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ABSTRACT

An error correction code that efficiently utilizes the hardware and the
bandwidth for high data rate communication is essential for long distance very
high speed wireless systems. The LDPC codes are a forward error correction
codes with performance limit well nearer to the Shannon limit. This project
presents a design for the implementation of Low-Density Parity-Check (LDPC)
decoders. A decoding architecture for the structured LDPC codes has been
employed. Unlike many other classes of codes, LDPC codes are equipped with
very fast (probabilistic) encoding and decoding algorithms. The decoding
algorithms for LDPC code are available in such a manner that parallelism could
be achieved with the currently available FPGAs. This advantage of LDPC codes
in the face of large amounts of noise makes LDPC codes not only attractive
from a theoretical point of view, but also perfect for practical applications.

The Low Density Parity Check Decoder is designed and simulated to
decode the code words transmitted by the transmitter through the noisy channel.
The received code words will be real valued variables. The real values are not
synthesizable in FPGAs. So, the algorith:ns and methods to implement the real
values in FPGA was developed and simulated .The appropriate methods to
implement exponential, log and tanh funétions needed in decoding algorithms
are also developed. THe hardware architecture for LDPC decoder is designed

using Verilog HDL. It was functionally simulated using Modelsim 6.31.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION TO COMMUNICATION SYSTEMS

Communication is the process of conveying message at a distance. The need tor
efficient and reliable data communication systems has been rising rapidly in recent years. The

following figure shows a simplified block diagram of a communication system.

Source R binits | | Encoder operates at Noisy Decoder produces
per second "| v binits per second channel replica of source binits

Fig 1.1 Block Diagram of a Communication System

In the figure 1.1 the noise present in the channel introduces errors in the received
message. Hence, in order to retrieve back the original message transmitted by the sender
some form of error correction is necessary. The forward error correction is most suited for
wireless communication and for long distance communication where retransmission is very

expensive.

The addition of redundancy in the coded messages for F EC implies a need for higher
transmission bandwidth, Moreover, the use of error control coding adds complexity to the
system. Especially the design of the decoder becomes complex. Hence the need for forward
error correcting codes that effectively uses the channel bandwidth with a moderate or low

complexity is necessary.

1.2 OBJECTIVE OF THE PROJECT

The objective of the project is to implement a soft decision decoder for LDPC codes in
Field Programmable Gate Array (FPGA). The implemented decoder uses sum-product
algor:thm which is a soft dec1510n decoding algorithm. The necessary algorithms and
methods to implement the decoder. Wthh uses real values that are not supported by FPGA.

have been developed and synthesized.



1.3 OVERVIEW OF THE PROJECT

Low-density parity-check (LDPC) codes are a class of linear block codes. They
provide near-capacity performance on a large collection of data transmission and storage
channels while simultaneously admitting implementable decoders. The LDPC codes was first

developed by Gallager at MIT in 1962 for his PhD thesis.[1]

At the time, their incredible potential remained undiscovered due to the computational
demands of simulation in an era when vacuum tubes were only just being replaced by the first
transistors. These codes remained largely neglected for over 35 years. In the mean time the
field of forward error correction was dominated by highly structured algebraic block and
convolutional codes. Despite the enormous practical success of these codes, their
performance fell well short of the theoretically achievable limits set down by Shannon. The
relative quiescence of the coding field was utterly transformed by the introduction of turbo
| codes, proposed by Berrou, Glavieux and Thitimajshima in 1993, wherein all the key
ingredients of successful error correction codes were replaced: turbo codes involve very little
algebra, employ iterative, distributed algorithms, focus on average (rather than worst-case)

performance, and rely on soft (or probabilistic) information extracted from the channel.

NCYV generalizationé of Gallager’s LDPC codes by a number of researchers including
Mackay [2], Luby, Mitzenmacher, Shokrollahi, Spielman, Richardson and Urbanke.
produced new irregular LDPC codes which offer certain practical advantages and an arguably
cleaner setup for theoretical results.[3] Today. design techniques for LDPC codes exist which
enable the construction of codes which approach the Shannon’s capacity to within hundredths
of a decibel. The main research interests are low complexity encoding and efficient decoding
schemes. In this project, a soft decision decoder for LDPC codes is designed, simulated and

tested using Modelsim.



