37.47	36.14	34.51
Silver Wrapped Red Silk	1 1/11)	8.55	10.67	8.66	10.83	7.89
Zari	10.37	8.37	9.84	8.40	10.67	8.40

Table. 4.12 Summary of Average Tensile Strength (gf/tex)

4.4 OFFLINE ZARI TESTER – TEST RESULTS

	M	ACHINE SE	PEED (Rpm)		
		6 rj	om	9 rp	om
3 rr	om 	PED		RED	SILVER
RED	SILVER	SILK			3
	8	37	5		
		38	7	35	4
42	<u> </u>		6	34	3
41	<u> </u>		<u> </u>	37	5
38	5			35	3
40	7	<u> </u>			4
43	8	<u> </u>		<u> </u>	5
<u> </u>	6	36	1	<u> </u>	3
1	7	39			5
<u> </u>	7	38	6		
<u> </u>		35	5	33	4
43			0.421	1.47	0.83
1.6				4.29	2.09
3.93	14.53			37	5
	8				33
38	5	35	5.33	34.25	3.99
	3 rg RED SILK 40 42 41 38 40 43 39 42 40 43 1.6 3.93 43	3 rpm RED SILVER 40 8 42 6 41 6 38 5 40 7 43 8 39 6 42 7 40 7 43 8 1.6 0.981 3.93 14.53 43 8	RED SILK SILVER SILK 40 8 37 42 6 38 41 6 37 38 5 39 40 7 35 43 8 37 42 7 39 40 7 38 43 8 35 1.6 0.981 1.37 3.93 14.53 3.7 43 8 39 43 8 39	MACHINE SPEED (Rpm) 3 rpm 6 rpm RED SILK SILVER SILK SILVER 40 8 37 5 42 6 38 7 41 6 37 6 38 5 39 5 40 7 35 4 43 8 37 4 42 7 39 7 40 7 38 6 43 8 35 5 1.6 0.981 1.37 0.421 3.93 14.53 3.7 7.8 43 8 39 7 43 8 39 7 43 8 39 7 43 8 39 7 43 8 39 7 43 8 39 7 43 8 39 7 43	MACHINE SPEED (Rpm) 3 rpm 6 rpm 9 rp RED SILK SILVER SILK SILVER SILK 40 8 37 5 33 42 6 38 7 35 41 6 37 6 34 38 5 39 5 37 40 7 35 4 35 43 8 37 4 34 43 8 37 4 36 40 7 38 6 32 40 7 38 6 32 43 8 35 5 33 1.6 0.981 1.37 0.421 1.47 3.93 14.53 3.7 7.8 4.29 43 8 39 7 37 43 8 39 7 37 43 8 39 7 37 <tr< td=""></tr<>

Table. 4.13 Instrument Test Result (Faults per Meter)

4.4.2 Instrument test Result -Summary

nst	rument test res	
ſ		Average faults per meter
Ì		Silver

4.5 STATISTICAL ANALYSIS

4.5.1 Two-way ANOVA: TENSILE STRENGTH (gf/tex) RAW SILK (MULBERRY/TASAR)- BEFORE PLASMATREATMENT

Source GAUGE LENGTH TYPE OF SILK Error		SS 1.049 11.152 130.942 143.144	MS 0.5246 11.1521 65.4712	0.01 0.17	P 0.992 0.720
Total S = 8.091	_	= 8.52%	R-Sq(adj	j) = 0.	00%

Fig. 4.13 Tensile Strength (gf/tex) Raw Silk (Mulberry/Tasar)- Before Plasma treatment -**Residual Plots**

4.5.2 Two-way ANOVA: TENSILE STRENGTH (gf/tex) DEGUMMED SILK (MULBERRY/TASAR)) - BEFORE PLASMA TREATMENT

(MCZZZ				_	D
	DF	SS	MS		2 200
Source	2	2,287	1.143	0	
GAUGE LENGTH	1	177 A53	177.453	38.82	0.025
TYPE OF DEGUMMED SILK	τ	9.143	4.571		
Error	<i>∠</i>	188.883			
Total	⊃	100.002			

Fig. 4.14 Tensile Strength (gf/tex) Degummed Silk (Mulberry/Tasar)- Before Plasma treatment - Residual Plots

INFERENCE			
	Degrees of	Value (95% Confidence Level)	Result

4.5.3 Two-way ANOVA: TENSILE STRENGTH (gf/tex) RAW SILK (MULBERRY/TASAR)- AFTER PLASMA TREATMENT

Source GAUGE LENGTH TYPE OF SILK Error	2	SS 4.5989 45.5953 7.2905 57.4847	MS 2.2995 45.5953 3.6453	0.63 12.51	P 0.613 0.071
Total	2	57.404		60	20%

Fig. 4.15 Tensile Strength (gf/tex) Raw Silk (Mulberry/Tasar)- After Plasma treatment -**Residual Plots**

INFERENCE			
	Degrees of	Value (95% Confidence Level)	Result
	Freedom	Calculated	

4.5.4Two-way ANOVA: TENSILE STRENGTH (gf/tex) DEGUMMED SILK (MULBERRY/TASAR) - AFTER PLASMA TREATMENT

(MULBERK 17 17 to	,			ਜ	D
	DF	SS	MS	-	0.525
Source	2	2.706	1.353 167.270	Ų . J Ų	
GAUGE LENGTH TYPE OF DEGUMMED SILK	1	10		111.10	0.00-
	4	2.992	1.496		
Error Total	5	172.969			
Total			05 6	7%	

Fig. 4.16 Tensile Strength (gf/tex) Degummed Silk (Mulberry/Tasar)- After Plasma treatment – **Residual Plots**

INFERENCE			
	Degrees of	Value (95% Confidence Level)	Result
	Freedom	Calculated	

4.5.5 Two-way ANOVA: TENSILE STRENGTH (gf/tex) TYPE OF RAW SILK – BEFORE AND AFTER PLASMA TREATMENT

Source TYPE OF SILK TYPE OF TREATMENT Error Total	1 1	67.2400	MS 16.9744 67.2400 1.9321	8.79 34.80	P 0.207 0.107
---	--------	---------	------------------------------------	---------------	---------------------

Fig. 4.17 Tensile Strength (gf/tex) Raw Silk (Mulberry/Tasar)- Before and After Plasma treatment – Residual Plots

INFERENCE			
	Degrees of	Value (95% Confidence Level)	Result
	Freedom	E Toble Calculated	

4.5.6 Two-way ANOVA: TENSILE STRENGTH (gf/tex) DEGUMMED SILK – BEFORE & AFTER PLASMA TREATMENT

Source TYPE OF DEGUMMED SILK TYPE OF TREATMENT Error	1 1	8.151 0.021	5450.51 387.68	
Total	3	122.769		

Fig. 4.18 Tensile Strength (gf/tex) Degummed Silk (Mulberry/Tasar)- Before and After Plasma treatment – Residual Plots

	Degrees of	Value (95% Confidence Level)	Result

4.5.7 Two-way ANOVA: TENSILE STRENGTH (gf/tex) RED SILK -BEFORE & AFTER PLASMA TREATMENT

Source	DF	SS	MS	F	P
GAUGE LENGTH	2	47.8191	23.9096	3.40	0.227
TYPE OF TREATMENT	1	26.9664	26.9664	3.83	0.189
Error	2	14.0791	7.0395		
Total	5	88.8646			

