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ABSTRACT

Low Density Parity Check Codes (LDPC) is a class of linear block codes best
suited for forward error control in communication systems. The future wireless standards
needs different scalable properties like multiple code rates, multiple code lengths, fixed
code lengths, different throughputs depending on the applications. LDPC codes can be
designed to meet the above requirements. In this paper, performance of LDPC codes is
analysed for multi-rate and multiple block lengths. The strength of LDPC codes lies in its
decoding algorithm and the fact that the parity-check matrix is a sparse matrix. The less
number of nonzero elements in the paritycheck matrix will make the decoding
comparatively easier. The analysis is done with iterative decoding algorithms (concept of
belief propagation). The most efficient and commonly used algorithm is MAP algorithm.
It has both hard decision and soft decision variants. The key idea of this algorithm is
passing messages between bit node and check node for multiple times. These kinds of
algarithm give better error correction properties and efficiency than any other kind of
existing channel coding strategies. For analysing the scalability of there codes, different
code rates and the number of iterations are used, which can be chosen according to the
propagation channel and the available computational power. At the end of the analysis a
method for generating Quasi cyclic LDPC codes with very less complexity is proposed

and its performance is analysed.
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CHAPTER 1

INTRODUCTION

Communication systems transmit data from source to destination through a
channel or medium such as air, wire line and optical fibres. Reliability of the received
data depends on the channel and external noises that could interface or distort the
signal representing the data. Noise introduces errors in the received data. Error
detection and correction is achieved by adding redundant symbols to the original data.
FEC (Forward Error Correction) is used for error correction easily without data need
to be retransmitted. Retransmission adds to delay, cost and wastage of system
throughput. Several error correction codes have been developed to improve the
reliability of data transfer. FEC includes Viterbi, convolution codes, BCH codes, RS

codes, turbo codes and low density parity check (LDPC) codes.

1.1 PROJECT GOAL

The objective of the project is to analyse the LDPC codes using two different
decoding schemes namely soft decision and hard decision algorithms for different
code rates and block lengths. The different methods, both random and structured
generation, are analysed. At the end of the analysis, a new method for generating
regular LDPC codes is proposed which can claim a very low complexity compared to

the basic conventional existing method.
1.2 OVERVIEW

Low-density parity-check (LDPC) codes are forward error-correction codes,
first proposed in the 1962 PhD thesis of Gallager at MIT. At the time, their incredible
potential remained undiscovered due to the computational demands of simulation in
an era when vacuum tubes were only just being replaced by the first transistors. These
codes remained largely neglected for over 35 years. In the mean time the field of
forward error correction was dominated by highly structured algebraic block and
convolutional codes. Despite the enormous practical success of these codes, their

performance fell well short of the theoretically achievable limits set down by



Shannon. The relative quiescence of the coding field was utterly transformed by the
introduction of turbo codes, proposed by Berrou, Glavieux and Thitimajshima in
1993, wherein all the key ingredients of successful error correction codes were
replaced: turbo codes involve very little algebra, employ iterative, distributed
algorithms, focus on average (rather than worst-case) performance, and rely on soft
{or probabilistic) information extracted from the channel.

New generalizations of Gallager’s LDPC codes by a number of researchers
including Luby, Mitzenmacher, Shokrollahi, Spielman, Richardson and Urbanke,
produced new irregular LDPC codes which offer certain practical advantages and an
arguably cleaner setup for theoretical results. Today, design techniques for LDPC
codes exist which enable the construction of codes which approach the Shannon’s
capacity to within hundredths of a decibel. The main research interests are low
complexity encoding and efficient decoding schemes.

The future wireless standards need different scalable properties like multiple
code rates, multiple code lengths, fixed code lengths, different throughputs depending
on the application. LDPC codes can be designed to meet the above requirements. In
this paper, performance of LDPC codes is analysed for multi-rate and multiple block
lengths. In addition to the strong theoretical interest in LDPC codes, such codes have
already been adopted in satellite-based digital video broadcasting and long-haul
optical communication standards, are highly likely to be adopted in the [EEE wireless
local area network standard, and are under consideration for the long-term evolution
of third generation mobile telephony. The idea behind these codes dates back to the
sixties, but recently such coding schemes has been given a fresh analysis and it has
been shown that they can approach the information theoretical limits at unprecedented

low complexity.

1.3 SOFTWARE USED
e MATLAB 7.6.0.324 (R2008a)

14 ORGANIZATION OF THE REPORT

¢ Chapter 2 discusses about the basic concepts on LDPC codes

¢ Chapter 3 deals about the encoding and decoding of the LDPC codes



Chapter 4 explains the proposed method for generating the regular LDPC
codes with a very low complexity.
Chapter 5 discusses the simulation results and its interpretations.

Chapter 6 gives the Conclusion and Future scope of the project



CHAPTER 2
LOW DENSITY PARITY CHECK CODES

2.1 INTRODUCTION TO LDPC CODES

LDPC codes are block codes with parity-check matrices that contain only a
very small number of non-zero entries. It is the sparseness of H which guarantees both
a limited decoding complexily which increases only linearly with the code length and
a minimum distance which also increases linearly with the code length. LDPC codes
are designed by constructing a sparse parity-check matrix first and then determining a
generator matrix fof the code afterwards.[1]{2]

Basically there are two different possibilities to represent LDPC codes. Like
all linear block codes they can be described via

¢ Matrices.
¢ Graphical representation.

The matrix given below is a parity check matrix with dimension n xm for a (6,
2) code. Two numbers are used to describing these matrixes. W, for the number of 1's
in each row and W, for the columns. For a matrix to be called low-density the two

conditions W, << n and W, << m must be satisfied. The matrix is called sparse matrix

since the number of ones in the matrix will be less than the number of zeros.