CHAPTER 2
INTRODUCTION TO LDPC CODES

2.1 INTRODUCTION

Low-density parity-lcheck (LDPC) codes are a class of hnear block codes .They have
parity—check matrices with a very small number of non-zero entities.[4] Due to the sparseness
of this matrix their decoding complexity increases only linearly with the length of the codes.
LDPC codes are designed by constructing a sparse parity-check matrix first and then determining a
generator matrix for the code afterwards.{S][6] The encoding is similar to that of the other block
codes, the main difference of LDPC codes lies in the decoding methads. Their decoding algorithms

can recover the original code words in the presence of large noise.

2.2 REGULAR AND IRREGULAR LDPC CODES

The LDPC codes are of two types: They are regular and irregular codes. The regular
codes are those codes in which the row weight and column weight distributed evenly through
out the H matrix. In the case of irregular codes the row and column weights will difter
throughout the matrix. Basically design of regular LDPC codes is casy. But generally it is
observed that the carefully designed irregular codes will give better performance for very

large code lengths. [7][8]

2.3 REPRESENTATIONS OF LPDC CODES

There are two different possibilities to represent LDPC codes.[9] Like all linear block

codes they can be described via matrices. The second method is a graphical representation.
2.3.1 Matrix Representation

Let’s look at an example for a low-density parity-check matrix first.
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The matrix defined in equation (2.1) is a parity check matrix with dimension n xm for a (6.4)
code. We can now define two numbers describing these matrixes. w, for the number of 1's n
each row and w, for the columns. For a matrix to be called low-density the two conditions
we << 1 and w; <<m must be satisfied. [8] The matrix is called sparse matrix since the

number of ones in the matrix will be less than the number of zeros.

2.3.2 Graphical Representation

Tanner considered LDPC codes (and a generalization) and showed how they may be
represented effectively by a so-called bipartite graph. now call a Tanner graph{11] .The
Tanner graph of an LDPC code is analogous to the trellis of' a convolutional code in that it
provides a complete representation of the code and it aids in the deseription of the decoding
algorithm. A bipartite graph is” a graph (nodes connected by edges) whose nodes may be

separated into two types, and edges may only connect two nodes of different types.

fy fy f f;
check- nodes
bit- nodes
Co C C2 Cs Ca Cs Ce
Figure 2.1

The two types of nodes in a Tanner graph are the variable nodes and the check nodes
(which we shall call v-nodes and ¢-nodes, respectively). The Tanner graph of a code 1s drawn
according to the following rule: check node j is connected to variable node i whenever

element h;i in H is @ 1. One may deduce from this that there are m = n - k check nodes, one
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H specify the m c-node connections, and the n columns of H specity the n v-node

connections.

Example: Consider a (10, 5) linear block code with we = 2 and w, = wy(n/m) = 4 with the

following H matrix:

11110000 0 0
i 0001 11000
H=lo 1 00100110
0010010101
0001001 01 1]

The Tanner graph corresponding to H is depicted in Fig. 2.2. Observe that v-nodes ¢y,
¢y, ¢2. and ¢; are connected to c-node fj in accordance with the fact that, in the zeroth row of
H . hgy = hot = hoz = hos = 1 (all others are zero). Observe that analogous situations hold for c-
nodes f), £, £3, and f; which correspond to rows 1, 2. 3, and 4 of H, respectively. Note, as
follows from the fact that ¢H' = 0, the bit values connected to the same check node must sum
to zero. We may also proceed along columns to construct the Tanner graph. For example,
note that v-node cg is connected to c-nodes fp and fy in accordance with the fact that, in the

zeroth column of H, hpe=hio=1.

Note that the Tanner graph in this example is regular: each v-node has two edge
connections and each c-node has four edge connections (that is, the degree of each v-node is
2 and the degree of each c-node is 4). This is in accordance with the fact that w, =2 and w; =

4. Is is also clear from this example that mw; = nw..

For irregular LDPC codes, the parameters we and w, are functions of the column and

row numbers and so such notation is not generally adopted in this case

p 4 denotes the fraction of all edges connected to degree-d c-nodes and d, denotes the
maximum c-node degree. Note for the regular code above, for which we =dy = 2 and w, = d¢

=4 wehave A(x)=xand p(x)= X’



fa fi f> fs

Check nodes

variable
nodes

Cy Ci Ca C3 Cq ._Cj Co Cr Cg Cy

Figure 2.2:! Tanner graph for example code.