Fig. 4.19 Tensile Strength (gf/tex) Red Silk - Before and After Plasma treatment - Residual Plots

Degrees of	Value (95% Confidence Level)	Result

4.5.8 Two-way ANOVA: TENSILE STRENGTH (gf/tex) SILVER WRAPPED RED SILK - BEFORE AND ATER PLASMA TREATMENT

SILK - BELOKE				
Source GAUGE LENGTH TYPE OF TREATMENT SILK Error Total	2	0.2832	42.02	

Fig. 4.20 Tensile Strength (gf/tex) Silver Wrapped Red Silk - Before and After Plasma treatment - Residual Plots

INFERENCE			
	Degrees of	Value (95% Confidence Level)	Result
	Freedom	Calculated	

4.5.9 Two-way ANOVA: TENSILE STRENGTH (gf/tex) ZARI-BEFORE AND AFTER PLASMA TREATMENT

Source DF SS MS GAUGE LENGTH 2 0.17463 0.08732 C TYPE OF TREATMENT 1 5.43402 5.43402 60 Error 2 0.17923 0.08962 Total 5 5.78788	F P 0.97 0.506 0.64 0.016

Fig. 4.21 Tensile Strength (gf/tex) Zari - Before and After Plasma treatment - Residual Plots

INFERENCE				
	Degrees of	Value (95% Conf	idence Level)	Result
	Freedom	F Table	Calculated	·
		10,0000	0.97	The difference is

4.5.10 Two-way ANOVA: TENSILE STRENGTH (gf/tex) ZARI COMPONENTS-BEFORE AND AFTER PLASMA TREATMENT

BELOKE W.					
Source ZARI COMPONENT TYPE OF TREATMENT Error Total	~	SS 883.758 13.350 1.391 898.499	MS 441.879 13.350 0.696	19.19	P 0.002 0.048
				~ ~ ~ 1 0	

Fig. 4.22 Tensile Strength (gf/tex) Zari Components - Before and After Plasma treatment -Residual Plots

INFERENCE			
	Degrees of	Value (95% Confidence Level)	Result
	Freedom	Calculated	

4.5.11 Two-way ANOVA: FAULTS PER METER – OFFLINE ZARI TESTER

Source MACHINE SPEED COMPONENTS Error Total	DF 2	SS 21.50 1536.96 3.54 1562.00	MS 10.75 1536.96 1.77	6.07 868.31	P 0.141 0.001
	R-Sq =	99.77%	R-Sq(adj) = 99.43	*

Fig. 4.23 Faults per Meter – Residual Plots

INFERENCE			
	Degrees of	Value (95% Confidence Level)	Result
	Degrees	Calculated	

P-3493

4.6 STATISTICAL ANALYSIS – SUMMARY

4.6.1 Average Tensile Strength (gf/tex) -At Three Different Gauge lengths

	1
th (gi/tex) -At Times 2	The difference is not Significant
	The difference is not Significant
Degummed SIIK	The difference is not Significant
Red Silk	
Silver wrapped Red Silk	The difference is not Significant
	The difference is not Significant
	The difference is not Significant
	The difference is not Significan
Degummed Silk	
Red Silk	The difference is not Significan
<u> </u>	The difference is not Significan
Silver wrapped xxxx	The difference is not Significant
Zari	
	Silver wrapped Red Silk Zari Raw Silk Degummed Silk Red Silk Silver wrapped Red Silk

Table. 4.26 Average Tensile Strength (gf/tex) at Three gauge lengths

4.6.2 Average Tensile Strength (gf/tex) -Before and After Plasma Treatment

Avera	ige Tensile Strength (gi/tex) - Ber	
		The difference is not Significant
1	Raw Silk	The difference is Significant
2	Degummed Silk	The difference is not Significant
3	Red Silk	The difference is Significant
4	Silver wrapped Red Silk	The difference is Significant
5	Zari	
		Charles Refore and After Plasma Treatment

Table. 4.27 Average Tensile Strength (gf/tex) - Before and After Plasma Treatment

CHAPTER 5

CONCLUSION

- The change in the gaugelength (between 200 to 300) does not affect the average tensile strength values of Raw silk yarns(Mulberry/Tasar) and Degummed silk yarns(Mulberry/Tasar) both before plasma treatment and after treatment with oxygen gas.
- The change in the gauge length (between 200 to 300) does not affect the average tensile strength values of Zari yarn and its components (Red silk & Silver wrapped red silk) both before plasma treatment and after treatment with oxygen gas.
- After plasma treatment with oxygen gas, the average tensile strength values of raw silk yarns (Mulberry/Tasar) decreases.
- After plasma treatment with oxygen gas, the average tensile strength values of degummed silk yarns(Mulberry/Tasar) decreases.
- The decrease in average tensile strength (gf/tex) is higher in raw silk yarns (Mulberry/Tasar) than in degummed silk yarns(Mulberry/Tasar).
- The average tensile strength values (gf/tex) of red silk, silver wrapped red silk and
 Zari decreases after plasma treatment with oxygen gas.
- The decrease in average tensile strength (gf/tex) is higher in silver wrapped red

CHAPTER 6

REFERENCE

- 1. Amelia Sparavigna, "Plasma treatment: advantages for textiles", www.fibre2fashion.com/articles/technology
- Babu Rao, "Development of X-ray Fluorescence-based Methodology for Quality control of Zari used in Silk Saris", AUTEX Research Journal, Vol. 4, No3, September 2004 (http://www.autexrj.org/No3-2004/0104.pdf 118).
- 3. Carty P. (1996) "Fibre Properties", Pentaxion Publishers, ISBN: 9781874430889.
- 4. Gupta V.P. and Kothari V. K. (1997) "Manufactured Fibre Technology", Chapman & Hall Publishers.
- 5. Hartwig Höcker, "Plasma treatment of textile fibers" Deutsches Wollforschungs institutander RWTH Aachene.V., Veltmanplatz 8,D-52062 Aachen, Germany.
- 6. http://allabouttextiles.blogspot.com/2008/01/silk-properties.html
- 7. http://allabouttextiles.blogspot.com/2008/01/silk-properties.html
- 8. http://en.wikipedia.org/wiki/Silk
- 9. http://en.wikipedia.org/wiki/Zari
- 10. Inbakumar S and Anu kaliani A (2010), "Effect of Plasma Treatment on Surface of Protein Fabrics" Journal of Physics: Conference Series 208 (2010) 012111

- 13. Morton W.E. and Hearle J.W.S. (1993), "Physical properties of Textile fibres", Textile Institute, UK.
- 14. New Cloth Market, "Plasma Treatment Technology for Textile Industry".
- 15. Peter J. Hauser (2005),"Plasma Treatment of Textiles: Changing Fiber Surfaces"