110100
11010

H= (1)
10001 1
01 1 101

Tanner introduced an effective graphical representation for LDPC codes. This
way of representing the codes is called the Tanner graph. Tanner graph methods are
very easy in implementing the LDPC decoding. Tanner graphs are bipartite graphs. A
bipartite graph is a graph whose nodes can be divided into two sets such that each
node is connected to a node in the other set. The two sets of nodes in a Tanner graph
are called check nodes and wvariable nodes representing rows and eolumns
respectively. That means that the nodes of the graph are separated into two distinctive
sets and edges are only connecting nodes of two different types. The i check node is

connected to the j" variable node if and only if H; i = L. Check nodes represent the six



rows of the matrix, whereas are the eolumns. The number of edges in each check
node is equal to the row weight and the number of edges in each variable node is

equal to the column weight, [3]

check nodes

bit nodes

Figure 2.1: Tanner Graph Representation Of Parity Check Matrix

Figure 2.1 is an example for such a Tanner graph and represents the same code
as the matrix in equation (1). The creation of such a graph is rather straight forward. It
consists of m check nodes (the number of parity bits) and n variable nodes (the
number of bits in a codeword). Check node c; is connected to variable node by if the
element hijof His a 1.

A cycle in a parity check matrix is formed by a complete path through ‘1°
entries with alternating moves between rows and eolumns. In a Tanner graph a cycle
is formed by a path starting from a node and ending at the same node. The length of
the cycle is given by the number of edges in the path. A cycle of six is shown in bold
in the graph of Figure 2.1. The smallest cycle in a Tanner graph or parity check
matrix is called its girth. The smallest possible girth is four. A bipartite graph has a
minimum cycle of length four and has even cycle lengths.

Basically there are 2 classes of LDPC codes. They are:

¢ Regular Codes

e Irregular Codes

The regular codes are those codes in which the row weight and column weight
distributed evenly through out the H matrix. In the case of irregular codes the row and
column weights will differ through out the matrix. Basically design of regutar LDPC
codes is easy. But generally it is observed that the carefully designed irregular codes

will give better performance for very large code lengths. [4]



The biggest difference between LDPC codes and classical biock codes is how
they are decoded. Classical block codes are generally decoded with ML (Maximum
Likelihood) like decoding algorithms and so are usually short and designed
algebraically to make this task less complex. LDPC codes however are decoded
iteratively using a graphical representation of their parity-check matrix and so are

designed with the properties of H as a focus.
2.2 ERROR CORRECTION USING PARITY CHECKS

The basic idea of forward error control coding is to augment these message
bits with deliberatety introduced redundancy in the form of extra check bits to
produce a codeword for the message. These check bits are added in such a way that
code words are sufficiently distinct from one another that the transmitted message can
be correctly inferred at the receiver, even when some bits in the codeword are
corrupted during transmission over the channel.

The simplest possible coding scheme is the single parity check code (SPC).
The SPC involves the addition of a single extra bit to the binéry message, the value of
which depends on the bits in the message. In an even parity code, the additional bit
added to each message ensures an even number of 1s in every codeword. More
formally, for the 7-bit ASCII plus even parity code we define a codeword ¢ (o have

the following structure:

¢=[clc2c3cdchcbhcT c8) (2)
where each c; is either 0 or 1, and every codeword satisfies the constraint
cl®@c2®@ 3D 4DPcHEDcb®Dc?TDcq=0 (3)

Equation (3) is called a parity-check equation, in which the symbol @ represents
modulo-2 addition.

While the inversion of a single bit due to channel noise can easily be detected
with a single parity check code, this code is not sufficiently powerful to indicate
which bit, or indeed bits, were inverted. Moreover, since any even number of bit
inversions produces a string satisfying the constraint in equation (3), patterns of even
numbers of errors go undetected by this simple code. Detecting more than a single bit

error calls for increased redundancy in the form of additional parity bits and more



sophisticated codes contain multiple parity-check equations and each codeword must

satisfy every one of them.

1 1 0 1 0 0
0O 1 1 0 1t O
H =
1 0 0 0 1 1
00 1 1 0 1
Kl+z2+zd4 =0
X
W2 +a3+us=10
X
Hl+eS+z5=0
X
e X34+l +eb=0
X

Figure 2.2: Parity Check Constrain for LDPC Codes

The matrix H is the parity-check matrix. Each row of H corresponds to a
parity-check equation and- each column of H corresponds to a bit in the codeword.
Thus for a binary code with m parity-check constraints and length n codeword the
parity-check matrix is an MxN binary matrix. In matrix form a string y = [c1 ¢2 ¢3 ¢4
c5 cb] is a valid codeword for the code with parity-check matrix H if and only if it

satisfies the matrix equation.[5]



2.3 IMPORTANT DESIGN PARAMETERS

Design of LDPC codes involves many parameters which are often determined

in consideration of the target application. [6]

Code size: The code size specifies the dimensions of the parity check matrix (MxN).
Sometimes the term code length is used referring to N. Generally a code is specified
using its length and row-column weights in the form (N, j, k). M can be deduced from
the code parameters N, j and k. It has been shown that very long codes perform better
than shorter ones. Long codes are therefore desirable to have good performance.
However, their hardware implementation requires more resources {memory plus

professing nodes).

Code Weights and Rate: The rate of a code, R, is the number of information bits

over the total number of bits transmitted. It is expressed as(N—M ] Higher row and
N

column weights result in more computations at each node because of many incoming
messages. However, if many nodes contribute in estimating the probability of a bit
the node reaches a consensus faster. Higher rates mean fewer redundancy bits. That
is, more information data is transmitted per block resulting in high throughput.
However, low redundancy means less protection of bits and therefore less decoding
performance or higher error rate. Low rate codes have more redundancy with fewer
throughputs. More redundancy results in more decoding performance. However, very
low rates may have poor performance with a small number of connections. LDPC
codes with column-weight of two have their minimum distance increasing
logarithmically with code size as compared to a linear increase for codes with column
weight of three or higher. As a result column-weight two codes perform poorly
compared to higher column-weight codes. Column weights higher than two are
usually used. Although regular codes are commonly used, carefully constructed

irregular codes could have better error correcting performance.