A cycle ( or loop) of length v in a Tanner graph is a path comprising v edges which
closes back on itself. The Tanner graph in the above example possesses a length-6 cycle as
exemplified by the six bold edges in the figure. The girth y of a.Tanner graph is the minimum
cycle length of the graph. The shortest possible cycle in a bipartite graph is clearly a length-4
cycle, and such cycles manifest themselves in the H matrix as four 1's that lie on the corners
of a sub matrix of H. We are interested in cycles, particularly short cycles, because they
degrade the performance of the iterative decoding algorithm .used for LDPC codes. This fact

will be made evident in the discussion of the iterative decoding algorithm.

2.4 IMPORTANT DESIGN PARAMETERS

Design of LDPC codes involves many parameters which are often determined in

consideration of the target application.[11]

2.4.1 Code size

The code size specifies the dimensions of the parity check matrix (MxN). Sometimes

the term code length is used referring to N. Generally a code is specified using its length and



row-column weights in the form (N. j, k). M can be deduced from the code parameters N, j
and k. [t has been shown that very long codes pérform better than shorter ones. Long codes
are therefore desirable to have good performance. However, their hardware implementation

requires more resources (memory plus professing nodes).

2.4.2 Code Weights and Rate

The rate of a code, R, is the number of information bits over the total number ot bits

transmitted. It is expressed as(:\’—M}. Higher row and column weights result in more
N

computations at each node because of many incoming messages. However, if many nodes
contribute in estimating the probability of a bit the node reaches a consensus faster. Higher
rates mean fewer redundancy bits. That is, more information data is transmitted per block
resulting in high throughput. However, low redundancy means less protection of bits and
therefore less decoding performance or higher error rate. Low rate codes have more
redundancy with fewer throughputs. More redundancy results in more decoding performance.
However, very fow rates may have poor performance with a smali number of connections.
LDPC codes with column-weight of two have their minimum distance increasing
logarithmically with code size as compared to a linear increase for codes with column weight
of three or higher. As a result column-weight two codes perform poorly compared to higher
column-weight codes. Column weights higher than two are usually used. Although regular
codes are commonly used, carefully constructed irregular codes could have better error

correcting performance.

2.4.3 Code Structure

The structure of a code is determined by the pattern of connections between rows and
columns. The connection pattern determines the complexity of the communication
interconnect between check and variable processing nodes in an encoder and decoder
hardware implementations. Random codes do not follow any predetined or known pattern in
row-column connections. Structured codes on the other hand have a known interconnection

pattern. Many methods have been developed for constructing those types of codes.



2.4.4 Number of iterations

The number of iterations is the number of times the received bits are estimated before
a hard decision is made by the decoding algorithm. A large number of iterations may ensure
decoding algorithm convergence but will increase decoder delay and power consumption.
The number of corrected errors generally decreases with an increasing number of iterations.
In performance simulations a large number of iterations, (about 100 to 200), can be used. For

practical applications 20 to 30 iterations are commonly used.

2.5 LDPC CODE CONSTRUCTION

Several different algorithms exist to construct suitable LDPC codes. Gallager himself
introduced one. Furthermore MacKay proposed one to semi-randomly generate sparse parity
check matrices. This is quite interesting since it indicates that constructing good performing
LDPC codes is not a hard problem. In fact, completely randomly chosen codes are good with
a high probability. The problem that will arise is that the encoding complexity of such codes

15 usually rather high.

Clearly, the most obvious path to the construction of an LDPC code is via the
construction of p low-density parity-check matrix with prescribed properties. A large number
of design techniques exist in the literature, and we introduce some of the more prominent
ones in this section, albeit at a superficial level. The design approaches target different design
criteria, including efficient encoding and decoding, near-capacity performance, or low-error
rate floors. (Like turbo codes, LPDC codes often suffer from low-error rate floors, owing

both to poor distance spectra and weaknesses in the iterative decoding algorithm.[9]
2.5.1 Gallager Codes

The original LDPC codes due to Gallager [1] are regular LDPC codes with an H

matrix of the form

H

| Hw, |



where the sub matrices Hy have the following structure. For any integers p and w; than
greater than 1, each sub matrix Hg is b x pw, with row weight wy and column weight 1. The
sub matrix H; has the following specific form: for i = 1,2, ..., u the i-th row contains all of its
w, 1's in columns (i - 1} w; + | to iw, The other submatrices are simply column
permutations of H;_ It is evident that H is regular, has dimension pw, x puw;, and has row and
column weights w, and w., respectively. The absence of length-4 cycles in H is not
guaranteed, but they can be avoided via computer design of H. Gallager showed that the
ensemble of such codes has excellent distance préperti—es provided w, = 3 and w; > w, .
Further, such codes have low-complexity encoders since parity bits can be solved for as a

function of the user bits via the parity-check matrix [10].