 North Carolina State University College of Textiles,

 http://www2.ncsu.edu/unity/lockers/project/ntcprojects/projects/C99-S09/.
- 16. Shillin Sangappa, Roy S and Prabhakara H.R (November 2009), "The application of low pressure plasma treatment to silk yarn and fabric. National workshop on eco-friendly plasma applications in textile", Institute for plasma research, Bhat, Gandhinagar,India.
- 17. Warner S,(1995) "Fiber Science", Prentice Hall, ISBN: 9780024245410.
- 18. www.britannica.com/silk
- 19. www.fibersource.com
- 20. www.fibre2fashion.com.
- 21. www.plasma.com
- 22. www.tnzari.net
- 23. www.zarithread.com/zari-threads.html

ry, Kumaraguru College of Technology

П		 	1	Specimen #	+ 61		7 9 2	80	100	1	14	15																					
Iguru College of Technology [Lintreated Raw Mulberry]	6.35	200.	300.								05	30	_	Tenacity at Maximum	Load	(gf/tex)	22.63	7/.67	27.30	29.36	28.63	25.52	29.1/	23.40	23.94	26.01	29.72	22.63	26.57	000000	2.54808	9.96689	
ORE in Textile Technology & Machinery, Kumaraguru College of Lecting					Specimen 1 to 15	4						20	Extension (mm)	The second of Maximili	Extension at Maximum.	(mm)	32,50	36.00	39.00	08.00	36.00	41.50	39.50	31.50	25 00	34.00	41.50	00.14	25.00	34.30	5.20790	15.18338	
)RE in Textile Techno		(Tex)	gth (mm)	ı/min)									10		Maximum Load	(gf)		143.67	188.72	173.37	186.42	181.82	162.08	185.20	148.61	152.04	165.19	188.72	143.67	168.71	16.81534	089900	בסטטב'ה

TOOLS AND THE ADMINISTRATION OF THE PROPERTY O

ORE in Textile Technology & Machinery, Kumaraguru College of Technology

)d119					Specimen #	7V m	4 2 0 7 8	110	113	51
Untreated Raw Milliberry	6.35	250.	300.		Í		+			
		t (Tex)	gth (mm)	m/min)	Specimen 1 to 15					10 20 30 40 Extension (mm)

Tongoity at Maximum	Load	(gf/tex)	27.09	30.08	06:00	25.45	27.68	27.28	32.22		78.68	29,40	78.81	70:07	25.54	32.22	75 45	C4.C7	28.31		2.1/890		7/5897/	
	Extension at Maximum	Load	(11011)	43.50	40.00	00 86	35.00	38.00	36.00	39.00	70.50	00:01	38.50	36,00	22.50	32.30	43.50	32.50	20.10	30.10	3.07137		8.06135	
	Maximum Load	(gt)		172 03	172:00	19b./4	161.62	175.75	173.22	204.67	204.57	182.14	186.67	12:00	182.92	162.21	77 100	10:+07	161.62	179.79	12 93500	13,63000	7 69577	

Untreated Raw Mulberry 3. In Textile Technology & Machinery, Kumaraguru College of Technology

					Specimen #	H C1	ω 4 π	100	807	11	13	15																						
Untreated Kaw William	6.35	300.	000	1300:							08	70	Į			1		_		_	_		_		T				_		T			1 mm UUC 1+11110 5 5 5 5
						•	1000					50 60		Tonacity at Maximum	Foad	(gf/tex)	36.90	39.77	40.77	38.64	35.15	37.44	37.15	36.83	38.36	37.84	40.77	35.15	37.89	1 50871	- DOC: I	4.21985		9
						Specimen 1 to 15		A STATE OF THE PROPERTY OF THE	The state of the s				30 40 Extension (mm)		Extension at Maximum	Load	(mm)	58.00	64.00	65.50	64.00	55.50	64.00	66.50	02:00	00:07	04.30	70.00	55.50	63./0	4.12445	18424	0.4/40+	
			Tex)	th (mm)	/min)				And the state of t				20		peol william	Vlaxiiiluiii cocc	[8]	234.30	25.055	25.362	222:22	223.20	737.75	235 93	233.87	243.58	240.29	258.92	223.20	240.57	10.15.183	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.21985	

Hatranted Dais Raidhaws Inctron Bocist 1 200 was

TIFAC CORE in Textile Technology & Machinery, Kumaraguru College of Technology

]	Specimen #	10 10 10 11 11 11 11 11 11 11 11 11 11 1	
Untreated Raw Tasar	200.	3000		04	
IIFAL CONE III CAMING TO THE CONTRACT TO THE C	uts: Yarn Count (Tex)	uts: Speed (mm/min)	Specimen 1 to 15	10 20 30	Extension (IIIII)

								_	_	1			_	_	_	_	τ	_	_	1	T	_			_	
Tenacity at Maximum	TO ()	Loau	(gf/tex)	22.45	33,43	36.41	39.25	43.40	25.35	30.23	40.17	39.15	27.00	34.51	34,30	73 57	33.37	43.40	32.51	70.00	36.84	2010	3.54/92	00000	9,62970	
Atavimim	Extension at Infaviour	Load	(200	(mar)	31.00	25.00	20.52	21.00	29.50	25,00	22.00	22.00	29.00	27.50	0.00	73.50	27.00	24.00	31.00	21.00	26.05		3.31202		12.71407	
	Maximum Load	(3-)	(gr)		0.000	212.39	231.24	249.26	275.57	120.00	230.04	255.08	248.63	20:01-7	206.41	217.80	4 0 0 0	213.15	275.57	206.41	1002	233.96	22 52931		9,62970	
	_			_	$\frac{1}{1}$	=	7	٣	,	7	N	9	1	,	8	c	5	10	vimim		mmuu	Mean	andard	viation	fficient	ariation

Untreated Raw Tasar - Instron Result (200 mm)

TIFAC CORE in Textile Technology & Machinery, Kumaraguru College of Technology

	T	T	7			Specimen #	ተመቀጥው	101		
Untreated Raw Tasar	6.35	250.	300.						40	
	Jel	ınt (Tex)	: Gauge Length (mm)	nm/min)	Specimen 1 to 10					20 Extension (mm)
IIFAC CONE III 157	ecimen label	: Yarn Count (Tex)	: Gauge L	s: Speed (mm/min)					\	

14										- 1			т					-		7	יי טבר י
	mn)	Tenacity at Maximum	Load	40.20	32,55	36.68	33.64	35.10	38.80	34.56	36.90	41.21	36.99	41.21	32.55	36.66	7 80505		7 7 65071		20 OBC / 41 00
	20 Extension (mm)	Extension at Maximum	Load	(mm)	38.00	35.00	33.50	43.50	28.50	41.50	37.00	38.00	40.00	39.30	78.50	37.45	20.00	4.29761	1	11.47559	
	10		Maximum Load	(-9)	255.27	206.71	232.92	213.61	222.91	246.41	219,44	234.32	261.67	234.89	261.67	206.71	232.82	17.81208		7,65071	
,					-	1	1/4	7 <	- 10	1 9	-	- 80	6	2	wnu	mnu	lean	dard	ation	cient	ation

Untreated Raw Tasar - Instron Result ($250\;\text{mm}$)

TIFAC CORE in Textile Technology & Machinery, Kumaraguru College of Technology

uts: Speed (mm/min) Specimen 1 to 10

. :	6																			_		
	30	Tonacity at Maximum	lellacity activities	(gf/tex)	25.88	25.09	25.98	28.76	25.31	25,49	29.60	28.95	29 10	01:02	30.30	30.30	25.09	27.45	2.05516		7.48819	
	30 (1001)	TXCICION IN	Extension at Maximum	Load (mm)	29.50	34.50	36.00	44.50	38.50	37.00	36.00	27.50	50.75	41.00	38.00	44.50	29.50	37.25	3.93877		10.57387	
	10		Maximum Load	(gf)	16/135	150 30	164 95	187.62	160.73	161.89	107.07	187.97	183.83	184.76	192.38	192.38	159.30	174.28	13.05026		7.48819	
			_		1	٦ ,	7 0	0 4	+ 1	,	Ö 1	`	∞	6	10	2 12	1 2	le al	dard	ation	cient	ation