Code Structure: The structure of a code is determined by the pattern of connections
between rows and columns. The connection pattern determines the complexity of the

comrmunication interconnect between check and variable processing nodes in an



encoder and deceder hardware implementations. Random codes do not follow any
predefined or known pattern in row-column connections. Structured codes on the
other hand have a known interconnection pattern. Many methods have been

developed for constructing those types of codes.

Number of iterations: The number of iterations is the number of times the received
bits are estimated before a hard decision is made by the decoding algorithm. A large
number of iterations may ensure deceding algorithm convergence but will increase
decoder delay and power consumption. The number of corrected errors generally
decreases with an increasing number of iterations. In performance simulations a large
number of iterations, (about 100 to 200), can be used. For practical applications 20 to

30 iterations are commonly used.

2.4 CONSTRUCTION OF LDPC CODES

The two major classifications of the construction of LDPC codes are given by
* Random construction
» MacKay Constructions
= Bit filling Algorithm
* Progressive Edge-Growth Algorithm
» Structured construction
=  Combinatorial Designs
= Finite Geometry Designs

*  Algebraic Methods

2.4.1 Random Constructions

Random constructions connect rows and columns of a LDPC code matrix
without any structure or predefined connection pattern. They are actually pseudo-
random connections done by computer searches. Constructions could be done in the
Tanner graph by connecting check to variable nodes with edges or in the parity-
cheek matrix by connecting rows to columns with ‘1’ entries where all other entries

are ‘0’s. Randomly adding edges to a Tanner graph or ‘1’ entries in the parity-cheek
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matrix will not produce a desired rate and will probably have cycles of four.
However, the resulting code could be optimized by either post processing or by
puiting constraints on the random choices as the code is built.  Post processing
exchanges or deletes some connections in order to get a desired girth and rate.
Random construction with constraints adds a connection in the code if it does not
violate the desired girth or row and column weights. [7}

Random codes have good performance especially at long code lengths
compared to structured codes. Random construction methods could be used to
maximize performance (e.g. by girth) and rate for a given size as demonstrated by
Campello. Heuristic algorithms are developed to search for good LDPC codes based
on average girth distribution. While random codes show better performance
compared to structured or constrained codes at code lengths of several thousands,
there is no assurance that a particular code chosen at random will have good

performance. Some random construction methods of importance are explained.

2.4.1.1 MacKay Constructions

MacKay showed that random LDPC codes have good performance
approaching Shanon’s limit. Some random construction methods for developing
codes are suggested by him. A simple and easy to implement version of random

construction in given below:

1. Matrix H is generated by starting with an all zero matrix and then randomly
flipping bits in the matrix. Flipped bits are not necessarily distinct.

2. Matrix H is generated by randomly creating weight j columns.

3. Matrix H is generated with weight j per column and uniform weight per row
and no two columns are connected to the same row more than once (avoiding
four-cycles).

4. Matrix H is generated as in 3 with the girth condition further constrained so
that the girth is larger than six.

MacKay's algorithms were used to find good performing codes with a variety of

rates and length. These algorithms made the generation of random and semi random

LDPC generation easier.[8]
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2.4.1.2 Bit-Filling Algorithm

A bit-filling (BF) algorithm introduced in constructs a LDPC code by
connecting rows and columns of a cade one at a time provided a desired girth is not
violated. The number of connections to rows and columns are kept almost balanced
{about same number of connections) by connecting rows or columns with the least
number of connections first. The algorithm obtains irregular codes with either a fixed
row or column weight.[8-9)

The algorithm can obtain very-high rate and high-girth codes. It is extended in
to get better girths and rates for a given code length. Although the algorithm
produces high-rate and high-girth codes given a particular code size, resulting
codes are not easily implementable in hardware. This is because the structure of
row-column connections is not consistent enough to be an advantage in hardware
implementation. The objective of the algorithm is to optimize girth or rate for a

given code size.

Algorithm:

C is check node,

M is the number of check nodes

N¢ is a set of check nodes sharing a variable node and

U, is a set of check nodes connected to the new or current variable

node.
Fy is a set of check node that can be connected
To U without violating the girth
Set N =0 A={M|,and U,_0
for c €| M |, set weight(e)=0 and R, =17
do {
Ve € Uy set Ho v =1 and increment
deg(e) by lset i =0,U,_0, and U=0
do {

Compute Fg_ A\ U



12

If Fg =0)

{

Choose ¢ '"®™ F, according to some heuristic

Ve € Uy, update R, = RV {¢'} and update 8. =R, U U,
update
U Uy ufc'h, U=sU UV, (c'), and A}
i=i+1
twhile {(i < a) and (F, =7))
n=n+]

} while (i = a) and (Fy=12))

2.4.1.3 Progressive Edge-Growth Algorithm

The progressive edge-growth (PEG) algorithm is another simple non-algebraic
algorithm that can be used to construct codes of arbitrary length and rate. It is similar
to the bit- filling algorithm. In PEG node degrees are distributed according to some
performance criteria (e.g. density evolution) before edges are added. The algorithm
builds a Tanner graph by connecting the graph’s nodes edge by edge provided the
added edge has minimal impact on the girth of the graph. With this algorithm regular
and irregular codes can be obtained with optimized performance. Codes obtained
using this method is one of the best known performing codes at short lengths.