Gallager codes were generalized by Tanner in 1981 [11] and were studied for
application to code-division multiple-access communication channel in, Gallager codes were

extended by MacKay and others.

2.5.2 MacKay Codes

MacKay had independently discovered the benefits of designing binary codes with
sparse H matrices and was the first to show the ability of these codes to perform near capacity
limits .MacKay has archived on a web page a large number of LPDC codes he has designed
for application to data communication and storage, most of which are regular. He provided
the algorithms to semi-randomly generate sparse H matrices. A few of these are listed below

in order of increasing algorithm complexity (but not necessarily improved performance).

1. H is created by randomly generating weight-w,. columns and (as near as possible)

uniform row weight.

2. H is created by randomly generating weight-w, columns, while ensuring welght-w;

rows, and no two columns having overlap greater than one.
3. His generated as in 2, plus short cycles are avoided.

4. H is generated as in 3, plus H = [H; H,] is constrained so that Hy is invertible (or at

least H 1is full rank)

One drawback of MacKay codes is that they lack sufficient structure to enable low-

complexity encoding. Encoding is performed by putting H in the form [P' 1] via Gauss-

. . o . a e T



G =[I P]. The problem with encoding via G is that the sub matrix P is generally not sparse

so that, for codes of length n = 1000 or more, encoding complexity is high.
2.5.3 Repeat-Accumulate Codes

A type of code, called a repeat-accumulate (RA) code, which has the characteristics of
both serial turbo codes and LDPC codes, was proposed in. The encoder for an RA code is
shown in Fig. 2.3.where it is seen that user bits are repeated (2 or 3 times is typical),
permuted, and then sent through an accumulator (differential encoder) .These codes have
been shown to be capable of operation near capacity limits, but they have the drawback that

they are naturally low rate (rate 1/2 or lower). [13]

RA

[ W

repeat I1 @5 -

4
h 4

1xn

Fig.2.3: Encoders for the repeat-accumulate (RA)



CHAPTER 3

ENCODING AND DECODING

3.1 ENCODING

The LDPC encoder transforms each input message block *u’ into a distinct N-tuple
(N-bit sequence) code word ‘c’. The codeword length N, where N > K, is then referred to as
the block-length. And, there are 2% distinct code words corresponding to the 2% message
blocks. This set of the 2¥ code words is termed as a C (N, K) linear block code. The word
linear signifies that the modulo-2 sum of any two or more code words in the code C(N,K)is
another valid codeword. The number of non-zero symbols of a codeword "¢’ is called the
weight, while the number of bit-positions in which two code words differ is termed as the
distance. The minimum distance of a linear code is denoted by dpin, and determined by the

weight of that codeword in the code C (N, K), which has the minimum weight.[14]

The unique and distinctive nature of the code words implies that there is a one-lo-one
mapping between a K-bit information sequence “u” and the corresponding N-bit codeword ¢’

described by the set of rules of the encoder.

A generator matrix ‘G’ is determined by performing Gauss-Jordan elimination on

*H’ to obtain it in the form:
[H'= [AB]N—K]] 3.1

Where ‘A’ is a (N-K) x K binary matrix and Iy is the size N-K identity matrix. The

generator matrix is then:

LS
[

G=MJN_KJ

Since LDPC codes are linear block codes, a codeword is generated by multiplying the

input vector with the generator matrix,

L)
Lo

¢c=uCs

Where ‘¢’ is the code word and “u’ is the input vector bits. Since “G” matrix is not

o .2
sparse, the matrix multiplication at the encoder will have complexity in the order of 1



3.2 DECODING

The class of decoding algorithms used to decode LDPC codes is collectively termed
message-passing algorithms since their operation can be explained by the passing of
messages along the edges of a Tanner graph. Each Tanner graph node works in isolation,
only having access to the information contained in the messages on the edges connected to it.
The message-passing algorithms are also known as iterative decoding algorithms as the
messages pass back and forward between the bit and check nodes iteratively until a result is
achieved (or the process halted). Different message-passing algorithms are named for the
type of messages passed or for the type of operation performed at the nodes. In some
algorithms, such as bit-flipping decoding, the messages are binary and in others, such as
belief propagation decoding, the messages are probabilities which represent a level of belief
about the value of the codeword bits. It is often convenient to represent probability values as
log likelihood ratios, and when this is done belief propagation decoding is often called sum-
product decoding since the use of log tikelihood ratios allows the calculations at the bit and

check nodes to be computed using sum and product operations.[15]
There are 2 methods that can be used for decoding of LDPC codes