Untreated Raw Tasar - Instron Result (300 mm)

1FAC CORE in Textile Technology & Machinery, Kumaraguru College of Technology

	Specimen	10,040,010	10																
Untreated Degummed Mulberry 4.92 200. 300.			50	Г	Tenacity at Maximum Load	(gf/tex)	18.15	15.36	15.26	15.44	19.62	17.59	17.86	19,62	14.37	16.61	1.72630	10.39431	
Specimen 1				20 Extens	Extension at Maximum	(mm)	23.50	14.00	15.50	13.50	23.50	22.50	14.00	73.50	13.00	18.10	4,47710	24 72537	74.7557
ritac Coke in Textiloria ecimen label s: Yarn Count (Tex) S: Gauge Length (mm) s: Speed (mm/min)				10	Maximum Load	(gf)	85,59	89.31	75.57	70.68	75.95	96.51	74.01	87.87	96.51	70.68	81.71	8,49340	10.39431
s: Ya					-		-	2	د ۲	5	9	<u> </u>	9 6	101	u _n	틸	ean	ion	ient tion

Untreated Degummed Mulberry - Instron Result (200 mm)

FAC CORE in Textile Technology & Machinery, Kumaraguru College of Technology

ulberry				Specimen #	127		 10 11 12 12 13	14																			
Untreated Degummed Mulberry	4.92	250.	300.					09 05				1	[]					T	T-								a Mulherry - Instron Result (250 mm)
								40	u)	Tenacity at Maximum	Load	(gf/tex)	16.99	19.25	20.32	19.70	14.93	17.77	20.21	15.33	20.32	14.93	17.59	2.09238	00000	11.69704	III - Vanilberry - In
FAC CORE in Textile Technology & Machinery, Name of PAC CORE in Textile Technology				10 to 0 to	Specifical			30	20 Extension (ກາຫ)	milmix Maximilm	Extension at micro	(mm)	23.50	23.00	05.22 35.50	22.30	21.00	26.00	15.50	22.00	20.50	75.00	72.30		2.93258	13.26957	
SORE in Textile Techi	ecimen label	yarn Count (Tex)	Gauge Length (mm)	: Speed (mm/min)					10		Maximum Load	(gt)	79.42	83.57	94.69	86.98	96.93	73.45	27.05	99.43	75.42	86'66	73.45	86.53	10.29451	11.89704	
FAC (ecim	Yar	ga.	s: Sp(t			_		1	7 6	1 m	4	5	9	7	<u> </u>	عام	3 8	1	lea	ard	ient	tion

Untreated Degummed Mulberry - Instron Result (250 mm)

Specimen Untreated Degummed Mulberry 4.92 9 FAC CORE in Textile Technology & Machinery, Kumaraguru College of Technology 300 300. Tenacity at Maximum 20 9.40924 1.72618 18.35 16,61 17.10 19.74 21.64 16.61 17.41 16.79 19.04 17.45 21.64 17.36 (gf/tex) 20.32 40 Extension (mm) 4 2 Extension at Maximum 12.21679 3.75056 Specimen 1 30.50 30.50 37.50 37.50 27.00 27.50 26.00 37.50 26.00 30 Load 20 9.40924 8.49278 Gauge Length (mm) Maximum Load 106.46 85.41 85.65 82.60 93.66 81.74 84.12 97.13 106.46 90.26 s: Speed (mm/min) : Yarn Count (Tex) 99.99 85.84 ecimen label 10 riation iation Mean mnu ত্রতি 4

Untreated Degummed Mulberry - Instron Result (300 mm)

CORE in Textile Technology & Machinery, Kumaraguru College of Technology

ar	Specimen #	2	41
Untreated Degummed Tasar 4.41 200.		40 50	
el nt (Tex) ngth (mm) m/min)	Specimen 1 to 15		20 Exten
el nt (Tex) ngth (m m/min)			10

												_	_	_	_				_		_	
Tenacity at Maximum	Load	(gf/tex)	29.78	28.40	04:07	28.83	30.87	29.36	79.81	40.02	30.60	30.65	29.58	00 00	00.67	30.87	28.40	29 78	0::01	0.79075		2.65563
Extension at Maximum	Load	(mm)	30.00	30:00	33.00	32.00	32.50	21 50	31.30	32.00	27.00	28.00	0.3.00	76.50	29.50	33.00	26.50	20.00	30.20	2.37112		7.85140
100 C C C C C C C C C C C C C C C C C C	Maximum coau	(81)		131.34	125.25	127.16	127.12	130.13	129.49	131.45	134.93	175.15	135.13	130.47	131.76	126.15	150.15	125.25	131.31	3.48720		2.65563

.. One 1 Daniel Tare Instead Daniel 1 700 ...

Tasar	Specimen # 1
College of Technology Untreated Degummed Tasar 4.41 250.	Tenacity at Maximum Load (gf/tex) 30.09 29.12 24.45 30.09 29.12 24.45 30.09 31.30 31.30 31.30 31.30 32.05 32.05 29.52 29.52 29.52 29.52
RE in Textile Technology & Machinery, Kumaraguru College of Technology Untr 4.41 (Tex)	Specimen 1 to 15 30
RE in Textile Technolog	sth (mm) /min) 20 20 20 Maximum Load (gf) 132.71 128.42 107.82 134.15 131.47 134.15 131.47 138.02 141.36 107.82 130.18 9.51241 9.51241

nology & Machinery, Kumaraguru College of Technology

led Tasar				Specimen #	m (1)	 ₩ 4 m	9 / 8	611	12	15																						
Untreated Degummed Tasar	4.41	300.	300.							90 70 80	1	Towasty at Maximum	Flacisty of the Load	(gf/tex)	23.29	32.59	19.10	25.28	28.40	21.47	33.11	22.77	21.35	30.64	33.11	19.10	25.80	5.04338		19.54834		A DOMINION WAS TOOM INCHANGE BOOKING PORTING
ORE in Textile Technology & Machinery, Numbers					Specimen 1 to 15					00	30 40 33	}	laximum	peol	(mm)	44.00	38.50	28.00	40.00	39.00	35.00	45.00	44.00	40.00	45.00	00 00	28.00		5.05113	12.54939		7 / W W 1 2 / C 7
ORE in Textile Technolo		t (Tex)	oth (mm)	m/min)				A THE THE PARTY OF			20		beol with	(pf)	(,a)	102.73	143.72	84.21	111.47	125.23	94.69	146.00	100.43	94.14	135.14	146.00	84.21	113.78	22.24132		19.54834	

Un treated Redsilk IFAC CORE in Textile Technology & Machinery, Kumaraguru College of Technology