There are other variations of the algorithm that slightly improve performance
of the obtained codes. Just as with bit-filling code, a major disadvantage of PEG
codes is their high hardware complexity making them impractical at very large
lengths.  The unstructured interconnection results in routing complexity and
congestion in decoder implementations. When row-column connections are done at
random, there would be no general rule to define how a set of rows or columns are
connected. Therefore the random connections need to be defined by a table
(addressing) for each individual row or column or hardwired. Since codes are
generally a few or more thousands in size, the tables would also be very large or the
number of interconnections will be high and unstructured leading to long wire-

lengths, large decoders with slow clock rates.[11]
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2.4.2 Structured Constructions

Structured construction methods put constraints on row-column connections to
get a desired or predefined pattern. The main objectives are to achieve good
performance and at the same time have a connection pattern that is easier to
implement in hardware. There are many structured methods already developed
producing codes differing in structure (row-column interconneciion pattern),
performance and hardware implementation complexity. Developed metheds include
those based on graphs, combinatorial designs, algebra and heuristic searching

techniques. Some existing structured constructions are explained briefly.{13]

2.4.2.1 Combinatoﬁal'Designs
A combinatorial design is an arrangement of sets of v points into b subsets
called blocks. The inclusion or placement of points in blocks is according to some
defined constraints.[12] The basic constraints are
1. A pair of points can appear together in A blocks for a defined value of A.
2. The number of points in each block is given by v and the number of blocks in

which a point appears.

2.4.2.2 Finite Geometry
Finite geometries are another approach similar to combinatories that can be

used to design structured LDPC codes. A finite geometry is defined by n points and ]
lines with the following properties.

1. Every line consists of p points.

2. Any two points are connected by one and only one line.
3. Every point lies on y lines.
4

Two lines are either parallel or they intersect at only one point.

2.4.2.3 Algebraic Methods

Parity check matrix connections could be constrained algebraically to obtain
codes with a particular structure. Constraints could also be used to get a desired girth,
rate or length. Fossorier presents algebraic constraints to obtain quasi-cyclic codes of
a given girth. The code matrix is divided into shifted identity sub-matrices of equal

sizes.[14]
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2.4.3 Quasi Cyclic LDPC Codes

A QC LDPC codes are codes in which rows and columns in the sub matrix
have similar and cyclic connections. They are a class of regular LDPC codes. They
can be formed by a concatenation of circularly shifted sub matrices. Due to their quasi
cyclic nature, QC-LDPC codes can be encoded efficiently with shift registers. The
codes have general structure as:

H=[A; As,... A (4)

Where A; is a circulant matrix. Such structures can be obtained with
combinatorial construction and finite geometry methods. In the other construction
method, the matrix is formed by isolated shifted identity sub matrices as shown in
figure 2.3(a). In the fig. I, is a px p shifted identity sub matrices and O is a p x p zero
sub matrix, where p is a positive integer.

A shifted identity matrix is obtained by shifting each row of an identity mairix to
the right or left by some amount. There is ‘p’ such identity matrices for a p x p
matrix. In Figure 2.3(a) the number of sub matrices in row is equal to row weight and
equal to column weight in column. But, in Figure 2.3(b}. , the number of sub matrices

greater than row and column weight. [15]

I]; Ilz 113 Il4

L | Iz Iys Los

Iy {Is Is3 I34

0 |1y |0 L {0 Ly ily
0 |Isi |0 |[Isz [0 |Isz | 1Iss

(b)
FigureZ2.3: Quasi Cyclic Code Arrangement (a) With all Non-zero Sub-matrices
{(b) With Zero Sub-matrices
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2.4.1 Repeat Accumulate LDPC Codes

Repeat accumulate codes are “turbo-like” and are simple to design and
understand. A repeat-accumulate (RA) code is an LDPC code with an upper triangular
form already built into the parity-check matrix during the code design. An m x n RA
code parity-check matrix H has two parts and it's given by H = [H,, H,]. The parity-
check matrix of an RA code is called (q, a)-regufar if the weight of all the rows of H,
are the same, a, and the weight of all the columns of H, are the same, q. Note that a
regular RA parity-check matrix has columns of weight 2, and one column of weight 1,
in Hz and so is not regular in the sense of (j, r)-regular LDPC codes. An irregular RA
code will have an irregular column weight distribution in H;, with H; the same as for

a regular code. Generally RA codes are suitable for low and medium code rates.[16]

gk bits
kbits rapeat block L qK bits
- 11 l®np [
q times
rate = 1/q
repeat permute accumulate

FigureZ.4: Principle of RA Codes

Recently Irregular Repeat Accumulate codes (IRA) and Extended Irregular Repeat

Accumulate Codes (eIRA) is of great interests for the researchers.

2.5 APPLICATIONS

DVB-S52: Digital Video Broadcasting - Satellite - Second Generation (DVB-S2) is
designed as a successor for the popular DVB-S digital television broadcast standard,
and was developed in 2003 and ratified by ETSI (EN 302307) in March 2005. k is
based on DVB-S and the electronic news-gathering (or Digital Satellite News
Gathering) standard, used by mobile units for sending sounds and images from remote

locations world-wide back to their home television stations. DVB-S2 is envisaged for
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broadcast services including standard and HDTV, interactive services including

Internet access, and (professional) data content distribution.{17]

Two new key features that were added compared to the DVB-S standard are
¢ Introduction of a powerful coding scheme based on modern LDPC code.

* VCM (Variable Coding and Modulation) and ACM (Adaptive Coding and
Modulation) modes, which allow optimizing bandwidth utilization by

dynamically changing transmission parameters.

WIiMAX: WiMAX (Worldwide Interoperability for Microwave Access) is
a telecommunications protocol that provides fixed and mobile Internet access. The
current WiMAX revision provides up to 40 Mbit/s with the IEEE 802.16m update
expected 1o offer up to 1 Gbit/s fixed speeds. The name "WiMAX" was created by
the WIMAX Forum, which was formed in June 2001 to promote conformity and
interoperability of the standard. The forum describes WiMAX as "a standards-based
technology enabling the delivery of last mile wireless broadband access as an

alternative to cable and DSL".