* Bit-flipping decoding

e Sum-product decoding

3.2.1 Bit-Flipping Decoding

The bit-flipping algorithm is a hard-decision message-passing algorithm for LDPC
codes. A binary (hard) decision about each received bit is made by the detector and this is
passed to the decoder. For the bit-flipping algorithm the messages passed along the Tanner
graph edges are also binary: a bit node sends its value as 0 or 1 to the check node and each
check node sends a message to each connected bit node, declaring what value the bit is based
on the information available to the check node. The check node determines that its parity-
check equation is satisfied if the modulo-2 sum of the incoming bit values is zero. If the
majority of the messages received by a bit node are different from its received value the bit
node changes (flips) its current value. This process is repeated until all of the parity-check
equations are satisfied.

The bit-flipping decoder can be immediately terminated whenever a valid codeword

Fac lhomit Fr111d Tovr mbramlrio e 28 ndl oo tde o oo s e b o ol g e g epmy et v 4y



message-passing decoding of LDPC codes and has two important benefits; firstly additional
iterations are avoided once a solution has been found, and secondly a failure to converge to a
codeword is always detected.

The bit-flipping algorithm is based on the principal that a codeword bit involved in a
large number of incorrect check equations is likely to be incorrect itself. The sparseness of H
helps spread out the bits into checks so that parity-check equations are unlikely to contain the

same set of codeword bits,

Algorithm:

1. procedure DECODE(y)

2

3 1=0 : ' Inttialization

4: fori=1:ndo

5: Mi =%

6: end for

7

8: repeat

O forj=1:mdo Step [: Check messages
10: fori=1:ndo

11: Eli =Yiesiia(Mi mod 2)

12: end for

13: end for

14:

15: fori=1:ndo , Step 2: Bit messages
16:  if the messages Ej.i disagree with yi then’

17: Mi=(ri+ I'mod 2)

18: end if |

19: end for

20:

21: farj=1:mdo Test: are the parity-check
22: Lj ==2i-o{(M; mod 2) equations satisfied
23:  end for

24: if all Lj =0 or I = Imax then

25: Finished

26: else

27: I=1+1

28: end if

29; until Finished
30: end procedure



Where,
Eji-message from checknode to bit node
m;_message from bit node i to the check node

y - received message

3.2.2 Sum-product decoding

The sum-product algorithm is a soft decision message-passing algorithm. It 1s similar
to the bit-flipping algorithm. But with the messages representing each decision (check met, or
bit value equal to 1) now probabilities. The sum-product algorithm is a soft decision
algorithm which accepts the probability of each received bit as input. The input bit
probabilities are called the a priori probabilities for the received bits because they were
known in advance before running the LDPC decoder. The bit probabilities returned by the
decoder are called the posterior probabilities. In the case of sum-product decoding these

probabilities are expressed as log-likelihood ratios.[16]

For a binary variable x it is easy to find p(x = 1) given p(x = 0), since p{x = 1) =
1-p(x = 0) and so we only need to store one probability vatue for x. Log likelihood ratios are

used to represent the metrics for a binary variable by a single value

p(x = 1),""‘p(x = O) 3 e—/.f.\‘}
14 P(x = l)’/p(x =0) 1+ e—f,r.\-; .

px=0)=

and

Liv)

plx =0} p(x=1) _ ¢
I+ plx=0)/px=1) l+e¢

plx=1)=

FRAY]

(9]
n

The benefit of the logarithmic representation of probabilities is that when probabilities
need to be multiplied log-likelihood ratios need only be added. reducing implementation
complexity .The sum-product algorithm iteratively computes an approximation of the MAP
value for each code bit. Input is the log likelihood ratios for the a priori message probabilities.

The a priori probabilities for the BSC are



ri=logp/(l-p) ifyi= 1
Or
ri=log(l- p)/(p)ify;=0 3.6

In sum-product decoding the extrinsic message from check node j to bit node 1. Ej;. 1

the LLR of the probability that bit i causes parity-check j to be satistied.