	Specimen # 1			
3.58 3.58 200. 300.	30	Tenacity at Maximum Load (gf/tex) 35.48	00 35.48 00 34.54 00 34.54 00 34.54 00 35.71 5.0 37.06 1.00 36.68 1.00 32.21 1.50 40.00 5.50 35.10 1.50 40.00 3.21 4.00 36.10 1.8852 6.19907 1.8852 6.19907	
Specimen 1 to 10	10		19.00 21.00 19.00 21.00 25.50 18.00 14.00 14.00 19.50 3.18852	Untreateu me
pecimen label s: Yarn Count (Tex) s: Gauge Length (mm) ts: Speed (mm/min)		o Maximum Load (gf)	1 127.03 2 139.77 4 123.65 5 123.68 5 143.21 6 131.33 8 126.02 9 125.67 num 115.30 num 115.30 ation 6.19907 icient 6.19907	

Textile Technology & Machinery, Kumaraguru College of Technology

	Specimen # 11	
TIFAC CORE in Textile Technology & Machinery, Numbers of Un treated Redsilk ecimen label 3.58 5: Yarn Count (Tex) 300.	s: Speed (mm/min) Specimen 1 to 15 Specimen 2 to 15 Specimen 1 to 15 Specimen 2 to 15 Specimen 1 to 15	

Tenacity at Maximum	Load (ref/tex)	(81/154)	40.03	39.41	40.77	37.60	30.16	33.30	41.58	37.81	39.20	04:00	41.28	42.11	72 11	03.45	37,00	40.07		1,55283		3.88013			Latter the trop Result (250 mm)
Extension at Maximum	Poal	(mm)	29 50	25.52	31.50	34.00	25.00	3150	00 30	33.00	29.50	34.00	35 50	SC:CC	33.00	35.50	35 00	20.0.7	31.85	3,10766	3.19700	CE000 -	10.03973		1
	Maximum Load	(g1)		146.40	171 10	141.10	145.94	134.60	141.62	1/8 86	20:041	135.35	140.34	17777	77:447	 	150.74	134 60		143.27	5 55914		t 3 88013		
				,	7	7	3	4		7	9	-	10	0	6	10		Maximum	Minimum	Mean	Standard	Deviation	Coefficient	of Variation	200

Untreated Redsilk - Instron Result (250 mm)

TIFAC CORE in Textile Technology & Machinery, Kumaraguru College of Technology

*						Specinien		1																								
Un treated Redsilk	3.58	300.	300.						05	30 40	\$4.00 mg	Tenacity at Maximum	Luadu (af/tex)	37.24	31.75	0 A A A A	36.31	30.21	33.03	37.75	35.65	37.85	38.12	20.37	30.12	51.73	30,14	2,11110		5.84119		Untreated Redsilk - Instron Result (300 mm)
					Specimen 1 to 9					30	(mm)	mnm	Load	(mm)	33.50	29.00	32.50	35.50	34.00	37.50	35.00	39.50	42.00	32.00	42.00	29.00	35.05	70000	3,80307	10.85270		Untreated Redsil
IIFAC CONE III TOMINI	la	nt (Tex)	ngth (mm)	m/min)							10		Maximum road	(8)	123 37	133,32	113.03	1.50.40	129.62	118.23	135.16	131.21	135.52	130.40	130.22	136.40	113.65	129.39	7.55774		5.84119	
IIFAC	Pacimen label	s. Yarn Count (Tex)	ts Gauge Length (mm)	ts. Speed (mm/min)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						0) } }			- 3	1	2	3	4	5	9	1/	8	6	10	Maximum	Minimum	Mean	Standard	Deviation	Coefficient	10

in Textile Technology & Machinery, Kumaraguru College of Technology

镁	T		Specimen #	R4 Γ Φ Γ Φ	01 11 12	14 15																
Untreated silver wrapped redsilk	01	· · · · · · · · · · · · · · · · · · ·				40											, ,			- -		<u> </u>
Unt	200.	300				30	(3	Fenacity	Load (gf/tex)	11.35	11.70	12.16	12.39	12.45	13.00	11.30	12.02	13.00	11.21	12.05	0.54046	
28y 92 199			Specimen 1 to 15				20 Extension (mm)	Maximum at Maximum	peol	(mm) 29.50	28.00	27.50	37.00	00.82	34.50	25.00	23.50	24.50	34.50	23.30	707.07	3.28971
RE in Textile Technology of Mice.	(YoT)	eth (mm)	ı/min)		The state of the s		10		Aaximum Load (gf)		138.22	143.19	148.16	150.92	151.59	158.40	136.53	146 44	158.40	136.53	146.80	

4.48428

11.70717

4.48428

6.58278

3.28971

CORE in Textile Technology & Machinery, Kumaraguru College of Technology

pped redsilk					Specimen #		8 7 6	9 10	11	11 14 14	15																					
Untreated silver wrapped redsilk	12.18	250.	300.					-		40	20	Ţ	Jaximum		(X)	60	51	7	84	13	0	44	76	11.46	41	11.46	9.47	10.67	0 76867		7.20459	
						to the second se					,		Tenacity at Maximum	Poad	(gf/tex)	10.9	10.51	9.47	10.84	11.	9.70	11.44	9.76	11.	17	11	6	10	0.70		7.2	; - (
					Specimen 1 to 15	1100					20	Extension (mm)	Management of the control of the con	Extension at Maximum	Load (mm)	32.00	30.00	25:55	26.32	22.50	22.50	36.50	24.50	31.00	29 50	36.50	22.50	2002	20.07	4.02389	13.66345	
רסעב ונו ובענוים וכביייי	hel	unt (Tex)	ength (mm)	mm/min)							0.1)		Maximum Load	(gt)		133.80	128.01	115,33	132.01	135.53	118.14	139.29	118.92	139.56	138.92	139.56	115.33	129.95	9.36243	7.20459	

ORE in Textile Technology & Machinery, Kumaraguru College of Technology

d redsilk					Specimen #	 5 - 5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10	13	14																				
Intreated silver wrapped redsilk	12.18	0000	3000	1300.						40	Ţ			-	Ţ															(2000 / 11
										30		Tenacity at Maximum	Load	(gf/tex)	11.15	10.67	11.27	10.96	10.77	11.55	10.38	10.80	10.45	10.23	11.55	10.25	10.83	0.41745	3.85489	
					Specimen 1 to 15						Extension (mm)	Extension at Maximum	Load	(mm)	38.50	33.50	44.00	41.50	35.00	41.00	36.00	38.00	39.00	34.00	44.00	33,50	38'05	3.45969	9,09248	
	le	nt (Tex)	ngth (mm)	m/min)		The state of the s				0,0	2	Aaximum Load	(af)	, o,	135 75	120.01	137.31	133.51	131 21	140.70	126.38	132.26	127.01	124.83	140.70	124.83	131.90	5.08448	3.85489	

The street Wind Winds and Body in the Docult (200 mm

5 56 45 Untreated Zari 11.69 200. 300. 93 22 JRE in Textile Technology & Machinery, Kumaraguru College of Technology 21 20 Tenacity at Maximum 3.93635 0.40818 19 (gf/tex) 10.98 9.77 10.78 10.04 10.60 10.23 10.23 10.23 10.37 Load 18 16 Extension (mm) 72 'n ~ Extension at Maximum Load 2 14.34790 2.89828 (mm) 25.50 22.50 22.50 22.50 20.50 20.50 20.50 15.50 15.50 ᅱ Specimen 12 11 10 Φ Ø Maximum Load (gf) 3.93635 4.77164 128.39 114.25 126.03 115.38 120.12 122.00 122.72 119.59 128.39 121.22 121.22 9 (Tex) gth (mm) n/min) S