DTMB: DTMB (Digital Terrestrial Multimedia Broadcast} is the TV standard for
mobile and fixed terminals used in the People's Republic of China, Hong
Kong and Macao. Besides the basic functions of traditional television service, the
DTMB allows additional services using the new television broadcasting system.
DTMB system is compatible with fixed reception (indoor and outdoor) and mobile
digital terrestrial television. The DTMB standard uses many advanced technologies to
improve their performance, for example, a pseudo-random noise code (PN-Pseudo-
random Noise) as a guard interval that allows faster synchronization system and a
more accurate channel estimation, LDPC (Low-Density Parity-Check) encoding for
error  correction, modulation TDS-OFDM (Time Domain  Synchronization -
Orthogonal Frequency Division Multiplexing) which allows the combination of

broadcasting in SD, HD and multimedia services, etc.
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Storage Applications: As peer-to-peer and widely distributed storage systems
proliferate, the need to perform efficient erasure coding, instead of replication, is
crucial to performance and efficiency. Low-Density Parity-Check (LDPC) codes have
arisen as alternatives to standard erasure codes, such as Reed-Solomon codes, trading
off vastly improved decoding performance for inefficiencies in the amount of data
that must be acquired to perform decoding. Storage systems require very high code

rates, low SNR (7-12 dB}, and very high data rate in the Gbps range.
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CHAPTER 3

ENCODING AND DECODING OF LDPC CODES

3.1 ENCODING PROCESS

The LDPC encoder transforms each input message block ‘u’ into a distinct M-
tuple (A-bit sequence) code word ‘¢’. The codeword length N, where N > K, is then
referred to as the block-length. And, there are 2K distinct code words corresponding to
the 2¥ message blocks. This set of the 2X code words is termed as a C(N.X) linear
block code. The word Jinear signifies that the modulo-2 sum of any two or more code
words in the code C(N,K) is another valid codeword. The number of non-zero
symbols of a codeword ‘c’ is called the weight, while the number of bit-positions in
which two code words differ is termed as the distance. The minimum distance of a
linear code is denoted by dnin, and determined by the weight of that codeword in the
code C(N, K}, which has the minimum weight.[18]

The unique and distinctive nature of the code words implies that there is a one-
to-one mapping between a K-bit information sequence ‘u’ and the corresponding N-
bit codeword ‘¢’ described by the set of rules of the encoder.

A generator matrix ‘G’ is determined by performing Gauss—Jordan

elimination on ‘H’ to obtain it in the form:

(H=[A1, ] (5)
Where ‘A’ is a (N-K) x K binary matrix and Iy is the size N-K identity matrix. The
generator matrix is then:

G=|A1y_ 4l (6)

Since LDPC codes are linear block codes, a codeword is generated by
multiplying the input vector with the generator matrix,

c=uG (7)

Where ‘¢’ is the code word and ‘u’ is the input vector bits. Since ‘G’ matrix is

not sparse, the matrix multiplication at the encoder will have complexity in the order

of n’ operations.
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3.2 DECODING OF LDPC CODES

LDPC code decoding tries to reconstruct the transmitted codeword, c, from the
possibly corrupted received word, y. It is achieved by using the parity-check matrix,
H. The condition that cH" = 0 defines the set of parity-check constraints or equations
that must be satisfied for the received codeword to be the same as the transmitted
codeword. LDPC code decoding is achieved through iterative processing based on the
Tanner graph, to satisfy the parity check conditions.

The different variants for the iterative decoding schemes based in the contest
are given by

* Sum-Product Algorithm
s  Min-Sum Algorithm
e Forward-Backward Algorithm, BCJR algorithm (Trellis Based Graphical

Method)

A message passing algorithm (MPA) based on Pearl's belief algorithm
describes the decoding iterative steps. The passed messages are probability

estimations. Some of the decoding algorithms are given below. [19]

3.2.1 Message-Passing Decoding

The bit-flipping algorithm is a hard-decision message-passing algorithm for
LDPC codes. The class of decoding algorithms used to decode LDPC codes are
collectively termed message-passing algorithms since their operation can be explained
by the passing of messages along the edges of a Tanner graph. Each Tanner graph
node works in isolation, only having access to the information contained in the
messages on the edges connected to it.

The message-passing algorithms are also known as iterative decoding
algorithms as the messages pass back and forward between the bit and check nodes
iteratively until a result is achieved (or the process halted). Different message-passing
algorithms are named for the type of messages passed or for the type of operation
performed at the nodes. In some algorithms, such as bit-flipping decoding, the
messages are binary and in others, such as belief propagation decoding, the messages

are probabilities which represent a level of belief about the value of the codeword
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bits. It is often convenient to represent probability values as log likelihood ratios, and
when this is done belief propagation decoding is often called sum-product decoding
since the use of log likelihood ratios allows the calculations at the bit and check nodes
to be computed using sum and product operations.
The steps of the message passing algorithm is given below

Step 1: Initialization - Initialise each variable node with received information from
the source. Each variable node calculates the initial Log Likelihood Ratios (i)

Step 2: Check-node update — Each check node calculate LLR and Check to variable

node messages based on the incoming messages.

Step 3: Variable-node update — For each variable node, calculate LLR (A,) and
outgoing messages along its edges to check nodes. LLR is the sum of all the incoming
messages plus the initial value of the variable node. The outgoing message for each

edge is given by the check node LLR minus the message received on that edge.

Step 4: Decision - Quantize the LLR of variable nodes such that LLR,, = 0 if &, < 0,
and LLR,, = 1 if A, > 0. IFLLR x H' = 0, then halt the algorithm with LLR at the
decoder output. LLR gives the estimation of the codeword, c,. Otherwise go to Step
2. If the algorithm does not halt within some maximum number of iterations, then

declare a decoder failure.