1+ 1] B].,f'i l-tanh(Mj, l";""z)

E. =log ' —
o 1-Tljc p = tanh(M),i/2)
7 3.7
The intrinsic message from check node j to bit node i, M, is given by,
M, = Z E o+
fedi it 5.8
The total LLR of the bit stream is
Li = Z jea Byt 3.9

The total LLR can be either positive or negative number. The hard decision is taken.
When total LLR is positive the decision is ‘0’ else ‘1°. The code word is z. Then syndrome
calculation is done by s=zH’. When s is zero then z is a valid codeword, and the decoding

stops, returning z as the decoded word

For an AWGN channel the a priori LL.Rs are given by
rr' = 4_)),' (E\ /‘Nrt ) ' 3 . 1 0
The extrinsic LLR and the total LLR calculation are done to find the codeword .

Algorithm:
procedure DECODE(r)
[=0
fori=1:ndo

forj=1:mdo



end for
end for
repeat

forj=1:mdo

fori € Bjdo
E, = [H @, ]¢(z ¢(ﬁ,,‘.')]
end for
end for

fori=1:ndo
Li=2 j€AE+r
ILL <0
i {O,L,) 0
end for
fori=1:ndo
forj & Ajdo
Mj,i =2 J"EAi j7 Eji T i
end for
end for
I=1+1
end if
until Finished

end procedure

Where,
Ej,i - extrinsic information from check node to bit node

Mi,j - information from bit node to check node



CHAPTER 4
HARDWARE IMPLEMENTATION
4.1 INTRODUCTION

The LDPC codes can be decoded by using tanner graph method. In this method, as
explained in the sum-product decoding, the check nodes can be used to manipulate the
extrinsic information concurrently with that of the other check nodes. Hence parallelism can
be achieved using the current FPGAs.[17] In this project the decoder for LDPC codes have
been implemented by designing the necessary algorithms. These algorithms are used for

implementing the real values in FPGAs.

Due to their low complexity and parallel manipulation for decoding, the LDPC codes

are more suited for higher data rate systems. Such an implementation is done in this project.
4.2 ALGORITHMS FOR HARDWARE IMPLEMENTATION

The real values are not supported by the synthesis tools for implementing in FPGAs.
So, necessary algorithms for synthesizing and implementing real values in FPGAs were
developed. Also, the log and tanh functions needed for calculating the extrinsic information
are not readily available for simulation in Modelsim, so methods to implement log and tanh

functions are also developed.
4.2.1 Implementation of Real Values

The real values are implemented by expressing them as mantissa and exponent form as

explained below,

Let x be a real valued number, x= 1.7394. Then this number can be represented as mantissa

and exponent as
X= 17394 E -4
Here mantissa of x — 17394 and exponent of x is -4.

The normal arithmetic operations such as addition, multiplication and division for real values

are implemented as follows,



4.2.1.1 Addition

Let 2 and b be the two real values whose sum is to be found. Then using the exponent

and mantissa form the addition is done as fo]lows:,
a=1.2345 b=3.456
Mantissa of a, x= 12345 and exponent of x, xe= -4
Mantissa of b, y= 3456 and exponent of y, ye= -3
1. Normalizing the exponents
x= 12345, xe=-4
y= 34560, ye= -4
2. sum= (x+y) E(xe or ye)
3. Answer = 46905 E -4
4.2.1.2 Multiplication

In order to multiply two real values, we must at first normalize the exponent part of

the numbers and then multiply the mantissa part together.

Eg.: a=7.623 b=1.5012
x= 7623, xe=-3
y= 15012, ye= -4

1. mul=x*y;

2. mule= xe+ye

3. Answer = 114436476 E -7
Normalizing the exponents

= 114436 E -4



4.2.1.3 Division

Before trying to divide two real values, their exponents should be normalized. The

obtained mantissa parts can now be divided using the below algorithm:
1) Letx & y be the mantissa parts of the two numbers.
2) Assign temp=0.
3) Check if x is greater than or equal to y.
4) 1If true, subtract y from x and increment a temporary variable temp.
5) Repeat from step 2 until the condition is false.
6) Assign a[0]=temp.
7) Then multiply x by 10 and repeat from step 2.
8) Do the above steps again to obtain the values of a[1], a[2], a[3] & a[4].
9) The result of the division is a[0]* 10000+a[1]*1000+af2]*100+a[3]*1 O-+a[4],

with an exponent of -4.