10 11 12 13 14 15

4018450V86

Specimen

ev & Machinery, Kumaraguru College of Technology

d Zari				Specimen #	4 4 11 11 12 13 13 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15
Untreated Zari	11.69	250.	300		
					30
				Specimen 1 to 15	20
				Specime	
			gth (mm)		10

															_					_	_			
Contraction of the second	Tenacity at Maximulii	Load	(gf/tex)	9 91	10.0	9.33	10.15	9.74	10.06	10:00	18'A	9.33	10.15	CTIOT	9./4	10.06	7 4 6 7	10.15	9.33	V8 0	10:0	0.30401		3.09004
	Extension at Maximum	peol	. (ww)	(IIIII)	17.50	17.00	73 50	00:57	25.00	24.50	17.50	17.00	17.00	23.50	25.00	00:00	24.50	25.00	00 5	17.00	21.50	50000	3,69685	17.19463
	Maximum Load	3 '	(81)		115.82	10012	103.12	118.64	113.83	117.64	115 87	11.3.02	109.12	118 64	. 0104	113,83	117.64	10000	118.64	109.12	115.01		3.55385	3.09004

30		Tenacity at Maximum	[load	(gf/tex)	11 00	0000	10.84	11.02	10.95	10 50	20.71	10.57	10.29	10.42	10.42	9.88	11.19	11 19	88.0	2000	10.01	0.40362	100001:0	3.78398		
20	Extension (mm)	T. T. Maximile T	<u> </u>	nega (ww.)		33.00	34.00	31.50	20.40	29.00	25.50	27.50	20.00	26.00	28.00	30.00	00.00	30.00	34.00	25.50	29.45		2.82302	0 1	9.58581	
0.7	9		Maximum Load	(gt)		128.54	126 7/	170.74	128.83	128.03	122 73	52.73	123.58	120.32	121.83	00:121	115.54	130.77	130.77	115.54	174.69	2011-27	4.71828		3.78398	

,				Specimen # 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 8 8 9 10																					
RE in Textile Technology & Machinery, Kumaraguru College of Technology Plasma treated Raw Mulberry 6.35	200.	(300.				40	30		Tenacity at Maximum	(gf/tex)	19.75	19.66	21.14	21.36	18,94	19,00	21.13	22.71	22.48	22.71	18.94	20.95	1.39099	SOLAND	0.04000	
ogy & Machinery, Kumara			Specimen 1 to 10				0.5	Extension (mm)	Extension at Maximum	Load	(mm)	25.50	22:02	30.00	20.50	29.50	39.00	29.00	35.00	34.50	39.00	20.50	76.67	5.26229	17.57024	
RE in Textile Technolo	(Tex)	gth (mm)	/min)					0	7	Maximum Loau (gf)	(.0)	125.39	124.81	134.24	135.63	120.30	143.86	134.20	144.72	142.76	144.22	120.30	133.02	8.83280	6.64006	

ology & Machinery, Kumaraguru College of Technology

Aulberry					<u></u>	coorimen #	1	N M .	4 m	2	\$ 6	10	50																								
	6.35		300.										 30 40			Tenacity at Maximum	Poad	(gf/tex)	19.88	20.40	20.34	22.31	19.94	18.69	18.21	21.82	19.81	20.24	22.31	18.21	20.16	66400	1.23444	6.12246		(250 mm)	Mulberry - Instron nesent (==)
TIFAC CORE in Textile Technology & Machinery, Numers and TIFAC CORE in Textile Technology & Machinery					Specimen 1 to 10				The state of the s					20 Extension (mm)	1	Futonsion at Maximum	Lycelsion	(000)	20 50	06.92	35.00	38.00	42.50	34.00	34.50	34.30	28.00	28.00	31.00	44.00	78.00	34.80	5.38104	-	15.46275		Places Treated Raw
CORE in Textile Techno	oel	int (Tex)	ength (mm)	nm/min)										0 10			Maximum Load	(gt)		126.21	129.52	129.18	141.69	126.60	118.66	115.62	138.54	125.79	128.51	141.69	115.62	128.03		7.838/1	6.12246		
TIFAC	Specimen label	ute: Yarn Count (Tex)	uts. Gauge Length (mm)	uts. cade	uts: Speed (IIIII)												-		_,	+	1	7 6	5	4		0 5	- 0	• •	st:	3	Maximum	Minimum	Mean	Standaru	Coefficient	of Variation	

Plasma Treated Raw Mulberry - Instron Result (230 mm)

TIFAC CORE in Textile Technology & Machinery, Kumaraguru College of Technology

Mulberry							Specimen # 1	0
Plasma treated Raw Mulberry	£ 35	0.33	300.	300				50 60
								40
						Specimen 1 to 10		20 30 Extension (mm)
	Specimen label	An Vary Count (Tox)	its: Tarii count (15x)	its: Gauge Length (mm)	ıts: Speed (mm/min)			10

								_	_		_			_	1	_	- 1			1		Т		٦
Tenacity at Maximum	Lec'l.	LOad	(gf/tex)	20.13	20.11	20.12	21.59	25.85	23.93	23.34	11 66	75,55	22.99	26.12		21.11	26,12	20.11	73.87	78.22	2.13810		9.34755	
T. denetion of Maximum	Extension at maximum.	Load	(mm)	33.00	on in	25.50	33.00	51.00	40.50	00 00	33.00	44.50	32.50	00.00	49.00	24.50	51.00	24 50	20:42	37.25	9.14467		24,54945	
	Maximum Load	(jø)		70000	127.84	127.71	137.10	164 16	101:10	06.161	148.22	149.56	1/5 99	140.00	165.88	134.04	165.99	00.001	12/./1	145.25		10010:01	9 34755	
		**			-	2	1	7	, 1	7	9	-	- 0	o	Φ	7	7	aximum	// winimum	Mean	Standard	eviation	pefficient	Variation

Plasma Treated Raw Mulberry - Instron Result (300 mm)

J.R.

			7			14 00 00 00 00 00	Specimen	ci m	4 tv .	0 · · · · ·	10																								
A Tachnology & Machinery, Kumaraguru College of Technology	Plasma Treated Raw Tasar	6.35 200.	300.										0+	30	(mr	Tenacity at Maximum	Load	(gf/tex)	27.45	31.64	28.51	29.29	30.77	26.89	30.92	27.79	29.94	28.33	31.64	26.89	29.15	A LA	1,61/40	5.54818	
oov, & Machinery, Kuma	490				Specimen 1 to 10				The state of the s	The second secon				10	Extension (mm)	milmine Washington	Extension at Maximum.	Load (mm)	37 50	00.72	30.00	05.72	30.30	35.30	24.00	32.00	24 50	25.00	20:02	39.00	24.00	30.30	4.17133	13.76677	
	ORE in Textile Technion	(TOT)	r (1ex)	g(II (IIIII)	11,11111,11				. •	- The second second	- The second sec	`			0		Maximum Load	(gt)		174.31	200.89	181.01	185.96	195.42	170.75	196.36	176.49	190.15	179.87	200.89	170.75	185.12	10.27084	5 54818	