3.2.1.1 Message-passing on the binary erasure channel

On the binary erasure channel (BEC) a transmitted bit is either received
correctly or completely erased with some probability &. Since the bits which are
received are always completely correct the task of the decoder is to determine the
value of the unknown bits. If there exists a parity-check equation which includes only
one erased bit the correct value for the erased bit can be determined by choosing the
value which satisfies even parity.

Since the received bits in an erasure channel are either correct or unknown {no
errors are introduced by the channel) the messages passed between nodes are always
the correct bit values or ‘x’. When the channel introduces errors into the received
word, as in the binary symmetric or AWGN channels, the messages in message-
passing decoding are instead the best guesses of the codeword bit values based on the

current information available to each node.
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3.2.2 Bit Flipping Algorithm

The bit-flipping algorithm is a hard-decision message-passing algorithm for
LDPC codes. A binary (hard) decision about each received bit is made by the detector
and this is passed to the decoder. For the bit-flipping algorithm the messages passed
along the Tanner graph edges are also binary: a bit node sends a message declaring if
it is @ one or a zero, and each check node sends a message to each connected bit node,
declaring what value the bit is based on the information available to the check node.

The check node determines that its parity-check equation is satisfied if the
modulo-2 sum of the incoming bit values is zero. If the majority of the messages
received by a bit node are different from its received value the bit node changes (flips)
its current value. This process is repeated until all of the parity-check equations are
satisfied, or until some maximum number of decoder iterations has passed and the
decoder gives up. [20]

The bit-flipping decoder can be immediately terminated whenever a valid
codeword has been found by checking if all of the parity-check equations are
satisfied. This is true of all message-passing decoding of LDPC codes and has two
important benefits; firstly additional iterations are avoided once a solution has been
found, and secondly a failure to converge to a codeword is always detected.

The bit-flipping algorithm is based on the principal that a codeword bit
involved in a large number of incorrect check equations is likely to be incorrect itself.
The sparseness of H helps spread out the bits into checks so that parity-check
equations are unlikely to contain the same set of codeword bits. The bit-flipping
algorithm is presented in Algorithm 3. Input is the hard decision on the received

vector, v = [y1, ... ya|, and output is M =[M, ..., M.l.

Algorithm: Bit-flipping Decoding
Procedure DECODE(y)
[=0 Initialization
fori=1:ndo
Mi = yi
end for
repeat

forj=1:mdo Step 1: Check messages
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fori=1:ndo
Eji=} i'€Bj,i'6=i(Mi' mod 2)
end for
end for
fori=1:ndo Step 2: Bit messages
if the messages Ej,i disagree with yi then
Mi = (ri + 1 mod 2)
end if
end for
for j = 1 : m do = Test: are the parity-check
Li=%i'eBj(Mi'mod 2) Step 3:equations satisfied
end for
ifall Lj = 0 or I = Imax then
Finished
else
I=I+1
end if
until Finished

end procedure

Simulated Example of Decoding (Bit Flipping Algorithm):

Each sub-figure indicates the decision made at each step of the decoding
algorithm based on the messages from the previous step. A cross represents that the
parity check is not satisfied while a tick indicates that it is satisfied. For the messages,
a dashed arrow corresponds to the messages “bit = 0" while a solid arrow corresponds
to “bit = 1".Thus by repeated message passing between the check nodes and the bit
nodes we can finally able to tell the received code word is correct or nor .if there is
any error in the code word then the algorithm will correct the errors. Since there is no
connection with in the bit nodes and the check nodes and only connection between

them the iterative decoding is easy in this case
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Step 1: initialization

This is the first phase of MPA. In this phase in tanner graph the bit nodes are
assigned the value of the received code word, this can or cannot be true. Then the bit
nodes will send the information in to the corresponding check nodes to which they are
connected. At the check node XOR operations are performed. If all the result of the
XOR operation is zero then what ever code word we got is the actual code word or

else there is an error in the code word which have to be corrected

Initialization

Figure 3.1: Initialization of the Bit Node

In the case of received bits  [1 0101 1] the value of the check bits are
By=1 B; =0 B, =1 B; =0
Since all the bits in this case is not zero this is not satisfying the parity-check

equations and this is not the actual code word

Step 2: Check-node update

This is the next step in decoding. The check nodes will send the values they
hold to all the bit nodes to which they have connected. E; is the value passed from
the j" check node to the i bit node. Since one check node is connected to three bit
nodes .it will take the incoming value from any two of the bit node and exor in and
passed to the third one .this can be summarised in terms of all Ey's
En=0 E3 =0
Exn=0 Eiz=0
Exn=1 Ej=1
Eiu=1 Eyu=0



24

B =1 Ess =0
Es=0 Egp =1

Check messages

Figure 3.2: Check Node Message updates

Step 3: Variable-node update

The variable node values are up dated by looking the message from the check
nodes .this will look maximum polling algorithm. That means each bit node will get
messages from the two check nodes .That is two bits it can be of four different
combinations they are {0,0} {0.1} {1,0} {1,1}.thus if the update from the check
nodes are {1,0} or {0,1} whatever we received at the receiver is taken as the correct.
But when the received information from the check node are {1,1} by maximum
polling algorithm we will take the correct bit as ‘1’ whatever we received. Similarly

in the case of {0,0} we will take the error free received bit as ‘0’ for whatever we

received

Bit update

-,

\55
T i

Figure 3.3: Variable-node Updates
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Step 4: Decision

In this step the decisions will take. This is that by the new updated value of the
received code word will be sending to check nodes again for the checking of
correction .here we got that all the B values are zero so we represent it by the tic

mark. Thus the error correction of the code is done

v
L]

Figure 3.4 Check node Testing & Decision

Thus the error correction of the code is done and corrected code word is given

as the states of the check node.