4.2.2 Implementation of Log, Tanh And Exponential Functions

The log and tanh function are essential to calculate the extrinsic information in a

check node as given in the equation 3.7 which is reproduced here,

1+TTpe B it i tanh(3.17/2)
j

E. . =log . .
I I-Tlye g 7w itanh(M,i/2)
J

4.1

The log and tanh function are implemented using the exponential function.



4.2.2.1 Exponential Function
The exponential function is impiemented using the power series,

The exponential function is given as,

4 ]
T 2 F o

a1 U oar

2. an
Z—-—- 1+ x+
" 7! 4.2

where x is a real value.

The number of terms taken here is 10, which gives a precision of 5 digits, sufficient for

implementing log and tanh functions.

4.2.2.2 Tanh Function

The tanh function for a real value x is given as,

sinhr e —e% % -1
coshs e —e = e | 4.3

tanhx —

It is required to find the extrinsic information for a particular bit node from a check
node in sum-product algorithm. Thus if exponential function for a real value could be found

then the tanh function for that value could be calculated.

4.2.2.3 Log Function

The In function for a real value z ts given as,

s =9 z—~1+1(7——1)3+1(z—1)5; |
ne= "l‘]. 3 3+1 5Z+1 I : 4.4

This series can be derived from the above Taylor series. It converges more quickly

than the Taylor series, especially if z is close to 1. For example, for z = 1.5, the first three

. . . - - s s 1
terms of the second series approximate In(1.5) with an error of about 3X107". The quick
convergence for z close to 1 can be taken advantage of in the following way: given a low-

accuracy approximation y = In(z) and putting,



)

A= —
exp(y)’ 45

the logarithm of z is

mz=y+MH. 4.6

It is also used to determine the extrinsic information for a bit node from a check node.



CHAPTER 5
SIMULATION RESULTS AND DISCUSSIONS

The simulation is done using Modelsim 6.3f. The message bits are encoded using
MATLAB 7.6.0.324 (R2008a).The code words are then passed through the Gaussian channet
and the final code word are obtained from the channel using Matlab. Then these code words

are decoded, using the algorithm developed, using Modelsim 631,

5.1 Simulation Results

The simulation result for the soft decision decoder is given as follows. The input data is first
encoded using Matlab and it is transmitted through the AWGN channel. The parity check

matrix used for encoding is

H= 00 1 1 1 1 0 0 0 0
1 o0 1 1 01 0 00
O 1101 00 1 00 5.1
1 10t 0 0 0 0 1 0
1 110 0 0 0 0 01

1. For the input data [00001] the codeword generated using Matlab is
C=[0000111100]
The received data for the transmitted codeword 1s

[-1.0934 -0.6371 -1.2942 0.0916 0.9318 1.0570 1.5334 1.0296 -1.0478 -1.4162]

The decader output for the received data is given below:

In the above example the fourth bit is received with error and after 10 iteration of decoding

algorithm the output is decoded.
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3. For the input data [01000] the codeword generated using Matlab is
C=[0100000111}
The received data for the transmitted codeword is

[-1.8020 1.1287 -1.5282 -0.2924 -1.4025 -0.7356 -0.8903 0.5390 -0.0853 0.9704 ]

The decoder output for the received data is given below:

.

=

Figure 5.3: Simulated output for the code word [0100000111]

4. For the input data [01011] the codeword generated using Matlab 1s
C=10101100001]

The received data for the transmitted codeword is

[-1.3244 -0.2492 -0.9060 1.2158 0.1401 -0.1068 -0.1081 -1.0282 -0.7545 1.1310]

The decoder output for the received data is givenbelow:

1 wave -defait .

Ficure 5.4: Simulated output for the code word [0101100001]
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5. For the input data [10110] the codeword generated using Matlab is
C=[1011000100]

The received data for the transmitted codeword 1s
[0.7837 -1.8328 1.0627 1.1438 -1.5732 -0.4045 -0.4054 0.9812 -0.8364 09127 ]

The decoder output for the received data is given below:

pwave - defaukt R -: . H

H
i

]
o Curmr L ssre | [IREES!
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Figure 5.5: Simulated output for the code word [101 1000100]




5.2 Synthesis Report Of Tanh Module And Log Module

The Synthesis report of tanh module and log module is given. Various resources and

their utilization is shown.