ORE in Textile Technology & Machinery, Kumaraguru College of Technology

	Plasma Treated Raw Tasar	v Tasar
	6.35	
	250.	
gth (mm)	300.	
		Specimen #
Specimen 1 to 15		(-1
		ω4
		1 0 0
		100
		일합 :
20	30 40	41 151
(mm)		
aximum	Tenacity at Maximum	
(gt) Load (mm)	(gf/tex)	
1	24.18	
	24.98	
	28.32	
161.81	25.48	
	25.05	
	28.07	
178.23	24.91	
	24.46	
155.31	25.87	
	28.32	
9.81	24.18	
153.56	25.70	
163.22 28.95		
3.83297	1,41145	
5.49137 13.23997	5.49137	

Plasma Treated Raw Tasar - Instron Result (250 mm)

32.50 37.50 33.00 34.50 31.00 40.50 36.00 36.00
151.04 34.00 155.89 31.00 170.58 40.50 156.28 36.00 155.36 36.00 155.59 36.50 170.94 36.50

Plasma Treated Raw Tasar - Instron Result (300 mm)

Plasma treated Degummed Mul TIFAC CORE in Textile Technology & Machinery, Kumaraguru College of Technology

	Specimen #	H C1 W	. 4 ru	9 2	865	 13	15		
specimen label 4.92 its: Yarn Count (Tex) 300.		Specimen 1 to 15					30 40 50 60 70 80	10 20 Extension (mm)	Tenacity at Maximum Tenacity at Maximum

Tenacity at Maximum Load (gf/tex) 14.74	13.05	11.37	12.32	15.23	11.84	14.74	15.08	12.51	13.18	15.23	11.37	11:37	13.41	1,43038		10.66965		Instron Re
Extension at Maximum Load (mm)	6.50	17.50	3.50	13.00	11 50	14.00	200,41	17.00	00.01	15.50	17.50	3.50	12.20	OF I	4.48578	0,000	36.76869	
Maximum Load (gf)	72.50	64.22	55.95	60.61	74.94	58.27	72.51	74.19	61.55	64.84	14.04	14.34	55.95	65.96	7.03749		10,66965	
	1	2	8	4	5	100	-	, a	5 0	\	21	ximum	nimum	Mean	andard	eviation	fficient	ariation

plasma Treated Degummed Mulberry - Instron Result (200 mm)

TIFAC CORE in Textile Technology & Machinery, Kumaraguru College of Technology

, rad. lborry	Mulberry						Specimen #	1000	159	2 6 6																						
i	Plasma treated Degummed Mulder	4.92	250.	300.							0/. 09 05	04	Tenacity at Maximum	load	(gf/tex)	15.62	15.63	15.04	12.96	18.78	13.88	15.6/	18.31	15,/3	15.1/	13.06	16.30	175000	1:1000	11.22333	(mm 05c) +1 3	The Degummed Mulberry - Instron Kesun (230 iiiii)
TITE CORF in Textile Technology & Machinery, Kumaraguiu Comes						Specimen 1 to 10	54					30 30 Extension (mm)	minches	Extension at Iviaximum	(ww)	23.50	22.20	23.52	00.02	27.00	17.00	22.00	15.00	17.00	18.50	27.00	15.00	20.10	3.55746	17.69883		JO Postoria
CORF in Textile Tech		label .	Specimen Count (Tex)	nuts: Gauge Length (mm)	outs: Speed (mm/min)							10		Maximum Load	(gt)		76.86	76.88	74.00	63.76	92.42	68,31	77.12	90.10	77.40	74.64	92.42	63.76	77.15	8.65809	11.22333	
\ \ !	IIFAC	Snerimen label	Arro Varn	Juts: Gaus	Surfer Spee	2000							5	-			+	+	1/~	, 	15	9	1	∞	6	10	Jaximum	Minimum	Mean	Deviation	oetticient FVariation	

Plasma Treated Degummed Mulberry - Instron R

TIFAC CORE in Textile Technology & Machinery, Kumaraguru College of Technology

Ħ	TIFAC CORE in Textile Technology & 1	HILDIOGY & HILDIOGE			- 1
			plasm	Plasma treated Degummed Mulberry	luineiii y
Specir	Specimen label		4.92		
> 2	tr. Vara Count (Tex)		000		
: 	(mm)		300.		
ıts: G	ts: Gauge Lengtri (IIIIII)		1300.		
ıts: Sp	uts: Speed (mm/min)				
		Specimen 1 to 10	0		
					Specimen #
			:		CI M
					4 72
					2 2 3
			ر د ار	سنفد و رستان المنافد الم	10
				D9 02	
}	1	30 40	. 50		
	10 20	Extension (mm)	(mr		
			Tonacity at Maximum		
	Maximum Load	Extension at Maximum	paol		
	(gf)	Load	(σf/tex)		
		(mm)	16.65		
۲	81.90	24.00	16.31		
7 6	80.24	26.00	10.31		
1	60.43	14.00	12.20		
7	20.43	14.50	14.39		
4	/0.81	11.00	12.44		
2		18.50	14,31		
اَف		24.50	16.51		
7		30.50	18,62		
Ø		23.50	18.97		
6		30.00	13.02		
10		00.01	18.97		
imum	93.34	30.30	12.28		
imum		10.00	15.35		
Mean		19.65			
indard		7.01605	2.42722		
viation			45 01303		
fficient	t 15.81292	35.70510	15.81292		
riation					

Plasma Treated Degummed Mulberry - Instron Result (300 mm)

CORE in Textile Technology & Machinery, Kumaraguru College of Technology

	Specimen #	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Plasma treated Redsilk 3.58 200.		
el ht (Tex) ngth (mm) m/min)	Specimen 1 to 15	10 Extension (mm)

					_	_	_		Γ-	т-	_	_		Т	1		_	Т	1		_	
Tonocity of Maximum	lellaulty at Wighting	(gf/tex)	24.58	36 30	23.30	28.40	27.53	28.80	28 69	20.07	25.08	29.65	30.56	20:00	26.94	30.56	27.58	25:17	27.30	2.03215	1	7.37452
	Extension at Maximum	road (mm)	7.00	15.00	13.50	12.00	16.00	30 50	10.50	15.00	11.00	16.50	0000	16.00	13.50	10 50	00:01	11.00	14,50	1.92931		13.30556
	Maximum Load	(gf)		88.01	90.80	101 67	70.101	98.56	103.09	102.72	89 71	77.00	106.13	109.39	00.44	90.44	109.39	88.01	98.65	7,27511		7.37452

 $_{\it f}$ & Machinery, Kumaraguru College of Technology

	dsilk						1	Specimen #	 1		8	10																							
)	plasma treated Redsilk	3.58	250.	300.				★					40	30		Tenacity at Maximum	Load	(gf/tex)	38.11	37.52	35.68	31.38	35.62	38.81	42.72	35.88	40.10	38.89	42.72	31.38	37.47	2 0200E	3.07.033	8.19566	() ()
DRE in Textile Technology & Machinery, Kumaraguru Conege of						Specimen 1 to 10				and the				20	Extension (mm)	_	peol	222	03.00	30.50	26.00	27.00	19.50	24.50	24.00	34.50	27.00	30.00	34.00	34.50	19.50	27,10	5.10882	18.85172	
ORE in Textile Techno			(Tex)	eth (mm)	n/min)										10		Maximum Load	(Bt)		136.43	134.31	127.75	112.35	127.51	138.95	152.92	128.44	143.57	139.21	152.92	112.35	134.14	10.99399	8 19566	0.50.0