3.2.3 Sum-Product Decoding

The sum-product algorithm is a soft decision message-passing algorithm:. It is
similar to the bit-flipping algorithm described in the previous section, but with the
messages representing each decision (check met, or bit value equal to 1) now
probabilities. Whereas bit-flipping decoding accepts an initial hard decision on the
received bits as input, the sum-product algorithm is a soft decision algorithm which
accepts the probability of each received bit as input. The input bit probabilities are
called the a priori probabilities for the received bits because they were known in
advance before running the LDPC decoder. The bit probabilities returned by the
decoder are called the a posteriori probabilities. In the case of sum-product decoding
these probabilities are expressed as log-likelihood ratios.[21]

Log likelihood ratios are used to represent the metrics for a binary variable

by a single value.
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L(x)= 1og(£(i‘i@_)] ®

The benefit of the logarithmic representation of probabilities is that when
probabilities need to be multiplied log-likelihood ratios need only be added, reducing
implementation complexity.

For an AWGN channel the a priori LLR is are given by,

E
r= 4)&[ . ] (9)

A

The term y; represents the received code word and for the simulation purpose

we are assuming the £ /N, =1.25. The extrinsic LLR and the total LLR calculation

are done to find the codeword .

The sum-product algorithm iteratively computes an approximation of the
MAP value for each code bit. However, the a posteriori probabilities returned by the
sum-product decader are only exact MAP probabilities if the Tanner graph is cycle
free. Briefly, the extrinsic information obtained from a parity check constraint in the
first iteration is independent of the a priori probability information for that bit (it does
of course depend on the a priori probabilities of the other codeword bits). The
extrinsic information provided to bit i in subsequent iterations remains independent of
the original a priori probability for bit i until the original a priori probability is
returned back to bit i via a cycle in the Tanner graph. The correlation of the exirinsic
information with the original a priori bit probability is what prevents the resulting
posteriori probabilities from being exact.

Here a modified form of sum-product algorithm can be used to reduce the

implementation complexity of the decoder.

(M‘.- |
E,=2tanh | T, tanhk 2"" (10)

)

First M ,; can be factored as

M = a‘j_l..ﬁj‘,.‘ (1 1)

Ji

Where,
&, = sign(M J.J..) and

a;;

_ IMJ_J..I (12)



The reduced equation for E;; is given by,

£, {1 o)

¢(x)is a function and it is given by,

X

#(x)=—log tanh(%] = log € : *1

e’ —1
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(14)

The product of the signs can be calculated by using modulo 2 addition of the

hard decisions on each MJ_;' while the function ¢{x) can be easily i mplemented using

a lookup table.

Algorithm: Sum-Product Decoding
procedure DECODE(r)
I=0

fori=1:ndo

forj=1:mdo
Mj.i =Tj
end for
end for
repeat
forj=1:mdo
fori € Bjdo
(1o 50,
end for
end for

fori=1:ndo
Ll = ZJEAlEJ1 + T;
1L <0
z =
! 0,L>0
end for
fori=1:ndo

forj € A;do



Mji=Yj'SA:.j% B+
end for
end for
I=1+1
end if
until Finished

end procedure

28
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CHAPTER 4

PROPOSED METHOD FOR REGUALR LDPC CODE
GENERATION

4.1CONVENTIONAL QUASI CYCLIC METHOD

A QC LDPC codes are codes in which rows and columns in the sub matrix have
similar and cyclic connections. They can be formed by a concatenation of circularly
shifted sub matrices. Due to their quasi cyclic nature, QC-LDPC codes can be
encoded efficiently with shift registers. The codes have genera! structure as:

H=1{A; Az... . A (15)

Where A, is a circulant matrix. Such structures can be obtained with

combinatorial construction and finite geometry methods [6]. In the other construction

method, the matrix is formed by isolated shifted identity sub matrices as shown in
fig.4.1. [22]

A shifted identity matrix is obtained by shifting each row of an identity matrix to

the right or left by some amount. In fig.4.a. the number of sub matrices in row is equal

to row weight and equal to column weight in column.

Figure 4.1: Conventional Quasi Cyclic Generation

4.2 PROPOSED METHOD

The proposed method is a variant of the conventional method of generation.
Here instead of shifting the rows of the I matrix to generate the Iy matrix, we will use
the mirror image of the I matrix, denoted by Iy and place those matrices accordingly
to form bigger H matrices.

We can arrange the I and Iy in many ways so that girth conditions are avoided.

‘Two possible ways of arrangements are given in Figure 4.2 and Figure 4.3.
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[ I [ [ I I
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Figure 4.2: Proposed Method: Arrangement 1

I Im I T I Ty

Figure 4.3: Proposed Method: Arrangement 2

In the proposed method the number of shifts needed to build the sum-matrices
is considerably low when compared to the conventional method. Here only we need to
construct a mirror image Ly of the identity matrix and we can use it over and over. So
in the case of I of size 10, in the above example, the proposed method needs 10
number of shifts to either left or right. But the conventional method needs 5x10=50
{Each sub-mairix needs 10 shifts) shifts to construct the full H matrix.

When coming to the case of performance, the proposed method gives a closely
comparable performance which is slightly less than the performance of the
conventional method, by a very small margin but can be achieved by considerably
less complexity of generation. Since the number of shifts required are minimised, the
hardware implementation becomes easier. And also the speed of operation of the
encoder increases. The performance analysis for the proposed method is given in the

chapter 5.
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CHAPTER 5

SIMULATION RESULTS AND DISCUSSIONS

The platform used here to simulate the performance of the LDPC codes is
MATLAB (2008a). Here the parameter focused on is BER (Bit error rate} for a
specific modulation scheme over a specified channel. The BER is given by the ratio
of the number of bits in error to the total number of bits transmitted.

BER = Number of bits in error Total number of bits transmitted.

BER = Number of bits in error (16)
Total number of bits transmitted

First we are analyzing the performance of the soft decision decoding aigorithm and

the hard decision decoding algorithm.