5.2.1 Tanh module
HDL Synthesis Report

Macro Statistics

# Multipliers 1319
10x5-bit multiplier 1
11x5-bit multiplier 2
13x5-bit multiplier 12
14x5-bit multiplier 01
15x5-bit multiplier 2
16x3-bit multiplier 3
18x5-bit multiplier 2
19x5-bit multiplier 12
20x35-bit multiplier i1
21x5-bit multiplier : 3
22x5-bit multiplier 21
23x5-bit multiplier : 2
24x5-bit multiplier 12
25x5-bit multiplier 21
26x5-bit multiplier 23
27x5-bit multiplier |
28x5-bit multiplier 2
31x5-bit multiplier :2
32x32-bit multiplier 216
32x5-bit multiplier : 190
4x11-bit multiplier 19
4x15-bit multiplier D18
4x5-bit multiplier : 20
4x8-bit multiplier : 19

5x5-bit multiplier ' 1



8x5-bit multiplier
9x5-bit multiplier

# Adders/Subtractors
1-bit adder carry out
2-bit adder
2-bit adder carry out
2-bit subtractor
3-bit adder
3-bit adder carry out
3-bit subtractor
32-bit adder
32-bit subtractor
4-bit adder
4-bit subtractor

5-bit subtractor

# Comparators

32-bit comparator great equal
32-bit comparator greater
32-bit comparator less

33-bit comparator greater

33-bit comparator less

# Multiplexers
32-bit 4-to-1 multiplexer

Design Summary Report:

Number of External IOBs

Number of External Input IOBs

Number of External Input IBUFs
Number of LOCed External Input IBUFs
Additional JTAG gate count for [OBs
Peak Memory Usage

Total REAL time to MAP completion
Total CPU time to MAP completion

16 outof 16
1 768

: 1070

1 940

145
45
111
129
214
14

16 outof 190 8%
- 16

116
100%

: 151 MB

13 secs

o1 secs



5.2.2 Log module

HDL Synthesis Report

Macro Statistics

# Multipliers
10x5-bit multiplier
11x5-bit multiplier
13x5-bit multiplier
14x5-bit multiplier
15x5-bit multiplier
16x5-bit multiplier
18x5-bit multiplier
22x5-bit multiplier
23x5-bit multiplier
24x5-bit multiplier
25x5-bit multiplier
28x5-bit multiplier
29x5-bit multiplier
3 1x5-bit multiplier
32x32-bit multiplier
32x5-bit rmultiplier
4x11-bit multiplier
4x15-bit multiplier
4x5-bit multiplier
4x8-bit multiplier
5x5-bit multiplier
6x5-bit multiplier
7x5-bit multiplier
8x5-bit multiplier
9x5-bit multiplier

# Adders/Subtractors

1-bit adder carry out
2-hit adder

2356

LS B (] 2

LS

o Ln

9

1 188
25
118
: 28
29

: 2166
. 87
- R7



2-bit adder carry out
2-bit subtractor
3-bit adder

3-bit adder carry out
3-bit subtractor
32-bit adder

32-bit subtractor
4-bit added

4-bit subtractor
5-bit adder

5-bit subtractor

# Comparators

32-bit comparator great equal
32-bit comparator greater
32-bit comparator less

33-bit comparator greater

33-bit comparator less

# Multiplexers
32-bit 4-to-1 multiplexer

Design Summary Report:

Number of External IOBs

Number of External Input IOBs

Number of External Input IBUFs
Number of LOCed External Input IBUFs
Additional JTAG gate count for [OBs
Peak Memory Usage

Total REAL time to MAP completion
Total CPU time to MAP completion

101
: 39
: 279
101
. 29
138
:96%
150

: 170

1160
: 60
1 60
121
: 49
18
18

;29 outof 190 15%
129

;29

: 29 out of 29
21168

1251 MB

100%

5 secs

1 2 secs



5.3 Discussion

From the above simulation we analyzed the for every 1000 message bits transmitted

through a noisy Gaussian channel, the LDPC decoder corrects up to 960 bits.

Bit Error Rate = 40/1000
=0.04

This is an appreciable performance for this small number of codes. In real time practical
systems the message bits transmitted will be in thousands of bits. and under those conditions
this LDPC decoder performance is well nearer to the shannon limit. Hence the developed
algorithms and methods for designing and implementing the LDPC decoder are found to
perform well in noisy channels. Though the complete synthesis of this LDPC decoder is

beyond the scope of this project, the synthesis for tanh and log functions are also presented.
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