ĩ

ORE in Textile Technology & Machinery, Kumaraguru College of Technology

dsilk					Specimen #	100	4 5 0	86	10 11 11 12	ባ ተ ተ																				
Plasma treated Redsilk	3.58	300.	300.			The second secon				50	,	Tenacity at Maximum	(of/tex)	35.05	31.68	35.61	35.65	38.70	37.24	35.71	35.25	29.99	30.23	38.70	29.99	34.51	2.91525		8.44700	
1900					Specimen 1 to 15			·		UE	20 Extension (mm)	Extension at Maximum To	Peol	(mm)	24.00	28.00	29.00	39.00	23.00	34.00	35.50	73.00	22.00	40.00	22.00	30.55	CC 808 7	0.40163	21.24790	
OKE IN Textile Textilions		t (Tex)	igth (mm)	a/min)				The state of the s			10	Maximim load	(gf)		125.47	113.42	127.47	127.63	138.56	133.31	127.85	126.21	107.38	108.24	138.56	107.38	123.55	10.43660	8.44700	

lacma Trantad Badrille Inction Bactilt (200 mm

; CORE in Textile Technology & Machinery, Kumaraguru College of Technology

Plasma treated silver wrapped redsilk	12.18	200.	300.		
	hel	unt (Tex)	ength (mm)	mm/min)	Specimen 1 to 10

0		
C1 2		
451		
23		
9 9		_
12		mun
20		Tenacity at Maximum
19		te N
18		71.0
17		, on a
16	_	ľ
15	(Han	T,
. 41	Extension (mm)	Wilminson A 4
13	oist	13.0
12	xter	1
111	Ш	
1 01		
ţ o		1
+ ==		Ì
-		
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26		
+ 10		
ł		

			_							_				_	<u> </u>			_	ı-		_	
Tenacity at Maximum	Load	(gt/tex)	9.83	9.27	7 18	7.10	7.3/	8.94	8.44	992	20:0	7.20	6.54	10.87	10.92	10.82	6.54	2 5.5	20:0	1.43207		16.74856
Extension at Maximum	Load	(mm)	26.50	00 10	72.00	20.50	19.00	24.00	76.50	20.30	25.50	14.50	16.00	10.00	26.50	26.50	17 50	00:41	22.40	4.56922		20.39831
beol mimixely	(gf)	-	000	119.68	112.87	87.44	89.73	100 00	100.00	102.85	120.84	07.70	0/:/0	79.69	131 76	27 176	151./0	79.69	104.14	17.44262		16.74856

C CORE in Textile Technology & Machinery, Kumaraguru College of Technology

	All and the state of the state
lad	Plasma treated silver wrapped reusing
(Tex)	12.18
enath (mm)	25U.
,,,,,	000
mm/min)	JONG.

Specimen 1 to 10

Specimen #		01 01)
			O r
			20 Extension (mm)
			10

								_										
Tenacity at Maximum	Load	2007	(gr/tex)	6.75	7.01	7.99	9.14	9.24	9.59	9,22	9.84	10.01	7.77	10.01	6.75	8.66	1.18148	13.65036
Extension at Maximum	באנבוואסוו שו ואושאוווימווי	FOAG	(mm)	15.50	14.00	23.00	24.00	31.00	32,50	29.00	34.50	31.00	20.00	34.50	14.00	25.45	7.25507	28.50717
7000	Maximum Load	(81)		82.19	85.43	97.31	111.36	112.53	116.85	112.24	119.80	121.91	94.60	121.91	82.19	105,42	14,39049	13.65036

C CORE in Textile Technology & Machinery, Kumaraguru College of Technology

bel	Plasma treated silver wrapped redsilk
unt (Tex)	12.18
ength (mm)	300.
mm/min)	300.

Specimen 1 to 12

			;	نــــ	
		. 0		-	
Tenacity at Maximum	(1	30			
Extension at Maximum	Extension (mm)	20			
um Load		10			

Tenacity at Maximum	Load	(gf/tex)	7.79	7.20	9.05	7.80	7.16	7.48	7.26	6.73	9.61	5.14	10.08	5.14	7.89	1.41127	17.88362
Extension at Maximum	Load	(mm)	17.00	18.50	26.50	21.00	17.00	19.00	16.00	14.00	39.00	10.00	39.50	10.00	23.00	10.40979	45.25994
Maximum Load	(gt)		94.92	87.71	110.22	95.02	87.15	91.10	88.38	81.93	117.09	62.61	122.77	62.61	96.12	17.18929	17.88362

Discoust Trantad rilinar wisannad radrille Inction Daniel 1 200 mm 1

CORE in Textile Technology & Machinery, Kumaraguru College of Technology

bel	Plasma treated Zari
unt (Tex)	11.69
, l 5	200.
mm/min)	300.

Specimen 1 to 10

lenacity at ividatificati	Load	(gf/tex)	9.94	8.68	8.45	7.86	7.44	9.44	8.36
Extension at Maximum	Load	(mm)	24.00	17.50	12.00	11.50	14.50	24.00	21.50
Maximum Load	(gf)	· }	116.24	101.46	98.79	91.92	96.98	110.33	97 73

													,				
	Load	(gf/tex)	9.94	8.68	8.45	7.86	7.44	9.44	8.36	7.61	7.77	8.20	9.94	7.44	8.37	0.80369	9.59635
	Load	(mm)	24.00	17.50	12.00	11.50	14.50	24.00	21.50	12.00	17.50	11.50	24.00	11.50	16.60	5.09793	30.71042
מעווומווו בממת	(gf)	<u>}</u>	116.24	101.46	98.79	91.92	96'98	110.33	97.73	88.95	90.81	95.84	116.24	86.96	97.90	9.39511	9.59635

: CORE in Textile Technology & Machinery, Kumaraguru College of Technology

led	Plasma treated Zari
ınt (Tex)	11.69
ength (mm)	250.
nm/min)	300.

20	Specimen # 1	40
20		30
1 375 1		 20

	•															ļ	_
Tenacity at Maximum	Load	(gf/tex)	8,55	8.95	8.92	8.11	8.46	8.50	82'9	10.45	5.90	9.42	10.45	5.90	8.40	1.28292	15.26604
Extension at Maximum	Load	(mm)	20.00	26.50	29.50	25.50	30'00	21.00	12.50	32.00	12.00	31.50	32.00	12.00	24.05	7.42537	30.87472
Maximum Load	(gf)		99.93	104.66	104.31	94.80	98.85	99.32	79.24	122.18	00.69	110.11	122.18	00.69	98.24	14.99736	15,26604

CORE in Textile Technology & Machinery, Kumaraguru College of Technology

lec	Plasma treated Zari
int (Tex)	11.69
angth (mm)	300.
ım/min)	300.
The state of the s	

Specimen 1 to 10

Specimen # 22	
	404
-	30
	(רחות)
	20 Extension (mm)
	10

Maximum Load	Extension at Maximum	Tenacity at Maximum
(gt)	Load	Load
	(mm)	(gf/tex)
120.76	36.00	10.33
102.46	32.00	8.76
89.44	13.50	7.65
81.30	12.50	6.95
110.96	36.50	9.49
106.88	32.50	9.14
84.61	18.50	7.24
97.47	21.00	8.34
101.28	23.50	8.66
86.69	25.50	7.42
120.76	36.50	10.33
81.30	12.50	6.95
98.19	25.15	8.40
12.71392	8,86645	1.08759
12,94894	35.25426	12.94894