. Performance Analysis of Soft decision and Hard decsion Decoding of LDPC Codes
1o F T T T ! o TTTTT

¥ Soft Decision Dewdongi
*_Hard Decision Decoding

6
SNR (B}

Figure 5.1: Performance Analysis of Soft Decision and Hard Decision Decoding

Figure 5.1 shows the simulated bit error rate (BER) versus Signal to Noise
Ratio {SNR) for hard decision decoding algorithm and soft decision decoding
algorithm. Soft decision decoding algorithm gives better performance compared to
hard decision algorithm.

Next the performance of convolutional codes and L.LDPC codes are analysed.

Here we have used a {12,9) LDPC codes and its performance is compared with



convolutional codes with PSK modulation

and the result is given Figure 5.2.

Bit Eor Rata
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schemes and QAM modulation schemes

[ R fr s
Consolutional Cordes 1 |-
4 Comvtlutional Codes 2 [+
LOPC Codes. X
™,
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.
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|
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5 10
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Figure 4.2: Performance Comparison of Convolutional Codes and LDPC Codes

Next the analysis for different code rates is given in Fig5.3. Here we are taking

50,000 message bits are transmitting. Here the soft decision sum product algorithm is

used. Low code rate gives good BER.

Performance Analysis of LDPC Codes for Different Code Rates
. : . :

o

B
SNR {dB)

\ PR il

- Code Rate = 1/2
Uncoded Transmission'

- *-(ode Rate = 1/3

Figure 5.3: BER Performance of LDPC Codes for Various Code Rates

The performance of LDPC codes also depends up on the number of iterations

that we are using in the message passing algorithm. The performance analysis based
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on the number of iterations, is given in Figure 5.4. We can choose a specific number

of iterations based on the hardware, power and computational resources available.

. Performance Analysis of LDPC Codes for Differemt Number of lteratiuns
10 T T i T ; T 7 pp——— 3
d - 3 lterations E
[ 5 lierations
) I herationsF
107
0
o2
ja8) a
@B
w0l
0t 4
w? : I | i : 1 1 | .
0 1 2 3 B 5 3 7 3 9 0
SNR(dB}

Figure 5.4: Decoding Performance of LDPC Codes with Various Number of

Iterations
Performance of the decoding algorithm for various iterations is shown in

Fig.5.5 shows the BER performance for various methods of generation of H matrix.

Quasi cyclic codes and repeat accumulate codes have good BER performance.

B Perormance Analysis of LOPC Cades for Different H Matrix

10 T —————
E ‘ [ + Regular Gallager Codes
r - Reguiar MacKay Neal Codes
Quasi Cyclic Codes
Repeat-Accumulate Codes |

Yy —

Lot

SNR

Figure 5.5: Decoding performance of LDPC codes for different
H matrix generation
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Next the effect of changing the code length N is analysed. According to the
results in the figure 5.6, it’s evident that when the code length N is increased, the

performance of the code is increasing.

Perfomance of LDPC Cedes for Different N With Code Rate 172
T T T g
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Figure 5.6: Performance of LDPC Codes for Different N with Code Rate 1/2

Finally the simulation result for the proposed method of generating LDPC
codes is given. Here we are comparing the performance of the conventional quasi-
cyclic method and the proposed method for generating the H matrix. As the
simulation results indicated in figure 5.7, the conventional method provides slightly
better performance by a small margin. But considering the reduction in the
implementation complexity provided by the proposed method, we can use the method
for generation of LDPC codes with a very small trade off in BER performance. Here
we are taking 2 arrangements for the mirror image of I matrix. Both are giving almost
the same performance. So we can choose the convenient one for the generation.

. Perfomance Analvsis of Proposed Method of LDPC H-Marriv

B e e A - R E TP IILITIITITINIRT LTI L0 LI
Comvertional Quasi-Cyrlic
Propused Method: Armngemen 1 7
Proposed Method: Arrangement 2

BER

w0® 1 1 L L L

0
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Figure 5.7: Performance of Proposed Method for LDPC Codes Generation
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The Figure 5.8 the performance of the new method with respect to different
code length N is shown. As the code length increases the performance increases

slightly in the case of medium length codes.

. Perfomance of the Proposed Method for Diffferent Code Lengtht N
1 e e e - : : : SR _ne s
? L NeloDh
N=300L
N6

10 [ 1

5
SAR (4B}

Figure 5.8: Variation of Performance of the Proposed Method
With Code Length N

At the end of the brief analysis we can see that repeat accumulate
codes give better performance compared to other codes. Quasi cyclic codes give a
comparable performance with a very less complexity. The variation in performance

with respect to change in codelength N is very small for low and average code

lengths.
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CHAPTER 6

CONCLUSION

In this paper, some important design parameters of LDPC codes are analyzed
in the point of view of future wireless standards. Then the fact that the parity check
matrix of the LDPC codes are sparse matrices, allows the hardware implementation of
the decoder to be less complex. The process of passing extrinsic information between
bit node and check node allows the implementation of the concept of parallel
processing. Since the future wireless standards are designed for a wide band of
application in a single hardware platform, it needs to be adapted to different kinds of
decoding algorithm, different code rates, different code lengths and different number
of iterations according to the available computational capability. The QC-LDPC can
be effectively used for the multi-rate and multi-length wireless applications. At the
end of the analysis, a modified approach for the generation of regular LDPC codes is
proposed. The proposed method is a variant of the conventional QC-LDPC codes. The
modified method gives comparable performance which is less than the conventional
QC—LDPC by a slight margin but can be implemented with considerable amount of
reduction in complexity. The analyses and the simulation results will give an insight

to the design of LDPC codes for the future wireless standards.
FUTURE SCOPE

The future wireless standards demands for very high code rates and data rates
at large code lengths. So LDPC codes can plan an important role. The carefully
constructed irregular LDPC codes can produce very good BER. So this area needs to
be attended with more research. And also new methods of generating less complex

but efficient regular codes can be explored more.
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